JP2005134820A - 自動焦点調整装置及びプログラム - Google Patents

自動焦点調整装置及びプログラム Download PDF

Info

Publication number
JP2005134820A
JP2005134820A JP2003373367A JP2003373367A JP2005134820A JP 2005134820 A JP2005134820 A JP 2005134820A JP 2003373367 A JP2003373367 A JP 2003373367A JP 2003373367 A JP2003373367 A JP 2003373367A JP 2005134820 A JP2005134820 A JP 2005134820A
Authority
JP
Japan
Prior art keywords
evaluation value
mode
lens
scan
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003373367A
Other languages
English (en)
Inventor
Kazuki Konishi
一樹 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003373367A priority Critical patent/JP2005134820A/ja
Publication of JP2005134820A publication Critical patent/JP2005134820A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

【課題】 AF処理の実行時間を短縮することができる自動焦点調整装置及びプログラムを提供する。
【解決手段】 まず、フォーカスレンズを第1ゾーンで駆動して、粗いスキャン間隔で評価値を取得し、合焦可能であるときは、スキャンが終了した範囲の評価値のピークを中心に詳細スキャンを行い、合焦可能でないときは、1回目の4次近似関数によるピーク位置予測を行い、ピーク位置予測が可能であるときは、ここで求められたP(i)、P(i)がスキャンの終了位置に略等しいときは、スキャン終了位置と略等しいとみなされた予測されたピーク位置を中心に詳細スキャンを行い、P(i)、P(i)がスキャンの終了位置に略等しくないときは、新たなスキャン開始位置から所定範囲において詳細スキャンのスキャン間隔より粗いスキャンを行う。
【選択図】 図4

Description

本発明は、自動焦点調整装置及びプログラムに関し、特に、撮像光学系により結像される被写体像を光電変換して取得される画像信号に基づいて焦点調整を行う自動焦点調整装置及びプログラムに関する。
デジタルカメラの自動焦点調整装置は、図8に示すように、フォーカスレンズの位置を無限遠位置(図8における「A」)から至近距離位置(図8における「B」)まで移動し、各位置においてCCDから得られる画像データのうちの高周波成分を評価値として取得し、評価値が最大となる位置(図8における「C」)を合焦位置として、この合焦位置にフォーカスレンズを駆動することにより、自動焦点調整(AF)処理を行う。
上記自動焦点調整装置では、フォーカスレンズの位置を撮像可能な全距離範囲である無限遠位置から近距離位置まで移動する必要があるので、AF処理の実行に時間がかかる。
そのため、フォーカスレンズを粗いステップ間隔で移動させて、例えば、図8に示す点a1,a2,a3において評価値を取得し、取得した評価値に基づいて概略の合焦位置を検出し、当該概略の合焦位置近傍でフォーカスレンズを微少なステップ間隔で移動させて取得した評価値に基づいて合焦位置を検出することにより、AF処理の実行時間を短縮する技術が提案されている(例えば、特許文献1参照)。
また、フォーカスレンズを微小なステップ間隔で移動させて取得した評価値に基づいて合焦位置を検出する第1のモードと、フォーカスレンズを粗いステップ間隔で移動させて取得した評価値に基づいて概略の合焦位置を検出し、当該概略の合焦位置近傍でフォーカスレンズを微小なステップ間隔で移動させて取得した評価値に基づいて合焦位置を検出する第2のモードとを選択可能にすることにより、フォーカスレンズを合焦位置に駆動する時間を短縮する技術が提案されている(例えば、特許文献2参照)。
特許2708904号公報 特開2001−66494号公報
しかしながら、上記技術では、AF処理の実行時間は短縮されるものの、やはりフォーカスレンズの位置を撮像可能な全距離範囲である無限遠位置から近距離位置まで移動する必要があるので、高画素化や撮影レンズの長焦点距離化に伴う、さらなるAF処理の実行時間短縮の要求に応えることができない。
本発明の目的は、AF処理の実行時間を短縮することができる自動焦点調整装置及びプログラムを提供することにある。
上述の目的を達成するために、請求項1記載の自動焦点調整装置は、被写体像を光電変換して画像信号を得る撮像手段と、焦点を調整するレンズを駆動する駆動手段と、前記画像信号から前記レンズの位置を調節するための評価値を第1の距離ごとに取得する第1のモード及び当該第1の距離よりも短い第2の距離ごとに取得する第2のモードを有する評価値取得手段と、前記取得した評価値に基づいて前記レンズの位置を決定する位置決定手段とを備え、前記評価値取得手段は、前記第1のモードの場合の評価値に基づいて、更なる前記評価値の取得を前記第1のモードで行うか前記第2のモードで行うかを判断することを特徴とする。
請求項2記載の自動焦点調整装置は、請求項1記載の自動焦点調整装置において、前記位置決定手段による前記レンズ位置の決定の際、無限端側から前記レンズを駆動し、前記第2のモードにおける前記レンズを駆動する位置は前記第1のモードにおける前記レンズを駆動する位置よりも至近端側であることを特徴とする。
請求項3記載の自動焦点調整装置は、請求項1又は2記載の自動焦点調整装置において、前記評価値取得手段は、前記取得した評価値が極大となる前記レンズの位置を予測することにより更なる前記評価値の取得を前記第1のモードで行うか前記第2のモードで行うかを判断することを特徴とする。
請求項4記載の自動焦点調整装置は、請求項3記載の自動焦点調整装置において、前記第2のモードでの更なる前記評価値取得における前記レンズの駆動開始位置を前回の前記第1のモードでの前記評価値取得に基づいて設定することを特徴とする。
請求項5記載の自動焦点調整装置は、請求項1乃至4のいずれか1項に記載の自動焦点調整装置において、前記評価値取得手段は、前記被写体像のコントラストにより、前記レンズの更なる前記駆動開始位置を設定することを特徴とする。
請求項6記載のプログラムは、被写体像を光電変換して画像信号を得る撮像手段と、焦点を調整するレンズを駆動する駆動手段とを有する撮像装置の制御手段がAF制御を行うために読み取り可能なプログラムであって、前記画像信号から前記レンズの位置を調節するための評価値を第1の距離ごとに取得する第1のモード及び当該第1の距離よりも短い第2の距離ごとに取得する第2のモードを有する評価値取得ステップと、前記取得した評価値に基づいて前記レンズの位置を決定する位置決定ステップとを備え、前記第1のモードの場合の評価値に基づいて、更なる前記評価値の取得を前記第1のモードで行うか前記第2のモードで行うかを判断することを特徴とする。
請求項1記載の自動焦点調整装置、請求項6記載のプログラムによれば、画像信号からレンズの位置を調節するための評価値を第1の距離ごとに取得する第1のモード及び当該第1の距離よりも短い第2の距離ごとに取得する第2のモードを有し、第1のモードの場合の評価値に基づいて、更なる前記評価値の取得を第1のモードで行うか第2のモードで行うかを判断するので、AF処理の実行時間を短縮することができる。
請求項2記載の自動焦点調整装置によれば、レンズ位置の決定の際、無限端側からレンズを駆動し、第2のモードにおけるレンズを駆動する位置は第1のモードにおけるレンズを駆動する位置よりも至近端側であるので、請求項1の効果を確実に奏することができる。
請求項3記載の自動焦点調整装置によれば、取得した評価値が極大となるレンズの位置を予測することにより更なる評価値の取得を前記第1のモードで行うか前記第2のモードで行うかを判断するので、請求項1の効果を確実に奏することができる。
請求項4記載の自動焦点調整装置によれば、第2のモードでの更なる評価値取得におけるレンズの駆動開始位置を前回の第1のモードでの評価値取得に基づいて設定するので、請求項1の効果を確実に奏することができる。
請求項5記載の自動焦点調整装置によれば、被写体像のコントラストにより、レンズの更なる駆動開始位置を設定するので、被写体のコントラストの低い場合においても次のスキャン開始位置の信頼性を高めることができる。
以下、本発明の実施の形態を図面を参照しながら説明する。
図1は、本発明の実施の形態に係る自動焦点調整装置の内部構成のブロック図である。
図1において、本発明の実施の形態に係る撮像装置1(自動焦点調整装置)は、ズームレンズ群2と、フォーカスレンズ群3(レンズ)と、ズームレンズ群2及びフォーカスレンズ群3からなる撮影光学系を透過する光束の量を制御して露出する絞り4と、ズームレンズ群2、フォーカスレンズ群3、及び絞り4からなる撮影レンズ鏡筒31と、撮影光学系を透過した被写体像を光電変換するCCD5と、後述するTG16から発生されたタイミング信号により、光電変換された電気信号に色信号の分離等の各種画像処理を行って所定の画像データを生成する撮像回路6と、生成された画像データをデジタル変換するA/D変換回路7と、デジタル変換された画像データを一時的に記憶するVRAM8と、VRAM8に記憶された画像データを読み出してアナログ信号に変換すると共に再生出力に適した形態に変換するD/A変換回路9と、D/A変換回路9で変換された画像データを画像として表示する液晶表示装置(LCD)10と、VRAM8に記憶された画像データを読み出して、記憶に適した形態にするために圧縮処理や符号化処理を行う圧縮回路11aと、圧縮回路11aで処理された画像データを記憶する記憶用メモリ12と、記憶用メモリ12に記憶された画像データを再生表示するのに最適な形態にするために復号化処理や伸長処理等を行う伸長回路11bとを備える。
記憶用メモリ12には、固定型の半導体メモリ(例えば、フラッシュメモリ)、撮像装置1に対して着脱自在に形成されると共にカード形状又はスティック形状を有する半導体メモリ(例えば、カード型フラッシュメモリ)、磁気記憶媒体(例えば、ハードディスク、フロッピィー(登録商標)ディスク)等が適用される。
撮像装置1は、また、A/D変換回路7から出力された画像データに自動露出(AE)処理を行うAE処理回路13と、A/D変換回路7から出力された画像データに自動焦点調節(AF)処理を行うスキャンAF処理回路14と、撮像装置1の制御を行う演算用のメモリを内蔵したCPU15(制御手段)と、CPU15の制御により所定のタイミング信号を発生するタイミングジェネレータ(TG)16と、発生されたタイミング信号によりCCD5を駆動するCCDドライバ17と、絞り4を駆動する絞り駆動モータ21と、CPU15の制御により絞り駆動モータ21を駆動制御する第1モータ駆動回路18と、フォーカスレンズ群3を駆動するフォーカス駆動モータ22と、CPU15の制御によりフォーカス駆動モータ22を駆動制御する第2モータ駆動回路19と、ズームスレンズ群2を駆動するズーム駆動モータ23と、CPU15の制御によりズーム駆動モータ23を駆動制御する第3モータ駆動回路20と、各種のスイッチ群からなる操作SW24と、各種プログラムや各種データが予め記憶されている電気的に書き換え可能な読み出し専用メモリであるEEPROM25と、電池26と、ストロボ発光部28と、ストロボ発光部28の閃光発光を制御するスイッチング回路27と、警告表示などを行うLED29と、音声によるガイダンスや警告などを行うためのスピーカ30とを備える。
操作SW24は、撮像装置1を起動させ電源供給を行うための主電源スイッチ、撮影動作等を開始させるレリーズスイッチ、記憶用メモリ12に記憶された画像データのLCD10への再生動作を開始させる再生スイッチ、撮影光学系のズームレンズ群2を移動させズームを行わせるズームスイッチ、及び評価値のモニターへの表示を行わせる表示スイッチ等からなる。
レリーズスイッチは、撮影動作に先立ち行われるAE処理及びAF処理を開始させる指示信号を発生する第1ストロークと、実際の露光動作を開始させる指示信号を発生する第2ストロークとの二段スイッチから構成される。
一方、A/D変換回路7によってデジタル化された画像データは、上述のVRAM8とは別にAE処理回路13及びスキャンAF処理回路14に対しても出力される。まずAE処理回路13においては、入力されたデジタル画像データを受けて、一画面分の画像データの輝度値に対して累積加算等の演算処理が行われる。これにより、被写体の明るさに応じたAE評価値が算出される。このAE評価値はCPU15に出力される。
また、スキャンAF処理回路14は、入力されたデジタル画像データを受けて一画面分の画像データの高周波成分がハイパスフィルター(HPF)等を介して抽出し、さらに累積加算等の演算処理を行う。これにより、高域側の輪郭成分量等に対応する評価値が算出される。このようにスキャンAF処理回路14は、AF処理を行う過程において、CCD5によって生成された画像データから所定の高周波成分を検出する高周波成分検出手段の役割を担っている。
CPU15は、AE処理回路13において算出されたAE評価値等に基づいて第1モータ駆動回路18を制御して絞り駆動モータ21を駆動し、絞り4の絞り量を適正になるように調整するAE制御を行う。
CPU15は、また、スキャンAF処理回路14において算出される評価値に基づいて第2モータ駆動回路19を制御してフォーカス駆動モータ22を駆動し、フォーカスレンズ群3を合焦位置に移動させるAF制御を行う。
CPU15は、さらに、操作SW24のズームスイッチが操作されたときは、第3モータ駆動回路20を制御してズームモータ23を駆動制御することによりズームレンズ群2を移動させ、撮影光学系の変倍動作(ズーム動作)を行う。
図2は、図1の撮像装置1によって実行される撮影動作処理のフローチャートである。
図2では、撮像装置1の主電源スイッチがONであり、かつ撮像装置1の動作モードが撮影(録画)モードにあるときは、CPU15 による撮影処理シーケンスが実行される。
図2において、まず、撮影光学系を透過した被写体像をCCD5で光電変換し光電変換された電気信号に、撮像回路6で各種画像処理を行って所定の画像データを生成し、生成された画像データをA/D変換回路7でデジタル変換し、デジタル変換された画像データをVRAM8に一時的に記憶し、VRAM8に記憶された画像データをD/A変換回路9で読み出してアナログ信号に変換すると共に再生出力に適した形態に変換し、D/A変換回路9で変換された画像データをLCD10に画像として表示する(ステップS1)(撮像手段)。
次いで、撮影者がレリーズスイッチを操作してレリーズスイッチの第1ストローク(以下、「SW1」という)がONになったときは(ステップS2でYES)、通常のAE処理を実行し(ステップS3)、合焦位置を検出するための後述する図3のスキャンAF処理を実行して、フォーカスレンズ群3を駆動しながらCCD5によって生成された画像データ(画像信号)から出力される高周波成分を評価値として取得(スキャン)し(駆動手段、評価値取得手段)、評価値が最も多くなるフォーカスレンズ群3の位置を予測して合焦位置を求めて、合焦位置にフォーカスレンズ群3を移動する(ステップS4)(位置決定手段)。ステップS4のスキャンAF処理は、求められた評価値の信頼性が十分であれば、評価値が最大値となる点を求める一方、評価値の信頼性が低いときは、評価値が最大値となる点を求める処理は行わない。
続くステップS5では、合焦位置が求められたことを示すAFOK表示、又は合焦位置が求めらなかったことを示すAFNG表示を行う。このステップS5の表示は、LED29を点滅表示すると同時に、LCD上に黄色の枠を表示することにより行う。
次いで、撮影者がレリーズスイッチを操作してレリーズスイッチの第2ストローク(以下、「SW2」という)がONになったときは(ステップS6でYES)、実際の露光処理を実行して(ステップS7)、本処理を終了する。
図2の処理によれば、SW1がONになったときは(ステップS2でYES)、通常のAE処理を実行し(ステップS3)、フォーカスレンズ群3を駆動しながらCCD5によって生成された画像データから出力される高周波成分を評価値として取得し、評価値が最も多くなるフォーカスレンズ群3の位置を予測して合焦位置を求めて、合焦位置にフォーカスレンズ群3を移動する(ステップS4)ので、AF処理の実行時間を短縮することができる。
図3は、図2のステップS4のスキャンAF処理のフローチャートである。
図3において、まず、撮影者によって設定された撮影レンズの焦点距離(以下、「ズームポジション」という)が所定ポジションより望遠側に設定されているか否か(ステップS201)、マクロモードに設定されているか否か(ステップS202)を夫々判別する。なお、所定のズームポジションはCCDのサイズ、画素の大きさ、撮影レンズの各焦点距離における開放F値などによって定まる定数である。目安としては35mmカメラ換算で50〜100mm程度の値となる。
ステップS201、及びS202の各判別の結果、ズームポジションが所定ポジションより望遠側に設定されているか、又はマクロモードに設定されているときは、後述する図4のピーク位置予測スキャン処理を実行して、評価値のピーク位置を予測し、予測に基づいてフォーカスレンズの位置を制御する間隔(以下、「スキャン間隔」という)を可変して評価値を取得して合焦位置を求め(ステップS203)、求められた合焦位置へフォーカスレンズを駆動する合焦動作を行い(ステップS204)、本処理を終了する。
ステップS201、及びS202の各判別の結果、ズームポジションが所定ポジションより広角側に設定されており(望遠側に設定されておらず)、且つマクロモードに設定されていないときは、評価値を取得するフォーカスレンズ位置(スキャンポイント)が少ないため、ピーク位置予測スキャン処理を実行しても時間短縮の効果が無い又は小さいので、ピーク位置予測を行わない通常のスキャンAF処理を実行して合焦位置を求め(ステップS205)、求められた合焦位置へフォーカスレンズを駆動する合焦動作を行い(ステップS204)、本処理を終了する。
図3の処理によれば、ズームポジションが所定ポジションより望遠側に設定されているか(ステップS201でYES)、又はマクロモードに設定されているときは(ステップS202でYES)、評価値のピーク位置を予測し、予測に基づいてスキャン間隔を可変して評価値を取得して合焦位置を求める(ステップS203)ので、AF処理の実行時間を短縮することができる。
図4は、図3のステップS203のピーク位置予測スキャン処理のフローチャートである。
図4において、まず、無限遠位置から所定の範囲(図5におけるInfi〜End0)を第1ゾーンとし、フォーカスレンズを第1ゾーンで駆動して、粗いスキャン間隔で評価値を取得する第1ゾーンスキャンを行う(ステップS301)(第1のモード)。この第1ゾーンの範囲は、フォトスペースと呼ばれる撮影シーンの輝度や距離のデータデースに基づいて決定される。例えば、焦点距離120mm(35mm換算)では、被写体距離が無限遠位置から3.5mに相当する範囲を第1ゾーンとしている。
次いで、図5に示すような横軸にフォーカスレンズ位置、縦軸に評価値を示したグラフの形状が山状であり、合焦可能であるか否かを判別する(ステップS302)。この判別は、評価値の最大値と最小値の差、一定値以上の傾きで傾斜している部分の長さ、傾斜している部分の傾斜の平均値から判別される。また、1フィールドの所定範囲の輝度信号の最大値と最小値を用いる方法(例えば、特開平6−125493号公報)を用いてもよい。
ステップS302の判別の結果、合焦可能であるときは、スキャンが終了した範囲の評価値のピークを中心に細かいスキャン間隔でのスキャン(以下、「詳細スキャン」という)(第2のモード)を行い(ステップS303)、得られた評価値から補間演算を行い合焦位置を求めて、本処理を終了する。なお、詳細スキャンは、第1ゾーンにおけるスキャン間隔の約半分のスキャン間隔で行い、スキャンポイント数は7程度である。
ステップS302の判別の結果、合焦可能でないときは、評価値のピーク位置を予測する回数をカウントするカウンタiをi=1に初期化し(ステップS304)、1回目の4次近似関数によるピーク位置予測を行う(ステップS305)。
ステップS305のピーク位置予測は、まず、スキャンした範囲の評価値が4次関数で近似できると仮定し、それぞれの次数の係数を求める。この係数の計算には最小二乗法を用いる。
y=a4・x4+a3・x3+a2・x2+a1・x+a0 …(1)
評価値を上記の関数で近似するとすると、誤差の二乗和Eは
E=Σ[yi-{a4・xi4+a3・xi3+a2・xi2+a1・xi+a0}]2
ここで、Σは、i=1からMまでの総和を示し、Mは取得したデータ数である(以下同様)。この誤差の二乗和Eを最小にする各係数を求め、これを近似関数の各係数(a)とする。a,a,a,a,aでEを偏微分した結果を0とし、連立方程式をつくる。
∂E/∂a4=Σ2[yi-{a4・xi4+a3・xi3+a2・xi2+a1・xi+a0}](-xi4)=0
∴Σyixi4=Σ(a4・xi8+a3・xi7+a2・xi6+a1・xi5+a0・xi4) …(2)
∂E/∂a3=Σ2[yi-{a4・xi4+a3・xi3+a2・xi2+a1・xi+a0}](-xi3)=0
∴Σyixi3=Σ(a4・xi7+a3・xi6+a2・xi5+a1・xi4+a0・xi3) …(3)
∂E/∂a2=Σ2[yi-{a4・xi4+a3・xi3+a2・xi2+a1・xi+a0}](-xi2)=0
∴Σyixi2=Σ(a4・xi6+a3・xi5+a2・xi4+a1・xi3+a0・xi2) …(4)
∂E/∂a1=Σ2[yi-{a4・xi4+a3・xi3+a2・xi2+a1・xi+a0}](-xi)=0
∴Σyixi=Σ(a4・xi5+a3・xi4+a2・xi3+a1・xi2+a0・xi) …(5)
∂E/∂a0=Σ2[yi-{a4・xi4+a3・xi3+a2・xi2+a1・xi+a0}](-1)=0
∴Σyi=Σ(a4・xi4+a3・xi3+a2・xi2+a1・xi+a0) …(6)
式(2)〜式(6)を整理すると、
Σyixi4=Σ(a4・xi8+a3・xi7+a2・xi6+a1・xi5+a0・xi4) …(2)
Σyixi3=Σ(a4・xi7+a3・xi6+a2・xi5+a1・xi4+a0・xi3) …(3)
Σyixi2=Σ(a4・xi6+a3・xi5+a2・xi4+a1・xi3+a0・xi2) …(4)
Σyixi=Σ(a4・xi5+a3・xi4+a2・xi3+a1・xi2+a0・xi) …(5)
Σyi=Σ(a4・xi4+a3・xi3+a2・xi2+a1・xi+a0) …(6)
となる。このような方程式は正規方程式と呼ばれる。一般にN次関数の正規方程式は行列を用いて次のような形式で表すことができる。よって、下記の式において左辺の逆行列を求めて式の両辺に掛け、右辺を計算すれば、スキャンした範囲の評価値をN次関数に近似した際の関数の各係数(a)を得ることができる。逆行列の求め方に関しては公知であるのでここでの説明は省略する。
Figure 2005134820
以上のように、スキャンした範囲での評価値の4次関数による近似関数を求め、次いで、該4次関数の極値を求める。
まず、該4次関数の一次微分関数dy/dxを求めると、
dy/dx=4a・x+3a・x+2a・x+a
となる。dy/dx=0とおいて3次方程式
4a・x+3a・x+2a・x+a=0 …(10)
を解けば、極値を与えるxを求めることができる。式(10)に示すような3次方程式の一般解はカルダノの方法によって求めることができる。カルダノの方法を用いれば、式(10)の解、即ちxの値は以下のように求められる。
式(10)を4aで正規化した式
+bx+cx+d=0
をy=x+b/3を用いて書き直すと
(y−b/3)+b(y−b/3)+c(y−b/3)+d=0
∴y+3py+q=0
但しp=c/3−b/9、 q=2b/27−bc/3+d
という二次の係数が0の式が得られる。このp、qを用いると3次方程式の3つの解は
x1=m+n …(11)
x2=wm+w
x3=wm+wn
但し、w=√(−1)、m=√(−q/2+√(q/4+p))、
n=√(−q/2−√(q/4+p))
と計算される。式(11)の解については公知であるので詳細の説明は省略する。
以上のようにして3つの解x1、x2、x3が求め、ピーク位置(以下、「ピーク位置」という)を予測する。
まず式(11)にて求めた解のうち虚数部を持つのものを除外し、残ったもの(1つまたは3つ)のうち極大値を示すものを選択する。
極大極小の判定は、式(1)の2回微分、即ち
y/dx=12a・x+6a・x+2a…(12)
においてxに式(11)で求められた値を代入し、その値の正負で判定すればよい。式(12)に代入した結果が負ならば、その位置は極大値となる。dy/dx=0の場合は、dy/dx=0となる式(10)の解における式(1)の値とその前後での式(1)の値を比較することで極大値か否か求めることができる。
この結果極大値として最大二つの値が存在することになる。この値をP(i)、P(i)とする。極大値が1つの場合はP(i)のみが求まる。ここでiはピーク位置を予測する回数をカウントするカウンタの値であり、今はi=1となっている。
次いで、ピーク位置の予測が可能であるか否かを判別し(ステップS306)、ピーク位置予測が可能であるときは、ここで求められたP(i)、P(i)がスキャンの終了位置((図5におけるEnd(0))に略等しいか否かを判別し(ステップS307)、略等しいときは、スキャン終了位置と略等しいとみなされた予測されたピーク位置を中心に詳細スキャンを行い(ステップS308)、得られた評価値から補間演算を行い合焦位置を求めて、本処理を終了する。
ステップS307の判別は、スキャン終了位置から所定範囲内にP(i)またはP(i)があれば略等しいとみなす。
図4に戻り、ステップS307の判別の結果、P(i)、P(i)がスキャンの終了位置に略等しくないときは、極大値を与える位置が2つある場合、次のスキャン開始位置を設定するために、P(i)、P(i)のうちスキャン終了位置End(i)より至近側に相当するフォーカスレンズ位置にあり、かつスキャン終了位置End(i)との差が小さいものを選択し(ステップS309)、選択された予測されたピーク位置(図5におけるP(1))とスキャン終了位置(図5におけるEnd(0))の平均を、次回のスキャン開始位置S(i+1)として求める(ステップS310)。
例えば、図5では、次回のスキャン開始位置S(1)は、
S(1)=(End(0)+P(1))/2
となる。
ステップS306の判別の結果、ピーク位置予測が可能でないとき、即ち、式(1)の極大値を与える値が求められなかったときは、スキャン開始位置S(i)としてスキャン終了位置End(i−1)の次の評価値取得位置をセットし、ステップS311以降の処理を実行する。
次いで、スキャン開始位置S(i)としてスキャン終了位置End(i−1)の次の評価値取得位置をセットして、ピーク位置を予測する回数をカウントするカウンタの値iを更新し(ステップS311)、新たなスキャン開始位置から所定範囲(図5におけるS(i)〜End(i))において詳細スキャンのスキャン間隔より粗いスキャンを行う(ステップS312)。なおスキャン終了位置End(i)はスキャン開始位置S(i)に所定のスキャン数を加えたものである。この所定のスキャン数は撮影レンズの焦点距離、開放F値などによって決まる。
次いで、それまでに得られた全ての評価値を用いて合焦可能か否かを判別し(ステップS313)、合焦可能であるときは、スキャンが終了した範囲の評価値のピーク(最大値)を中心に詳細スキャンを行い(ステップS303)、得られた評価値から補間演算を行い合焦位置を求めて、本処理を終了する。
ステップS313の判別の結果、合焦可能でないときは、ステップS305以降の処理を繰り返す。なお、2回目以降の処理では、ステップS305での評価値の4次関数近似はそれまでにスキャンして得た全ての評価値、即ち、ステップS301で行ったスキャンの結果とS312で行った全てのスキャン結果を用いて行う。例えば、図5において、Infi〜End(0)、及びS(1)〜End(1)の評価値を4次関数近似し、ピーク位置予測を行う。
図5では、2回目のピーク位置予測により、予測されたピークの位置はP(1)であり、P(1)はスキャン終了位置End(1)から所定範囲内にはないので、次のスキャン開始位置S2を、S2=(End(1)+P(1))/2と求める(ステップS310)。
次いで、新たなスキャン開始位置から所定範囲(図5におけるS2〜End2)を粗いスキャンを行い(ステップS312)、得られた評価値にて合焦が可能か判定する(ステップS313)。図5では、S2〜End2のスキャンで合焦可能であるので、スキャンした範囲のピークを中心に詳細スキャンを行い、合焦位置を求める(ステップS303)。
なお、2回目以降の処理では、ステップS311で次回のスキャン開始位置S(i+1)を求める際に、次回のスキャン開始位置S(i+1)がスキャンを行う至近端の位置と今回のスキャン終了位置End(i)の平均より至近側にならないように制限を設けている。即ち、
S(i+1)>(End(i)+至近端)/2
なら
S(i+1)=(End(i)+至近端)/2
としている。
図4の処理によれば、4次近似関数によるピーク位置予測を行い(ステップS305)、予測されたピーク位置とスキャン終了位置の平均を、次回のスキャン開始位置S(i+1)として求める(ステップS310)ので、評価値のピーク付近以外の位置でのスキャンを減らし、ピーク位置付近の評価値を詳細に取得して合焦位置を求め、もってAF処理の実行時間を短縮すると共に、AF処理の精度を確保することができる。
図6は、図4のピーク位置予測スキャン処理の変形例のフローチャートである。
図6の処理は、評価値の近似を6次以上の関数で行う点、次回のスキャン開始位置を設定する際に、被写体のコントラストを考慮している点が、図4の処理と異なる。なお、図6において、図4と同一のステップには同一の参照番号を付し、その説明を省略する。
図6において、ステップS302の判別の結果、合焦可能でないときは、ピーク位置を予測する回数をカウントするカウンタiをi=1に初期化し(ステップS304)、後述する図7のピーク予測処理を実行して、1回目のN次近似関数によるピーク位置予測を行う(ステップS405)。
ステップS405のピーク位置予測は、まず、スキャンした範囲の評価値が6次関数以上の高次関数(N次関数)で近似できると仮定し、それぞれの次数の係数を求める。この係数の計算には最小二乗法を用いる。
y=f(x)=aN・xN+・・・・・・・・+a3・x3+a2・x2+a1・x+a0 …(21)
評価値を上記の関数で近似するとすると、誤差の二乗和Eは
E=Σ[yi−f(xi)]
但し、Mは取得したデータ数である。この誤差の二乗和Eを最小にする各係数を求め、これを近似関数の各係数(a)とする。a,・・・・・・・,a,a,a,aでEを偏微分して、=0とし、連立方程式をつくる。
N次関数の正規方程式は行列を用いて次のような形式で表すことができる。よって、下記の式において左辺の逆行列を求め式の両辺に掛け右辺を計算すれば、スキャンした範囲の評価値をN次関数に近似した際の関数の各係数(a)を得ることができる。逆行列の求め方に関しては公知であるのでここでの説明は省略する。
Figure 2005134820
以上のように、スキャンした範囲での評価値のN次関数による近似関数を求め、次いで、該N次関数の極値を求める。
まず、該N次関数の一次微分関数dy/dxを求めると、
dy/dx=f’(x)=N・aN・xN-1+・・・・・・・・+3a3・x2+2a2・x1+a1 …(23)
となる。dy/dx=0とおいてその解を求めれば、極値を与えるxを求めることができるが、4次以上の方程式の一般解は求めることができない。そこで数値解法により、スキャン終了位置の近側でスキャン終了位置との差が最小のdy/dx=0となるxを求める。
数値解法には種々の方法があるが、ここではスキャン終了位置から至近端に相当するのスキャン位置まで、式(23)におけるxを微小に増加していき、dy/dx=0となるxを求める。
具体的には、xの値をΔxづつ増加していき、f(x)とf(x+Δx)の積を求め、これが負もしくは0になり、かつf’(x−Δ)>0のときのx+Δxが近似されたN次式の極大値、即ち予測ピーク位置となる。これにより、条件判断を用いることなく虚数解を除くと共に、スキャン終了位置の近側でスキャン終了位置との差が最小のdy/dx=0となるxの値、即ち、N次関数近似した評価値の予測ピーク位置を求めることができる。
図7は、図6のステップS405のピーク位置予測処理のフローチャートである。
図7において、式(23)に示されるN次近似関数の微分関数dy/dx=f’(x)を求め(ステップS501)、ピークを予測する際のxの値を初期値(スキャン終了位置)に設定する(ステップS502)。
このxの値を式(23)に代入して、f’(x)=0かつf’(x−Δ)>0
であるか否かを判別し(ステップS503)、f’(x)=0かつf’(x−Δ)>0
であるときは、xを極大値とみなせるので、予測されるピーク位置をx(スキャン終了位置)とし(ステップS504)、本処理を終了する。
ステップS503の判別の結果、f’(x)≠0又はf’(x−Δ)≦0
であるときは、f’(x)・f’(x+Δ)≦0かつf’(x)>0であるか否かを判別し(ステップS505)、x+Δが極大値か否かを判定する。
f’(x)≠0であるときは、f’(x)とf’(x+Δ)の積が0のときは、f’(x+Δ)=0である。よってx+ΔがN次近似関数の極値であり、その直前の位置xでの微分係数が正であれば極大値、逆に負であれば極小値となる。
f’(x)とf’(x+Δ)の積が負であるときは、xとx+Δの間で微分係数が0になり、その位置が極値であることを表している。その直前の位置xでの微分係数が正であれば極大値、逆に負であれば極小値となる。よって、x+ΔをN次近似関数の近似的な極値とみなせる。
以上により、f’(x)・f’(x+Δ)≦0ならばx+Δを極値とみなせ、f’(x)>0ならx+Δが極大値とみなせるので、予測されるピーク位置をx+Δとし(ステップS506)、本処理を終了する。
ステップS505の判別の結果、極大値とみなせなかったときは、x+Δを新たにxの値とし(スッテプS507)、更新した値が至近端に相当する位置かさらに近側にあるか否かを判別し(ステップS508)、至近端に相当する位置かさらに近側にないときは、ステップS505以降の処理を繰り返し、至近端に相当する位置かさらに近側にあるときは、ピーク位置を予測することができなかったので、次のスキャン開始位置S(i)としてスキャン終了位置End(i−1)の次の評価値取得位置をセットして(ステップS509)、本処理を終了する。
図6に戻り、ステップS406で、評価値のピーク位置の予測ができたか否かを判別し、ピーク位置の予測ができたときは、予測されたピーク位置がスキャンの終了位置に略等しいか否かを判別し(ステップS407)、略等しいときは、スキャン終了位置と略等しいとみなされた予測されたピーク位置を中心に詳細スキャンを行い(ステップS408)、得られた評価値から補間演算を行い合焦位置を求めて、本処理を終了する。ステップS407の判別は、スキャン終了位置から所定範囲内に予測されたピーク位置があれば略等しいとみなす。
ステップS407の判別の結果、予測されたピーク位置がスキャンの終了位置に略等しくないときは、予測されたピーク位置とスキャン終了位置の加重平均を次回のスキャン開始位置S(i+1)として求める(ステップS410)。
加重平均の重み付け係数は評価値のコントラストにより決定される。評価値のコントラストとは、それまでにスキャンされた評価値の最大値と最小値の比である。この比が大きければ信号のSN比は高く、予測されたピークの信頼性は高い。逆にこの比が小さければ信号のSN比は低く、予測されたピークの信頼性は低い。
具体的には以下の式により重み付け係数αが決定される。
α=0.6×(評価値最大値−評価値最小値)/評価値最大値
0.6はαの最大値が0.5程度になるように設定された定数である。
この重み付け係数を用いて次回のスキャン開始位置S(i+1)は、
S(i+1)=α×予測ピーク位置+(1−α)End(i)
と求められる。
これにより、評価値のコントラストが低い場合に、真のピーク位置とかけ離れた位置をスキャンするなどの弊害を除去することができる。
図6の処理によれば、1回目のN次近似関数によるピーク位置予測を行い(ステップS405)、予測されたピーク位置とスキャン終了位置の加重平均を次回のスキャン開始位置S(i+1)として求める(ステップS410)ので、評価値のピーク付近以外の位置でのスキャンを減らし、評価値のピーク位置付近の評価値を詳細に取得して合焦位置を求め、もってAF処理の実行時間を短縮すると共に、AF処理の精度を確保することができる。
また、加重平均の重み付け係数は評価値のコントラストにより決定されるので、被写体のコントラストの低い場合においても次のスキャン開始位置の信頼性を高めることができる。
本発明は、上述した実施の形態の機能を実現するソフトウェアのプログラム(図2〜4及び図6〜7のフローチャート)をコンピュータ又はCPU15に供給し、そのコンピュータ又はCPU15が該供給されたプログラムを読出して実行することによって、達成することができる。
この場合、上記プログラムは、該プログラムを記憶した記憶媒体から直接供給されるか、又はインターネット、商用ネットワーク、若しくはローカルエリアネットワーク等に接続される不図示の他のコンピュータやデータベース等からダウンロードすることにより供給される。
上記プログラムの形態は、オブジェクトコード、インタプリタにより実行されるプログラムコード、OS(オペレーティングシステム)に供給されるスクリプトデータ等の形態から成ってもよい。
また、本発明は、上述した実施の形態の機能を実現するソフトウェアのプログラムを記憶した記憶媒体をコンピュータ又はCPU15に供給し、そのコンピュータ又はCPU15が記憶媒体に記憶されたプログラムを読出して実行することによっても、達成することができる。
この場合、格納媒体から読出されたプログラムコード自体が上述した各実施の形態の機能を実現すると共に、そのプログラムコードを記憶した記憶媒体は本発明を構成する。
プログラムコードを記憶する記憶媒体としては、例えば、ROM、RAM、フロッピー(登録商標)ディスク、ハードディスク、光ディスク(登録商標)、光磁気ディスク、CD−ROM、MO、CD−R、CD−RW、DVD−ROM、DVD−RAM、DVD−RW、DVD+RW、磁気テープ、不揮発性のメモリカード等がある。
上述した実施の形態の機能は、コンピュータから読出されたプログラムコードを実行することによるばかりでなく、コンピュータ上で稼動するOS等がプログラムコードの指示に基づいて実際の処理の一部又は全部を行うことによっても実現することができる。
本発明の実施の形態に係る自動焦点調整装置の内部構成のブロック図である。 図1の撮像装置1によって実行される撮影動作処理のフローチャートである。 図2のステップS4のスキャンAF処理のフローチャートである。 図3のステップS203のピーク位置予測スキャン処理のフローチャートである。 図4のピーク位置予測スキャン処理を説明するのに用いられる図である。 図4のピーク位置予測スキャン処理の変形例のフローチャートである。 図6のステップS405のピーク位置予測処理のフローチャートである。 従来の自動焦点調整(AF)処理を説明するのに用いられる図である。
符号の説明
1 撮像装置
3 フォーカスレンズ群
14 スキャンAF処理回路
15 CPU
19 第2モータ駆動回路
22 フォーカス駆動モータ

Claims (6)

  1. 被写体像を光電変換して画像信号を得る撮像手段と、焦点を調整するレンズを駆動する駆動手段と、前記画像信号から前記レンズの位置を調節するための評価値を第1の距離ごとに取得する第1のモード及び当該第1の距離よりも短い第2の距離ごとに取得する第2のモードを有する評価値取得手段と、前記取得した評価値に基づいて前記レンズの位置を決定する位置決定手段とを備え、
    前記評価値取得手段は、前記第1のモードの場合の評価値に基づいて、更なる前記評価値の取得を前記第1のモードで行うか前記第2のモードで行うかを判断することを特徴とする自動焦点調整装置。
  2. 前記位置決定手段による前記レンズ位置の決定の際、無限端側から前記レンズを駆動し、前記第2のモードにおける前記レンズを駆動する位置は前記第1のモードにおける前記レンズを駆動する位置よりも至近端側であることを特徴とする請求項1記載の自動焦点調節装置。
  3. 前記評価値取得手段は、前記取得した評価値が極大となる前記レンズの位置を予測することにより更なる前記評価値の取得を前記第1のモードで行うか前記第2のモードで行うかを判断することを特徴とする請求項1又は2記載の自動焦点調整装置。
  4. 前記第2のモードでの更なる前記評価値取得における前記レンズの駆動開始位置を前回の前記第1のモードでの前記評価値取得に基づいて設定することを特徴とする請求項1乃至3のいずれか1項に記載の自動焦点調整装置。
  5. 前記評価値取得手段は、前記被写体像のコントラストにより、前記レンズの更なる前記駆動開始位置を設定することを特徴とする請求項1乃至4のいずれか1項に記載の自動焦点調整装置。
  6. 被写体像を光電変換して画像信号を得る撮像手段と、焦点を調整するレンズを駆動する駆動手段とを有する撮像装置の制御手段がAF制御を行うために読み取り可能なプログラムであって、
    前記画像信号から前記レンズの位置を調節するための評価値を第1の距離ごとに取得する第1のモード及び当該第1の距離よりも短い第2の距離ごとに取得する第2のモードを有する評価値取得モジュールと、
    前記取得した評価値に基づいて前記レンズの位置を決定する位置決定モジュールとを備え、
    前記第1のモードの場合の評価値に基づいて、更なる前記評価値の取得を前記第1のモードで行うか前記第2のモードで行うかを判断することを特徴とするプログラム。
JP2003373367A 2003-10-31 2003-10-31 自動焦点調整装置及びプログラム Withdrawn JP2005134820A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373367A JP2005134820A (ja) 2003-10-31 2003-10-31 自動焦点調整装置及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003373367A JP2005134820A (ja) 2003-10-31 2003-10-31 自動焦点調整装置及びプログラム

Publications (1)

Publication Number Publication Date
JP2005134820A true JP2005134820A (ja) 2005-05-26

Family

ID=34649466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373367A Withdrawn JP2005134820A (ja) 2003-10-31 2003-10-31 自動焦点調整装置及びプログラム

Country Status (1)

Country Link
JP (1) JP2005134820A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105891A (ja) * 2007-09-07 2009-05-14 E2V Technologies (Uk) Ltd 利得計測方法及びデバイス
JP2011165121A (ja) * 2010-02-15 2011-08-25 Kokusai Gijutsu Kaihatsu Co Ltd 画像処理装置及びプログラム
KR20130015884A (ko) * 2011-08-05 2013-02-14 삼성전자주식회사 자동 초점 조절 방법, 자동 초점 조절 장치, 및 이를 포함하는 디지털 촬영장치
US9158355B2 (en) 2006-08-10 2015-10-13 Marvell World Trade Ltd. Dynamic core switching

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9158355B2 (en) 2006-08-10 2015-10-13 Marvell World Trade Ltd. Dynamic core switching
JP2009105891A (ja) * 2007-09-07 2009-05-14 E2V Technologies (Uk) Ltd 利得計測方法及びデバイス
JP2011165121A (ja) * 2010-02-15 2011-08-25 Kokusai Gijutsu Kaihatsu Co Ltd 画像処理装置及びプログラム
KR20130015884A (ko) * 2011-08-05 2013-02-14 삼성전자주식회사 자동 초점 조절 방법, 자동 초점 조절 장치, 및 이를 포함하는 디지털 촬영장치
KR101710633B1 (ko) 2011-08-05 2017-02-27 삼성전자주식회사 자동 초점 조절 방법, 자동 초점 조절 장치, 및 이를 포함하는 디지털 촬영장치
US9667856B2 (en) 2011-08-05 2017-05-30 Samsung Electronics Co., Ltd. Auto focus adjusting method, auto focus adjusting apparatus, and digital photographing apparatus including the same

Similar Documents

Publication Publication Date Title
JP6116277B2 (ja) 撮像装置及びその制御方法
US8203643B2 (en) Automatic focusing device
US7634185B2 (en) Focusing device, image pickup apparatus, and control method
JP2004102135A (ja) オートフォーカス装置、方法および撮像装置
US20100209091A1 (en) Focus adjusting apparatus and focus adjusting method
US7391461B2 (en) Apparatus, method and control computer program for imaging a plurality of objects at different distances
JP2004361484A (ja) オートフォーカスカメラ
US9781326B2 (en) Exposure control apparatus and method, storage medium, and image pickup apparatus
JP6478534B2 (ja) フォーカス制御装置、撮像装置、交換レンズ、フォーカス制御方法およびフォーカス制御プログラム
JP4928104B2 (ja) 撮像装置及びその制御方法
JP2007133301A (ja) オートフォーカスカメラ
JP6234016B2 (ja) 焦点調節装置、撮像装置及びその制御方法
JP4567538B2 (ja) 露出量算出システムならびにその制御方法およびその制御プログラム
JP5211680B2 (ja) オートフォーカス装置、オートフォーカス方式選択方法及びプログラム
JP2005134820A (ja) 自動焦点調整装置及びプログラム
JP2003075713A (ja) オートフォーカス装置及び方法、並びにカメラ
US20190094656A1 (en) Imaging apparatus and control method of the same
JP2014077976A (ja) 焦点調節装置及びそれを用いた撮像装置
JP6039958B2 (ja) 画像処理装置、撮像装置、制御方法、及びプログラム
JP2005208274A (ja) オートフォーカスカメラ
JP2006285094A (ja) オートフォーカスカメラおよびオートフォーカス装置
JP2006330160A (ja) オートフォーカスカメラ
JP2015152830A (ja) 撮像装置及びその制御方法、プログラム、記憶媒体
JP2005080011A (ja) 撮像方法、撮像装置、プログラム及び記憶媒体
JP2006243609A (ja) オートフォーカス装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060418

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109