JP2005127224A - 多気筒内燃機関の燃料噴射時期制御方法 - Google Patents

多気筒内燃機関の燃料噴射時期制御方法 Download PDF

Info

Publication number
JP2005127224A
JP2005127224A JP2003363636A JP2003363636A JP2005127224A JP 2005127224 A JP2005127224 A JP 2005127224A JP 2003363636 A JP2003363636 A JP 2003363636A JP 2003363636 A JP2003363636 A JP 2003363636A JP 2005127224 A JP2005127224 A JP 2005127224A
Authority
JP
Japan
Prior art keywords
combustion
fuel injection
amount
timing
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003363636A
Other languages
English (en)
Inventor
Yoshinobu Hashimoto
佳宜 橋本
Shizuo Sasaki
静夫 佐々木
Koji Yoshizaki
康二 吉▲崎▼
Taro Aoyama
太郎 青山
Hiroki Murata
宏樹 村田
Kazuhisa Inagaki
和久 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003363636A priority Critical patent/JP2005127224A/ja
Publication of JP2005127224A publication Critical patent/JP2005127224A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】 第2の燃焼から第1の燃焼に切り替えられるときに、全ての気筒において燃料噴射時期を最適に維持する。
【解決手段】 第1の燃焼と第2の燃焼とを選択的に切り替える。第2の燃焼が行われるときにはi番気筒の燃料噴射開始時期θS(i)を第2の時期に設定し、第1の燃焼が行われるときには第2の時期よりも進角側に設定された第1の時期に設定する。第2の燃焼から第1の燃焼に切り替えられるときには、燃料噴射開始時期θS(i)を第2の時期から第1の時期まで徐々に進角する。燃焼による筒内圧の上昇幅ΔP(i)が目標値ΔPTよりも大きいときには燃料噴射開始時期θS(i)の進角量を小さくし、筒内圧上昇幅ΔP(i)が目標値ΔPTよりも小さいときには燃料噴射開始時期θS(i)の進角量を大きくする。
【選択図】 図11

Description

本発明は多気筒内燃機関の燃料噴射時期制御方法に関する。
燃焼室内に供給される排気再循環ガス量を増大していくと煤の発生量が次第に増大してピークに達し、燃焼室内に供給される排気再循環ガス量を更に増大していくと燃焼室内における燃焼時の燃料及びその周囲のガス温が煤の生成温度よりも低くなって煤がほとんど発生しなくなる多気筒内燃機関において、煤の発生量がピークとなる排気再循環ガス量よりも燃焼室内に供給される排気再循環ガス量が多く煤がほとんど発生しない第1の燃焼と、煤の発生量がピークとなる排気再循環ガス量よりも燃焼室内に供給される排気再循環ガス量が少ない第2の燃焼とを選択的に切り替え、第1の燃焼が行われるときには機関運転状態に応じて定まる第1の時期に各気筒の燃料噴射時期を設定し、第2の燃焼が行われるときには機関運転状態に応じて定まる第2の時期に各気筒の燃料噴射時期を設定し、第1の時期は第2の時期よりも進角側に定められており、第2の燃焼から第1の燃焼に切り替えられるときには、燃料噴射時期を第2の時期から第1の時期まで徐々に進角するようにした内燃機関が公知である(特許文献1の請求項8等参照)。
詳しくは後述するが、第1の燃焼が行われるときには、スロットル開度が小さくされEGR弁開度が大きくされ、多量のEGRガスと少量の新気のもとで燃焼が行われる。これに対し、第2の燃焼が行われるときには、スロットル開度が大きくされEGR弁開度が小さくされ、少量のEGRガスと多量の新気のもとで燃焼が行われる。
このように、第1の燃焼と第2の燃焼とは燃焼形態が全く異なっており、第1の燃焼における最適な燃料噴射時期と第2の燃焼における最適な燃料噴射時期とは全く異なっている。即ち、第1の燃焼では燃焼が緩慢なものとなるので、第1の燃焼が行われるときの燃料噴射時期即ち第1の時期は第2燃焼が行われるときの燃料噴射時期即ち第2の時期よりも進角側に定められる。
ところで、第2の燃焼から第1の燃焼に切り替えるためにスロットル開度を大幅に減少しEGR弁開度を大幅に増大したとしても、実際に燃焼室内に供給される新気の量は急激に減少せず即ち徐々に減少し、燃焼室内に供給されるEGRガス量は急激に増大せず即ち徐々に増大する。このため、スロットル開度が大幅に減少されEGR弁開度が大幅に増大されたということでこのとき燃料噴射時期を第1の時期に設定すると即ち第2の時期よりも進角すると、このとき燃焼室内には未だ多量の新気が残存しているので、好ましくない燃焼騒音が発生するおそれがある。
そこで、上述した特許文献1に記載の内燃機関では、燃料噴射時期を第2の時期から第1の時期まで徐々に進角するようにしている。このようにすると、燃焼室内に供給される新気の量が徐々に減少しEGRガス量が徐々に増大するのにつれて燃料噴射時期が徐々に進角され、従って第2の燃焼から第1の燃焼に切り替えられるときにも燃料噴射時期が最適時期に維持される。
特許第3094992号公報 特許第3092597号公報 特開2000−54889号公報
第2の燃焼から第1の燃焼に切り替えられるときに燃料噴射時期をどの程度進角させるべきかは例えば燃焼室内に実際に供給される新気の量がどれだけ減少しているかに依存する。しかしながら、この新気の量は気筒毎に異なっているおそれがある。そうすると、特許文献1に記載の内燃機関において、全ての気筒に対し共通の燃料噴射時期でもって燃料噴射するようにした場合には、各気筒において燃料噴射時期が最適に維持されているとは限らないということになる。
そこで本発明は、第2の燃焼から第1の燃焼に切り替えられるときに、全ての気筒において燃料噴射時期を最適に維持することができる多気筒内燃機関の燃料噴射時期制御方法を提供することを目的とする。
前記課題を解決するために1番目の発明によれば、燃焼室内に供給される排気再循環ガス量を増大していくと煤の発生量が次第に増大してピークに達し、燃焼室内に供給される排気再循環ガス量を更に増大していくと燃焼室内における燃焼時の燃料及びその周囲のガス温が煤の生成温度よりも低くなって煤がほとんど発生しなくなる多気筒内燃機関において、煤の発生量がピークとなる排気再循環ガス量よりも燃焼室内に供給される排気再循環ガス量が多く煤がほとんど発生しない第1の燃焼と、煤の発生量がピークとなる排気再循環ガス量よりも燃焼室内に供給される排気再循環ガス量が少ない第2の燃焼とを選択的に切り替え、第1の燃焼が行われるときには機関運転状態に応じて定まる第1の時期に各気筒の燃料噴射時期を設定し、第2の燃焼が行われるときには機関運転状態に応じて定まる第2の時期に各気筒の燃料噴射時期を設定し、第1の時期は第2の時期よりも進角側に定められており、第2の燃焼から第1の燃焼に切り替えられるときには、第2の時期から第1の時期まで徐々に進角する第3の時期に各気筒の燃料噴射時期を設定すると共に各気筒の筒内圧を検出して該検出された筒内圧に基づき対応する気筒の燃料噴射時期を補正する、各段階を具備する燃料噴射時期制御方法が提供される。
また、2番目の発明によれば1番目の発明において、第2の燃焼から第1の燃焼に切り替えられるときに燃焼による筒内圧の上昇幅が目標値よりも大きい気筒では燃料噴射時期の進角量を小さくし、燃焼による筒内圧の上昇幅が目標値よりも小さい気筒では燃料噴射時期の進角量を大きくしている。
第2の燃焼から第1の燃焼に切り替えられるときに、全ての気筒において燃料噴射時期を最適に維持することができる。
図1は本発明を圧縮着火式内燃機関に適用した場合を示している。しかしながら、吸気通路内又は筒内に直接燃料を噴射する火花点火式内燃機関に本発明を適用することもできる。
図1を参照すると、機関本体1は例えば4つの気筒1aを有する。各気筒1aはそれぞれ対応する吸気枝管2を介して共通のサージタンク3に連結され、サージタンク3は吸気ダクト4を介して排気ターボチャージャ5のコンプレッサ6に連結される。吸気ダクト4内にはステップモータ7により駆動されるスロットル弁8が配置され、更に吸気ダクト4周りには吸気ダクト4内を流れる吸入空気を冷却するための冷却装置9が配置される。また、各気筒1aは排気マニホルド10及び排気管11を介して排気ターボチャージャ5の排気タービン12に連結され、排気タービン12の出口は排気管13を介して触媒コンバータ14に連結される。
各気筒1aの筒内には燃料噴射弁15が配置され、これら燃料噴射弁15は共通のコモンレール16を介して吐出量可変の電気制御式燃料ポンプ17に連結される。コモンレール16にはコモンレール16内の燃料圧を検出するための燃料圧センサ(図示しない)が取付けられており、燃料圧センサの出力信号に基づいてコモンレール16内の燃料圧が目標燃料圧となるように燃料ポンプ17の吐出量が制御される。
更に、各気筒1aの筒内には、各気筒の筒内圧を検出するための筒内圧センサ18が配置される。これら筒内圧センサ18は例えばグロープラグと一体的に設けることができる。
排気マニホルド10とサージタンク3とは再循環排気ガス(以下、EGRと称す)通路19を介して互いに連結され、EGR通路19内には電気制御式EGR制御弁20が配置される。また、EGR通路19周りにはEGR通路19内を流れるEGRガスを冷却するための冷却装置21が配置される。なお、図1に示される内燃機関では、#1−#3−#4−#2の順に燃焼が行われる。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、バックアップRAM(B−RAM)35、入力ポート36及び出力ポート37を具備する。各筒内圧センサ18の出力信号は対応するAD変換器38を介して入力ポート36に入力される。また、排気ターボチャージャ5のコンプレッサ6の入口に接続された吸気管4aには吸入空気量を検出するためのエアフローメータ40が取り付けられ、アクセルペダル(図示しない)にはアクセルペダルの踏み込み量を検出するための踏み込み量センサ41が接続される。アクセルペダルの踏み込み量は要求負荷を表している。これらセンサ40,41の出力電圧も対応するAD変換器38を介して入力ポート36に入力される。更に、入力ポート36にはクランクシャフトが例えば10°回転する毎に出力パルスを発生するクランク角センサ42が接続される。CPU34ではクランク角センサ42の出力パルスに基づいて機関回転数が算出される。一方、出力ポート37は対応する駆動回路39を介してステップモータ7、燃料噴射弁15、燃料ポンプ17、及びEGR制御弁20にそれぞれ接続される。
図1に示される内燃機関では、互いに異なる二つの燃焼即ち第1の燃焼と第2の燃焼とが選択的に切り替えられるようになっている。まずこのことについて説明する。
図2は燃料噴射時期をほぼ一定に維持したときのEGR率(=EGRガス量/(EGRガス量+吸入空気量))とスモークの排出量との関係を示す実験結果の一例を表している。図2に示される例では、EGR率を例えば30パーセントから増大していくとスモークの排出量が増大を開始する。次いで、更にEGR率を高めるとスモークの発生量が急激に増大してピークに達する。更にEGR率を高めると今度はスモークが急激に低下し、EGR率を65パーセント以上とするとスモークがほぼ零となる。即ち、煤がほとんど発生しなくなる。なお、煤がほとんど発生しなくなるEGR率の下限はEGRガスの冷却度合や機関負荷に応じて変化する。
このようにEGR率をかなり高くすると、燃料は多量のEGRガス即ち不活性ガス中に拡散した少量の酸素と反応し、燃焼することになる。この場合、燃焼熱は周りのEGRガスに吸収されるために燃焼温度はさほど上昇しなくなり、燃料即ち炭化水素は煤まで成長しなくなる。言い換えると、燃焼室内における燃焼時の燃料及びその周囲のガス温が煤の生成温度よりも低くなって煤がほとんど発生しなくなるのである。また、燃焼温度が抑制されるのでこのときのNOの発生量もほぼゼロになっている。
そこで本発明による実施例では、煤の発生量がピークとなるEGR率よりもEGR率が高くかつ煤及びNOがほとんど生成しないEGR率でもって燃焼を行うようにしている。これが第1の燃焼である。これに対し、第2の燃焼は従来より普通に行われている燃焼であり、煤の発生量がピークとなるEGR率よりもEGR率が低くなっている。
従って、一般的に言うと、第1の燃焼とは煤の発生量がピークとなるEGRガス量よりも燃焼室内に供給されるEGRガス量が多く煤がほとんど発生しない燃焼のことであり、第2の燃焼とは煤の発生量がピークとなるEGRガス量よりも燃焼室内に供給されるEGRガス量が少ない燃焼のことであるということになる。この場合、図1に示される内燃機関を、燃焼室内に供給されるEGRガス量を増大していくと煤の発生量が次第に増大してピークに達し、燃焼室内に供給されるEGRガス量を更に増大していくと燃焼室内における燃焼時の燃料及びその周囲のガス温が煤の生成温度よりも低くなって煤がほとんど発生しなくなる内燃機関から構成していると見ることができる。
機関負荷が低いときには発熱量が小さいので燃焼温度を低く維持できるけれども、機関負荷が高くなって発熱量が大きくなると燃焼温度を抑制することができなくなる。そこで本発明による実施例では、機関低負荷運転時には第1の燃焼を行い、機関高負荷運転時には第2の燃焼を行うようにしている。
図3は第1の燃焼が行われる第1の運転領域Iと、第2の燃焼が行われる第2の燃焼領域IIとを示している。図3においてLX(N)は第1の運転領域Iと第2の運転領域IIとの第1の境界を示しており、LY(N)は第1の運転領域Iと第2の運転領域IIとの第2の境界を示している。第1の運転領域Iから第2の運転領域IIへの運転領域の変化判断は第1の境界LX(N)に基づいて行われ、第2の運転領域IIから第1の運転領域Iへの運転領域の変化判断は第2の境界LY(N)に基づいて行われる。即ち、機関の運転状態が第1の運転領域Iにあって第1の燃焼が行われているときに要求負荷Lが機関回転数Nの関数である第1の境界LX(N)を越えると運転領域が第2の運転領域IIに移ったと判断され、第2の燃焼に切り替えられる。次いで要求負荷Lが機関回転数Nの関数である第2の境界LY(N)よりも低くなると運転領域が第1の運転領域Iに移ったと判断され、第2の燃焼から第1の燃焼に切り替えられる。
次に、図4を参照しつつ第1の運転領域I及び第2の運転領域IIにおける運転制御について概略的に説明する。図4は要求負荷Lに対するスロットル弁8の開度、EGR制御弁20の開度、EGR率、空燃比、燃料噴射時期及び燃料噴射量を示している。
第1の燃焼が行われる第1の運転領域Iでは、図4に示されるようにスロットル弁8の開度は要求負荷Lが高くなるにつれて全閉近くから2/3開度程度まで徐々に増大せしめられ、EGR制御弁20の開度は要求負荷Lが高くなるにつれて全閉近くから全開まで徐々に増大せしめられる。図4に示される例では第1の運転領域IではEGR率がほぼ70パーセントとされており、空燃比はわずかばかりリーンな空燃比とされている。
この場合、空燃比が目標となるリーン空燃比に一致するようにスロットル弁8及びEGR制御弁20が制御される。空燃比を目標となるリーン空燃比に一致させるのに必要なスロットル弁8の開度ST及びEGR制御弁20の開度SEは要求負荷L及び機関回転数Nの関数として予め求められており、図5(A),(B)に示すマップの形で予めROM32内に記憶されている。
また、第1の運転領域Iでは要求負荷Lが高くなるにつれて燃料噴射量が増大される。更に、第1の運転領域Iでは圧縮上死点TDC前に燃料噴射が行われ、燃料噴射開始時期θS及び燃料噴射完了時期θEは要求負荷Lが高くなるにつれて遅角される。この場合の燃料噴射量QF及び燃料噴射開始時期θSは要求負荷L及び機関回転数Nの関数として予め求められており、図5(C),(D)に示すマップの形で予めROM32内に記憶されている。
要求負荷Lが高くなって機関の運転領域が第1の運転領域Iから第2の運転領域IIに変わると第1の燃焼から第2の燃焼に切り替えられ、このときスロットル弁8の開度が2/3開度程度から全開方向へステップ状に増大せしめられる。この場合図4に示す例では、EGR率が多量のスモークを発生するEGR率範囲(図2)を飛び越えるようにEGR率がほぼ70パーセントから40パーセント以下までステップ状に減少せしめられ、空燃比がステップ状に大きくされる。
第2の運転領域IIでは上述したように第2の燃焼、即ち従来から行われている燃焼が行われる。この燃焼方法では煤及びNOが若干発生するが第1の燃焼に比べて熱効率は高く、従って機関の運転領域が第1の運転領域Iから第2の運転領域IIに変わると図4に示されるように燃料噴射量がステップ状に低減せしめられる。また、第2の運転領域IIではスロットル弁8は一部を除いて全開状態に保持され、EGR制御弁20の開度は要求負荷Lが高くなると次第に小さくされる。更に、この運転領域IIではEGR率は要求負荷Lが高くなるほど低くなり、空燃比は要求負荷Lが高くなるほど小さくなる。ただし、空燃比は要求負荷Lが高くなってもリーン空燃比とされる。
第2の運転領域IIでも、空燃比が目標となるリーン空燃比に一致するようにスロットル弁8及びEGR制御弁20が制御される。空燃比を目標となるリーン空燃比に一致させるのに必要なスロットル弁8の開度ST及びEGR制御弁20の開度SEは要求負荷L及び機関回転数Nの関数として予め求められており、図6(A),(B)に示すマップの形で予めROM32内に記憶されている。
また、第2の運転領域IIでも要求負荷Lが高くなるにつれて燃料噴射量QFが増大される。更に、第2の運転領域IIでは圧縮上死点TDC付近で燃料噴射が行われる。第2の運転領域IIにおける燃料噴射量QF及び燃料噴射開始時期θSは要求負荷L及び機関回転数Nの関数として予め求められており、図5(C),(D)に示すマップの形で予めROM32内に記憶されている。
従って一般的に言うと、第1の燃焼が行われるときには機関運転状態に応じて定まる第1の時期に各気筒の燃料噴射時期を設定し、第2の燃焼が行われるときには機関運転状態に応じて定まる第2の時期に各気筒の燃料噴射時期を設定しているということになる。この場合、第1の時期は第2の時期よりも進角側に定められている。
要求負荷Lが低くなって機関の運転領域が第2の運転領域IIから第1の運転領域Iに変わると第2の燃焼から第1の燃焼に切り替えられ、スロットル弁8の開度が全閉方向へステップ状に減少せしめられ、EGR率がステップ状に増大せしめられ、空燃比がステップ状に小さくされる。
この場合、冒頭で述べたように、燃料噴射時期例えば燃料噴射開始時期θSをステップ状に進角させるのは好ましくない。また、燃料噴射量QFをステップ状に減少させるのも好ましくない。燃焼室内に供給される新気の量は徐々に減少するので燃料噴射量QFを急激に少なくすると失火するおそれがあるからである。
そこで本発明による実施例では、第2の燃焼から第1の燃焼に切り替えるときには燃料噴射開始時期θSを徐々に進角させ、燃料噴射量QFを徐々に減少させるようにしている。このことを図7から図10を参照しながら説明する。
図7は矢印Xで示される時期に要求負荷Lが第2の境界LY(N)を越えて低下したときの、吸入空気量Ga並びにi番気筒(i=1,2,3,4)の燃料噴射量QF(i)及び燃料噴射開始時期θS(i)の変化を概略的に示している。なお、本発明による実施例では、気筒毎に燃料噴射量及び燃料噴射開始時期が算出される。
図7に示されるように、要求負荷Lが第2の境界LY(N)よりも低くなると(矢印X)上述したようにスロットル弁8の開度STがステップ状に減少され、しかしながら吸入空気量Gaはただちに減少しない。この場合、本発明による実施例では各気筒の燃料噴射量QF(i)及び燃料噴射開始時期θS(i)は図6(C),(D)に示されるマップからそれぞれ算出される。従って、第2の燃焼が継続して行われることになる。
次いで、図7に矢印Yで示されるように吸入空気量Gaが予め定められたしきい値GaIを越えて減少すると、燃料噴射量QF(i)が徐々に減少され始め、燃料噴射開始時期θS(i)も徐々に進角され始める。次いで、矢印Zで示される時期になると第2の燃焼から第1の燃焼への切り替えが完了し、この場合には燃料噴射量QF(i)及び燃料噴射開始時期θS(i)は図5(C),(D)に示されるマップからそれぞれ算出される。
燃料噴射量QF(i)及び燃料噴射開始時期θS(i)を徐々に変化させるには様々な方法がある。本発明による実施例では、次のようにして燃料噴射量QF(i)が徐々に減少される。即ち、減少分ΔQFが機関運転状態例えば要求負荷L及び機関回転数Nに基づいて算出され、燃料噴射量QF(i)はこの減少分ΔQFずつ減少される(QF(i)=QF(i)−ΔQF)。この減少分ΔQFは要求負荷L及び機関回転数Nの関数として求められており、図8(A)に示すマップの形で予めROM32内に記憶されている。
一方、燃料噴射開始時期θS(i)は本発明による実施例では次のようにして徐々に進角される。即ち、この場合の燃料噴射開始時期θS(i)は例えば次式により算出される。
θS(i)=θSB(i)・k(i)
ここで、θSB(i)はi番気筒の基本燃料噴射開始時期を、k(i)はi番気筒の補正係数を、それぞれ表している。
補正係数k(i)はi番気筒の燃料噴射開始時期θS(i)を最適にするためのものであり、補正する必要がないときには1.0とされる。
一方、基本燃料噴射開始時期θSB(i)は燃料噴射開始時期θS(i)が徐々に進角される直前の値から進角分ΔθSずつ進角される(θSB=θSB(i)+ΔθS)。燃料噴射開始時期θS(i)の最適な単位時間当たりの進角量は例えば燃焼室内に供給される新気の単位時間当たりの減少量又はEGRガスの単位時間当たりの増大量に依存し、新気の単位時間当たりの減少量及びEGRガスの単位時間当たりの増大量は機関運転状態に依存する。そこで本発明による実施例では、進角分ΔθSを機関運転状態に基づいて求めるようにしている。この進角分ΔθSは機関運転状態例えば要求負荷L及び機関回転数Nの関数として求められており、図8(B)に示すマップの形で予めROM32内に記憶されている。
ところが、第2の燃焼から第1の燃焼に切り替えられるときに新気がどのように減少していきEGRガスがどのように増大していくかはサージタンク3における吸気ダクト4の流出端の位置やEGR通路19の流出端の位置などに応じて気筒毎に異なるおそれがある。このため、燃料噴射開始時期θS(i)を例えば進角分ΔθSずつ進角すると進角量が最適量よりも大きかったり小さかったりするおそれがある。
図9(A)は進角量が最適量よりも大きい場合の筒内圧Pを示しており、この場合燃焼による筒内圧Pの上昇幅ΔPないし発熱量が目標値よりも大きくなる。その結果、好ましくない燃焼騒音が発生するおそれがある。これに対し、図9(B)は進角量が最適量よりも小さい場合の筒内圧Pを示しており、この場合には燃焼による筒内圧Pの上昇幅ΔPが目標値よりも小さくなり、失火するおそれがある。なお、図9(A),(B)に破線で示されるのは進角量が最適量に一致し燃焼による筒内圧Pの上昇幅が目標値に一致している場合の筒内圧Pである。
そこで本発明による実施例では、各気筒の筒内圧の上昇幅ΔP(i)(i=1,2,3,4)を検出し、各気筒において燃焼による筒内圧上昇幅ΔP(i)が目標値に一致するのに必要な補正係数k(i)をこの上昇幅ΔP(i)に基づき求め、この補正係数k(i)でもって基本燃料噴射開始時期θSB(i)を補正するようにしている。
具体的には、補正係数k(i)は例えば筒内圧上昇幅ΔP(i)と筒内圧上昇幅の目標値ΔPTとの比の形で求められる(k(i)=ΔPT/ΔP(i))。この筒内圧上昇幅の目標値ΔPTは機関運転状態例えば要求負荷L及び機関回転数Nの関数として求められており、図10に示されるマップの形で予めROM32内に記憶されている。
図11(A)に示されるように筒内圧上昇幅ΔP(i)が目標値ΔPTよりも大きくなると、補正係数k(i)が1.0よりも小さくなるので燃料噴射開始時期θS(i)の進角量が小さくされる。これに対し、図11(B)に示されるように筒内圧上昇幅ΔP(i)が目標値ΔPTよりも小さくなると、補正係数k(i)が1.0よりも大きくなるので燃料噴射開始時期θS(i)の進角量が大きくされる。このようにして筒内圧上昇幅ΔP(i)が目標値ΔPTに一致せしめられる。なお、矢印X,Y,Zは図7と同様であるので説明を省略する。
従って、基本燃料噴射開始時期θSB(i)を第3の時期と考えれば、第2の燃焼から第1の燃焼に切り替えられるときには、第2の時期から第1の時期まで徐々に進角する第3の時期に各気筒の燃料噴射時期を設定すると共に各気筒の筒内圧を検出してこの検出された筒内圧に基づき対応する気筒の燃料噴射時期を補正しているということになる。
図12は本発明による運転制御ルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。
図12を参照すると、まず初めにステップ100において機関の運転領域が第1の運転領域Iであることを示すフラグIがセットされているか否かが判別される。フラグIがセットされているとき、即ち機関の運転領域が第1の運転領域Iにあるときにはステップ101に進んで要求負荷Lが図3に示す第1の境界LX(N)よりも大きくなったか否かが判別される。
L≦LX(N)のときにはステップ102に進んで第1の燃焼を行うためにスロットル弁8が制御される。即ち、図5(A)のマップから第1の燃焼のためのスロットル弁8の開度STが算出され、開度がこの開度STになるようにスロットル弁8が駆動される。続くステップ103では第1の燃焼を行うためにEGR制御弁20が制御される。即ち、図5(B)のマップから第1の燃焼のためのEGR制御弁20の開度SEが算出され、開度がこの開度SEになるようにEGR制御弁20が駆動される。
ステップ101においてL>LX(N)になったと判断されるとステップ104に進んでフラグIがリセットされる。次いでステップ107に進んで第2の燃焼を行うためにスロットル弁8が制御される。即ち、図6(A)のマップから第2の燃焼のためのスロットル弁8の開度STが算出され、開度がこの開度STになるようにスロットル弁8が駆動される。続くステップ108では第2の燃焼を行うためにEGR制御弁20が制御される。即ち、図6(B)のマップから第2の燃焼のためのEGR制御弁20の開度SEが算出され、開度がこの開度SEになるようにEGR制御弁20が駆動される。
一方、ステップ100においてフラグIがリセットされていると判断されたとき、即ち機関の運転領域が第2の運転領域IIにあるときにはステップ105に進んで要求負荷Lが図3に示す第2の境界LY(N)よりも小さくなったか否かが判別される。L≧LY(N)のときにはステップ107に進む。これに対してL<LY(N)になるとステップ106に進んでフラグIがセットされ、次いでステップ102に進む。
図13及び図14は本発明による実施例の燃料噴射制御ルーチンを示している。このルーチンは予め定められた設定クランク角毎の割り込みによって実行される。
図13及び図14を参照すると、まずステップ120ではi番気筒(i=1,2,3,4)の算出時期になったか否かが判別される。本発明による実施例では、各気筒において例えば圧縮上死点前60度程度に予め定められている算出時期になると、燃料噴射パラメータ即ち燃料噴射時期及び燃料噴射量が算出されるようになっている。i番気筒の算出時期でないときには処理サイクルを終了し、i番気筒の算出時期になると次いでステップ121に進み、上述したフラグIがセットされているか否かが判別される。フラグIがリセットされているとき即ち第2の燃焼を行うべきときには次いでステップ122に進み、図6(C)のマップから第2の燃焼のための燃料噴射量QFが算出され、このQFがi番気筒の燃料噴射量QF(i)とされる。続くステップ123では図6(D)のマップから第2の燃焼のための燃料噴射開始時期θSが算出され、このθSがi番気筒の燃料噴射開始時期θS(i)とされる。続くステップ124ではステップ123で算出された燃料噴射開始時期θS(i)がθSB(i)として記憶される。続くステップ125ではi番気筒で燃料噴射が行われる。即ち、i番気筒において燃料噴射開始時期θS(i)になると燃料がQF(i)だけ噴射される。
これに対し、フラグIがセットされているとき即ち第1の燃焼を行うべきときにはステップ121からステップ126に進み、吸入空気量Gaがしきい値GaIよりも少ないか否かが判別される。Ga≧GaIのときにはステップ122からステップ125に進む。
一方、Ga<GaIになると次いでステップ127に進み、第2の燃焼から第1の燃焼への切替が完了したか否かが判別される。例えば、燃焼噴射開始時期θS(i)が予め定められたしきい値よりも進角されると第2の燃焼から第1の燃焼への切替が完了したと判断することができる。第2の燃焼から第1の燃焼への切替が完了していないと判断されたときには次いでステップ128に進み、減少分ΔQFが図8(A)のマップから算出される。続くステップ129ではi番気筒の燃料噴射量QF(i)が減少分ΔQFだけ減少せしめられる(QF(i)=QF(i)−ΔQF)。続くステップ130では進角分ΔθSが図8(B)のマップから算出される。続くステップ131ではi番気筒の基本燃料噴射開始時期θSB(i)がΔθSだけ進角せしめられる(θSB(i)=θSB(i)+ΔθS)。
続くステップ132では、i番気筒の先の燃焼における筒内圧上昇幅ΔP(i)が筒内圧センサ18の出力に基づいて算出される。続くステップ133では図10のマップから筒内圧上昇幅の目標値ΔPTが算出される。続くステップ134ではi番気筒の補正係数k(i)が算出される(k(i)=ΔPT/ΔP(i))。続くステップ135ではi番気筒の燃料噴射開始時期θS(i)が算出される(θS(i)=θSB(i)・k(i))。次いでステップ125に進み、i番気筒において燃料噴射が行われる。
第2の燃焼から第1の燃焼への切替が完了したと判断されるとステップ127からステップ136に進み、図5(C)のマップから第1の燃焼のための燃料噴射量QFが算出され、このQFがi番気筒の燃料噴射量QF(i)とされる。続くステップ137では図5(D)のマップから第1の燃焼のための燃料噴射開始時期θSが算出され、このθSがi番気筒の燃料噴射開始時期θS(i)とされる。次いでステップ125に進んでi番気筒において燃料噴射が行われる。
内燃機関の全体図である。 EGR率とスモークの排出量との関係を示す線図である。 第1の運転領域及び第2の運転領域を示す線図である。 第1の燃焼及び第2の燃焼を説明するための図である。 第1の燃焼のためのパラメータを示す線図である。 第2の燃焼のためのパラメータを示す線図である。 本発明による実施例を説明するための図である。 燃料噴射量の減少分及び燃料噴射開始時期の進角分を示す線図である。 筒内圧を示す図である。 筒内圧上昇幅の目標値を示す線図である。 本発明による実施例を説明するための図である。 本発明による実施例の運転制御ルーチンを示すフローチャートである。 本発明による実施例の燃料噴射制御ルーチンを示すフローチャートである。 本発明による実施例の燃料噴射制御ルーチンを示すフローチャートである。
符号の説明
1…機関本体
15…燃料噴射弁
18…筒内圧センサ

Claims (2)

  1. 燃焼室内に供給される排気再循環ガス量を増大していくと煤の発生量が次第に増大してピークに達し、燃焼室内に供給される排気再循環ガス量を更に増大していくと燃焼室内における燃焼時の燃料及びその周囲のガス温が煤の生成温度よりも低くなって煤がほとんど発生しなくなる多気筒内燃機関において、煤の発生量がピークとなる排気再循環ガス量よりも燃焼室内に供給される排気再循環ガス量が多く煤がほとんど発生しない第1の燃焼と、煤の発生量がピークとなる排気再循環ガス量よりも燃焼室内に供給される排気再循環ガス量が少ない第2の燃焼とを選択的に切り替え、第1の燃焼が行われるときには機関運転状態に応じて定まる第1の時期に各気筒の燃料噴射時期を設定し、第2の燃焼が行われるときには機関運転状態に応じて定まる第2の時期に各気筒の燃料噴射時期を設定し、第1の時期は第2の時期よりも進角側に定められており、第2の燃焼から第1の燃焼に切り替えられるときには、第2の時期から第1の時期まで徐々に進角する第3の時期に各気筒の燃料噴射時期を設定すると共に各気筒の筒内圧を検出して該検出された筒内圧に基づき対応する気筒の燃料噴射時期を補正する、各段階を具備する燃料噴射時期制御方法。
  2. 第2の燃焼から第1の燃焼に切り替えられるときに燃焼による筒内圧の上昇幅が目標値よりも大きい気筒では燃料噴射時期の進角量を小さくし、燃焼による筒内圧の上昇幅が目標値よりも小さい気筒では燃料噴射時期の進角量を大きくする請求項1に記載の多気筒内燃機関の燃料噴射時期制御方法。
JP2003363636A 2003-10-23 2003-10-23 多気筒内燃機関の燃料噴射時期制御方法 Pending JP2005127224A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363636A JP2005127224A (ja) 2003-10-23 2003-10-23 多気筒内燃機関の燃料噴射時期制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363636A JP2005127224A (ja) 2003-10-23 2003-10-23 多気筒内燃機関の燃料噴射時期制御方法

Publications (1)

Publication Number Publication Date
JP2005127224A true JP2005127224A (ja) 2005-05-19

Family

ID=34642891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363636A Pending JP2005127224A (ja) 2003-10-23 2003-10-23 多気筒内燃機関の燃料噴射時期制御方法

Country Status (1)

Country Link
JP (1) JP2005127224A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012555A (ja) * 2009-06-30 2011-01-20 Nissan Motor Co Ltd 内燃機関の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012555A (ja) * 2009-06-30 2011-01-20 Nissan Motor Co Ltd 内燃機関の制御装置
US9014948B2 (en) 2009-06-30 2015-04-21 Nissan Motor Co., Ltd. Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
KR100879486B1 (ko) 엔진
JP4609541B2 (ja) 過給機付き内燃機関の制御装置
JP3768296B2 (ja) 筒内噴射型火花点火式内燃エンジンの制御装置
US9879617B2 (en) Control apparatus of engine
WO2014156209A1 (ja) 内燃機関の制御装置
JP3966243B2 (ja) 内燃機関
JP4415509B2 (ja) 内燃機関の制御装置
JP2006329003A (ja) 内燃機関の二次空気供給装置
JP2005083275A (ja) 内燃機関の制御装置および制御方法
JP2019120204A (ja) エンジン制御装置
JP2006220062A (ja) 水素添加内燃機関の制御装置
CN110259589B (zh) 内燃机的控制装置
JP6641405B2 (ja) エンジン制御装置
JP5925099B2 (ja) 内燃機関の制御装置
JP2010168924A (ja) 内燃機関の制御装置
JP2005127224A (ja) 多気筒内燃機関の燃料噴射時期制御方法
JP4930726B2 (ja) 内燃機関の燃料噴射装置
JP4339599B2 (ja) 筒内噴射式内燃機関の制御装置
JP3835975B2 (ja) 筒内噴射式内燃機関の制御装置
JP2005299570A (ja) 圧縮着火内燃機関の予混合燃焼制御システム
US9885293B2 (en) Control apparatus of engine
JP3557987B2 (ja) 内燃機関の燃料噴射装置
JP4325517B2 (ja) 内燃機関における燃料噴射制御方法
JP3613658B2 (ja) 多気筒内燃機関の燃料噴射制御装置
JP7023129B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A977 Report on retrieval

Effective date: 20080814

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Effective date: 20081216

Free format text: JAPANESE INTERMEDIATE CODE: A02