JP2005142433A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2005142433A
JP2005142433A JP2003378721A JP2003378721A JP2005142433A JP 2005142433 A JP2005142433 A JP 2005142433A JP 2003378721 A JP2003378721 A JP 2003378721A JP 2003378721 A JP2003378721 A JP 2003378721A JP 2005142433 A JP2005142433 A JP 2005142433A
Authority
JP
Japan
Prior art keywords
via hole
semiconductor device
film
electron beam
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003378721A
Other languages
English (en)
Inventor
Miyoko Shimada
美代子 島田
Shinichi Ogawa
真一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Leading Edge Technologies Inc
Original Assignee
Semiconductor Leading Edge Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Leading Edge Technologies Inc filed Critical Semiconductor Leading Edge Technologies Inc
Priority to JP2003378721A priority Critical patent/JP2005142433A/ja
Publication of JP2005142433A publication Critical patent/JP2005142433A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

【課題】 空孔を有する低誘電率膜を用いる半導体装置において、信頼性の高いビアの形成方法を提供する。
【解決手段】 半導体基板1の上に形成した空孔を有する低誘電率膜8にビアホール10を形成する工程と、ビアホール10の内部にビアプラグを形成する工程との間に、ビアホールの側壁に電子線を照射することにより、ビアホール10の側壁に露出した低誘電率膜8の空孔を微細化もしくは消失させ、配線間ショートやビアの抵抗上昇を抑えることができる。
【選択図】 図6

Description

本発明は、半導体装置に関するものであり、特に多層配線構造を有する半導体装置の製造方法に関する。
半導体装置の微細化・高速化に伴い、配線構造は単層構造から多層化が進み、5層以上の金属配線構造を有する半導体装置も開発生産されている。しかし、微細化が進むにつれて配線抵抗と配線間寄生容量による信号伝達遅延が問題となっている。近年、多層配線構造に起因する信号伝達遅延が、半導体装置の高速化に大きく影響するようになり、回避策として様々な方法が取られている。
一般的に、信号伝達遅延は前述した配線抵抗と配線間寄生容量の積で示すことができる。配線抵抗の低減に関しては、従来のアルミニウム配線よりも抵抗の低い銅配線への移行が検討されている。銅を従来と同様にドライエッチングして配線形状に加工することは現状の技術では極めて困難なため、銅の場合には埋め込み配線技術をとる。
一方、配線間容量の低減に関しては、従来のCVD(Chemical Vapor Deposition)法を用いたシリコン酸化膜(SiO)による絶縁膜に代わり、シリコン酸化膜より比誘電率の低い、いわゆる低誘電率膜であるSiOF膜、SOG(Spin on Glass)膜や有機樹脂(ポリマー)膜の適用が検討されている。
シリコン酸化膜の比誘電率は約3.9であるのに対し、SiOF膜は比誘電率を3.3程度まで低減させることが可能であり、配線間容量の低減に有効である。しかし、比誘電率を3.3よりも小さくすることは、膜の安定性の面から実用は極めて困難である。
それに対して、SOG膜や有機樹脂膜は、膜中に空孔を導入することにより比誘電率を2.0程度まで下げることが可能とされ、現在盛んに検討が進められている(例えば、特許文献1参照)。
空孔を有する低誘電率膜、特にシロキサン材料に電子線を照射しつつ焼成することにより材料特性の改善・向上がみられることが本発明者の発明から分かっている。
電子線照射のように、熱処理では不可能なエネルギーを膜材料に与えることによって、材料の高分子の架橋反応を効果的に進めたり、また逆に熱エネルギーでは切断できない分子鎖や基を切断することができる。電子線照射を行った場合、一般的に、分子間の架橋反応と分子鎖の切断や基の分離は同時に起こる。どちらがどのような割合で起こるかは、材料分子の種類に依存する。さらに電子線照射と熱処理を組み合わせることにより、分子鎖の切断や基の分離が起こった場合にも、切断点が新たな架橋点となりさらに架橋が進む。
以上のように、電子線照射を用いることで、熱処理のみでは実現できないような膜材料の分子間の架橋反応や分子鎖の切断や基の分離を行うことができる。
特開2002−026121号公報
上述のように、空孔を有する絶縁膜にビアホール(上層配線と下層配線を電気的に接続するためのコンタクトホール)を形成するとき、絶縁膜が膜中に空孔を有するため、空孔がビアホール側壁に露出し、側壁の表面が荒れるという問題があった。
この問題から、ビアホール内のバリアメタルの被覆性劣化やバリアメタルに含まれる金属の絶縁膜への染み込みが起こり、半導体装置の信頼性を低下させるおそれがある。
これらの問題を回避するため、従来はバリアメタル層形成の前処理として、アルゴンを用いた逆スパッタリングによりビアホール側壁を平坦化していた。しかし、アルゴンの逆スパッタリングでは、下層配線からビアホール側壁へ銅が付着したり、ビアホール上部開口部が片落ちする等の問題が新たに生じてしまう。
以上のように、空孔を有する絶縁膜にビアホールを形成するとき、ビアホール側壁の荒れにより、半導体装置の信頼性を低下させてしまうという課題があった。
本発明は、上記課題を解決するためになされたもので、低誘電率膜を用いた半導体装置のビアプラグ形成において、配線間容量を低く抑え、配線形成工程の高歩留まりを維持した、優れた半導体装置の製造方法を提供することを目的とする。
本発明に係る半導体装置の製造方法は、半導体基板上に低誘電率膜を形成する工程と、前記低誘電率膜の上にレジストパターンを形成する工程と、前記レジストパターンをマスクとして前記低誘電率膜を選択的にエッチングして前記低誘電率膜にビアホールを形成する工程と、前記ビアホールの内部にビアプラグを形成する工程とを有する半導体装置の製造方法であって、前記ビアホール形成工程と前記ビアプラグ形成工程との間に、少なくとも、前記ビアホールの側壁に電子線を照射する工程を含むことを特徴とする。
本発明のその他の特徴については、以下において詳細に説明する。
本発明によれば、低誘電率膜を用いた半導体装置のビアプラグ形成において、配線間容量を低く抑え、配線形成工程の高歩留まりを維持した、優れた半導体装置の製造方法を得ることができる。
実施の形態1.
図1〜8は、本発明の実施の形態1による半導体装置の製造方法を、半導体装置の断面により、順を追って説明する工程説明図である。
まず、図示しないが、半導体基板上にMIS(Metal Insulator Semiconductor)型トランジスタ等、必要な素子を形成する。
次に、図1に示すように、半導体基板1の主面上に、シリコン窒化膜からなる下層ストッパー膜2をLPCVDにより50nm程度形成する。
さらに、下層ストッパー膜2の上に、シリコン酸化膜からなる下層絶縁膜3を常圧CVDで200〜300nm程度形成する。
次に、下層絶縁膜3の上にレジストパターン(図示しない)をリソグラフィにより形成し、これをマスクとしてシリコン酸化膜3をドライエッチングし、図2に示すように下層配線溝4を形成する。
次に、図示しないが、下層配線溝4(図2参照)の内面に、TaN、あるいはTiNからなる下層バリアメタル膜をCVD法または原子化学気相成長法(Atomic Layer Deposition;以下、ALD法と称する)により20nm程度の膜厚で形成する。このとき、下層配線溝4(図2参照)の内面に形成した下層バリアメタル膜も溝を残している。
さらに、下層バリアメタル膜で形成した溝の内面に、500nm程度の膜厚の銅膜を埋め込む。
次に、下層配線溝4(図2参照)の外部に形成した下層バリアメタル膜および銅膜を化学機械研磨(Chemical Mechanical Polishing;以下CMPと称する)により除去し、図3に示すように、下層バリアメタル5および下層銅配線6を形成する。
次に、図4に示すように、下層絶縁膜3、下層バリアメタル5、および下層銅配線6の上に、シリコン窒化膜からなるビアホールストッパー膜7をプラズマCVDにより30nm程度形成する。
さらに、ビアホールストッパー膜7の上に、有機シロキサン膜からなるビアホール絶縁膜8をスピンコート法により500〜1000nmの膜厚で形成する。
ここで、配線間容量は絶縁膜の比誘電率に比例するので、配線間容量を小さくするためには、ビアホール絶縁膜8の比誘電率は小さい方が望ましい。有機シロキサン膜とはメチル基(CH基)を含んだ有機シリコン酸化膜であり、シリコン酸化膜(SiO膜)よりも比誘電率の小さい低誘電率膜である。
そこで、有機シロキサン膜からなるビアホール絶縁膜8の比誘電率を水銀プローブ法を用いて測定したところ、比誘電率は約2.2であった。SiO膜は約3.9であり、他の低誘電率膜であるSiOF膜の比誘電率が約3.3であることから、十分に低い比誘電率が得られたと考えられる。
有機シロキサン膜について、さらに詳細に説明する。有機シロキサン膜の分子は、シリコン(Si)原子、酸素(O)原子、炭素(C)原子、および水素(H)原子からなり、これらの原子がSi−OおよびSi−CHの結合により構成されている。シリコン酸化膜(SiO膜)の分子は、Si−O結合のみで構成されているのに対し、有機シロキサン膜は、SiO膜のSi−O結合のO原子の一部をCH基により置換した構造となっている。
Si-CHの結合距離は、Si−Oの結合距離と比較して大きく、分子構造内に隙間が生じるため、有機シロキサン膜は多孔質(ポーラス)となり、空孔を有している。

絶縁膜中に空孔が存在すると、さらに比誘電率が小さくなるので、上記のようにビアホール絶縁膜の中に空孔を有するように形成することにより、さらに低い比誘電率を得ることができる。
次に、図5に示すように、レジストパターン9をリソグラフィにより形成し、これをマスクとしてドライエッチングを行い、ビアホール10を形成する。このとき、ビアホール10の側壁には、空孔を有する低誘電率絶縁膜であるビアホール絶縁膜8が露出しており、さらに、ビアホール10の底部には、下層銅配線6の表面が露出している。
次に、図示しないが、Oプラズマ、HOプラズマ、あるいは紫外線およびオゾン照射によるアッシング処理(灰化処理)を行い、レジストパターン9を除去する。
次に、図示しないが、ビアホール10内部のエッチング残留物を除去するため、エチレンジアミン等の有機アルカリ系の剥離液を用いて、ビアホール10を洗浄する。
次に、図6に示すように、ビアホール絶縁膜8の表面およびビアホール10の側壁に、電子線11を照射する。
ここで、電子線の照射を行う目的は、ビアホール10の側壁の荒れを小さくすることである。以下、電子線の照射を行う工程について、詳細に説明する。
まず、図示しないが、電子線を照射するときの半導体基板の温度が100℃〜400℃の範囲内、好ましくは200℃程度になるように、半導体基板を載置するホットプレートの温度を調節する。
上記のように温度を調節する理由は、電子線を照射するときの半導体基板の温度が100℃未満のときは、ビアホールの側壁の荒れの改善効果が小さく、また400℃より大きいときは、装置への負荷が大きくなり、100℃〜400℃の範囲の温度が適切であるからである。
次に、図示しないが、ホットプレート上に半導体基板1を載置し、半導体基板1の温度が約200℃となるように設定し、下層銅配線6およびビアホール絶縁膜8が酸化されないように、酸素濃度が0.05%以下の窒素ガス減圧雰囲気下に配置する。
このとき、減圧雰囲気として窒素ガスを用いるようにしたが、これに置き換えて、ヘリウム、ネオン、アルゴン等の希ガスや、窒素ガスと希ガスの混合ガスを用いるようにしても良い。
次に、半導体基板1の表面に、単位面積当たりの照射量が100〜500μC/cmの範囲となるように、好ましくは300μC/cm程度となるように電子線11を照射する。
上記のように電子線を照射する理由は、単位面積当たりの照射量が100μC/cm未満のときは、ビアホール側壁の荒れの改善効果が十分でなく、500μC/cmより大きいときは装置への負荷が大きくなり、100〜500μC/cmの範囲の照射量が適切であるからである。
また、半導体基板1を載置したホットプレートを半導体基板主面の法線方向を回転軸として一定速度で回転させ、ビアホールの径および深さを考慮してビアホール側壁全体に電子線が照射されるように、5°〜10°程度の範囲で入射角度を適宜調節する。
また、電子線の照射時間は、3分ないし5分が適切である。以上のようにして、ビアホール10の側壁に、電子線の照射を行う。
次に、図7に示すように、ビアホール10(図5参照)の内面に、TaN、あるいはTiNからなるビアホールバリアメタル膜12をCVD法またはALD法により20nm程度の膜厚で形成する。このとき、ビアホール10(図5参照)の内面に形成したビアホールバリアメタル膜12は溝を残している。
さらに、ビアホールバリアメタル膜12で形成した溝の内面に、500nm程度の膜厚の銅膜13を埋め込む。
次に、図8に示すように、ビアホール10(図5参照)の外部に形成したビアホールバリアメタル膜12および銅膜13(図7参照)をCMPにより除去し、ビアホールバリアメタル12a及びビアプラグ13aを形成する。
なお、ここで、ビアホールバリアメタル膜12を形成する工程から、ビアプラグ13aを形成するまでの工程を、ビアプラグを形成する工程と称することにする。
次に、図9に示すように、ビアホール絶縁膜8、ビアホールバリアメタル12、及びビアプラグ13aの上に、上層絶縁膜14、上層バリアメタル15、上層銅配線16をリソグラフィ、エッチング、CVD(またはALD)、CMP等を用いて形成する。さらに、上層バリアメタル15、上層銅配線16の上に、上層キャップ膜17を形成する。
この後、図示しないが、特にロジックICなど多層配線を用いるデバイスにおいては、上層銅配線16の上に、さらにビアおよび配線層などを必要に応じて形成する。
ここで、ビアホール10の側壁の荒れに対する改善効果を確認するため、電子線を照射した後のビアホール絶縁膜について、以下の確認を行った。比較のため、電子線を照射しないサンプルも同時に確認した。
ビア側壁の荒れの改善効果については、絶縁膜中の平均空孔径、表面粗さ、および断面形状について比較を行うことにより評価した。
まず、電子線を照射した膜と、照射しない膜について、平均空孔径をX線小角散乱法を用いて確認した結果、電子線を照射した膜の方が平均空孔径が小さいことが分かった。
次に、両者の膜の表面粗さをAFM(Atomic Force Microscope;原子間力顕微鏡)により測定した結果、電子線を照射した膜の方が表面粗さが小さくなっており、表面モホロジーが良好になっていることが分かった。
さらに、ビアホール10(図5参照)内にビアホールバリアメタル(TaNまたはTiN)を形成後、両者のビアホールの側壁の断面をTEM(Transmission Electron Microscope;透過型電子顕微鏡)により観察したところ、電子線を照射しないサンプルでは、ビアホールバリアメタルに含まれる金属(TaまたはTi)の絶縁膜への染み込みが観察されたのに対し、電子線を照射したサンプルでは、上記の染み込みは観察されなかった。
以上の結果より、ビアホール形成後、ビアホールの側壁に電子線照射を行うことにより、ビアホールの側壁に露出したビアホール絶縁膜の空孔が微細化もしくは消失したことにより、ビアホールバリアメタルに含まれる金属(TaまたはTi)がビアホール絶縁膜中へ拡散するのを抑制したと考えられる。従って、ビアホール側壁の荒れに対する改善効果を確認できた。
以上より、電子線の照射がビアホール側壁の荒れを改善することを確認できた。
ビアホール側壁の荒れを改善することにより、近接したビアプラグ間のショートに起因するビアプラグ間のショートを抑制することができる。また、ビアホールバリアメタルの被覆性不良によるビアプラグの抵抗上昇を抑制することができる。
以上説明したように、この実施の形態では、半導体基板上に空孔を有する有機シリコン酸化膜からなる低誘電率膜を形成し、前記低誘電率膜の上に形成したレジストパターンをマスクとして選択的にエッチングを行い、前記低誘電率膜にビアホールを形成した。
さらに、ビアホールの側壁に電子線を照射したのち、ビアホール内部にビアプラグを形成するようにした。
このとき、ビアホールを形成後、ビアプラグを形成する工程との間に、レジストパターンを灰化する工程と、ビアホールを洗浄する工程と、ビアホールの側壁に電子線を照射する工程を順に行うようにした。
換言すれば、この実施の形態における半導体装置の製造方法は、半導体基板上に低誘電率膜を形成する工程と、前記低誘電率膜の上にレジストパターンを形成する工程と、前記レジストパターンをマスクとして前記低誘電率膜を選択的にエッチングして前記低誘電率膜にビアホールを形成する工程と、前記ビアホールの内部にビアプラグを形成する工程とを有する半導体装置の製造方法であって、前記ビアホール形成工程と前記ビアプラグ形成工程との間に、前記レジストパターンを灰化する工程と、前記ビアホールを洗浄する工程と、前記ビアホールの側壁に電子線を照射する工程と、前記ビアホールを金属膜で埋め込む工程を順に行うようにしたものである。
このようにビアホールの側壁に電子線を照射することにより、ビアホールの側壁に露出したビアホール絶縁膜の空孔が微細化もしくは消失するので、ビアホールバリアメタルに含まれる金属のビアホール絶縁膜への染み込みを抑制できる。従って、ビアプラグからの金属の染み込みによるビアプラグ間のショートを抑制することができる。さらに、ビアホールバリアメタルの被覆性劣化による、ビアプラグの抵抗上昇を抑制することができる。
以上のように、空孔を有する低誘電率膜を用いた半導体装置のビアプラグ形成において、ビアホール側壁の荒れを改善することにより、ビアプラグ間のショートやビアプラグの抵抗上昇を抑制することができるので、配線間容量を低く抑え、配線工程の高歩留まりを維持した、優れた半導体装置の製造方法を得ることができる。
実施の形態2.
本発明の実施の形態2による半導体装置の製造方法について、実施の形態1における図1〜図9を援用して説明する。
半導体基板上に下層ストッパー膜を形成する工程から、ビアホールを形成するまでの工程(図1〜図5までに相当する工程)を実施の形態1と同一の条件により形成する。
次に、図示しないが、Oプラズマ、HOプラズマ、あるいは紫外線およびオゾン照射によるアッシング処理(灰化処理)を行い、レジストパターン9を除去する。
次に、図6に示すように、ビアホール絶縁膜8の表面およびビアホール10の側壁に、実施の形態1と同様に、電子線11を照射する。処理条件は同一であるため、詳細な説明は省略する。
次に、図示しないが、ビアホール10内部のエッチング残留物を除去するため、エチレンジアミン等の有機アルカリ系の剥離液を用いて、ビアホール10を洗浄する。
このとき、実施の形態1においては、ビアホール絶縁膜8の表面およびビアホール10の側壁に電子線11(図6参照)を照射する工程を、ビアホール10を洗浄する工程の後に行った。しかし、この実施の形態においては、電子線11を照射する工程をビアホール10を洗浄する工程の前に行うようにしたので、ビアホール10内部のエッチング残留物は、ほとんどが電子線照射により除去されている。従って、ビアホール10を洗浄する工程の処理時間を短くすることが可能である。
この後、実施の形態1と同様に、図8に示すようにビアホール10(図5参照)の内面にビアホールバリアメタル12aおよびビアプラグ13aを形成し、さらに図9に示すように、上層絶縁膜14、上層バリアメタル15、上層銅配線16、上層キャップ膜17を形成する。これらの工程は実施の形態1と同様であるので、詳細な説明は省略する。
なお、この実施の形態では、ビアホール絶縁膜8の表面およびビアホール10の側壁に電子線を照射する工程を、アッシング処理の後に行うようにしたが、これらの工程順を入れ替えて、アッシングを行う工程の前に行うようにしても良い。
この場合、図10に示すように、電子線照射時にはビアホール絶縁膜8の上にレジストパターン9が残っているので、電子線はレジストパターン9の表面およびビアホール10(図5参照)の側壁に照射される。
この場合においても、ビアホール10内部のエッチング残留物は、ほとんどが電子線照射により除去されているので、ビアホール10を洗浄する工程の処理時間を短くすることが可能である。
以上説明したように、この実施の形態では、半導体基板上に空孔を有する有機シリコン酸化膜からなる低誘電率膜を形成し、前記低誘電率膜の上に形成したレジストパターンをマスクとして選択的にエッチングを行い、前記低誘電率膜にビアホールを形成した。
さらに、ビアホールの側壁に電子線を照射したのち、ビアホール内部にビアプラグを形成するようにした。
このとき、ビアホールを形成後、ビアプラグを形成する工程との間に、レジストパターンを灰化する工程と、ビアホールを洗浄する工程と、ビアホールの側壁に電子線を照射する工程を順に行うようにした。
または、ビアホールを形成後、ビアプラグを形成する工程との間に、ビアホールの側壁に電子線を照射する工程と、レジストパターンを灰化する工程と、ビアホールを洗浄する工程とを順に行うようにした。
換言すれば、この実施の形態における半導体装置の製造方法は、半導体基板上に低誘電率膜を形成する工程と、前記低誘電率膜の上にレジストパターンを形成する工程と、前記レジストパターンをマスクとして前記低誘電率膜を選択的にエッチングして前記低誘電率膜にビアホールを形成する工程と、前記ビアホールの内部にビアプラグを形成する工程とを有する半導体装置の製造方法であって、前記ビアホール形成工程と前記ビアプラグ形成工程との間に、前記レジストパターンを灰化する工程と、前記ビアホールの側壁に電子線を照射する工程と、前記ビアホールを洗浄する工程と、前記ビアホールを金属膜で埋め込む工程を順に行うようにしたものである。
または、前記ビアホール形成工程と前記ビアプラグ形成工程との間に、前記ビアホールの側壁に電子線を照射する工程と、前記レジストパターンを灰化する工程と、前記ビアホールを洗浄する工程と、前記ビアホールを金属膜で埋め込む工程を順に行うようにしたものである。
このようにビアホールの側壁に電子線を照射することにより、ビアホールの側壁に露出したビアホール絶縁膜の空孔が微細化もしくは消失するので、ビアホールバリアメタルに含まれる金属のビアホール絶縁膜への染み込みを抑制できる。従って、ビアプラグからの金属の染み込みによるビアプラグ間のショートを抑制することができる。さらに、ビアホールバリアメタルの被覆性劣化による、ビアプラグの抵抗上昇を抑制することができる。
また、電子線を照射する工程を、ビアホールを洗浄する工程よりも前に行うことにより、ビアホール内部のエッチング残留物はほぼ除去されているので、ビアホールを洗浄する処理時間を短くすることが可能である。
以上のように、空孔を有する低誘電率膜を用いた半導体装置のビアプラグ形成において、ビアホール側壁の荒れを改善することにより、ビアプラグ間のショートやビアプラグの抵抗上昇を抑制することができるので、配線間容量を低く抑え、配線工程の高歩留まりを維持した、優れた半導体装置の製造方法を得ることができる。
また、この実施の形態では、ビアホール内部を洗浄する時間を短くすることができるので、スループットを向上させることが可能である。
以上説明したように、本発明に係る半導体装置の製造方法によれば、低誘電率膜にビアホールを形成する工程と、ビアホールの内部にビアプラグを形成する工程との間に、ビアホールの側壁に電子線を照射することにより、ビアホールの側壁に露出したビアホール絶縁膜の空孔を微細化もしくは消失させることができる。
本発明の実施の形態1の半導体装置の製造方法を示す断面図。 本発明の実施の形態1の半導体装置の製造方法を示す断面図。 本発明の実施の形態1の半導体装置の製造方法を示す断面図。 本発明の実施の形態1の半導体装置の製造方法を示す断面図。 本発明の実施の形態1の半導体装置の製造方法を示す断面図。 本発明の実施の形態1の半導体装置の製造方法を示す断面図。 本発明の実施の形態1の半導体装置の製造方法を示す断面図。 本発明の実施の形態1の半導体装置の製造方法を示す断面図。 本発明の実施の形態1の半導体装置の製造方法を示す断面図。 本発明の実施の形態2の半導体装置の製造方法を示す断面図。
符号の説明
1 半導体基板、2 下層ストッパー膜、3 下層絶縁膜(シリコン酸化膜)、4 下層配線溝、5 下層バリアメタル、 6 下層銅配線、7 ビアホールストッパー膜、8 ビアホール絶縁膜(低誘電率膜)、9 レジストパターン、10 ビアホール、11 電子線、12a ビアホールバリアメタル、13a ビアプラグ、14 上層絶縁膜、15 上層バリアメタル、16 上層銅配線、17 上層キャップ膜。

Claims (10)

  1. 半導体基板上に低誘電率膜を形成する工程と、
    前記低誘電率膜の上にレジストパターンを形成する工程と、
    前記レジストパターンをマスクとして前記低誘電率膜を選択的にエッチングして前記低誘電率膜にビアホールを形成する工程と、
    前記ビアホールの内部にビアプラグを形成する工程とを有する半導体装置の製造方法であって、
    前記ビアホール形成工程と前記ビアプラグ形成工程との間に、少なくとも、前記ビアホールの側壁に電子線を照射する工程を含むことを特徴とする半導体装置の製造方法。
  2. 前記低誘電率膜は、有機シリコン酸化膜からなることを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記低誘電率膜は、空孔を有することを特徴とする請求項1又は2に記載の半導体装置の製造方法。
  4. 前記ビアホール形成工程と前記ビアプラグ形成工程との間に、前記レジストパターンを灰化する工程と、前記ビアホールを洗浄する工程と、前記ビアホールの側壁に電子線を照射する工程とを順に行うことを特徴とする請求項1〜3に記載の半導体装置の製造方法。
  5. 前記ビアホール形成工程と前記ビアプラグ形成工程との間に、前記レジストパターンを灰化する工程と、前記ビアホールの側壁に電子線を照射する工程と、前記ビアホールを洗浄する工程とを順に行うことを特徴とする請求項1〜3に記載の半導体装置の製造方法。
  6. 前記ビアホール形成工程と前記ビアプラグ形成工程との間に、前記ビアホールの側壁に電子線を照射する工程と、前記レジストパターンを灰化する工程と、前記ビアホールを洗浄する工程とを順に行うことを特徴とする請求項1〜3に記載の半導体装置の製造方法。
  7. 前記ビアホールの側壁に電子線を照射する工程において、前記半導体基板の温度が100℃以上400℃以下の範囲となるようにして行うことを特徴とする請求項1〜6に記載の半導体装置の製造方法。
  8. 前記ビアホールの側壁に電子線を照射する工程において、前記電子線の照射量を100μC/cm以上500μC/cm以下の範囲で行うことを特徴とする請求項1〜7に記載の半導体装置の製造方法。
  9. 前記ビアホールの側壁に電子線を照射する工程において、酸素濃度が0.05%以下の減圧雰囲気中で行うことを特徴とする請求項1〜8に記載の半導体装置の製造方法。
  10. 前記減圧雰囲気は、窒素ガス、希ガス、または窒素ガスと希ガスの混合ガスであることを特徴とする請求項9に記載の半導体装置の製造方法。
JP2003378721A 2003-11-07 2003-11-07 半導体装置の製造方法 Pending JP2005142433A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378721A JP2005142433A (ja) 2003-11-07 2003-11-07 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378721A JP2005142433A (ja) 2003-11-07 2003-11-07 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2005142433A true JP2005142433A (ja) 2005-06-02

Family

ID=34689014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378721A Pending JP2005142433A (ja) 2003-11-07 2003-11-07 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2005142433A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032563A1 (ja) * 2005-09-16 2007-03-22 Nec Corporation 配線構造並びに半導体装置及びその製造方法
JP2008091600A (ja) * 2006-10-02 2008-04-17 Sony Corp 半導体装置の製造方法
JP2013030625A (ja) * 2011-07-28 2013-02-07 Fujitsu Semiconductor Ltd 半導体装置の製造方法及び処理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032563A1 (ja) * 2005-09-16 2007-03-22 Nec Corporation 配線構造並びに半導体装置及びその製造方法
US8039921B2 (en) 2005-09-16 2011-10-18 Nec Corporation Wiring structure, semiconductor device and manufacturing method thereof
US8592283B2 (en) 2005-09-16 2013-11-26 Renesas Electronics Corporation Wiring structure, semiconductor device and manufacturing method thereof
JP5355892B2 (ja) * 2005-09-16 2013-11-27 ルネサスエレクトロニクス株式会社 配線構造並びに半導体装置及びその製造方法
JP2008091600A (ja) * 2006-10-02 2008-04-17 Sony Corp 半導体装置の製造方法
JP2013030625A (ja) * 2011-07-28 2013-02-07 Fujitsu Semiconductor Ltd 半導体装置の製造方法及び処理装置

Similar Documents

Publication Publication Date Title
EP1521302B1 (en) Method for formation of airgaps around an interconnect
US7750479B2 (en) Treatment of plasma damaged layer for critical dimension retention, pore sealing and repair
KR100887225B1 (ko) 반도체 디바이스의 제조 방법
US7968451B2 (en) Method for forming self-assembled mono-layer liner for Cu/porous low-k interconnections
US20070059913A1 (en) Capping layer to reduce amine poisoning of photoresist layers
US20040214427A1 (en) Forming thin hard mask over air gap or porous dielectric
JP2000286257A (ja) 低比誘電率有機酸化ケイ素絶縁材料の損傷した表面を処理して吸湿を阻止するプロセス
US20110183518A1 (en) Method of manufacturing a semiconductor device
JPH10242278A (ja) 半導体装置の製造方法及び半導体装置
KR100500932B1 (ko) 비아 콘택 식각 후의 감광막 제거 및 건식 세정 방법
JP2009147096A (ja) 半導体装置及びその製造方法
JP2007165428A (ja) 半導体装置の製造方法
US20100301495A1 (en) Semiconductor device and method for manufacturing same
JP2011082308A (ja) 半導体装置の製造方法
US7172965B2 (en) Method for manufacturing semiconductor device
JP2005142433A (ja) 半導体装置の製造方法
JP5396837B2 (ja) 半導体装置の製造方法
JP5200436B2 (ja) 半導体装置の製造方法
JP2001168192A (ja) 半導体装置の製造方法
US7253116B2 (en) High ion energy and reative species partial pressure plasma ash process
JP2005217292A (ja) 半導体装置の製造方法
KR101087508B1 (ko) 반도체 소자의 구리배선 형성방법
JPH11330239A (ja) 半導体装置及び半導体装置の製造方法
JP2000200833A (ja) 半導体装置の製造方法
JP4695842B2 (ja) 半導体装置およびその製造方法