JP2005133065A - 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法 - Google Patents

重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法 Download PDF

Info

Publication number
JP2005133065A
JP2005133065A JP2004215901A JP2004215901A JP2005133065A JP 2005133065 A JP2005133065 A JP 2005133065A JP 2004215901 A JP2004215901 A JP 2004215901A JP 2004215901 A JP2004215901 A JP 2004215901A JP 2005133065 A JP2005133065 A JP 2005133065A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
hydrogen atom
resist material
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004215901A
Other languages
English (en)
Other versions
JP4302585B2 (ja
Inventor
Jun Hatakeyama
畠山  潤
Yuji Harada
裕次 原田
Yoshio Kawai
義夫 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004215901A priority Critical patent/JP4302585B2/ja
Publication of JP2005133065A publication Critical patent/JP2005133065A/ja
Application granted granted Critical
Publication of JP4302585B2 publication Critical patent/JP4302585B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】高エネルギー線での露光において、高感度で高解像性を有し、また、現像時の膨潤が抑えられるためラインエッジラフネスが小さく、現像後の残渣が少ないポジ型レジスト材料を提供する。
【解決手段】 少なくとも、下記一般式(1a)で示される繰り返し単位、下記一般式(2a)で示される繰り返し単位、下記一般式(3b)で示される繰り返し単位のいずれか一以上と、下記一般式(1c)で示される繰り返し単位とを有する高分子化合物、およびこれをベース樹脂として配合したポジ型レジスト材料。
【化50】
Figure 2005133065

【選択図】なし

Description

本発明は、高エネルギー線での露光において、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有しラインエッジラフネスが小さく、優れたエッチング耐性を示す、特に超LSI製造用あるいはフォトマスクパターン作成における微細パターン形成用材料として好適なポジ型レジスト材料、特には化学増幅ポジ型レジスト材料に関する。
近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が急速に進んでいる。微細化が急速に進歩した背景には、投影レンズの高NA化、レジストの性能向上、短波長化があげられる。特にi線(365nm)からKrF(248nm)への短波長化は大きな変革をもたらし、0.18μmルールのデバイスの量産も可能となってきている。レジストの高解像度化、高感度化に対して、酸を触媒とした化学増幅ポジ型レジスト材料(例えば、特許文献1,2参照)は、優れた特徴を有するもので、遠紫外線リソグラフィーに特に主流なレジスト材料となった。
KrFエキシマレーザー用レジスト材料は、一般的に0.3ミクロンプロセスに使われ始め、0.25ミクロンルールを経て、現在0.18ミクロンルールの量産化への適用、更に0.15ミクロンルールの検討も始まっており、微細化の勢いはますます加速されている。KrFエキシマレーザーからArFエキシマレーザー(193nm)への波長の短波長化は、デザインルールの微細化を0.13μm以下にすることが期待されるが、従来用いられてきたノボラックやポリビニルフェノール系の樹脂は、波長193nm付近に非常に強い吸収を持つため、レジスト用のベース樹脂として用いづらかった。そこで、透明性と、必要なドライエッチング耐性の確保のため、アクリルやシクロオレフィン系の脂環族系の樹脂が検討された(例えば、特許文献3〜6参照。)。
特にその中でも、解像性が高い(メタ)アクリルベース樹脂のレジストが検討されている。(メタ)アクリル樹脂としては、酸不安定基ユニットとしてメチルアダマンタンエステルを持つ(メタ)アクリルと密着性基ユニットとしてラクトン環のエステルを持つ(メタ)アクリルとの組合せが提案されている(例えば、特許文献7参照。)。更に、エッチング耐性を強化させた密着性基として、ノルボルニルラクトンが提案されている(例えば、特許文献8,9参照。)。
ArFリソグラフィーにおける課題の一つとしてラインエッジラフネスの低減と現像後の残渣の低減が挙げられる。ラインエッジラフネスの要因の一つとして現像時の膨潤が挙げられる。KrFリソグラフィー用のレジストとして用いられているポリヒドロキシスチレンのフェノールは弱い酸性基であり適度なアルカリ溶解性があるため膨潤しにくいが、疎水性の高い脂環族基を含むポリマーは酸性度の高いカルボン酸によって溶解させる為に現像時の膨潤が発生しやすくなっている。
ここで、QCM(Quartz Crystal Microbalance)法によるレジストの現像特性の測定により、現像中の膨潤量が報告されている(例えば、非特許文献1参照。)。従来の光学干渉式の膜厚測定方法では、現像中の膜の膨潤が観測できなかったが、QCM法では膜の重量変化を電気的に測定するために、膨潤による膜の重量増加を観測することが可能である。非特許文献1において、シクロオレフィンポリマーベースのArFレジストの膨潤が示されている。特にカルボン酸を密着性基として用いた場合に激しい膨潤が観察されている。
特公平2−27660号公報 特開昭63−27829号公報 特開平9−73173公報 特開平10−10739公報 特開平9−230595公報 国際公開第97/33198号パンフレット 特開平9−90637号公報 特開2000−26446号公報 特開2000−159758号公報 Proc.SPIE Vol.3999 p2 (2000)
本発明はこのような問題に鑑みてなされたもので、高エネルギー線での露光において、高感度で高解像性を有し、また、現像時の膨潤が抑えられるためラインエッジラフネスが小さく、現像後の残渣が少ないポジ型レジスト材料を提供することを目的とする。
上記課題を解決するために、本発明は、下記一般式(1)で示される重合性化合物を提供する(請求項1)。
Figure 2005133065
(式中、R41は水素原子又はメチル基、R42はフッ素原子又はトリフルオロメチル基、R43は水素原子又は1価のアシル基、R44、R45はそれぞれ独立に水素原子又はフッ素原子、R16は単結合又は炭素数1〜4の直鎖状、分岐状のアルキレン基、Xはメチレン基、エチレン基、酸素原子、硫黄原子のいずれか、Yは−O−又は−C(=O)−O−である。)
そして、本発明は、少なくとも、下記一般式(1a)で示される繰り返し単位、下記一般式(2a)で示される繰り返し単位、下記一般式(3b)で示される繰り返し単位のいずれか一以上と、下記一般式(1c)で示される繰り返し単位とを有する高分子化合物を提供する(請求項2)。
Figure 2005133065
(式中、R1は水素原子、メチル基、−CH2CO26のいずれかを示す。R2は水素原子、メチル基、−CO26のいずれかを示す。繰り返し単位(1a)、(2a)中のR、Rはそれぞれ同一であっても異種であっても良い。R3〜R5はそれぞれ独立に炭素数1〜15のヘテロ原子を含んでもよい1価の炭化水素基を示す。R6は水素原子又は炭素数1〜15の直鎖状、分岐状、環状のアルキル基を示す。R15は水素原子、メチル基、−CH2CO26のいずれかを示す。R14は水素原子、メチル基、−CO26のいずれかを示す。R16は単結合又は炭素数1〜4の直鎖状、分岐状のアルキレン基を示す。R17はフッ素原子又はトリフルオロメチル基である。R18は水素原子、炭素数1〜10のアシル基、酸不安定基のいずれかである。R21、R22はそれぞれ独立に水素原子又はフッ素原子である。R23、R24はそれぞれ独立に、水素原子又は炭素数1〜6の直鎖状、分岐状のアルキル基を示し、R25は炭素数1〜20の直鎖状、分岐状、環状のアルキル基である。Yは−O−あるいは−C(=O)−O−である。Zは炭素数4〜10の有橋環式の炭化水素基であり、−O−、−S−を有していても良い。a1、a2、c、b3は、0≦a1≦0.8、0≦a2≦0.8、0≦b3≦0.8、0.1≦a1+a2+b3≦0.8、0<c≦0.9の範囲である。)
この場合、前記一般式(1c)で示される繰り返し単位が、下記一般式で示される繰り返し単位であるのが好ましい(請求項3)。
Figure 2005133065
(式中、R14、R15、R16、R17、R18、R21、R22、Y、cは前述の通りである。Xは、メチレン基、エチレン基、酸素原子、硫黄原子のいずれかである。)
このような本発明の高分子化合物は、例えば、上記一般式(1)で示される新規な重合性化合物と、上記一般式(1a)で示される繰り返し単位を得るための化合物、上記一般式(2a)で示される繰り返し単位を得るための化合物、上記一般式(3b)で示される繰り返し単位を得るための化合物のいずれか1以上の化合物とを重合することにより容易に得ることができる。そして、上記高分子化合物をベース樹脂として含むポジ型レジスト材料(請求項4)は、高エネルギー線での露光において、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、現像時の膨潤が抑えられるためラインエッジラフネスが小さく、エッチング残渣が少なく、またエッチング耐性に優れたものとなる。したがって、これらの特性を有することから、実用性がきわめて高く、超LSI製造用あるいはフォトマスクパターン作成における微細パターン形成材料として好適である。
そして、本発明のポジ型レジスト材料では、さらに有機溶剤および酸発生剤を含有する化学増幅型のレジスト材料とするのが好ましい(請求項5)。
このように、本発明の高分子化合物をベース樹脂として用い、さらに有機溶剤および酸発生剤を配合することによって、露光部では前記高分子化合物が酸触媒反応により現像液に対する溶解速度が加速されるので、きわめて高感度の化学増幅ポジ型レジスト材料とすることができ、近年要求される超LSI製造用等の微細パターン形成材料として非常に好適である。
この場合、本発明のポジ型レジスト材料では、さらに溶解阻止剤を含有するものとすることができる(請求項6)。
このように、ポジ型レジスト材料に溶解阻止剤を配合することによって、露光部と未露光部との溶解速度の差を一層大きくすることができ、解像度を一層向上させることができる。
また、本発明のポジ型レジスト材料では、さらに添加剤として塩基性化合物および/または界面活性剤が配合されたものとすることができる(請求項7)。
このように、塩基性化合物を添加することによって、例えば、レジスト膜中での酸の拡散速度を抑制し解像度を一層向上させることが出来るし、界面活性剤を添加することによってレジスト材料の塗布性を一層向上あるいは制御することができる。
このような本発明のレジスト材料は、少なくとも、該レジスト材料を基板上に塗布する工程と、加熱処理後、高エネルギー線で露光する工程と、現像液を用いて現像する工程とを行うことによって、半導体基板やマスク基板等にパターンを形成する方法として用いることが出来る(請求項8)。
もちろん、露光後加熱処理を加えた後に現像してもよいし、エッチング工程、レジスト除去工程、洗浄工程等その他の各種工程が行われてもよいことはいうまでもない。
この場合、前記高エネルギー線を、波長180nm〜200nmの範囲のものとすることができる(請求項9)。
本発明の高分子化合物をベース樹脂として含むレジスト材料は、特に波長180nm〜200nmの範囲の高エネルギー線での露光において好適に使用でき、この範囲の露光波長において感度が優れているものである。
以上説明したように、本発明によれば、酸脱離性のアダマンタンを有するエステル体のモノマー及び/又はアセタール型の酸離脱基を有するエステル体のモノマーと、α位にフッ素化されたアルキル基又はフッ素原子を有する置換又は非置換のアルコールを有する繰り返し単位を得るための化合物モノマーとを共重合した高分子化合物が提供され、この高分子化合物をベース樹脂としてレジスト材料に配合することにより、高感度で高解像性を有し、ラインエッジラフネスが小さく、また、現像後の残渣が低減され、QCM法等による測定による現像中の膨潤が抑えられているものとできる。したがって、特に超LSI製造用あるいはフォトマスクパターン作成における微細パターン形成材料として好適な化学増幅ポジ型レジスト材料等のポジ型レジスト材料を提供することが可能である。
さらに、本発明によれば、このような本発明の高分子化合物を得るための新規重合性化合物が提供される。
本発明者らは、高エネルギー線での露光において、高感度で高解像性を有し、また、現像時の膨潤が抑えられるためラインエッジラフネスが小さく、現像後の残渣が少ないポジ型レジスト材料を得るために鋭意検討を行った。
ここで、酸脱離性のアダマンタンエステルを有する(メタ)アクリレートが、例えば特開平9−73173号公報に示されている。
また、Fリソグラフィー用として、ヘキサフルオロアルコールを用いたレジストの検討が行われている。ヘキサフルオロアルコールは、フェノールと同程度の酸性度を持ち、現像液中の膨潤も小さいことが報告されている(J.Photopolym.Sci.Technol., Vol.16,No.4,p523 (2003))。また、ヘキサフルオロアルコールを有するポリノルボルネン、ヘキサフルオロアルコールをペンダントとするαトリフルオロメチルアクリレートが紹介され、ArFエキシマレーザーによる露光における露光特性が紹介されている。
そこで、本発明者らは、これらを応用し、酸脱離性のアダマンタンを有するエステル体の(メタ)アクリレートと、ヘキサフルオロアルコールに代表されるアルカリ溶解性を有する密着性基とを組み合わせて得られる高分子化合物をベース樹脂として用いることによって、高感度で高解像性を有する上に、現像中の膨潤によるラインエッジラフネスが少なく、現像後の残渣が少ないポジ型レジスト材料を提供できることに想到し、本発明を完成させたものである。
すなわち、本発明に係る高分子化合物は、少なくとも、下記一般式(1a)で示される繰り返し単位、下記一般式(2a)で示される繰り返し単位、下記一般式(3b)で示される繰り返し単位のいずれか一以上と、下記一般式(1c)で示される繰り返し単位とを有する高分子化合物である。
Figure 2005133065
(式中、R1は水素原子、メチル基、−CH2CO26のいずれかを示す。R2は水素原子、メチル基、−CO26のいずれかを示す。繰り返し単位(1a)、(2a)中のR、Rはそれぞれ同一であっても異種であっても良い。R3〜R5はそれぞれ独立に炭素数1〜15のヘテロ原子を含んでもよい1価の炭化水素基を示す。R6は水素原子又は炭素数1〜15の直鎖状、分岐状、環状のアルキル基を示す。R15は水素原子、メチル基、−CH2CO26のいずれかを示す。R14は水素原子、メチル基、−CO26のいずれかを示す。R16は単結合又は炭素数1〜4の直鎖状、分岐状のアルキレン基を示す。R17はフッ素原子又はトリフルオロメチル基である。R18は水素原子、炭素数1〜10のアシル基、酸不安定基のいずれかである。R21、R22はそれぞれ独立に水素原子又はフッ素原子である。R23、R24はそれぞれ独立に、水素原子又は炭素数1〜6の直鎖状、分岐状のアルキル基を示し、R25は炭素数1〜20の直鎖状、分岐状、環状のアルキル基である。Yは−O−あるいは−C(=O)−O−である。Zは炭素数4〜10の有橋環式の炭化水素基であり、−O−、−S−を有していても良い。a1、a2、c、b3は、0≦a1≦0.8、0≦a2≦0.8、0≦b3≦0.8、0.1≦a1+a2+b3≦0.8、0<c≦0.9の範囲である。)
そして、この場合、前記一般式(1c)で示される繰り返し単位が、下記一般式で示される繰り返し単位であるのが好ましい。
Figure 2005133065
(式中、R14、R15、R16、R17、R18、R21、R22、Y、cは前述の通りである。Xは、メチレン基、エチレン基、酸素原子、硫黄原子のいずれかである。)
このような本発明の高分子化合物をベース樹脂として含むポジ型レジスト材料は、高エネルギー線での露光において、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、現像時の膨潤が抑えられるためラインエッジラフネスが小さく、現像後の残渣が少なく、また、エッチング耐性に優れたものとなる。したがって、これらの特性を有することから、実用性がきわめて高く、超LSI製造用あるいはフォトマスクパターン作成における微細パターン形成材料として好適である。
ここで、一般式(1a)、(2a)に示されるエステル体のモノマーとしては具体的には下記に挙げることが出来るが、これらに限定されることはない。
Figure 2005133065
次に、一般式(3b)に示される酸不安定基を有するエステル体のモノマーとしては具体的には下記に挙げることが出来るが、これらに限定されることはない。
Figure 2005133065
(ここで、R、R、R23、R24、R25は前述と同様である。)
次に、一般式(1c)に示すフッ素化されたアルキル基又はフッ素原子を有する置換又は非置換のアルコールを有する繰り返し単位を得るためのエステル化合物モノマーとしては、例えば、下記一般式(1)で示される重合性化合物を挙げることができる。
Figure 2005133065
(式中、R41は水素原子又はメチル基、R42はフッ素原子又はトリフルオロメチル基、R43は水素原子又は1価のアシル基、R44、R45はそれぞれ独立に水素原子又はフッ素原子、R16は単結合又は炭素数1〜4の直鎖状、分岐状のアルキレン基、Xはメチレン基、エチレン基、酸素原子、硫黄原子のいずれか、Yは−O−又は−C(=O)−O−である。)
そして、上記一般式(1)で示される重合性化合物、その他一般式(1c)に示す繰り返し単位を得るための重合性化合物として、具体的には下記化合物を挙げることができる。
Figure 2005133065
尚、上記のように、一般式(1)で示される重合前のモノマー中のR43は、重合後の一般式(1c)で示される繰り返し単位中のR18と同じであっても、あるいは、重合前はアセチル基であって、重合後のアルカリ加水分解によってヒドロキシ基にして、場合によってはその後ヒドロキシ基の水素原子を酸不安定基で置換するようにしても良い。
ここで、一般式(1)に示す重合性化合物は、好ましくは以下に示す合成法で製造できるが、この方法に限定されるものではない。
Figure 2005133065
(式中、R4145は、一般式(1)と同様である。R46は、水素原子、炭素数1〜10のアルキル基、炭素数6〜10のアリール基のいずれかである。)
第1工程(i)では化合物(a’)とジエン化合物のディールス・アルダー反応により化合物(b’)を合成する。本反応は公知の条件にて容易に進行するが、好ましくは無溶媒又は溶媒中で化合物(a’)とジエン化合物を混合し、必要に応じて加熱または冷却することにより反応を進行させる。反応混合物から目的物を分離するには、再結晶、クロマトグラフィー、蒸留などの常法を用いることが可能である。
第2工程(ii)では化合物(b’)を化合物(c’)に変換する。本反応についても公知の方法を用いることができ、具体例としては、例えばトリフルオロ酢酸を化合物(b’)に付加させた後に加水分解又はエステル交換する方法、あるいは化合物(b’)のヒドロホウ素化−酸化反応、それに引き続いて加水分解又はエステル交換する方法などを用いることができるが、これに限定されるものではない。また、いずれの場合でも、再結晶、クロマトグラフィー、蒸留などの常法により目的物を反応混合物から分離することが可能である。
第3工程(iii)は化合物(c’)のエステル化である。反応は公知の条件にて容易に進行するが、好ましくは塩化メチレン等の溶媒中、原料の化合物(c’)、アクリル酸クロリド、メタクリル酸クロリド等のカルボン酸ハライド、トリエチルアミン等の塩基を順次又は同時に加え、必要に応じて冷却する等して行うのがよい。
化合物(d’)についても、再結晶、クロマトグラフィー、蒸留などの常法により目的物を反応混合物から分離することが可能である。
本発明の高分子化合物は、一般式(1a),(2a)に示す酸脱離性のアダマンタンを有する繰り返し単位を得るためのエステル体のモノマー及び/又は一般式(3b)に示す酸不安定基を有する繰り返し単位を得るためのエステル体のモノマーと、一般式(1c)に示すα位にフッ素化されたアルキル基又はフッ素原子を有する置換又は非置換のアルコールを有する繰り返し単位を得るための化合物モノマーとを共重合することを特徴とするが、更に一般式(1a)、(2a)、(3b)以外の酸不安定基を有するエステル体のモノマー(1d)(繰り返し単位d)を共重合することが出来る。
Figure 2005133065
(ここで、R、Rは前述の通り、R19は酸不安定基である。)
次に、一般式(1c)、(1d)中、R18、R19で示される酸不安定基は、種々選定されるが、同一でも非同一でもよく、ヒドロキシル基又はカルボキシル基の水酸基の水素原子が特に下記式(AL10)で示される基、下記式(AL12)で示される炭素数4〜40の3級アルキル基、炭素数4〜20のオキソアルキル基等で置換されている構造のものが挙げられる。
Figure 2005133065
式(AL10)においてR506は炭素数1〜20の直鎖状、分岐状、環状のアルキル基であり、酸素、硫黄、窒素、フッ素などのヘテロ原子を含んでもよい。a5は0〜10の整数である。
式(AL10)に示される化合物を具体的に例示すると、tert−ブトキシカルボニル基、tert−ブトキシカルボニルメチル基、tert−アミロキシカルボニル基、tert−アミロキシカルボニルメチル基、1−エトキシエトキシカルボニルメチル基、2−テトラヒドロピラニルオキシカルボニルメチル基、2−テトラヒドロフラニルオキシカルボニルメチル基等、また下記一般式(AL10)−1〜(AL10)−9で示される置換基が挙げられる。
Figure 2005133065
式(AL10)−1〜(AL10)−9中、R514は同一又は非同一の炭素数1〜8の直鎖状、分岐状、環状のアルキル基、炭素数6〜20のアリール基、アラルキル基を示す。R515は存在しないかあるいは炭素数1〜20の直鎖状、分岐状、環状のアルキル基を示す。R516は炭素数6〜20のアリール基、アラルキル基を示す。
ここで、一般式(1c)、(1d)中、R18、R19で示される酸不安定基としては、さらに、下記一般式(AL11)−1〜(AL11)−19、(AL11)−24〜(AL11)−33で示される基が例示される。
Figure 2005133065
Figure 2005133065
次に、前記式(AL12)に示される3級アルキル基としては、tert−ブチル基、トリエチルカルビル基、1−エチルノルボニル基、1−メチルシクロヘキシル基、1−エチルシクロペンチル基、tert−アミル基等あるいは下記一般式(AL12)−1〜(AL12)−16を挙げることができる。
Figure 2005133065
上記式中、R510は同一又は非同一の炭素数1〜8の直鎖状、分岐状、環状のアルキル基、炭素数6〜20のアリール基、アラルキル基を示す。R511、R513は存在しないかあるいは炭素数1〜20の直鎖状、分岐状、環状のアルキル基を示す。R512は炭素数6〜20のアリール基、アラルキル基を示す。
更に(AL12)−19、(AL12)−20に示すように、2価以上のアルキレン基、アリーレン基であるR514を含んで、ポリマーの分子内あるいは分子間が架橋されていても良い。式(AL12)−19、(AL12)−20のR510は前述と同様、R514は炭素数1〜20の直鎖状、分岐状、環状のアルキレン基、アリーレン基を示し、酸素原子や硫黄原子、窒素原子などのヘテロ原子を含んでいてもよい。b6は1〜3の整数である。
Figure 2005133065
更にR510,R511,R512,R513は酸素、窒素、硫黄などのヘテロ原子を有していてもよく、具体的には下記(AL13)−1〜(AL13)−7に示すことができる。
Figure 2005133065
本発明の高分子材料は、一般式(1c)で示されるくり返し単位を必須とし、一般式(1c)で示されるくり返し単位に、一般式(1a)、(2a)、(3b)で示されるくり返し単位のいずれか1以上、さらには、一般式(1d)で示されるくり返し単位を共重合させることもできる。さらに、一般式(1a)、(2a)、(1c)、(3b)、(1d)で示される繰り返し単位以外にも、密着性基を有するくり返し単位を共重合させても良い。密着性基を有するくり返し単位としては、具体的には下記に例示するモノマー(1e)を重合してなるくり返し単位eで表すことができる。
Figure 2005133065
一般式(1a)、(2a)、(1c)、(3b)、(1d)において、繰り返し単位a1、a2、c、b3、dの比率は0≦a1≦0.8、0≦a2≦0.8、0≦b3≦0.8、0.1≦a1+a2+b3≦0.8、0<c≦0.9、0≦d≦0.8、好ましくは0≦a1≦0.7、0≦a2≦0.7、0≦b3≦0.7、0.15≦a1+a2+b3≦0.7、0.1≦c≦0.9、0≦d≦0.7の範囲である。
更にモノマー(1e)を共重合した場合の、繰り返し単位eの比率は0≦e/(a1+a2+c+b3+d+e)≦0.8、好ましくは0≦e/(a1+a2+c+b3+d+e)≦0.7である。
本発明の高分子化合物は、それぞれ質量平均分子量(測定法は後述の通りである)が1,000〜500,000、好ましくは2,000〜30,000である必要がある。質量平均分子量が小さすぎるとレジスト材料が耐熱性に劣るものとなり、大きすぎるとアルカリ溶解性が低下し、パターン形成後に裾引き現象が生じ易くなる可能性がある。
更に、本発明の高分子化合物においては、分子量分布(Mw/Mn)が広い場合は低分子量や高分子量のポリマーが存在するために露光後、パターン上に異物が見られたり、パターンの形状が悪化したりする恐れがある。それ故、パターンルールが微細化するに従ってこのような分子量、分子量分布の影響が大きくなり易いことから、微細なパターン寸法に好適に用いられるレジスト材料を得るには、使用する多成分共重合体の分子量分布は1.0〜2.0、特に1.0〜1.5と狭分散であることが好ましい。
また、組成比率や分子量分布や分子量が異なる2つ以上のポリマーをブレンドすることも可能である。
これら、高分子化合物を合成するには、1つの方法としては繰り返し単位a1、a2、c、b3、dを得るための不飽和結合を有するモノマー、更には繰り返し単位eで示されるモノマーを有機溶剤中、ラジカル開始剤を加え加熱重合を行う方法があり、これにより高分子化合物を得ることができる。重合時に使用する有機溶剤としはトルエン、ベンゼン、テトラヒドロフラン、ジエチルエーテル、ジオキサン等が例示できる。重合開始剤としては、2,2´−アゾビスイソブチロニトリル(AIBN)、2,2´−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が例示でき、好ましくは50℃から80℃に加熱して重合できる。反応時間としては2〜100時間、好ましくは5〜20時間である。酸不安定基は、モノマーに導入されたものをそのまま用いても良いし、酸不安定基を酸触媒によって一旦脱離し、その後保護化あるいは部分保護化しても良い。
本発明のポジ型レジスト材料には、有機溶剤、高エネルギー線に感応して酸を発生する化合物(酸発生剤)、必要に応じて溶解阻止剤、塩基性化合物、界面活性剤、その他の成分を含有することができる。
本発明のレジスト材料、特には化学増幅ポジ型レジスト材料に使用される有機溶剤としては、ベース樹脂、酸発生剤、その他の添加剤等が溶解可能な有機溶剤であればいずれでもよい。このような有機溶剤としては、例えば、シクロヘキサノン、メチル−2−n−アミルケトン等のケトン類、3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル、プロピオン酸tert―ブチル、プロピレングリコールモノtert−ブチルエーテルアセテート等のエステル類、γ―ブチルラクトン等のラクトン類が挙げられ、これらの1種を単独で又は2種以上を混合して使用することができるが、これらに限定されるものではない。本発明では、これらの有機溶剤の中でもレジスト成分中の酸発生剤の溶解性が最も優れているジエチレングリコールジメチルエーテルや1−エトキシ−2−プロパノール、プロピレングリコールモノメチルエーテルアセテート及びその混合溶剤が好ましく使用される。
有機溶剤の使用量は、ベース樹脂100部(質量部)に対して200〜1,000部、特に400〜800部が好適である。
本発明で使用される酸発生剤としては、
i.下記一般式(P1a−1)、(P1a−2)又は(P1b)のオニウム塩、
ii.下記一般式(P2)のジアゾメタン誘導体、
iii.下記一般式(P3)のグリオキシム誘導体、
iv.下記一般式(P4)のビススルホン誘導体、
v.下記一般式(P5)のN−ヒドロキシイミド化合物のスルホン酸エステル、
vi.β−ケトスルホン酸誘導体、
vii.ジスルホン誘導体、
viii.ニトロベンジルスルホネート誘導体、
ix.スルホン酸エステル誘導体
等が挙げられる。
Figure 2005133065
(式中、R101a、R101b、R101cはそれぞれ炭素数1〜12の直鎖状、分岐状、環状のアルキル基、アルケニル基、オキソアルキル基、オキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基、アリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ炭素数1〜6のアルキレン基を示す。K-は非求核性対向イオンを表す。)
上記R101a、R101b、R101cは互いに同一であっても異なっていてもよく、具体的にはアルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2−オキソシクロペンチル基、2−オキソシクロヘキシル基等が挙げられ、2−オキソプロピル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基等を挙げることができる。オキソアルケニル基としては、2−オキソ−4−シクロヘキセニル基、2−オキソ−4−プロペニル基等が挙げられる。アリール基としては、フェニル基、ナフチル基等や、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、2−フェニル−2−オキソエチル基、2−(1−ナフチル)−2−オキソエチル基、2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネート等が挙げられる。
Figure 2005133065
(式中、R102a、R102bはそれぞれ炭素数1〜8の直鎖状、分岐状、環状のアルキル基を示す。R103は炭素数1〜10の直鎖状、分岐状、環状のアルキレン基を示す。R104a、R104bはそれぞれ炭素数3〜7の2−オキソアルキル基を示す。Kは非求核性対向イオンを表す。)
上記R102a、R102bとして具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4−シクロへキシレン基、1,2−シクロへキシレン基、1,3−シクロペンチレン基、1,4−シクロオクチレン基、1,4−シクロヘキサンジメチレン基等が挙げられる。R104a、R104bとしては、2−オキソプロピル基、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソシクロヘプチル基等が挙げられる。K-は式(P1a−1)及び(P1a−2)で説明したものと同様のものを挙げることができる。
Figure 2005133065
(式中、R105、R106は炭素数1〜12の直鎖状、分岐状、環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。)
105、R106のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。R105、R106のハロゲン化アルキル基としてはトリフルオロメチル基、1,1,1−トリフルオロエチル基、1,1,1−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。R105、R106のアリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。R105、R106のハロゲン化アリール基としてはフルオロフェニル基、クロロフェニル基、1,2,3,4,5−ペンタフルオロフェニル基等が挙げられる。R105、R106のアラルキル基としてはベンジル基、フェネチル基等が挙げられる。
Figure 2005133065
(式中、R107、R108、R109は炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1〜6の直鎖状、分岐状のアルキレン基を示す。R105はP2式のものと同様である。)
107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
Figure 2005133065
(式中、R101a、R101bは前記と同様である。)
Figure 2005133065
(式中、R110は炭素数6〜10のアリーレン基、炭素数1〜6のアルキレン基又は炭素数2〜6のアルケニレン基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4の直鎖状又は分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1〜8の直鎖状、分岐状又は置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4のアルキル基又はアルコキシ基;炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3〜5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。)
ここで、R110のアリーレン基としては、1,2−フェニレン基、1,8−ナフチレン基等が、アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン−2,3−ジイル基等が、アルケニレン基としては、1,2−ビニレン基、1−フェニル−1,2−ビニレン基、5−ノルボルネン−2,3−ジイル基等が挙げられる。R111のアルキル基としては、R101a〜R101cと同様のものが、アルケニル基としては、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、3−ブテニル基、イソプレニル基、1−ペンテニル基、3−ペンテニル基、4−ペンテニル基、ジメチルアリル基、1−ヘキセニル基、3−ヘキセニル基、5−ヘキセニル基、1−ヘプテニル基、3−ヘプテニル基、6−ヘプテニル基、7−オクテニル基等が、アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
なお、更に置換されていてもよい炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等が、炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基等が、炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、フェニル基、トリル基、p−tert−ブトキシフェニル基、p−アセチルフェニル基、p−ニトロフェニル基等が、炭素数3〜5のヘテロ芳香族基としては、ピリジル基、フリル基等が挙げられる。
酸発生剤は、具体的には、オニウム塩としては、例えばトリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2−オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩を挙げることができる。
ジアゾメタン誘導体としては、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体を挙げることができる。
グリオキシム誘導体としては、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−O−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−O−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体を挙げることができる。
ビススルホン誘導体としては、ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス−p−トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体を挙げることができる。
β−ケトスルホン誘導体としては、2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン誘導体を挙げることができる。
ジスルホン誘導体としては、ジフェニルジスルホン誘導体、ジシクロヘキシルジスルホン誘導体等のジスルホン誘導体を挙げることができる。
ニトロベンジルスルホネート誘導体としては、p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体を挙げることができる。
スルホン酸エステル誘導体としては、1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体を挙げることができる。
N−ヒドロキシイミド化合物のスルホン酸エステル誘導体としては、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミドエタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−オクタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシスクシンイミドp−メトキシベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド2−クロロエタンスルホン酸エステル、N−ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド−2,4,6−トリメチルベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ナフタレンスルホン酸エステル、N−ヒドロキシスクシンイミド2−ナフタレンスルホン酸エステル、N−ヒドロキシ−2−フェニルスクシンイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドエタンスルホン酸エステル、N−ヒドロキシ−2−フェニルマレイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドメタンスルホン酸エステル、N−ヒドロキシフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシフタルイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドp−トルエンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体等が挙げられる。
特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、
ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、
ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、
ビスナフチルスルホニルメタン等のビススルホン誘導体、
N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。
なお上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることができる。オニウム塩は矩形性向上効果に優れ、ジアゾメタン誘導体及びグリオキシム誘導体は定在波低減効果に優れるため、両者を組み合わせることによりプロファイルの微調整を行うことが可能である。
酸発生剤の添加量は、ベース樹脂100部(質量部、以下同様)に対して好ましくは0.1〜50部、より好ましくは0.5〜40部である。0.1部より少ないと露光時の酸発生量が少なく、感度及び解像力が劣る場合があり、50部を超えるとレジストの透過率が低下し、解像力が劣る場合がある。
次に、本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料に配合される溶解阻止剤(溶解制御剤)としては、平均分子量が100〜1,000、好ましくは150〜800で、かつ分子内にフェノール性水酸基を2つ以上有する化合物の該フェノール性水酸基の水素原子を酸不安定基により全体として平均0〜100モル%の割合で置換した化合物又は分子内にカルボキシ基を有する化合物の該カルボキシ基の水素原子を酸不安定基により全体として平均50〜100モル%の割合で置換した化合物を配合する。
なおフェノール性水酸基の水素原子の酸不安定基による置換率は、平均でフェノール性水酸基全体の0モル%以上、好ましくは30モル%以上であり、その上限は100モル%、より好ましくは80モル%である。カルボキシ基の水素原子の酸不安定基による置換率は、平均でカルボキシ基全体の50モル%以上、好ましくは70モル%以上であり、その上限は100モル%である。
この場合、かかるフェノール性水酸基を2つ以上有する化合物又はカルボキシ基を有する化合物としては、下記式(D1)〜(D14)で示されるものが好ましい。
Figure 2005133065
但し、式中R201、R202はそれぞれ水素原子、又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基を示す。R203は水素原子、又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基、あるいは−(R207)COOHを示す。R204は−(CH−(i=2〜10)、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R205は炭素数1〜10のアルキレン基、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R206は水素原子、炭素数1〜8の直鎖状又は分岐状のアルキル基、アルケニル基又はそれぞれ水酸基で置換されたフェニル基又はナフチル基を示す。R207は炭素数1〜10の直鎖状又は分岐状のアルキレン基を示す。R208は水素原子又は水酸基を示す。jは0〜5の整数である。u、hは0又は1である。s、t、s´、t´、s´´、t´´はそれぞれs+t=8、s´+t´=5、s´´+t´´=4を満足し、かつ各フェニル骨格中に少なくとも1つの水酸基を有するような数である。αは式(D8)、(D9)の化合物の分子量を100〜1,000とする数である。
なお上記化合物の質量平均分子量は100〜1,000、好ましくは150〜800である。溶解阻止剤の配合量は、ベース樹脂100質量部に対して0〜50質量部、好ましくは5〜50質量部、より好ましくは10〜30質量部であり、単独又は2種以上を混合して使用できる。配合量が少ないと解像性の向上がない場合があり、多すぎるとパターンの膜減りが生じ、解像度が低下する傾向がある。
更に、本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料には、塩基性化合物を配合することができる。
塩基性化合物としては、酸発生剤より発生する酸がレジスト膜中に拡散する際の拡散速度を抑制することができる化合物が適している。塩基性化合物の配合により、レジスト膜中での酸の拡散速度が抑制されて解像度が向上し、露光後の感度変化を抑制したり、基板や環境依存性を少なくし、露光余裕度やパターンプロファイル等を向上することができる。
このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。
具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示され、第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示され、第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。
芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリドン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン)等が例示され、スルホニル基を有する含窒素化合物として3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。
アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。
イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
更に下記一般式(B)−1で示される塩基性化合物から選ばれる1種または2種以上を添加することもできる。
N(X)(Y)3−n (B)−1
(上記式中、n=1、2、3である。側鎖Xは同一でも異なっていても良く、下記一般式(X)−1〜(X)−3で表すことができる。側鎖Yは同一または異種の、水素原子もしくは直鎖状、分岐状または環状の炭素数1〜20のアルキル基を示し、エーテル基もしくはヒドロキシル基を含んでもよい。また、X同士が結合して環を形成しても良い。)
Figure 2005133065
ここでR300、R302、R305は炭素数1〜4の直鎖状、分岐状のアルキレン基であり、R301、R304は水素原子、炭素数1〜20の直鎖状、分岐状、環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を1あるいは複数含んでいても良い。
303は単結合、炭素数1〜4の直鎖状、分岐状のアルキレン基であり、R306は炭素数1〜20の直鎖状、分岐状、環状のアルキル基であり、ヒドロキシ基、エーテル、エステル基、ラクトン環を1あるいは複数含んでいても良い。
一般式(B)−1で表される化合物は具体的には下記に例示される。
トリス(2−メトキシメトキシエチル)アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス{2−(2−メトキシエトキシメトキシ)エチル}アミン、トリス{2−(1−メトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシプロポキシ)エチル}アミン、トリス[2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル]アミン、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]ヘキサコサン、4,7,13,18−テトラオキサ−1,10−ジアザビシクロ[8.5.5]エイコサン、1,4,10,13−テトラオキサ−7,16−ジアザビシクロオクタデカン、1−アザ−12−クラウン−4、1−アザ−15−クラウン−5、1−アザ−18−クラウン−6、トリス(2−フォルミルオキシエチル)アミン、トリス(2−ホルミルオキシエチル)アミン、トリス(2−アセトキシエチル)アミン、トリス(2−プロピオニルオキシエチル)アミン、トリス(2−ブチリルオキシエチル)アミン、トリス(2−イソブチリルオキシエチル)アミン、トリス(2−バレリルオキシエチル)アミン、トリス(2−ピバロイルオキシエチル)アミン、N,N−ビス(2−アセトキシエチル)2−(アセトキシアセトキシ)エチルアミン、トリス(2−メトキシカルボニルオキシエチル)アミン、トリス(2−tert−ブトキシカルボニルオキシエチル)アミン、トリス[2−(2−オキソプロポキシ)エチル]アミン、トリス[2−(メトキシカルボニルメチル)オキシエチル]アミン、トリス[2−(tert−ブトキシカルボニルメチルオキシ)エチル]アミン、トリス[2−(シクロヘキシルオキシカルボニルメチルオキシ)エチル]アミン、トリス(2−メトキシカルボニルエチル)アミン、トリス(2−エトキシカルボニルエチル)アミン、N,N−ビス(2−ヒドロキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−ヒドロキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−アセトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(4−ヒドロキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(4−ホルミルオキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(2−ホルミルオキシエトキシカルボニル)エチルアミン、N,N−ビス(2−メトキシエチル)2−(メトキシカルボニル)エチルアミン、N−(2−ヒドロキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−ヒドロキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(3−ヒドロキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(3−アセトキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−メトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(2−メトキシエトキシカルボニル)エチル]アミン、N−メチルビス(2−アセトキシエチル)アミン、N−エチルビス(2−アセトキシエチル)アミン、N−メチルビス(2−ピバロイルオキシエチル)アミン、N−エチルビス[2−(メトキシカルボニルオキシ)エチル]アミン、N−エチルビス[2−(tert−ブトキシカルボニルオキシ)エチル]アミン、トリス(メトキシカルボニルメチル)アミン、トリス(エトキシカルボニルメチル)アミン、N−ブチルビス(メトキシカルボニルメチル)アミン、N−ヘキシルビス(メトキシカルボニルメチル)アミン、β−(ジエチルアミノ)−δ−バレロラクトンを例示できるが、これらに制限されない。
更に下記一般式(B)−2に示される環状構造を持つ塩基化合物の1種あるいは2種以上を添加することもできる。
Figure 2005133065
(式中、Xは前述の通り、R307は炭素数2〜20の直鎖状、分岐状のアルキレン基であり、カルボニル基、エーテル基、エステル基、スルフィドを1個あるいは複数個含んでいても良い。)
(B)−2は具体的には、1−[2−(メトキシメトキシ)エチル]ピロリジン、1−[2−(メトキシメトキシ)エチル]ピペリジン、4−[2−(メトキシメトキシ)エチル]モルホリン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピロリジン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピペリジン、4−[2−[(2−メトキシエトキシ)メトキシ]エチル]モルホリン、酢酸2−(1−ピロリジニル)エチル、酢酸2−ピペリジノエチル、酢酸2−モルホリノエチル、ギ酸2−(1−ピロリジニル)エチル、プロピオン酸2−ピペリジノエチル、アセトキシ酢酸2−モルホリノエチル、メトキシ酢酸2−(1−ピロリジニル)エチル、4−[2−(メトキシカルボニルオキシ)エチル]モルホリン、1−[2−(t−ブトキシカルボニルオキシ)エチル]ピペリジン、4−[2−(2−メトキシエトキシカルボニルオキシ)エチル]モルホリン、3−(1−ピロリジニル)プロピオン酸メチル、3−ピペリジノプロピオン酸メチル、3−モルホリノプロピオン酸メチル、3−(チオモルホリノ)プロピオン酸メチル、2−メチル−3−(1−ピロリジニル)プロピオン酸メチル、3−モルホリノプロピオン酸エチル、3−ピペリジノプロピオン酸メトキシカルボニルメチル、3−(1−ピロリジニル)プロピオン酸2−ヒドロキシエチル、3−モルホリノプロピオン酸2−アセトキシエチル、3−(1−ピロリジニル)プロピオン酸2−オキソテトラヒドロフラン−3−イル、3−モルホリノプロピオン酸テトラヒドロフルフリル、3−ピペリジノプロピオン酸グリシジル、3−モルホリノプロピオン酸2−メトキシエチル、3−(1−ピロリジニル)プロピオン酸2−(2−メトキシエトキシ)エチル、3−モルホリノプロピオン酸ブチル、3−ピペリジノプロピオン酸シクロヘキシル、α−(1−ピロリジニル)メチル−γ−ブチロラクトン、β−ピペリジノ−γ−ブチロラクトン、β−モルホリノ−δ−バレロラクトン、1−ピロリジニル酢酸メチル、ピペリジノ酢酸メチル、モルホリノ酢酸メチル、チオモルホリノ酢酸メチル、1−ピロリジニル酢酸エチル、モルホリノ酢酸2−メトキシエチル等を挙げることができる。
更に、一般式(B)−3〜(B)−6で表されるシアノ基を含む塩基性化合物を添加することができる。
Figure 2005133065
(式中、X、R307、nは前述の通り、R308、R309は同一又は異種の炭素数1〜4の直鎖状、分岐状のアルキレン基である。)
シアノ基を含む塩基性化合物は、具体的には3−(ジエチルアミノ)プロピオノニトリル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−エチル−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ヒドロキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(3−アセトキシ−1−プロピル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ホルミルオキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−テトラヒドロフルフリル−3−アミノプロピオノニトリル、N,N−ビス(2−シアノエチル)−3−アミノプロピオノニトリル、ジエチルアミノアセトニトリル、N,N−ビス(2−ヒドロキシエチル)アミノアセトニトリル、N,N−ビス(2−アセトキシエチル)アミノアセトニトリル、N,N−ビス(2−ホルミルオキシエチル)アミノアセトニトリル、N,N−ビス(2−メトキシエチル)アミノアセトニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−シアノメチル−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)アミノアセトニトリル、N−(2−アセトキシエチル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(2−ホルミルオキシエチル)アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)アミノアセトニトリル、N−シアノメチル−N−[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−(シアノメチル)−N−(3−ヒドロキシ−1−プロピル)アミノアセトニトリル、N−(3−アセトキシ−1−プロピル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(3−ホルミルオキシ−1−プロピル)アミノアセトニトリル、N,N−ビス(シアノメチル)アミノアセトニトリル、1−ピロリジンプロピオノニトリル、1−ピペリジンプロピオノニトリル、4−モルホリンプロピオノニトリル、1−ピロリジンアセトニトリル、1−ピペリジンアセトニトリル、4−モルホリンアセトニトリル、3−ジエチルアミノプロピオン酸シアノメチル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸シアノメチル、3−ジエチルアミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸(2−シアノエチル)、1−ピロリジンプロピオン酸シアノメチル、1−ピペリジンプロピオン酸シアノメチル、4−モルホリンプロピオン酸シアノメチル、1−ピロリジンプロピオン酸(2−シアノエチル)、1−ピペリジンプロピオン酸(2−シアノエチル)、4−モルホリンプロピオン酸(2−シアノエチル)等が例示される。
なお、本発明のポジ型レジスト材料への塩基性化合物の配合量は全ベース樹脂100部(質量部)に対して0.001〜2部、特に0.01〜1部が好適である。配合量が0.001部より少ないと配合効果が少なく、2部を超えると感度が低下しすぎる場合がある。
本発明のポジ型レジスト材料に添加することができる分子内に≡C−COOHで示される基を有する化合物としては、例えば下記I群及びII群から選ばれる1種又は2種以上の化合物を使用することができるが、これらに限定されるものではない。本成分の配合により、レジストのPED(Post Exposure Delay)安定性が向上し、窒化膜基板上でのエッジラフネスが改善されるのである。
〔I群〕
下記一般式(A1)〜(A10)で示される化合物のフェノール性水酸基の水素原子の一部又は全部を−R401−COOH(R401は炭素数1〜10の直鎖状又は分岐状のアルキレン基)により置換してなり、かつ分子中のフェノール性水酸基(C)と≡C−COOHで示される基(D)とのモル比率がC/(C+D)=0.1〜1.0である化合物。
Figure 2005133065
但し、式中R408は水素原子又はメチル基を示す。R402、R403はそれぞれ水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基を示す。R404は水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基、あるいは−(R409)h−COOR´基(R´は水素原子又は−R409−COOH)を示す。R405は−(CH−(i=2〜10)、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す、R406は炭素数1〜10のアルキレン基、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R407は水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基、アルケニル基、それぞれ水酸基で置換されたフェニル基又はナフチル基を示す。R409は炭素数1〜10の直鎖状又は分岐状のアルキル基又はアルケニル基又は−R411−COOH基を示す。R410は水素原子、炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基又は−R411−COOH基を示す。R411は炭素数1〜10の直鎖状又は分岐状のアルキレン基を示す。hは1〜4の整数である。jは0〜3、s1〜4、t1〜4はそれぞれs1+t1=8、s2+t2=5、s3+t3=4、s4+t4=6を満足し、かつ各フェニル骨格中に少なくとも1つの水酸基を有するような数である。uは1〜4の整数である。κは式(A6)の化合物を質量平均分子量1,000〜5,000とする数である。λは式(A7)の化合物を質量平均分子量1,000〜10,000とする数である。
〔II群〕
下記一般式(A11)〜(A15)で示される化合物。
Figure 2005133065
上記式中、R402、R403、R411は上記と同様の意味を示す。R412は水素原子又は水酸基を示す。s5、t5は、s5≧0、t5≧0で、s5+t5=5を満足する数である。h´は0又は1である。
本成分として、具体的には下記一般式AI−1〜14及びAII―1〜10で示される化合物を挙げることができるが、これらに限定されるものではない。
Figure 2005133065
Figure 2005133065
上記式中、R´´は水素原子又はCHCOOH基を示し、各化合物においてR´´の10〜100モル%はCHCOOH基である。κ、λは前記と同様の意味を示す。)
なお、上記分子内に≡C−COOHで示される基を有する化合物の添加量は、ベース樹脂100部(質量部)に対して0〜5部、好ましくは0.1〜5部、より好ましくは0.1〜3部、更に好ましくは0.1〜2部である。5部より多いとレジスト材料の解像度が低下する場合がある。
本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料には、さらに、塗布性を向上させる等のための界面活性剤を加えることができる。
界面活性剤の例としては、特に限定されるものではないが、ポリオキシエチレンラウリルエーテル、ポリエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレインエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノール等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノバルミテート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノバルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステルのノニオン系界面活性剤、エフトップEF301、EF303、EF352(トーケムプトダクツ)、メガファックF171、F172、F173(大日本インキ化学工業)、フロラードFC430、FC431(住友スリーエム)、アサヒガードAG710、サーフロンS−381、S―382、SC101、SC102,SC103、SC104、SC105、SC106、サーフィノールE1004、KH−10、KH−20、KH−30、KH−40(旭硝子)等のフッ素系界面活性剤、オルガノシロキサンポリマ−KP−341、X−70−092、X−70−093(信越化学工業)、アクリル酸系又はメタクリル酸系ポリフローNo.75,No.95(共栄社油脂化学工業)等が挙げられ、中でもFC430、サーフロンS−381、サーフィノールE1004、KH−20、KH−30が好適である。これらは単独あるいは2種以上の組み合わせで用いることができる。
本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料中の界面活性剤の添加量としては、レジスト材料組成物中の固形分100質量部に対して2質量部以下、好ましくは1質量部以下である。
本発明のポジ型レジスト材料、特には、有機溶剤と、一般式(1a)で示される繰り返し単位、一般式(2a)で示される繰り返し単位、一般式(3b)で示される繰り返し単位のいずれか1以上と、一般式(1c)で示される繰り返し単位とを有する高分子化合物と、酸発生剤等を含む化学増幅ポジ型レジスト材料を種々の集積回路製造に用いる場合は、特に限定されないが公知のリソグラフィー技術を用いることができる。
例えば、本発明のレジスト材料を、集積回路製造用の基板(Si,SiO,SiN,SiON,TiN,WSi,BPSG,SOG,有機反射防止膜、Cr、CrO、CrON、MoSi等)上にスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の適当な塗布方法により塗布膜厚が0.1〜2.0μmとなるように塗布し、ホットプレート上で60〜150℃、1〜10分間、好ましくは80〜120℃、1〜5分間プリベークする。次いで、紫外線、遠紫外線、電子線、X線、エキシマレーザー、γ線、シンクロトロン放射線などから選ばれる光源、好ましくは300nm以下の露光波長、より好ましくは、180〜200nmの範囲の露光波長で目的とするパターンを所定のマスクを通じて露光を行う。露光量は1〜200mJ/cm程度、好ましくは10〜100mJ/cm程度となるように露光することが好ましい。次に、ホットプレート上で60〜150℃、1〜5分間、好ましくは80〜120℃、1〜3分間ポストエクスポージャベーク(PEB)する。
更に、0.1〜5%、好ましくは2〜3%テトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ水溶液の現像液を用い、0.1〜3分間、好ましくは0.5〜2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法により現像することにより基板上に目的のパターンが形成される。なお、本発明のレジスト材料は、特に高エネルギー線の中でも波長254〜193nmの遠紫外線、波長157nmの真空紫外線、電子線、軟X線、X線、エキシマレーザー、γ線、シンクロトロン放射線、より好ましくは、波長180〜200nmの範囲の高エネルギー線による微細パターンニングに最適である。
また、本発明のレジスト材料は、液浸リソグラフィーに適用することも可能である。ArF液浸リソグラフィーにおいては液浸溶媒として純水が用いられる。液浸リソグラフィーは、プリベーク後のレジスト膜と投影レンズの間に水を挿入して露光する。波長193nmにおける水の屈折率1.43で割った135nmが露光波長となり、短波長化が可能となる。ArFリソグラフィーを65nmノードまで延命させるための重要な技術であり、開発が加速されている。従来ArFレジストの親水性基として用いられてきたラクトン環は、アルカリ水溶液と水の両方に溶解性がある。水への溶解性が高いラクトンあるいは無水マレイン酸や無水イタコン酸の様な酸無水物を親水性基に用いた場合、水中での液浸により水がレジスト表面から染み込み、レジスト表面が膨潤する問題が発生する。ところが、ヘキサフルオロアルコールはアルカリ水溶液には溶解するが、水には全く溶解しないために前述の液浸による溶解と膨潤の影響は小さいと考えられる。
以下、合成例、比較合成例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例等に制限されるものではない。
[モノマー合成例1]
窒素気流下、容量2LのSUSオートクレーブにα−(トリフルオロメチル)ビニルアセテートを300g、シクロペンタジエンを126g投入し、容器を密封し、160℃まで加熱し、48時間温度を維持した。氷冷し内圧を下げた後、内容物を2Lなす型フラスコに移して減圧蒸留を行い、151.4gの下記化合物(M−1)を得た。収率は35.3%であった。
窒素雰囲気下、3Lの四つ口フラスコに得られた化合物(M−1)を150g投入し、585gのトリフルオロ酢酸を少しずつ滴下し、さらにメタンスルホン酸10gを少しずつ添加し、添加終了後に70℃で6時間反応を行った。反応終了後、室温まで冷却し、ヘキサン1.2Lを添加後、有機層を炭酸水素ナトリウムの飽和水溶液で2回洗浄した。
有機層をエバポレーターで乾固した後に得られる有機物をメタノール1.5Lに溶かし、炭酸カリウムを添加して室温で10時間撹拌した。エバポレーターでメタノールを除去後、有機物をエーテル1.2Lに溶かし、飽和食塩水で2回洗浄を行った。得られた油状物質をシリカゲルクロマトグラフィーにより精製した結果、下記化合物(M−2)が90.8g得られた。収率は67.9%であった。
窒素雰囲気下、3Lなす型フラスコに化合物(M−2)を84g、トリエチルアミンを73.5g、フェノチアジンを0.5g、ジメチルアミノピリジンを0.5g投入し、ジクロロメタン500gとテトラヒドロフラン200gの混合溶媒に溶解させた。フラスコを氷浴に浸した後、メタクリル酸クロライド52.5gを滴下し、氷浴に浸したまま5時間熟成を行った。室温に戻した後、エーテル800mLを投入し、さらに水800mLを添加した。有機層をギ酸水溶液、飽和炭酸カリウム水溶液、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、エバポレーターにて減圧濃縮した後、得られた油状物質をシリカゲルクロマトグラフィーで精製したところ、83.9gのモノマー1を得た。収率は74.7%であった。
Figure 2005133065
1H−NMR(DMSO):δ1.24−2.52(m、11H)、4.53(m、0.3H)、4.69(m、0.7H)、5.66(t、1H)、5.97−6.04(m、2H)
19F−NMR(DMSO):δ−79.0(2.1F)、−74.5(0.9F)
FT−IR(KBr):3482,2981、1716、1697、1633、1450、1405、1386、1330、1297、1222、1164、1130、1103、1076、1045、1012、981、971、948cm-1
[モノマー合成例2]
中井らの方法(Organic Synthesis、76巻、151ページ、1998年)などの常法により得た下記化合物(M−3)80gとシクロペンタジエン21gを窒素気流下、容量2LのSUSオートクレーブに投入後、容器を密封し、160℃まで加熱し、48時間温度を維持した。氷冷し内圧を下げた後、内容物を2Lなす型フラスコに移して減圧蒸留を行い、75.4gの下記化合物(M−4)を得た。収率は74.7%であった。
窒素雰囲気下、1Lの四つ口フラスコに得られた化合物(M−4)を70g投入し、フラスコを氷浴に浸した後、1MボランTHF溶液220mLを少しずつ滴下し、滴下終了後に室温で6時間反応を行った。次にフラスコを氷浴に浸し、水を5g滴下後、5N水酸化ナトリウム水溶液53mLを滴下し、ついで過酸化水素90mLを滴下した。氷浴を外し、室温で2時間熟成させた後、生成した塩を水200mLに溶解させ、有機層を分離した。水層をヘキサン200mLで抽出し、元の有機層に合わせた。有機層を飽和亜硫酸ナトリウム水溶液、飽和食塩水で洗浄した。
有機層を硫酸マグネシウムで乾燥後に得られる有機物をメタノール500mLに溶かし、炭酸カリウムを添加して室温で10時間撹拌した。エバポレーターでメタノールを除去後、有機物をエーテル1Lに溶かし、飽和食塩水で2回洗浄を行った。得られた油状物質をシリカゲルクロマトグラフィーにより精製した結果、41.5gの下記化合物(M−5)が得られた。収率は81.2%であった。
窒素雰囲気下、1Lの四つ口フラスコに化合物(M−5)を40g、トリエチルアミンを29.6g、フェノチアジンを0.2g、ジメチルアミノピリジンを0.2g投入し、ジクロロメタン200gとテトラヒドロフラン100gの混合溶媒に溶解させた。フラスコを氷浴に浸した後、メタクリル酸クロライド20gを滴下し、氷浴に浸したまま5時間熟成を行った。室温に戻した後、エーテル200mLを投入し、さらに水300mLを添加した。有機層をギ酸水溶液、飽和炭酸カリウム水溶液、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、エバポレーターにて減圧濃縮した後、得られた油状物質をシリカゲルクロマトグラフィーで精製したところ、34.0gのモノマー2を得た。収率は65.7%であった。
Figure 2005133065
1H−NMR(DMSO):δ1.44−2.82(m、9H)、4.90〜5.23(m、1H)、5.69〜6.06(m、2H)、7.01〜7.39(br、Total:1H)
19F−NMR(DMSO):−118.9〜116.3(Total:1F)、−110.6〜106.3(Total:1F)、−72.1、−72.7、−74.6、−75.3(Total:3F)
FT−IR(NaCl):3598,3434,2991,2933,1708,1635.1454,1405,1378,1313,1263,1180,1135,1099,1033,1010,991,956,939,921cm-1
[ポリマー合成例1]
100mLのフラスコにメタクリル酸−2−エチル−2−アダマンタンを9.8g、メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]−9−ノニルを4.3g、メタクリル酸5−ヒドロキシ−5−トリフルオロメチル−ビシクロ[2.2.1]ヘプト−2−イル(上記モノマー1)を16.8g、溶媒としてテトラヒドロフランを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体23.3gを得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
メタクリル酸−2−エチル−2−アダマンタン:メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]−9−ノニル:メタクリル酸5−ヒドロキシ−5−トリフルオロメチル−ビシクロ[2.2.1]ヘプト−2−イル=0.40:0.14:0.46
質量平均分子量(Mw)=11,200
分子量分布(Mw/Mn)=1.78
Figure 2005133065
この高分子化合物をポリマー1とする。
[ポリマー合成例2]
100mLのフラスコにメタクリル酸−2−エチル−2−アダマンタンを9.8g、メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]−9−ノニルを10.0g、メタクリル酸5−ヒドロキシ−5−トリフルオロメチル−ビシクロ[2.2.1]ヘプト−2−イルを8.8g、溶媒としてテトラヒドロフランを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体18.3gを得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
メタクリル酸−2−エチル−2−アダマンタン:メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]−9−ノニル:メタクリル酸5−ヒドロキシ−5−トリフルオロメチル−ビシクロ[2.2.1]ヘプト−2−イル=0.38:0.26:0.36
質量平均分子量(Mw)=10,200
分子量分布(Mw/Mn)=1.74
Figure 2005133065
この高分子化合物をポリマー2とする
[ポリマー合成例3]
100mLのフラスコにメタクリル酸−1−(1−アダマンチル)−1−メチルエチルを15.8g、メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]−9−ノニルを4.3g、メタクリル酸5−ヒドロキシ−5−トリフルオロメチル−ビシクロ[2.2.1]ヘプト−2−イル(上記モノマー1)を16.8g、溶媒としてテトラヒドロフランを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体28.3gを得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
メタクリル酸−1−(1−アダマンチル)−1−メチルエチル:メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]−9−ノニル:メタクリル酸5−ヒドロキシ−5−トリフルオロメチル−ビシクロ[2.2.1]ヘプト−2−イル=0.40:0.18:0.42
質量平均分子量(Mw)=9,800
分子量分布(Mw/Mn)=1.68
Figure 2005133065
この高分子化合物をポリマー3とする。
[ポリマー合成例4]
100mLのフラスコにメタクリル酸−2−エチル−2−アダマンタンを12.3g、メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]−9−ノニルを15.3g、ビニルエーテル5−ヒドロキシ−5−トリフルオロメチル−ビシクロ[2.2.1]ヘプト−2−イル)を9.3g、溶媒としてテトラヒドロフランを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体22.5gを得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
メタクリル酸−2−エチル−2−アダマンタン:メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]−9−ノニル:ビニルエーテル5−ヒドロキシ−5−トリフルオロメチル−ビシクロ[2.2.1]ヘプト−2−イル=0.42:0.38:0.20
質量平均分子量(Mw)=14,000
分子量分布(Mw/Mn)=1.98
Figure 2005133065
この高分子化合物をポリマー4とする。
[ポリマー合成例5]
100mLのフラスコにメタクリル酸−2−エチル−2−アダマンタンを12.3g、メタクリル酸5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルを11.1g、メタクリル酸5−ヒドロキシ−5−トリフルオロメチル−6,6−ジフルオロ−ビシクロ[2.2.1]ヘプト−2−イル(上記モノマー2)を14.3g、溶媒としてテトラヒドロフランを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体22.5gを得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
メタクリル酸−2−エチル−2−アダマンタン:メタクリル酸5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル:メタクリル酸5−ヒドロキシ−5−トリフルオロメチル−6,6−ジフルオロ−ビシクロ[2.2.1]ヘプト−2−イル=0.40:0.40:0.20
質量平均分子量(Mw)=13,000
分子量分布(Mw/Mn)=1.78
Figure 2005133065
この高分子化合物をポリマー5とする。
[ポリマー合成例6]
100mLのフラスコにメタクリル酸−2−アダマンチロキシメチルを14.5g、メタクリル酸5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルを11.1g、メタクリル酸5−ヒドロキシ−5−トリフルオロメチル−6,6−ジフルオロ−ビシクロ[2.2.1]ヘプト−2−イル(上記モノマー2)を14.3g、溶媒としてテトラヒドロフランを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体22.5gを得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
メタクリル酸−2−アダマンチロキシメチル:メタクリル酸5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル:メタクリル酸5−ヒドロキシ−5−トリフルオロメチル−6,6−ジフルオロ−ビシクロ[2.2.1]ヘプト−2−イル=0.31:0.43:0.26
質量平均分子量(Mw)=11,500
分子量分布(Mw/Mn)=1.74
Figure 2005133065
この高分子化合物をポリマー6とする。
[ポリマー合成例7]
100mLのフラスコにメタクリル酸−2−エチル−2−アダマンタンを12.3g、メタクリル酸メトキシイソブチルを8.6g、メタクリル酸−3−ヒドロキシ−1−アダマンチルを18.5g、メタクリル酸5−ヒドロキシ−5−トリフルオロメチル−6,6−ジフルオロ−ビシクロ[2.2.1]ヘプト−2−イル(上記モノマー2)を20.5g、溶媒としてテトラヒドロフランを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体22.5gを得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
メタクリル酸−2−エチル−2−アダマンタン:メタクリル酸メトキシイソブチル:メタクリル酸−3−ヒドロキシ−1−アダマンチル:メタクリル酸5−ヒドロキシ−5−トリフルオロメチル−6,6−ジフルオロ−ビシクロ[2.2.1]ヘプト−2−イル=0.20:0.10:0.29:0.41
質量平均分子量(Mw)=9,700
分子量分布(Mw/Mn)=1.58
Figure 2005133065
この高分子化合物をポリマー7とする。
[比較合成例1]
100mLのフラスコにメタクリル酸−2−エチル−2−アダマンタンを24.4g、メタクリル酸γブチロラクトンを17.1g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBNを0.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール500mL溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体36.1gを得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
メタクリル酸−2−エチル−2−アダマンタン:メタクリル酸γブチロラクトン=0.48:0.52
質量平均分子量(Mw)=12500
分子量分布(Mw/Mn)=1.88
Figure 2005133065
この高分子化合物を比較ポリマー1とする。
(実施例、比較例)
[ポジ型レジスト材料の調製]
上記合成した高分子化合物(ポリマー1〜7、比較ポリマー1)を用いて、下記表1に示される組成で溶解させた溶液を0.2μmサイズのフィルターでろ過してレジスト溶液を調製した。
表1中の各組成は次の通りである。
ポリマー1〜ポリマー7:合成例1〜7より
比較ポリマー1:比較合成例1より
酸発生剤:PAG1(下記構造式参照)
Figure 2005133065
塩基性化合物:トリブチルアミン、トリエタノールアミン
TMMEA、AAA、AACN(下記構造式参照)
Figure 2005133065
溶解阻止剤:DRI1(下記構造式参照)
Figure 2005133065
有機溶剤:PGMEA(プロピレングリコールモノメチルエーテルアセテート)
[露光パターニング評価]
上記調製したレジスト材料(実施例1〜12、比較例1)を、シリコンウェーハにAR−19(シプレイ社製)を82nmの膜厚で製膜した基板上にスピンコーティングし、ホットプレートを用いて130℃で60秒間ベークし、レジストの厚みを250nmにした。
これをArFエキシマレーザーステッパー(ニコン社、NSR−S305B,NA−0.68、σ0.85、2/3輪帯照明)を用いて露光し、露光後直ちに110℃で60秒間ベークし、2.38%のテトラメチルアンモニウムヒドロキシドの水溶液で60秒間現像を行って、ポジ型のパターンを得た。
そして、得られたレジストパターンを次のように評価した。
0.12μmのラインアンドスペースを1:1で解像する露光量をレジストの感度として、この露光量において分離しているラインアンドスペースの最小線幅を評価レジストの解像度とした。
また、測長SEM(日立製作所製S−9220)を用いて0.12μmのラインアンドスペースのラインエッジラフネスを測定した。
この結果を表1に併記した。
Figure 2005133065
表1から、実施例1〜12のレジスト材料は、高感度で高解像性を有し、ラインエッジラフネスが小さいことが判る。
[QCM法による現像液中の溶解特性評価]
上記調製したレジスト材料(実施例1、比較例1)の溶液を0.2μmサイズのフィルターでろ過したレジスト溶液を、下地が金で表面にクロムの電極が蒸着されたサイズ1インチ(約2.5cm)の石英基板にスピンコーティングし、ホットプレートを用いて130℃で60秒間ベークし、レジストの厚みを250nmにした。
ArF露光装置ArFES3000(リソテックジャパン製)で露光し、115℃、60秒PEBを行った。レジスト現像アナライザー用水晶振動子マイクロバランス装置RDA-Qz3(リソテックジャパン製)に基板を装着し、2.38%のテトラメチルアンモニウムヒドロキシドの水溶液で60秒間現像を行い、振動モードATカットで現像中の膨潤と溶解を測定した。露光量を変えた露光を行い、QCMの測定を行った。
この結果を図1、図2に示す。図中、現像時間に対して膜厚が増加した場合は膨潤、膜厚が減少した場合は溶解していることを示す。
図1,2から、実施例1のレジスト材料では、QCM法による測定により、現像中の膨潤が大幅に抑えられることが判る。
尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
実施例1のレジスト材料から形成されたレジストに対してQCM法による測定をおこなった結果を示すグラフである。 比較例1のレジスト材料から形成されたレジストに対してQCM法による測定をおこなった結果を示すグラフである。

Claims (9)

  1. 下記一般式(1)で示される重合性化合物。
    Figure 2005133065
    (式中、R41は水素原子又はメチル基、R42はフッ素原子又はトリフルオロメチル基、R43は水素原子又は1価のアシル基、R44、R45はそれぞれ独立に水素原子又はフッ素原子、R16は単結合又は炭素数1〜4の直鎖状、分岐状のアルキレン基、Xはメチレン基、エチレン基、酸素原子、硫黄原子のいずれか、Yは−O−又は−C(=O)−O−である。)
  2. 少なくとも、下記一般式(1a)で示される繰り返し単位、下記一般式(2a)で示される繰り返し単位、下記一般式(3b)で示される繰り返し単位のいずれか一以上と、下記一般式(1c)で示される繰り返し単位とを有する高分子化合物。
    Figure 2005133065
    (式中、R1は水素原子、メチル基、−CH2CO26のいずれかを示す。R2は水素原子、メチル基、−CO26のいずれかを示す。繰り返し単位(1a)、(2a)中のR、Rはそれぞれ同一であっても異種であっても良い。R3〜R5はそれぞれ独立に炭素数1〜15のヘテロ原子を含んでもよい1価の炭化水素基を示す。R6は水素原子又は炭素数1〜15の直鎖状、分岐状、環状のアルキル基を示す。R15は水素原子、メチル基、−CH2CO26のいずれかを示す。R14は水素原子、メチル基、−CO26のいずれかを示す。R16は単結合又は炭素数1〜4の直鎖状、分岐状のアルキレン基を示す。R17はフッ素原子又はトリフルオロメチル基である。R18は水素原子、炭素数1〜10のアシル基、酸不安定基のいずれかである。R21、R22はそれぞれ独立に水素原子又はフッ素原子である。R23、R24はそれぞれ独立に、水素原子又は炭素数1〜6の直鎖状、分岐状のアルキル基を示し、R25は炭素数1〜20の直鎖状、分岐状、環状のアルキル基である。Yは−O−あるいは−C(=O)−O−である。Zは炭素数4〜10の有橋環式の炭化水素基であり、−O−、−S−を有していても良い。a1、a2、c、b3は、0≦a1≦0.8、0≦a2≦0.8、0≦b3≦0.8、0.1≦a1+a2+b3≦0.8、0<c≦0.9の範囲である。)
  3. 前記一般式(1c)で示される繰り返し単位が、下記一般式で示される繰り返し単位であることを特徴とする請求項2に記載の高分子化合物。
    Figure 2005133065
    (式中、R14、R15、R16、R17、R18、R21、R22、Y、cは前述の通りである。Xは、メチレン基、エチレン基、酸素原子、硫黄原子のいずれかである。)
  4. 少なくとも、請求項2又は請求項3に記載の高分子化合物をベース樹脂として含むものであることを特徴とするポジ型レジスト材料。
  5. 請求項4に記載したポジ型レジスト材料であって、さらに有機溶剤および酸発生剤を含有する化学増幅型のレジスト材料であることを特徴とするポジ型レジスト材料。
  6. 請求項4または請求項5に記載したポジ型レジスト材料であって、さらに溶解阻止剤を含有するものであることを特徴とするポジ型レジスト材料。
  7. 請求項4乃至請求項6のいずれか1項に記載したポジ型レジスト材料であって、さらに添加剤として塩基性化合物および/または界面活性剤が配合されたものであることを特徴とするポジ型レジスト材料。
  8. 少なくとも、請求項4乃至請求項7のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、加熱処理後、高エネルギー線で露光する工程と、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法。
  9. 前記高エネルギー線を、波長180nm〜200nmの範囲のものとすることを特徴とする請求項8に記載のパターン形成方法。
JP2004215901A 2003-10-08 2004-07-23 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法 Active JP4302585B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215901A JP4302585B2 (ja) 2003-10-08 2004-07-23 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003350145 2003-10-08
JP2004215901A JP4302585B2 (ja) 2003-10-08 2004-07-23 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法

Publications (2)

Publication Number Publication Date
JP2005133065A true JP2005133065A (ja) 2005-05-26
JP4302585B2 JP4302585B2 (ja) 2009-07-29

Family

ID=34656033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215901A Active JP4302585B2 (ja) 2003-10-08 2004-07-23 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法

Country Status (1)

Country Link
JP (1) JP4302585B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079048A (ja) * 2004-03-18 2006-03-23 Fuji Photo Film Co Ltd 液浸露光用ポジ型レジスト組成物及びそれを用いたパターン形成方法
WO2006035926A1 (ja) * 2004-09-30 2006-04-06 Kyowa Hakko Chemical Co., Ltd. ポジ型液晶素子用フォトレジスト組成物
JP2007256448A (ja) * 2006-03-22 2007-10-04 Shin Etsu Chem Co Ltd レジスト材料及びパターン形成方法
WO2008007594A1 (fr) * 2006-07-11 2008-01-17 Asahi Glass Company, Limited ComposÉ fluorÉ de structure norbornane hautement fluorÉe, polymÈre fluorÉ et leurs mÉthodes de production
JP2008033288A (ja) * 2006-07-06 2008-02-14 Shin Etsu Chem Co Ltd ポジ型レジスト組成物及びパターン形成方法
JP2008033289A (ja) * 2006-07-06 2008-02-14 Shin Etsu Chem Co Ltd ポジ型レジスト組成物及びパターン形成方法
JP2008239889A (ja) * 2007-03-28 2008-10-09 Fujifilm Corp 樹脂およびその製造方法、それを用いたポジ型感光性組成物及びパターン形成方法
JP2009019199A (ja) * 2007-06-12 2009-01-29 Central Glass Co Ltd 含フッ素化合物、含フッ素高分子化合物、ポジ型レジスト組成物及びそれを用いたパターン形成方法
US7906268B2 (en) 2004-03-18 2011-03-15 Fujifilm Corporation Positive resist composition for immersion exposure and pattern-forming method using the same
US9562122B2 (en) 2014-08-25 2017-02-07 Sumitomo Chemical Company, Limited Compound, resin, resist composition and method for producing resist pattern
JP2019059916A (ja) * 2017-09-27 2019-04-18 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JPWO2020170555A1 (ja) * 2019-02-22 2021-12-23 東洋合成工業株式会社 ポリマー、該ポリマーを含有するレジスト組成物、それを用いた部材の製造方法、パターン形成方法及び反転パターンの形成方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023576B2 (en) 2004-03-18 2015-05-05 Fujifilm Corporation Positive resist composition for immersion exposure and pattern-forming method using the same
JP2006079048A (ja) * 2004-03-18 2006-03-23 Fuji Photo Film Co Ltd 液浸露光用ポジ型レジスト組成物及びそれを用いたパターン形成方法
US7906268B2 (en) 2004-03-18 2011-03-15 Fujifilm Corporation Positive resist composition for immersion exposure and pattern-forming method using the same
WO2006035926A1 (ja) * 2004-09-30 2006-04-06 Kyowa Hakko Chemical Co., Ltd. ポジ型液晶素子用フォトレジスト組成物
JP4600681B2 (ja) * 2006-03-22 2010-12-15 信越化学工業株式会社 レジスト材料及びパターン形成方法
JP2007256448A (ja) * 2006-03-22 2007-10-04 Shin Etsu Chem Co Ltd レジスト材料及びパターン形成方法
JP2008033288A (ja) * 2006-07-06 2008-02-14 Shin Etsu Chem Co Ltd ポジ型レジスト組成物及びパターン形成方法
JP2008033289A (ja) * 2006-07-06 2008-02-14 Shin Etsu Chem Co Ltd ポジ型レジスト組成物及びパターン形成方法
JPWO2008007594A1 (ja) * 2006-07-11 2009-12-10 旭硝子株式会社 高度にフッ素化されたノルボルナン構造を有する含フッ素化合物、含フッ素重合体、および製造方法
US8134033B2 (en) 2006-07-11 2012-03-13 Asahi Glass Company, Limited Fluorocompound having highly fluorinated norbornane structure, fluoropolymer, and their production processes
WO2008007594A1 (fr) * 2006-07-11 2008-01-17 Asahi Glass Company, Limited ComposÉ fluorÉ de structure norbornane hautement fluorÉe, polymÈre fluorÉ et leurs mÉthodes de production
JP2008239889A (ja) * 2007-03-28 2008-10-09 Fujifilm Corp 樹脂およびその製造方法、それを用いたポジ型感光性組成物及びパターン形成方法
JP2009019199A (ja) * 2007-06-12 2009-01-29 Central Glass Co Ltd 含フッ素化合物、含フッ素高分子化合物、ポジ型レジスト組成物及びそれを用いたパターン形成方法
US9562122B2 (en) 2014-08-25 2017-02-07 Sumitomo Chemical Company, Limited Compound, resin, resist composition and method for producing resist pattern
JP2019059916A (ja) * 2017-09-27 2019-04-18 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JP7215015B2 (ja) 2017-09-27 2023-01-31 住友化学株式会社 化合物、樹脂、レジスト組成物及びレジストパターンの製造方法
JPWO2020170555A1 (ja) * 2019-02-22 2021-12-23 東洋合成工業株式会社 ポリマー、該ポリマーを含有するレジスト組成物、それを用いた部材の製造方法、パターン形成方法及び反転パターンの形成方法

Also Published As

Publication number Publication date
JP4302585B2 (ja) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4025162B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4662049B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4697443B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4642452B2 (ja) ポジ型レジスト材料及びこれを用いたパターン形成方法
JP5237173B2 (ja) 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4539847B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
KR101103199B1 (ko) 레지스트 재료 및 이것을 이용한 패턴 형성 방법
JP4424500B2 (ja) ポジ型レジスト材料及びパターン形成方法
JP4636276B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5054042B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5054041B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5398966B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5223168B2 (ja) 化学増幅ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5029839B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5148090B2 (ja) レジスト材料及びこれを用いたパターン形成方法
KR100865997B1 (ko) 중합성 화합물, 고분자 화합물 및 포지티브형 레지스트재료, 및 이것을 이용한 패턴 형성 방법
JP4305637B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5182468B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5067523B2 (ja) 化学増幅ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4302585B2 (ja) 重合性化合物、高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP5051387B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4328951B2 (ja) レジスト材料及びパターン形成方法
JP4247164B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4769410B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法
JP4133376B2 (ja) 高分子化合物及びポジ型レジスト材料並びにこれを用いたパターン形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4302585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150501

Year of fee payment: 6