JP2005136988A - 無線通信システム及び方法 - Google Patents

無線通信システム及び方法 Download PDF

Info

Publication number
JP2005136988A
JP2005136988A JP2004310449A JP2004310449A JP2005136988A JP 2005136988 A JP2005136988 A JP 2005136988A JP 2004310449 A JP2004310449 A JP 2004310449A JP 2004310449 A JP2004310449 A JP 2004310449A JP 2005136988 A JP2005136988 A JP 2005136988A
Authority
JP
Japan
Prior art keywords
signal
time interval
modulated signal
communication system
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004310449A
Other languages
English (en)
Other versions
JP4810653B2 (ja
JP2005136988A5 (ja
Inventor
Neal J Seidl
ニール・ジェイ・サイドル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Information Technologies Inc
Original Assignee
GE Medical Systems Information Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Medical Systems Information Technologies Inc filed Critical GE Medical Systems Information Technologies Inc
Publication of JP2005136988A publication Critical patent/JP2005136988A/ja
Publication of JP2005136988A5 publication Critical patent/JP2005136988A5/ja
Application granted granted Critical
Publication of JP4810653B2 publication Critical patent/JP4810653B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • H04L27/2067Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states
    • H04L27/2078Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states in which the phase change per symbol period is constrained
    • H04L27/2082Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states in which the phase change per symbol period is constrained for offset or staggered quadrature phase shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
    • H04L25/03076Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure not using decision feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0012Modulated-carrier systems arrangements for identifying the type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/142Compensating direct current components occurring during the demodulation and which are caused by mistuning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • H04L27/2007Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained
    • H04L27/2017Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained in which the phase changes are non-linear, e.g. generalized and Gaussian minimum shift keying, tamed frequency modulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03401PSK
    • H04L2025/03407Continuous phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain
    • H04L2025/03471Tapped delay lines
    • H04L2025/03484Tapped delay lines time-recursive
    • H04L2025/0349Tapped delay lines time-recursive as a feedback filter

Abstract

【課題】 無線通信システム及び方法を提供する。
【解決手段】 通信システム(20)は、被変調信号を送信する第1の装置(25)と被変調信号を受信する第2の装置(28)を含む。第2の装置(28)は第1の復調器及び第2の復調器を含む。第1の復調器(205)は、被変調信号を受信し、第1の復調出力を生成し、且つ第1の復調手法を実施することができる。第2の復調器(210)は、被変調信号を受信し、第2の復調出力を生成し、且つ第1の復調手法とは異なる第2の復調手法を実施することができる。第2の復調手法は第1の復調手法とは異なることができる。第2の装置(28)はまた、第1の復調出力及び第2の復調出力に基づいてビット・エラー検出を実行することができるエラー検出モジュール(620)を含むことができる。
【選択図】 図4

Description

本発明は無線通信システムに関し、より詳しくは様々な変調手法を使用する無線通信システムに関するものである。
よく知られている変調手法は、簡単さ及び帯域幅効率の点でガウス最小シフト・キーイング(GMSK)である。GMSK信号を発生するためのよく知られている手法は、変調が周波数合成器内で直接実行される「直接変調」である。
しかしながら、直接変調の一つの欠点は、アナログ回路における変動及び周波数合成器を異なる周波数に同調させる作用により、変調指数及びフィルタ帯域幅についての適切な制御を維持することが困難なことである。理想に近い最小シフト・キーイング(MSK)変調指数を(例えば、ディジタル信号処理装置においてベースバンド変調を生成することによって)維持することのできる送信器を設計することは、その結果としてコスト、複雑さ及び電力消費を増大させる。従って、変調指数に左右されない性能を持つ復調器が望まれている。
一実施形態では、本発明は、被変調信号を送信する第1の装置と被変調信号を受信する第2の装置を含むことのできる通信システムを提供する。第2の装置は、第1の復調器と、第2の復調器と、エラー検出モジュールとを含むことができる。第1の復調器は、被変調信号を受信し、第1の復調出力を生成し、且つ第1の復調手法を実施することができる。第2の復調器は、被変調信号を受信し、第2の復調出力を生成し、且つ第1の復調手法とは異なる第2の復調手法を実施することができる。エラー検出モジュールは、第1の復調出力及び第2の復調出力に基づいてビット・エラー検出を実行することができる。
別の実施形態では、本発明は、無線周波数により情報を転送する方法を提供する。本方法は、情報をディジタル信号へ変換する段階と、パケット化プロトコルを使用してディジタル信号を変調して、被変調信号を生成する段階と、被変調信号を無線で伝送する段階とを含むことができる。本方法はまた、被変調信号を受信する段階と、被変調信号を復調して復調信号を生成する段階と、エラー検出アルゴリズムを実施する段階とを含むこともできる。
更に別の実施形態では、本発明は、送信された信号の受信時に変調信号パラメータの推定を実行する方法を提供する。本方法は、送信された信号を復調して、複数のビットを持つディジタル信号を生成する段階と、複数のビットをアレイ(array) に記憶する段階と、アレイが第1のパターンのビット又は第2のパターンのビットを含んでいるかどうか判定する段階と、アレイが第1のパターンのビット又は第2のパターンのビットを含んでいる場合に変調信号パラメータの推定を実行する段階とを含むことができる。
また別の実施形態では、本発明は、通信システム内の等化器の出力を改変する方法を提供する。本方法は、入力信号を受信する段階と、入力信号の第1の時間間隔中に第1の出力値を決定する段階と、第1の時間間隔中に決定された第1の出力値に部分的に基づいて、入力信号の第2の時間間隔中に第2の出力値を決定する段階とを含むことができる。第2の時間間隔は、第1の時間間隔の前に置くことができる。
また更に別の実施形態では、本発明は、被変調信号の搬送波オフセットを推定する方法を提供する。本方法は、第1の時間間隔中は第1の入力値を持ち且つ第2の時間間隔中は第2の入力値を持つ入力信号を受信する段階と、入力信号の第1の推定パラメータを受ける段階と、入力信号の第2の推定パラメータを受ける段階とを含むことができる。本方法はまた、第2の時間間隔中に推定信号を算出する段階と、入力信号の第2の入力値を推定信号と組み合わせて、エラー信号を生成する段階と、エラー信号に部分的に基づいて第2の時間間隔中に搬送波オフセットを決定する段階とを含むことができる。推定信号は、入力信号の第2の時間間隔中の第2の入力値の実質的にノイズの無い推定値であってよく、また、推定信号は、入力信号の第1の入力値、第1の推定パラメータ及び第2の推定パラメータに部分的に基づいたものであってよい。
本発明の特徴及び利点は、当業者には、以下の説明、特許請求の範囲及び図面から明らかであろう。
本発明の実施形態を詳しく説明する前に、本発明はその用途が以下の説明に記載され且つ図面に示されている構成の詳細及び構成要素の配置に制限されないことを理解されたい。本発明は他の実施形態も可能であり、また様々な方法で実用化又は実施することが可能である。また、本書で用いる表現及び用語は説明のためのものであり、限定するものと見なすべきでないことも理解されたい。「含む」、「有する」、「持つ」などの用語及びそれらの変形は、その後に列挙される項目、等価なもの、並びに追加の項目を包含することを意味するものである。用語「取付け」、「接続」及び「結合」は広義に用いられ、また直接的及び間接的な取付け、接続及び結合を包含する。更に、「接続」及び「結合」は、物理的又は機械的な接続及び結合に制限されない。
更に、本発明の実施形態がハードウエア及び電子部品又はモジュールの両方を含んでおり、これらは、考察のために、あたかも大部分の構成要素がハードウエアでのみ具現化されているかのように図示し記述することができることを理解されたい。しかしながら、当業者には、本書の詳細な説明を読むことにより、本発明の少なくとも1つの実施形態において、本発明の電子的な面がソフトウエアで具現化できることが認められよう。従って、本発明を具現化するために、複数のハードウエア及びソフトウエアに基づいた装置、並びに複数の異なる構造的構成要素を利用できることに注意されたい。また、以下に続く段落で説明するように、図面に示した特定の機械的構成は本発明の実施形態を例証するためのものであり、他の代替の機械的構成も可能である。
図1は、本発明の一実施形態による通信システム20を例示する。通信システム20は送信器25及び受信器28を含んでいる。受信器28は受信器フロントエンド30及びベースバンド受信器35を含むことができる。送信器25はデータ源40からペイロード・データ(例えば、送信すべきデータ)を受け取る。送信器25はペイロード・データを変調手法(例えば、最小シフト・キーイング(MSK)変調、ガウス最小シフト・キーイング(GMSK)変調、周波数シフト・キーイング(FSK)変調、差分周波数シフト・キーイング(差分FSK)変調、又はガウス周波数シフト・キーイング(GFSK)変調)により変調して、その被変調信号を受信器28へ送信する。
一実施形態では、送信器25はパケット化(packetized)プロトコル又はパケット指向プロトコルに従ってペイロード・データを符号化することができ、且つGFSK変調を使用してその結果のビット・ストリームを変調して、被変調信号s(t) を生成することができる。模範的な一実施例では、送信器25はECGデータを取得し、ECGデータはフィルタリングして、ほぼ120サンプル/秒のレートで受信器28へ伝送することができる。送信器25は、125パケット/秒を指定するプロトコルでほぼ10Kbpsのレートでデータを送り出す。各パケットのデータは、送信器25によって取得された120Hzのサンプルの1つを含むことができる。この結果として、125パケット/秒のうちの120パケットのみが、取得されたECGデータを含むことになり、残りのパケットは何らデータを含まないことになる。模範的な一実施例では、残りの5個のパケットは何らデータを含んでいず、「空白パケット」と呼ばれる。空白パケットは固有の識別子を持つことができ、時間的に一緒にグループ化することができ、また周期的にすることができる。
一実施形態では、パケット化プロトコルは、毎秒当りの送信すべきデータを120個のパケットに編成し、第1のデータ・パケットに「データ・パケット0(DP0)」のラベルを付け、最後のデータ・パケットを「データ・パケット119(DP119)」のラベルを付ける。データ・パケットDP0とDP119との間にあるデータ・パケットには対応的にラベルを付ける。データ・パケットDP0〜DP119は逐次的で連続した順序で配列される。一連の5個の空白のデータ・パケット「空白パケット0(BP0)」は被変調信号s(t) 内の最後のデータ・パケットDP119の後に配置される。5個の空白のデータ・パケットBP0〜BP4のバーストが毎秒1回生じる。他の実施形態では、データ・パケット及び/又は空白パケットの全体の数は第1の実施形態の場合とは異なり、及び/又はパケット化プロトコルはデータを異なるパターンのデータ・パケット及び空白パケットに編成することができる。
一実施形態では、受信器28は第1の空白パケットBP0を受け取ることができ、また次のグループの空白パケットまでの期間を推定することができる。一般的に云えば、受信器にパイプライン遅延(それらの値は一定である必要はない)があるので、期間又は所要の間隔についての推定値が、その間隔についての或る特定の知識とは対照的に、考慮される。推定された期間が経過した後、受信器28は入来する信号の復調を停止して、システム計算を実行、例えば、適用可能である場合に全てのアンテナ電界を切り換えて、各電界について信号電力を推定すること等を実行することができる。実施形態によっては、パケット化プロトコルにより受信器28は並列の復調器を使用してエラー検出及び訂正方法を実施することができる(これについては、後で詳しく説明する)。
図1に示されているように、被変調信号s(t) は伝送チャンネル45を介して送信することができ、伝送チャンネル45では信号s(t) は減衰すると共に、付加的なノイズによって劣化する。一実施形態では、受信器フロントエンド30は、この減衰し劣化した被変調信号(これは、受信信号r(t) と表される)を受信することができ、この受信信号r(t) を増幅することができる。一実施形態では、受信信号r(t) を増幅した後、この信号r(t) を周波数逓降変換して、ベースバンドの同相及び直角位相成分を生成する。これらのベースバンド成分はビット・ストリームに同期してディジタル化しサンプリングし直して、時間的に離散した複素ベースバンド信号r[i] を生成する。
図1に示されているように、受信器フロントエンド30はベースバンド信号r[i] をベースバンド受信器35へ出力することができる。ベースバンド受信器35はベースバンド信号r[i] を復調して、出力ペイロード・データ42を生成することができる。実施形態によっては、ベースバンド受信器35は出力ペイロード・データ42を生成するために様々な多数の復調手法を実行することができ、出力ペイロード・データ42は、データ源40から取得されて、送信器25によって送信されたペイロード・データとすることができる。
通信システム20は、例えば、遠隔測定システム、携帯電話システム、衛星通信などのような、多数の無線通信用途及びシステムに使用することができる。一実施形態では、図2に示されているように、通信システム20は遠隔測定システム50内に含まれる。遠隔測定システム50は、歩行可能患者60から患者データを取得して監視する遠隔測定装置65を含む。この実施形態では、ペイロード・データは、患者から取得したデータである。遠隔測定装置65は、取得した患者データを信号処理装置70及び/又は遠隔測定モニタ75へ転送することができる。
図2に示されているように、遠隔測定装置65はデータ取得モジュール(DAC)80及び送信器85を含むことができる。送信器85は、図1に関して前に述べた送信器25によって用いられている様々な変調手法を用いることができる。実施形態によっては、データ取得モジュール80は、ECG信号及び/又は血圧信号のような入力患者データを受け取って処理する。実施形態によっては、データ取得モジュール80は、入力患者データを調整して、送信器85によって信号処理装置70へ伝送される所望の信号又は読取り可能な出力を生成する。他の実施形態では、送信器85は、データ取得モジュール80によって取得された入力患者データを調整し、該データを変調して(図1において述べたような)被変調信号s(t) を生成する。送信器85は、伝送チャンネル45を介して被変調信号s(t) を送信することができる。一実施形態では、送信器85はGFSK変調手法を使用し、伝送チャンネル45はほぼ560MHz〜ほぼ614MHzの周波数範囲で動作する。実施形態によっては、伝送チャンネル45は、例えば、ほぼ420MHz〜ほぼ474MHzの周波数範囲及び/又はほぼ190MHz〜ほぼ220MHzの範囲のような、追加の又は代替の周波数範囲で動作する。伝送チャンネル45はまた、様々な国際規制によって指定された周波数範囲で動作することができる。
図2に示されているように、信号処理装置70は受信器90及びソフトウエア・モジュール95を含んでいる。受信器90は、図1に図示し説明した受信器28の代替実施形態である。ソフトウエア・モジュール95は、(図1において述べたような)受信信号r(t) を調整するための必要な命令を供給すると共に、信号処理装置70のための任意の付加的な機能を実行することができる。実施形態によっては、ソフトウエア・モジュール95は、ベースバンド受信器35に関して前に述べたように受信信号r(t) を復調及び/又は処理するために同様な復調手法及び/又は機能を供給する。
図3は送信器25及び/又は送信器85の一実施形態を例示する。データ源40から取得されたペイロード・データは符号化器120に通すことができる。データはパケット指向プロトコルに従って符号化することができ、この場合、各パケットはエラー訂正コード(ECC)を取り入れている。その結果のビット・ストリームは時間的に連続した矩形波形b(t) ∈{±1}として出力することができる。波形b(t) はフィルタ125(例えば、ガウス・フィルタ)によって濾波することができ、また利得モジュール130(例えば、増幅器又はフィルタ)によって利得を受けることができる。利得モジュール130によって与えられる利得は、その結果の変調波形x(t) の変調指数hを決定する。一実施形態では、利得モジュール130の利得は非MSK変調指数h(すなわち、ほぼ0.6の変調指数h)を生成するように選択される。
変調器140は波形x(t) を受け取って、被変調信号s(t) を出力する。変調器140はコンバイナ135及び発振器142を含んでいる。波形x(t) は、コンバイナ135で、中心周波数ωc を持つ搬送波信号の周波数を変調するために使用することができる。コンバイナ135の出力は瞬時周波数ω(t) であり、これは発振器142に通すことができる。FM送信器25は任意の適当なハードウエア及び/又はソフトウエア部品を含むことができる。
図4はベースバンド受信器35の一実施形態を例示する。ベースバンド受信器35は、第1の復調手法を使用する第1の復調器205と、第1の復調手法とは異なる第2の復調手法を使用する第2の復調器210とを含むことができる。図4に示されているように、第1の復調器205はFSK復調手法を使用し、また第2の復調器210はオフセット直角位相シフト・キーイング(OQPSK)復調手法を使用する。第2の復調器210は任意の適当なハードウエア及び/又はソフトウエア部品を含むことができる。他の実施形態では、ベースバンド受信器35は、例示した実施形態よりも多数の復調器を含むことができ、また例示した実施形態で図示し説明したもの以外の復調手法を含むことができる。
受信器フロントエンド30は、時間的に離散した複素信号r[i] を、第1及び第2の復調器205及び210による復調のためにベースバンド受信器35へ出力することができる。フロントエンド受信器30から入力されたとき、第1の復調器205(すなわち、FSK復調器)は、位相モジュール235(すなわち、arg(.))を使用して各ビット間隔にわたって時間的に離散した複素ベースバンド信号r[i] から瞬時観測位相θ[i] を抽出することができる。観測位相変分(increment) φ[i] は、観測位相θ[i-1] をサンプル遅延(例えば、1サンプル遅延240)を介してコンバイナ245へ通すことによって、瞬時位相θ[i] の第1の差として算出することができる。コンバイナ245では、(1サンプル遅延240だけ遅延した)瞬時位相θ[i] がその後の瞬時位相θ[i] から減算される。その結果の観測位相変分φ[i] は第2のコンバイナ250に通すことができ、第2のコンバイナ250では、観測位相変分φ[i] を(受信器28が同調する中心周波数に対する送信器25の一定の搬送波周波数オフセットによる)予測位相変分又は修正位相Ψ[i] と組み合わせることができる。第2のコンバイナ250は修正済み位相変分φ’[i] を生成することができる。図4に示されているように、修正位相Ψ[i] を観測位相変分φ[i] から減算することにより修正済み位相変分φ’[i] を求めることができる。
図4に示されているように、修正済み位相変分φ’[i] は様々な信号パラメータ推定モジュール(例えば、搬送波オフセット推定モジュール255、変調指数推定モジュール256及び帯域幅・ビット持続期間推定モジュール258)で使用することができる。各時間的段階又は時間間隔毎に、修正済み位相変分φ’[i] は等化器260へ向かうことができる。等化器260は、一実施形態によれば図5に示されるような適応非線形等化器とすることができる。等化器260は修正済み位相変分φ’[i] に適用されて、均等化(equalized) 又は差分(differential)FSK決定統計値(decision statistic)y[i] を得ることができる。適応等化器260は、均等化決定統計値y[i] を生じるために様々な信号パラメータを受け取ることができる。適応等化器260は、入来する修正済み位相変分φ’[i] 、推定フィルタ帯域幅・ビット持続期間パラメータBT[i] 及び推定変調指数パラメータh[i] に基づいて、その出力を生じることができる。決定モジュール270が、等化器260によって決定された均等化決定統計値y[i] に決定規則(例えば、シグナム関数)を適用して、最終ビット・ストリームbfsk[i] ∈{±1} を生じることができる。変調指数推定モジュール256が変調指数hの推定値を供給することができ、また帯域幅・ビット持続期間推定モジュール258がフィルタ帯域幅BTの推定値を供給することができる。実施形態によっては、搬送波オフセット推定モジュール255、変調指数推定モジュール256及び帯域幅・ビット持続期間推定モジュール258は受信器28及び90によって内部的に使用することができ、またシステム診断の目的のために使用することができる。推定モジュール255、256及び258によって得られた推定値は、傾向を示し、報告し、及び/又は所定の期間にわたって表示することができる。範囲外のパラメータ又は推定値は不良として表示してよく、また送信器25の分析を開始させて、送信器25のハードウエア・エラーを突き止めるようにしてもよい。
図5は、適応非線形等化器260の一実施形態を例示する。等化器260は、GFSK差分位相格子(trellis) の知識を使用してエラーの確率を低減するために前のビット決定bfsk [i-1] に基づいて修正済み位相変分φ’[i] をシフトすることができる。図6Aに示されている無均等化(unequalized) 修正済み位相変分φ’アイ・パターンから明らかなように、均等化が無い場合、送信器25が第1のパターンのビットbfsk [i,i+1,i+2] =[1 -1 1]又は第2のパターンのビットbfsk [i,i+1,i+2] =[-1 1 -1] のいずれか一方を送信するときにビットエラーが生じ易い。第1のパターンのビット及び第2のパターンのビットは図6Aに示されているように最小のアイ開口を生じさせる。
等化器260は、各ビット時点において位相変分が全て可能であるとは限らないと云う事実を利用することができる。具体的に述べると、図6Bに示されているように、前のビットが正の1(+1)であったとき、最小の大きさの正の位相変分は生じえない。同様に、図6Cに示されているように、前のビットが負の1(−1)であったとき、最小の大きさの負の位相変分は生じえない。従って、各ビット時点において決定統計値y[i] をシフト値γだけシフトして固定の決定閾値の周りに4つの既知の可能な位相変分φを中心合わせし直すことによって、等化器260はアイ(目)の大きさを大きくして、エラー率を低減する。シフト値γの大きさは、伝達関数feg(h,BT)に従って変調指数h及びフィルタ帯域幅BTの推定値に基づいて適合させる。
図5に例示されているように、修正済み位相変分φ’[i] はコンバイナ305への第1の入力である。その出力は差分FSK決定統計値y[i] であり、これはサンプリングして、1サンプル遅延のような遅延310へ送ることができる。等化器決定モジュール315が差分FSK決定統計値y[i] に対して決定規則を実施して、ビットbfsk [i-1] を生成する。利得モジュール320が、前のビットbfsk [i-1] とモジュール325によって算出されたシフト値の大きさγとに基づいてシフト値(すなわち、±1)を算出する。一旦算出が行われると、前のビットbfsk [i-1] に部分的に基づいたシフト値が、コンバイナ305によって現在の修正済み位相変分φ’[i] から減算される。前に述べたように、出力は差分FSK決定統計値y[i] を生じる。
図7は、変調指数推定モジュール256の一実施形態を例示する。変調指数推定モジュール256は、完全な周波数シフト応答を生じさせるビット・パターンを検出することによって、変調指数hを推定することができる。一実施形態では、そのパターンは一列(L個)の連続した同じビットを含んでいる。このビット列Lは、ビットで表した変調器のガウス・フィルタのメモリとすることができる。原理では列Lは無限であるが、3dB帯域幅・ビット持続期間積BT≧0.2を持つフィルタの場合ではL=5のスライド式の窓が適切な近似を与える。そのビットbfsk [i] の前に存在する少なくとも一列のL−1個のビットがそのビットbfsk [i] と同一である各々のビットbfsk [i] について、窓の中心|φ’[i-(L-1)/2] |における修正済み位相変分φ’の大きさを使用して、単位ラジアン/Tb(ここで、Tbはビット持続期間である)を持つ周波数偏差Δf[i] の平滑化推定値を更新することができる。次いで、変調指数推定値
Figure 2005136988
Figure 2005136988
として算出することができる。パラメータΓ1 が一次平滑フィルタの帯域幅を決定することができる。
図8は3dB帯域幅・ビット持続期間推定モジュール258の一実施形態を例示する。3dB帯域幅・ビット持続期間推定モジュール258は、比
Figure 2005136988
関数fBT(.) を適用することによって帯域幅・ビット持続期間推定値
Figure 2005136988
を求める。ここに対して伝達関数を適用することによって帯域幅・ビット持続期間推定値を求める。ここで、δ[i] は、交番するビットの列を送信しているときに生じる最小位相変分δの平滑化推定値である。最小位相変分δの推定は、平滑化推定値が|φ’[i-(L-1)/2] |から更新される前に、交番するビットを含むパターン又は列Lが検出されることを除いて、変調指数hの推定と非常に類似している。
図9は、パラメータ推定(例えば、変調指数推定、3dB帯域幅・ビット持続期間推定など)を開始させるパターンを検出する方法400のフローチャートである。ベースバンド受信器35が(段階405で)ビット・ストリームbfsk [i] からのL個のビットをアレイに記憶する。一実施形態では、ベースバンド受信器35は(段階405で)ビット・ストリームbfsk [i] からの第1の逐次的なL個のビットを記憶することができる。別の実施形態では、ベースバンド受信器は分類アルゴリズム又は規則を実行することができ、これにより(段階405で)入来するビットがアルゴリズムを満足させる場合はこれらのビットをアレイに記憶することができる。分類アルゴリズムは単に、前のビットと同じであるビット、及び交番しているビットを記憶するようにしてもよい。例えば、入力ビット・ストリームbfsk [i-5,i-4,i-3,i-2,i-1,i] が[111010]に等しいとする。分類アルゴリズムは、ビットbfsk [i-5,i-4,i-3] が同じであるので、ビットbfsk [i-5,i-4,i-3] =[111]をアレイに記憶し始めることができる。分類アルゴリズムがビットbfsk [i-2,i-1,i] =[010]に達したとき、アルゴリズムはビットbfsk [i-5,i-4] をアレイから除去することができ、またビットbfsk [i-3,i-2,i-1,i] が交番しているので、残りのビットbfsk [i-3,i-2,i-1,i] =[1010]のみを記憶することができる。
一旦(段階405で)L個のビットがアレイに記憶されると、(段階410で)ベースバンド受信器35はL個のビットが同じであるか判定することができる。L個のビットが同じである場合、(段階415で)変調指数推定モジュール256が図7に示し且つ図7について前に説明したように変調指数推定を実行する。一旦(段階415で)変調指数推定モジュール256が変調指数推定を実行すると、(段階420で)ベースバンド受信器35はアレイをクリア(消去)し、ベースバンド受信器は段階405へ戻る。
(段階410で)L個のビットが同じでない場合、ベースバンド受信器35はL個のビットが交番しているかどうか判定することができる。L個のビットが交番している場合は、(段階430で)3dB帯域幅・ビット持続期間推定モジュール258が図8に示し且つ図7について前に説明したように3dB帯域幅・ビット持続期間推定を実行する。一旦(段階430で)3dB帯域幅・ビット持続期間推定モジュール258が帯域幅推定を実行すると、(段階420で)ベースバンド受信器35はアレイをクリアし、ベースバンド受信器は段階405へ戻る。
一実施形態では、(段階425で)L個のビットが交番していない場合、ベースバンド受信器35は(破線で示すように)段階405へ戻る。受信器35で分類アルゴリズムを実施する場合、ベースバンド受信器は段階405へ戻る。
別の実施形態では、(段階440で)ベースバンド受信器35は指数[i] を増数することができる。(段階445で)ベースバンド受信器35はまた、最も新しいビットbfsk [i] をアレイに記憶しながら、最も新しくないビットbfsk [i-L] をアレイからクリアすることができる。(段階410で)ベースバンド受信器35は、L個のビットが同じであるかどうかアレイを分析する。
別の実施形態では、ベースバンド受信器35は、L個のビットが同じであるかどうか判定する前に、L個のビットが交番しているかどうか判定することができる。ベースバンド受信器35はまた、追加のパターン又は異なるパターンについてアレイを分析することができ、また追加の又は異なるパラメータの推定を実行することができる。実施形態によっては、方法400はもはや入来するビットがないときに終了する。
上記の説明は特定の順序で図9に示されている処理段階について行っているが、特許請求の範囲は如何なる特定の順序に限定されるものではないことを理解されたい。上述の処理段階は様々な異なる順序で実行することができ、本発明の範囲内に入るものである。
図10は搬送波オフセット推定又は修正モジュール255の一実施形態を例示する。モジュール255の決定指向推定ループが、搬送波オフセット修正のために用いられる予測位相変分Ψ[i] を生成することができる。遅延Dを持つGMSK差分位相再構成モジュー
ル505とその後の利得モジュール510(例えば、利得
Figure 2005136988
を持つ増幅器)とは、復調されたビットbfsk [i] に少なくとも部分的に基づいて、期待されるノイズ無しの修正済み位相変分
Figure 2005136988
を再構成するために使用することができる。コンバイナ515において、期待されるノイズ無しの修正済み位相変分
Figure 2005136988
が適切に遅延させた修正済み位相変分φ’[i-D] から減算されて、エラー信号ε[i] を生成することができる。コンバイナ515より前に、修正済み位相変分φ’をnサンプル遅延520に通すことができる。nサンプル遅延520は、GMSK差分位相再構成モジュール505の遅延にほぼ一致する遅延Dを持つことができる。コンバイナ530において、以前の予測位相変分Ψ[i-1] をエラー信号ε[i] によって修正することができる。コンバイナ530の結果は、パラメータΓ3 によって設定された帯域幅を持つ一次フィルタ540を使用して、平滑化することができる。
GMSK差分位相再構成モジュール505の1つの目的は、有限の窓の復調されたビットに基づいた所与の帯域幅によるGMSK変調のために期待されるようなノイズ無しの修正済み位相変分Ψ[i] を再生成することである。GMSK差分位相再構成モジュール505の1つの取り得る実施例は、帯域幅BTの関数として決定される各エントリを持つルックアップ・テーブルである。代替例として、群遅延D=(L−1)/2を持つ対称線形遅延線フィルタ又は有限インパルス応答(FIR)フィルタを使用して、理想的なノイズ無しの修正済み位相変分
Figure 2005136988
を近似するようにしてもよい。例えば、L=3であり且つ次の式
Figure 2005136988
及び x1 =x3
に従って選択された係数[x1 2 3 ]を持つFIRフィルタはBT≧0.2について良好に動作する。
図4に示されているように、ベースバンド受信器35は第1の復調器205及び第2の復調器210を含んでいる。第1の復調器205はFSK復調手法を使用することができ、また第2の復調器210はOQPSK復調手法を使用することができる。(OQPSK復調手法を使用する)第2の復調器210の出力は、その後、OQPSK復調処理中に生じる固有の差分復号を補正するために符号化器605によって差分符号化することができる。ビット・エラーが何ら生じないとき、差分符号化器605からの出力ビット・ストリームbOQPSK [i] は、(FSK復調手法を使用する)第1の復調器205の出力ビット・ストリームbfsk [i] と実質的に一致する。
一実施形態では、システム20は、第1及び第2の復調器205及び210(図4に示す)のような並列の復調器とエラーを検出するためのエラー検出モジュール620(図4に示す)とを利用する受信器28を含むことができる。実施形態によっては、エラー検出モジュール620は、パケット化プロトコルを用いて送信器25によって符号化されたデータ・パケット内のエラー訂正コード(ECC)を使用してエラーを検出することができる。実施形態によっては、エラー検出モジュール620は出力ペイロード・データ42を出力することができる。
図11はエラー検出モジュール620の一実施形態を例示する。エラー検出モジュール620は、2つの交番する復調器ビット・ストリームbOQPSK [i] 及びbfsk [i] を使用すると共に、復調器ビット・ストリームbOQPSK [i] 及びbfsk [i] が一致しないときに正しいビット・ストリームを選択するための規則又はアルゴリズムを使用することができる。
図11に示されているように、エラー検出モジュール620は、各データ・パケットに含まれているECCに依存するエラー復号及びエラー検出アルゴリズムを含むことができる。エラー検出モジュール620はパケットを復号し、またパケットが「良好(すなわち、何らエラーが検出されていない)」、「障害回復済み(すなわち、ビット・エラーが検出されたが訂正されている)」又は「不良(すなわち、ビット・エラーが検出されて訂正されていない)」かどうか決定するために、復号されたパケット内のECCに依存することができる。
実施形態によっては、(並列の復調器205及び210、並びにエラー検出モジュール620)を利用する受信器28の性能は、周波数偏差に比較的敏感でないようにすることができ、これは変調指数hの適切な制御を維持するために復号器内のアナログ回路にかかる負担を軽減することができる。例えば、送信器25における非MSK公称変調指数h(例えば、0.6の変調指数h)の選択は、変調指数hの分布を非対称な受信器性能曲線の平坦な領域へ向かってバイアスして占有帯域幅内での増加をほんの僅かにすることによって、通信システム20の最悪の場合のシステム性能を改善する。
本発明の様々な特徴及び利点は特許請求の範囲の欄に記載されている。
本発明を具体化する通信システムの概要図である。 図1の通信システムを含む遠隔測定システムの概要図である。 図1の通信システムに含まれる送信器の概要図である。 図1の通信システムに含まれるベースバンド受信器の概要図である。 図4の受信器に含まれる適応非線形等化器の概要図である。 無均等化差分GMSK決定統計値の一例のフル・アイ・ダイアグラムである。 無均等化差分GMSK決定統計値の一例のハーフ・アイ・ダイアグラムである。 無均等化差分GMSK決定統計値の一例のハーフ・アイ・ダイアグラムである。 図1の通信システムに含まれる変調指数推定モジュールの概要図である。 図1の通信システムに含まれる3dB帯域幅・ビット持続期間積推定モジュールの概要図である。 本発明の一実施形態によるパラメータ推定を開始させるビット・パターンを検出する方法のフローチャートである。 図1の通信システムに含まれる搬送波オフセット推定モジュールの概要図である。 図1の通信システムに含まれるエラー検出モジュールの概要図である。
符号の説明
20 通信システム
28 受信器
50 遠隔測定システム
60 歩行可能患者
80 データ取得モジュール(DAC)
130 利得モジュール
135 コンバイナ
140 変調器
205 復調器
235 位相モジュール
240 1サンプル遅延
245 コンバイナ
250 コンバイナ
400 パラメータ推定を開始させるパターンを検出する方法
605 符号化器

Claims (10)

  1. 被変調信号を送信する第1の装置(25)、及び被変調信号を受信する第2の装置(28)を有する通信システム(20)であって、前記第2の装置(28)が、
    被変調信号を受信し、第1の復調出力を生成し、且つ第1の復調手法を実施する第1の復調器(208)と、
    被変調信号を受信し、第2の復調出力を生成し、且つ前記第1の復調手法とは異なる第2の復調手法を実施する第2の復調器(210)と、
    前記第1の復調出力及び前記第2の復調出力に基づいてビット・エラー検出を実行するエラー検出モジュール(620)と、
    を含んでいることを特徴とする、通信システム(20)。
  2. 第1の復調手法は差分周波数シフト・キーイングであり、第2の復調手法はオフセット直角位相シフト・キーイングである、請求項1記載の通信システム(20)。
  3. 被変調信号はパケット化プロトコルを用いて変調されている、請求項1記載の通信システム(20)。
  4. エラー検出モジュール(620)は、第1の復調出力を第2の復調出力とパケット毎に比較することによってビット・エラー検出を実行する、請求項3記載の通信システム(20)。
  5. 第1の装置(25)は周波数シフト・キーイング変調手法を実施する、請求項1記載の通信システム(20)。
  6. 第1の装置(25)は非最小シフト・キーイング公称変調指数を使用する、請求項5記載の通信システム(20)。
  7. 無線周波数信号によりデータを転送する方法であって、
    データをディジタル信号へ変換する段階と、
    パケット化プロトコルを使用してディジタル信号を変調して、被変調信号を生成する段階と、
    被変調信号を無線で伝送する段階と、
    被変調信号を受信する段階と、
    被変調信号を復調して復調信号を生成する段階と、
    エラー検出アルゴリズムを実施する段階と、
    を有している方法。
  8. 送信された信号の受信時に変調信号パラメータの推定を実行する方法であって、
    送信された信号を復調して、複数のビットを持つディジタル信号を生成する段階と、
    複数のビットが第1のパターンのビット又は第2のパターンのビットを含んでいるかどうか判定する段階と、
    複数のビットが第1のパターンのビット又は第2のパターンのビットを含んでいる場合に変調信号パラメータの推定を実行する段階と、
    を有している方法。
  9. 通信システム内の等化器の入力をシフトする方法であって、
    第1の時間間隔及び第2の時間間隔を含む入力信号を受信する段階であって、第1の時間間隔は第2の時間間隔より前にあり、また第1の時間間隔は第1の入力値を含んでおり、更に第2の時間間隔は第2の入力値を含んでいる、当該段階と、
    入力信号の少なくとも1つの推定パラメータを受け取る段階と、
    少なくとも1つの推定パラメータと第1の入力値とに少なくとも部分的に基づいて第1の出力値を決定する段階と、
    第1の出力値に少なくとも部分的に基づいてシフト値を算出する段階と、
    第2の入力値をシフト値だけシフトさせて、第2の時間間隔中に第2の出力値
    を決定する段階と、
    を有している方法。
  10. 被変調信号の搬送波オフセットを推定する方法であって、
    第1の時間間隔中は第1の入力値を持ち且つ第2の時間間隔中は第2の入力値を持つ入力信号を受信する段階であって、第1の時間間隔は第2の時間間隔より前にある、当該段階と、
    被変調信号の第1の推定パラメータを受ける段階と、
    被変調信号の第2の推定パラメータを受ける段階と、
    第2の時間間隔期間中に推定信号を算出する段階であって、推定信号は被変調信号の位相変分の実質的にノイズの無い推定値であり、また推定信号は第1の入力値、第1の推定パラメータ及び第2の推定パラメータに少なくとも部分的に基づいたものである、当該段階と、
    第2の入力値を推定信号と組み合わせることによって、エラー信号を生成する段階と、
    エラー信号に少なくとも部分的に基づいて第2の時間間隔中に搬送波オフセットを決定する段階と、
    を有している方法。
JP2004310449A 2003-10-27 2004-10-26 無線通信システム及び方法 Expired - Fee Related JP4810653B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/694,039 US7298788B2 (en) 2003-10-27 2003-10-27 Wireless communication system and method
US10/694,039 2003-10-27

Publications (3)

Publication Number Publication Date
JP2005136988A true JP2005136988A (ja) 2005-05-26
JP2005136988A5 JP2005136988A5 (ja) 2007-12-06
JP4810653B2 JP4810653B2 (ja) 2011-11-09

Family

ID=34522505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004310449A Expired - Fee Related JP4810653B2 (ja) 2003-10-27 2004-10-26 無線通信システム及び方法

Country Status (2)

Country Link
US (2) US7298788B2 (ja)
JP (1) JP4810653B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4140521B2 (ja) * 2003-12-26 2008-08-27 沖電気工業株式会社 復調器
JP5032971B2 (ja) * 2007-12-28 2012-09-26 古野電気株式会社 復調装置
AT509699B1 (de) * 2010-04-07 2013-02-15 Microtronics Engineering GmbH Funkempfangseinrichtung zum empfangen von funksignalen von unterschiedlichen funksendern
US8908808B2 (en) * 2011-09-16 2014-12-09 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for demodulating a signal
US9408147B2 (en) * 2012-09-24 2016-08-02 Broadcom Corporation Enhanced rate physical layer for Bluetooth™ low energy
FR3023439B1 (fr) * 2014-07-04 2016-07-29 Thales Sa Procede ameliore de modulation a phase continue et emetteur mettant en oeuvre le procede
US9722845B2 (en) * 2015-12-23 2017-08-01 Intel IP Corporation Bluetooth low energy frequency offset and modulation index estimation
EP3965384A1 (en) 2020-09-07 2022-03-09 RivieraWaves Method for decoding an rf signal bearing a sequence of symbols modulated by cpm and associated decoder

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117451A (ja) * 1987-10-30 1989-05-10 Nec Corp 復調回路
JPH04115646A (ja) * 1990-08-31 1992-04-16 Sanyo Electric Co Ltd 位相変調信号復調回路
JPH07123017A (ja) * 1993-10-28 1995-05-12 Nec Eng Ltd 受信装置
JPH10126444A (ja) * 1996-10-23 1998-05-15 Kokusai Electric Co Ltd 画像伝送方法
JPH10136320A (ja) * 1996-11-01 1998-05-22 Canon Inc ディジタル伝送装置
JP2001211213A (ja) * 2000-01-26 2001-08-03 Hitachi Kokusai Electric Inc 復調方法及び復調回路及び携帯無線機
JP2001515301A (ja) * 1997-08-29 2001-09-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 多重変調をサポートする通信システムにおける情報の復調方法
JP2002009855A (ja) * 2000-06-16 2002-01-11 Sharp Corp デジタル通信用復調装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193658A (ja) * 1983-04-18 1984-11-02 Nec Corp 擬似誤り検出回路
JP3451839B2 (ja) * 1996-05-31 2003-09-29 安藤電気株式会社 バースト・データの高速復調方法およびその装置
US6055269A (en) * 1997-10-06 2000-04-25 Sun Microsystems, Inc. Adaptive equalization technique using twice sampled non-return to zero data
US6891909B2 (en) 2001-02-28 2005-05-10 Ge Marquette Medical Systems, Inc. Pro-active antenna switching based on relative power
US7243295B2 (en) * 2001-06-12 2007-07-10 Intel Corporation Low complexity channel decoders
KR20040017383A (ko) * 2002-08-21 2004-02-27 삼성전자주식회사 어드레스 데이터 변조 방법 및 장치, 그 어드레스 데이터복조방법 및 장치, 그리고 그 기록매체
TWI256220B (en) * 2003-04-17 2006-06-01 United Radiotek Inc Digital dc bias estimation apparatus and method
US7248843B2 (en) 2003-11-07 2007-07-24 Ge Medical Systems Information Technologies, Inc. Antenna selection system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117451A (ja) * 1987-10-30 1989-05-10 Nec Corp 復調回路
JPH04115646A (ja) * 1990-08-31 1992-04-16 Sanyo Electric Co Ltd 位相変調信号復調回路
JPH07123017A (ja) * 1993-10-28 1995-05-12 Nec Eng Ltd 受信装置
JPH10126444A (ja) * 1996-10-23 1998-05-15 Kokusai Electric Co Ltd 画像伝送方法
JPH10136320A (ja) * 1996-11-01 1998-05-22 Canon Inc ディジタル伝送装置
JP2001515301A (ja) * 1997-08-29 2001-09-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 多重変調をサポートする通信システムにおける情報の復調方法
JP2001211213A (ja) * 2000-01-26 2001-08-03 Hitachi Kokusai Electric Inc 復調方法及び復調回路及び携帯無線機
JP2002009855A (ja) * 2000-06-16 2002-01-11 Sharp Corp デジタル通信用復調装置

Also Published As

Publication number Publication date
US20070291869A1 (en) 2007-12-20
JP4810653B2 (ja) 2011-11-09
US20050089113A1 (en) 2005-04-28
US7298788B2 (en) 2007-11-20
US7643571B2 (en) 2010-01-05

Similar Documents

Publication Publication Date Title
KR100661028B1 (ko) 디지털 통신 시스템에서 위상 회전 기법을 사용하는시그날링
US8259862B2 (en) Receivers and symbol decoders thereof
US6711218B2 (en) System and method for received signal decoding
US7643571B2 (en) Wireless communication system and method
EP1367794A2 (en) Modulation method and radio communication system
JPH11508113A (ja) ディジタル伝送装置における受信機のための拡張されたチャンネル推定付きイコライザ
US10686489B2 (en) Radio communication
US9722845B2 (en) Bluetooth low energy frequency offset and modulation index estimation
CN113489664A (zh) 无线频移键控通信频偏补偿电路和方法
US5200977A (en) Terminal unit apparatus for time division multiplexing access communications system
KR100626103B1 (ko) 디지털 전송 시스템용 수신기
US6721366B1 (en) Phase tracking apparatus and method for continuous phase modulated signals
US6901120B2 (en) Method and apparatus for iterative parameter estimation
US9258107B1 (en) Local oscillator phase noise tracking for single carrier transmission
JP2000232494A (ja) 信号キャリア回復処理方法
US6597251B2 (en) Method for demodulating signal
JP6265506B2 (ja) 通信システム
JPH06232939A (ja) フレーム同期回路
US6940927B2 (en) Simplified symbol timing tracking circuit for a CPM modulated signal
JP2023092671A (ja) クロック再生方法および無線通信システム
US9137068B2 (en) Wireless communications device having temporary correlation matrix with time inversion and related methods
JPH09261285A (ja) 多値vsb復調器
US8223907B2 (en) Method for deriving parasitic signals from modulated digital signals
EP1313280A1 (en) Method for correcting phase errors in a received signal and corresponding receiver
JP2001186202A (ja) 残余周波数シフトの存在における位相推定

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101006

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees