JP2005123175A - Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery - Google Patents

Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery Download PDF

Info

Publication number
JP2005123175A
JP2005123175A JP2004277371A JP2004277371A JP2005123175A JP 2005123175 A JP2005123175 A JP 2005123175A JP 2004277371 A JP2004277371 A JP 2004277371A JP 2004277371 A JP2004277371 A JP 2004277371A JP 2005123175 A JP2005123175 A JP 2005123175A
Authority
JP
Japan
Prior art keywords
negative electrode
metal
composite particles
lithium
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004277371A
Other languages
Japanese (ja)
Other versions
JP3995050B2 (en
Inventor
Yasushi Madokoro
靖 間所
Kunihiko Eguchi
邦彦 江口
Katsuhiro Nagayama
勝博 長山
Toshihide Suzuki
利英 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2004277371A priority Critical patent/JP3995050B2/en
Publication of JP2005123175A publication Critical patent/JP2005123175A/en
Application granted granted Critical
Publication of JP3995050B2 publication Critical patent/JP3995050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material, such that when used as a negative electrode for a lithium-ion secondary battery, ensures a high discharge capacity and an appreciable cycle characteristic and initial charge/discharge efficiency, and a lithium-ion secondary battery using the same; and to provide a composite particle that is suitable as a material of such a negative electrode material, and a manufacturing method of the same. <P>SOLUTION: The composite particle, which comprises a metal that can be alloyed with lithium, a graphitic material, and a carbonaceous material, has voids and has a 20% or higher ratio for voids around the metal to all the voids of the composite particles. The composite particle manufacturing method includes mixing of a metal, a graphitic material, and a precursor of a carbonaceous material A of a relatively low actual carbon rate after heating, and then mixing the mixture with a carbonaceous material B of a relatively higher actual carbon rate, after heating. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、黒鉛質材料を含有する複合粒子およびその製造方法、それを用いたリチウムイオン二次電池用負極材料および負極、ならびにそれを用いたリチウムイオン二次電池に関する。   The present invention relates to composite particles containing a graphite material, a production method thereof, a negative electrode material and a negative electrode for a lithium ion secondary battery using the same, and a lithium ion secondary battery using the same.

他の二次電池に比べて高電圧、高エネルギー密度という優れた特性を有するリチウムイオン二次電池は、電子機器の電源として広く普及している。近年、電子機器の小型化あるいは高性能化が急速に進み、リチウムイオン二次電池のさらなる高エネルギー密度化に対する要望はますます高まっている。
現在、リチウムイオン二次電池は、正極にLiCoO2 、負極に黒鉛を用いたものが一般的である。しかし、黒鉛負極は充放電の可逆性に優れるものの、その放電容量はすでに層間化合物LiC6 に相当する理論値372mAh/g に近い値まで到達しており、さらなる高エネルギー密度化を達成するためには、黒鉛より放電容量の大きい負極材料を開発する必要がある。
Lithium ion secondary batteries having excellent characteristics of high voltage and high energy density compared to other secondary batteries are widely used as power sources for electronic devices. In recent years, miniaturization or performance enhancement of electronic devices has rapidly progressed, and there is an increasing demand for higher energy density of lithium ion secondary batteries.
At present, lithium ion secondary batteries generally use LiCoO 2 for the positive electrode and graphite for the negative electrode. However, although the graphite negative electrode is excellent in reversibility of charge and discharge, its discharge capacity has already reached a value close to the theoretical value 372 mAh / g corresponding to the intercalation compound LiC 6 , in order to achieve further higher energy density. Needs to develop a negative electrode material having a larger discharge capacity than graphite.

金属リチウムは負極材料として最高の放電容量を有するが、充電時にリチウムがデンドライト状に析出して負極が劣化し、充放電サイクルが短くなるという問題がある。また、デンドライト状に析出したリチウムがセパレータを貫通して正極に達し、短絡する可能性もある。
そのため、金属リチウムに代わる負極材料として、リチウムと合金を形成する金属または金属化合物が検討されてきた。これらの合金負極は、金属リチウムには及ばないものの黒鉛を遥かにしのぐ放電容量を有する。しかし、合金化に伴う体積膨張により活物質の粉化・剥離が発生し、未だ実用レベルのサイクル特性は得られていない。
Although metallic lithium has the highest discharge capacity as a negative electrode material, there is a problem that lithium is deposited in a dendritic state during charging, the negative electrode is deteriorated, and the charge / discharge cycle is shortened. In addition, lithium deposited in a dendrite shape may penetrate the separator and reach the positive electrode, causing a short circuit.
Therefore, a metal or a metal compound that forms an alloy with lithium has been studied as a negative electrode material that replaces metallic lithium. These alloy negative electrodes have discharge capacities far surpassing that of graphite, though not as much as metallic lithium. However, active materials are pulverized and peeled off due to volume expansion accompanying alloying, and a practical level of cycle characteristics has not yet been obtained.

前述のような合金負極の欠点を解決するため、金属または金属化合物と黒鉛質物または炭素質物のどちらか一方または両方との複合化が検討されている。
特許文献1には、金属または金属材料と、黒鉛材料および炭素材料からなる複合材料を電極材料として用いることが開示されている。この複合材料において、該炭素材料は、金属物質と黒鉛材料を結合または被覆する役割を担う。また、これは、アルゴンレーザーを用いたラマン分光法により測定した該炭素材料の表面のDバンド1360cm-1ピーク強度IDと、Gバンド1580cm-1ピーク強度IGの比ID/IG(=R値)は0.4以上、つまり該炭素材料が黒鉛化されていないことを示すことが開示されている。しかし、炭素材料が複合材料の内部に浸透している場合、該金属または金属化合物の周囲に膨張を緩衝する空隙を確保することができず、複合粒子構造の破壊によるサイクル特性の低下を招く場合がある。
In order to solve the drawbacks of the alloy negative electrode as described above, a composite of a metal or a metal compound and one or both of a graphite material and a carbonaceous material has been studied.
Patent Document 1 discloses that a metal or a metal material and a composite material made of a graphite material and a carbon material are used as an electrode material. In this composite material, the carbon material plays a role of bonding or covering a metal substance and a graphite material. This is also the ratio ID / IG (= R value) of the D band 1360 cm −1 peak intensity ID of the surface of the carbon material measured by Raman spectroscopy using an argon laser and the G band 1580 cm −1 peak intensity IG. Is disclosed to be 0.4 or more, which indicates that the carbon material is not graphitized. However, when the carbon material penetrates into the inside of the composite material, it is not possible to secure voids for buffering the expansion around the metal or metal compound, resulting in deterioration of cycle characteristics due to destruction of the composite particle structure There is.

特許文献2には、シリコン含有粒子と炭素含有粒子とからなる多孔性粒子を炭素で被覆した負極材料が開示されている。なお、該炭素含有粒子は一種の黒鉛材料に相当する。この技術の例では、負極材料を積極的に多孔質化したにもかかわらず、シリコンとリチウムが合金化する際の体積膨張により、負極材料の破壊が起こり、やはり満足できるサイクル特性は得られない。さらに、炭素含有粒子(黒鉛材料)が1μm以下と小さく、電解液の分解反応を生じやすいため、電解液の分解反応に由来する初期充放電効率の低下が顕在化する場合がある。   Patent Document 2 discloses a negative electrode material in which porous particles composed of silicon-containing particles and carbon-containing particles are coated with carbon. The carbon-containing particles correspond to a kind of graphite material. In this example of technology, the anode material is destroyed due to volume expansion when silicon and lithium are alloyed even though the anode material is positively made porous, and satisfactory cycle characteristics cannot be obtained. . Furthermore, since the carbon-containing particles (graphite material) are as small as 1 μm or less and easily cause a decomposition reaction of the electrolytic solution, a decrease in the initial charge / discharge efficiency resulting from the decomposition reaction of the electrolytic solution may become apparent.

特許第3369589号公報Japanese Patent No. 3369589 特許第3466576号公報Japanese Patent No. 3466576

本発明者は、従来技術の複合粒子は、リチウムと合金を形成可能な金属の膨張を導電性を保ちながら、うまく吸収できないために、負極材料として用いた場合に、サイクル特性が悪くなるものと推測し、鋭意検討した結果、金属の周辺に、金属の平均粒子径より大きい空隙を形成すれば、合金形成時の金属の膨張を吸収でき、複合粒子の粉化や剥離を防止でき、金属の導電性を維持できることを見出し、本発明を完成するに至った。   The present inventor has said that the composite particles of the prior art cannot absorb the expansion of a metal capable of forming an alloy with lithium while maintaining conductivity, so that the cycle characteristics deteriorate when used as a negative electrode material. As a result of estimation and diligent investigation, if a void larger than the average particle diameter of the metal is formed around the metal, the expansion of the metal at the time of alloy formation can be absorbed, and powdering and peeling of the composite particles can be prevented. It has been found that the conductivity can be maintained, and the present invention has been completed.

本発明は、前記のような知見に鑑みてなされたものであり、リチウムイオン二次電池用負極として用いたときに、放電容量が高く、優れたサイクル特性と初期充放電効率が得られる負極材料とそれを用いたリチウムイオン二次電池を提供することを目的とする。また、そのような負極材料の材料として好適な黒鉛質材料を含有する複合粒子とその製造方法を提供することが目的である。   The present invention has been made in view of the above-described knowledge, and when used as a negative electrode for a lithium ion secondary battery, a negative electrode material having a high discharge capacity and excellent cycle characteristics and initial charge / discharge efficiency. And a lithium ion secondary battery using the same. It is another object of the present invention to provide composite particles containing a graphite material suitable as a material for such a negative electrode material and a method for producing the same.

本発明は、リチウムと合金化可能な金属、黒鉛質材料および炭素質材料からなる複合粒子において、該複合粒子が空隙を有し、かつ該複合粒子の全空隙に対する、金属周辺の空隙の割合が20%以上であることを特徴とする複合粒子である。   The present invention provides a composite particle comprising a metal that can be alloyed with lithium, a graphite material, and a carbonaceous material, wherein the composite particle has voids, and the ratio of voids around the metal to the total voids of the composite particles is It is a composite particle characterized by being 20% or more.

本発明の複合粒子は、前記金属がシリコンであることが好ましい。   In the composite particles of the present invention, the metal is preferably silicon.

本発明の複合粒子は、前記金属がシリコンであり、該シリコンの一部が酸化物であることが好ましい。   In the composite particle of the present invention, it is preferable that the metal is silicon and a part of the silicon is an oxide.

また、本発明は、リチウムと合金化可能な金属と、黒鉛質材料および炭素質材料Aの前駆体を混合し、得られた複合粒子に該炭素質材料Aの前駆体より残炭率の高い炭素質材料Bの前駆体を混合した後、加熱することを特徴とする複合粒子の製造方法である。   In the present invention, a metal that can be alloyed with lithium, a graphite material, and a precursor of carbonaceous material A are mixed, and the resultant composite particles have a higher residual carbon ratio than the precursor of carbonaceous material A. It is a method for producing composite particles, wherein the precursor of the carbonaceous material B is mixed and then heated.

本発明の複合粒子の製造方法は、リチウムと合金化可能な金属、黒鉛質材料、および残炭率が相対的に低い該炭素質材料Aの前駆体を混合し、複合粒子とした後、該複合粒子に残炭率が相対的に高い該炭素質材料Bの前駆体を混合し、加熱して、該金属の周辺に空隙を形成する方法が好ましい。   The method for producing composite particles of the present invention comprises mixing a metal that can be alloyed with lithium, a graphite material, and a precursor of the carbonaceous material A having a relatively low residual carbon ratio into composite particles, A method of mixing the precursor of the carbonaceous material B having a relatively high residual carbon ratio with the composite particles and heating to form voids around the metal is preferable.

本発明の複合粒子の製造方法においては、前記炭素質材料Aの残炭率が、前記炭素質材料Bの残炭率に比して10%以上低いことが好ましい。   In the method for producing composite particles of the present invention, it is preferable that the carbon residue of the carbonaceous material A is 10% or more lower than the carbon residue of the carbonaceous material B.

また、本発明は、前記いずれかの複合粒子を含むことを特徴とするリチウムイオン二次電池用負極材料である。   Moreover, this invention is a negative electrode material for lithium ion secondary batteries characterized by including one of the said composite particles.

また、本発明は、前記リチウムイオン二次電池用負極材料を用いることを特徴とするリチウムイオン二次電池用負極である。   Moreover, this invention is a negative electrode for lithium ion secondary batteries using the said negative electrode material for lithium ion secondary batteries.

また、本発明は、前記リチウムイオン二次電池用負極を用いることを特徴とするリチウムイオン二次電池である。   The present invention also provides a lithium ion secondary battery using the negative electrode for a lithium ion secondary battery.

本発明の複合粒子を含有する負極材料を用いて作製したリチウムイオン二次電池は、高い放電容量を有し、初期充放電容量およびサイクル特性に優れる。
そのため、本発明の負極材料を用いてなるリチウムイオン二次電池は、近年の高エネルギー密度化に対する要望を満たし、搭載する機器の小型化および高性能化に有効である。
また、本発明の複合粒子は、従来複合粒子の材料として使用されている材料を用いて製造することができるので、材料の入手が容易であり、材料コストが低い利点がある。また、本発明の複合粒子の製造方法は、比較的簡便な方法で目的の空隙を有する複合粒子を安定的に製造することができる利点もある。
The lithium ion secondary battery produced using the negative electrode material containing the composite particles of the present invention has a high discharge capacity and is excellent in initial charge / discharge capacity and cycle characteristics.
Therefore, the lithium ion secondary battery using the negative electrode material of the present invention satisfies the recent demand for higher energy density, and is effective for downsizing and higher performance of equipment to be mounted.
Moreover, since the composite particle of the present invention can be produced using a material conventionally used as a material of the composite particle, there is an advantage that the material is easily obtained and the material cost is low. In addition, the method for producing composite particles of the present invention has an advantage that composite particles having a desired void can be stably produced by a relatively simple method.

以下、本発明をより具体的に説明する。
(複合粒子)
本発明の複合粒子は、主にリチウムと合金化可能な金属、黒鉛質材料および炭素質材料からなる複合粒子である。該複合粒子は、複数の金属粒子を分散して包含し、複数の大小の空隙を分散して含有しており、該各空隙の少なくとも一部が該各金属の周辺に存在している。そして複合粒子の周辺が炭素質材料で包囲される構造である。なお、複合粒子の形状は不特定であり、その大きさは3〜50μm程度のものが製造可能であり、特に制限されるものではない。
Hereinafter, the present invention will be described more specifically.
(Composite particles)
The composite particle of the present invention is a composite particle mainly composed of a metal that can be alloyed with lithium, a graphite material, and a carbonaceous material. The composite particles contain a plurality of metal particles dispersedly and contain a plurality of large and small voids in a dispersed manner, and at least a part of each void is present around each metal. And it is the structure where the circumference | surroundings of a composite particle are surrounded by a carbonaceous material. In addition, the shape of the composite particles is not specified, and those having a size of about 3 to 50 μm can be manufactured, and are not particularly limited.

本発明の複合粒子において、金属周辺の空隙とは、該金属の表面の少なくとも一部に直接接して存在する空隙である。該金属粒子の表面の少なくとも一部に直接接して存在する空隙でなければ、金属粒子の膨張を吸収できず、負極材料として用いたときにサイクル特性の向上が不十分となる。該空隙は金属の種類により変動するので一様には言えないが、金属がシリコンの場合には、シリコンの中心から、シリコンが球状である場合には半径の、球状ではない場合には、その体積に相当する球とみなしてその半径の

Figure 2005123175
、好ましくは
Figure 2005123175
の距離にある領域内に存在することが好ましい。金属がスズの場合には、半径の
Figure 2005123175
、好ましくは
Figure 2005123175
の距離にある領域内に存在することが好ましい。 In the composite particle of the present invention, the void around the metal is a void existing in direct contact with at least a part of the surface of the metal. Unless the voids are in direct contact with at least a part of the surface of the metal particles, the expansion of the metal particles cannot be absorbed, and the cycle characteristics are not sufficiently improved when used as a negative electrode material. The gap varies depending on the type of metal, so it cannot be said uniformly. However, when the metal is silicon, the center is from the center of the silicon, and when the silicon is spherical, the radius is not spherical. Considering the sphere corresponding to the volume, the radius
Figure 2005123175
,Preferably
Figure 2005123175
It is preferable that it exists in the area | region which exists in the distance. If the metal is tin, the radius
Figure 2005123175
,Preferably
Figure 2005123175
It is preferable that it exists in the area | region which exists in the distance.

本発明の複合粒子の全空隙に対する、金属周辺の空隙の割合は20%以上でなければならない。20%未満では、金属がリチウムと合金を形成したときの膨張を吸収することができないからである。より好ましくは20〜100%、さらに好ましくは40〜100%、最も好ましくは50〜100%である。
また、複合粒子全体の空隙の割合は3〜50%であることが好ましい。3%未満であると、金属がリチウムと合金を形成した時の膨張を吸収できない場合があり、50%を超えると複合粒子の強度が不足する場合がある。
The ratio of the voids around the metal to the total voids of the composite particles of the present invention must be 20% or more. If it is less than 20%, the metal cannot absorb the expansion when it forms an alloy with lithium. More preferably, it is 20 to 100%, More preferably, it is 40 to 100%, Most preferably, it is 50 to 100%.
Moreover, it is preferable that the ratio of the space | gap of the whole composite particle is 3 to 50%. If it is less than 3%, the metal may not be able to absorb expansion when it forms an alloy with lithium, and if it exceeds 50%, the strength of the composite particles may be insufficient.

本発明の複合粒子の主要成分の好適組成(質量比)は、複合粒子全体を100としたとき、金属:黒鉛質材料:炭素質材料=1〜20:30〜95:4〜50の範囲であり、好ましくは2〜10:60〜93:5〜30の範囲である。
金属の組成が該範囲より少ないと、該複合粒子を含む負極材料をリチウムイオン二次電池に用いたときに、該電池の放電容量の向上効果が小さいことがあり、逆に該範囲より多くなると、該電池のサイクル特性の改良効果が小さくなることがある。
黒鉛質材料の組成が前記範囲を逸脱すると、金属の周辺に空隙を形成することが困難になる。
また炭素質材料の組成が該範囲を逸脱すると充放電効率やサイクル特性の改良効果が十分とは言えないことがある。
The suitable composition (mass ratio) of the main component of the composite particle of the present invention is in the range of metal: graphite material: carbonaceous material = 1-20: 30-95: 4-50 when the total composite particle is 100. Yes, preferably in the range of 2-10: 60-93: 5-30.
If the metal composition is less than this range, when the negative electrode material containing the composite particles is used in a lithium ion secondary battery, the effect of improving the discharge capacity of the battery may be small, and conversely if it exceeds the range The effect of improving the cycle characteristics of the battery may be reduced.
If the composition of the graphite material deviates from the above range, it becomes difficult to form voids around the metal.
In addition, if the composition of the carbonaceous material deviates from this range, the effect of improving charge / discharge efficiency and cycle characteristics may not be sufficient.

本発明の複合粒子の全空隙の容積は、例えば、粉砕して断面を露出させた複合粒子を水銀ポロシメータで測定することにより得られる。また、それから、複合粒子全体の空隙率(容積率)が計算される。
本発明の複合粒子全体の全空隙に対する金属周辺の空隙の割合は、50個の複合粒子の断面の、走査型電子顕微鏡写真(倍率400倍)について測定した全空隙面積と、全金属周辺の空隙の面積から得られる、複合粒子全体の全空隙に対する金属周辺の空隙の割合(面積率)の50個の平均値である。
The total void volume of the composite particles of the present invention can be obtained, for example, by measuring the composite particles that have been crushed to expose the cross section with a mercury porosimeter. Then, the porosity (volume ratio) of the entire composite particle is calculated.
The ratio of the voids around the metal to the total voids of the entire composite particles of the present invention is the total void area measured on a scanning electron micrograph (magnification 400 times) of the cross section of 50 composite particles, and the voids around all metals The average value of the ratio of the voids around the metal (area ratio) to the total voids of the entire composite particle obtained from the area of 50.

本発明の複合粒子において、前記空隙が前記金属の周辺に存在しているので、リチウムイオン二次電池のサイクル特性が改良される。これは、充放電時における該金属の膨張、収縮が該空隙によって緩衝され、該複合粒子を含む負極材料の構造破壊が抑制されるためと考えられる。つまり、例え、金属自体が粉化した場合でも、該負極材料全体としての複合粒子の形態が維持されるため、該各複合粒子間の接触が保たれ、集電性が損なわれることはなく、サイクル特性の低下を抑制することが可能になるものと推定される。   In the composite particles of the present invention, since the voids are present around the metal, the cycle characteristics of the lithium ion secondary battery are improved. This is presumably because expansion and contraction of the metal during charge and discharge are buffered by the voids, and structural destruction of the negative electrode material containing the composite particles is suppressed. That is, for example, even when the metal itself is pulverized, since the form of the composite particles as the whole of the negative electrode material is maintained, the contact between the composite particles is maintained, the current collection is not impaired, It is estimated that it is possible to suppress the deterioration of cycle characteristics.

(複合粒子の製造)
本発明は、リチウムと合金化可能な金属、黒鉛質材料、および炭素質材料の前駆体を含有する混合物を用いて、空隙の少なくとも一部が該金属の周辺に存在する複合粒子を製造し得る方法であれば、いかなる方法によって製造されても差し支えない。炭素質材料の前駆体は溶融、分散または溶解して用いることもできる。
(Manufacture of composite particles)
The present invention can produce composite particles in which at least a part of voids exist around the metal using a mixture containing a metal that can be alloyed with lithium, a graphite material, and a precursor of a carbonaceous material. Any method can be used. The precursor of the carbonaceous material can be used after being melted, dispersed or dissolved.

金属、黒鉛質材料ならびに炭素質材料の前駆体AおよびBの好適組成(質量比)は、複合粒子全体を100としたとき、金属:黒鉛質材料:炭素質材料=1〜15:35〜95:4〜50の範囲であり、好ましくは2〜10:60〜93:5〜30の範囲となるような組成で配合される。具体的には金属:黒鉛質材料:炭素質材料A:炭素質材料B=1〜15:35〜95:2〜50:2〜40の範囲であり、好ましくは2〜10:60〜93:3〜30:2〜30の範囲である。
金属が該範囲より少ないと、該複合粒子を含む負極材料をリチウムイオン二次電池に用いたときに、該電池の放電容量の向上効果が小さいことがあり、逆に該範囲より多くなると該電池のサイクル特性の改良効果が小さくなることがある。
炭素質材料Aが該範囲より少ないと、サイクル特性の改良効果が十分でないことがあり、逆に該範囲より多いと、充放電効率の改良効果が十分でないことがある。
また炭素質材料Bが該範囲より少ないと、充放電効率の改良効果が十分でないことがあり、逆に該範囲より多いと、サイクル特性の改良効果が十分でないことがある。
The preferred composition (mass ratio) of the precursors A and B of the metal, the graphite material, and the carbonaceous material is as follows: metal: graphitic material: carbonaceous material = 1-15: 35-95 : 4 to 50, preferably 2 to 10: 60 to 93: 5 to 30. Specifically, metal: graphitic material: carbonaceous material A: carbonaceous material B = 1 to 15:35 to 95: 2 to 50: 2 to 40, preferably 2 to 10:60 to 93: It is the range of 3-30: 2-30.
When the metal is less than the range, the negative electrode material containing the composite particles may have a small effect of improving the discharge capacity of the battery when used in a lithium ion secondary battery. The effect of improving the cycle characteristics may be reduced.
If the carbonaceous material A is less than this range, the effect of improving the cycle characteristics may not be sufficient, and conversely if it is more than the range, the effect of improving the charge / discharge efficiency may not be sufficient.
On the other hand, if the carbonaceous material B is less than the range, the effect of improving the charge / discharge efficiency may not be sufficient, and conversely if it is more than the range, the effect of improving the cycle characteristics may not be sufficient.

本発明の複合粒子の製造方法は、リチウムと合金化可能な金属と、黒鉛質材料および残炭率の相対的に低い炭素質材料Aの前駆体を混合し、得られた複合粒子にさらに残炭率の相対的に高い炭素質材料Bの前駆体を混合し、加熱する方法である。この製造方法において、熱処理は、複合粒子の炭素質材料AおよびBが実質的に揮発物を含有しない状態になることが可能な温度で行うことが好ましい。   The method for producing composite particles of the present invention comprises mixing a metal that can be alloyed with lithium, a graphite material, and a precursor of carbonaceous material A having a relatively low residual carbon ratio, and further leaving the remaining composite particles in the resulting composite particles. In this method, precursors of carbonaceous material B having a relatively high carbon ratio are mixed and heated. In this production method, the heat treatment is preferably performed at a temperature at which the carbonaceous materials A and B of the composite particles can be substantially free of volatile substances.

該前駆体は600℃以上、好ましくは800℃以上の温度で熱処理することにより、炭素化され、炭素質材料に導電性が付与される。該熱処理は、段階的に数回に分けて複数回行ってもよく、触媒の存在下に行ってもよい。また、酸化性ガス、非酸化性ガスの雰囲気のいずれで行ってもよい。
ただし、1500℃以上では炭素とシリコンが反応してSiCを生成するため、加熱温度は1500℃未満とする必要がある。1000〜1200℃であることが好ましい。また、適宜、分散媒を用いて混合することが好ましい。分散媒は、炭素質材料A、Bの前駆体が軟化、分解しない温度以下で除去することが好ましい。
The precursor is carbonized by heat treatment at a temperature of 600 ° C. or higher, preferably 800 ° C. or higher, and conductivity is imparted to the carbonaceous material. The heat treatment may be performed several times stepwise, or may be performed in the presence of a catalyst. Moreover, you may carry out in any atmosphere of oxidizing gas and non-oxidizing gas.
However, since the carbon and silicon react to generate SiC at 1500 ° C. or higher, the heating temperature needs to be lower than 1500 ° C. It is preferable that it is 1000-1200 degreeC. Moreover, it is preferable to mix using a dispersion medium suitably. It is preferable to remove the dispersion medium at a temperature not higher than the temperature at which the precursors of the carbonaceous materials A and B are not softened or decomposed.

また、熱処理の前後のいずれかの段階で、適宜、粉砕、篩い分け、分級による微粉除去などの粒度調整を行うことが好ましい。なお、比較的低温で熱処理し、前記複合体が柔軟性を有する状態で、複合体を転がす操作や高い剪断力を付与する操作を加えることにより、複合体が球状に近い形状となり、特に黒鉛材料の一つとして鱗片状黒鉛を使用する場合は、該鱗片状黒鉛が同心円状に配置されやすくなり好ましい。このような操作が可能な装置としては、GRANUREX[フロイト産業(株)製]、ニューグラマシン[(株)セイシン企業製]、アグロマスター[ホソカワミクロン(株)製]などの造粒機、ロールミル、ハイブリダイゼーションシステム[(株)奈良機械製作所製]、メカノマイクロシステム[(株)奈良機械製作所製]、メカノフュージョンシステム[ホソカワミクロン(株)製]などの圧縮剪断式加工装置などであり、これらを使用することができる。   Further, it is preferable to adjust the particle size such as pulverization, sieving, and fine powder removal by classification at any stage before and after the heat treatment. In addition, when the heat treatment is performed at a relatively low temperature and the composite is flexible, an operation of rolling the composite or an operation of applying a high shearing force is applied, so that the composite becomes a nearly spherical shape, particularly a graphite material. When scaly graphite is used as one of the above, it is preferable because the scaly graphite is easily arranged concentrically. As a device capable of such operations, granulators such as GRANUREX [manufactured by Freud Sangyo Co., Ltd.], Newgra Machine [manufactured by Seishin Corporation], Agromaster [manufactured by Hosokawa Micron Co., Ltd.], roll mill, high These are compression shear type processing devices such as hybridization systems [made by Nara Machinery Co., Ltd.], mechano microsystems [made by Nara Machinery Co., Ltd.], mechano fusion systems [made by Hosokawa Micron Co., Ltd.], etc. be able to.

(炭素質材料)
炭素質材料は導電性を有し、金属と黒鉛質材料とを結着するものであり、結着剤として不可欠な成分であり、前駆体を熱処理して得ることができる。炭素質材料の前駆体の種類は問わないが、本発明においては、炭素化後の炭素質材料の残炭率が異なる2種以上を使用する必要がある。残炭率が異なるとは、相対的に好ましくは数%以上、より好ましくは10%以上異なることを意味する。ここで、残炭率とは、JIS K2425の固定炭素法に準拠し、800℃に加熱し、実質的に全量が炭素化されたときの残分を言い、百分率で表す。
(Carbonaceous material)
The carbonaceous material has conductivity, and binds the metal and the graphite material, is an indispensable component as a binder, and can be obtained by heat-treating the precursor. Although the kind of precursor of carbonaceous material is not ask | required, in this invention, it is necessary to use 2 or more types from which the carbon residue of the carbonaceous material after carbonization differs. The difference in the remaining charcoal rate means that it is relatively preferably several percent or more, more preferably 10% or more. Here, the residual carbon ratio is based on the fixed carbon method of JIS K2425, and refers to the residual when the entire amount is carbonized by heating to 800 ° C. The percentage is expressed as a percentage.

炭素質材料の前駆体は、タールピッチ類および/または樹脂類であることが好ましい。タールピッチ類は相対的に炭素化後の空隙量が少ないので、炭素質材料Bの前駆体(つまり残炭率の相対的に高い炭素質材料の前駆体)として好ましく用いられる。一方、樹脂類は、相対的に炭素化後の空隙量が多くなるので、炭素質材料Aの前駆体(つまり残炭率の相対的に低い炭素質材料の前駆体)として好ましい。具体的には、石油系または石炭系のタールピッチ類として、コールタール、タール軽油、タール中油、タール重油、ナフタリン油、アントラセン油、コールタールピッチ、ピッチ油、メソフェーズピッチ、酸素架橋石油ピッチ、ヘビーオイルなどが挙げられる。また樹脂類として、ポリビニルアルコールなどの熱可塑性樹脂、フェノール樹脂、フラン樹脂などが挙げられる。例えば、炭素質材料Aの前駆体としては、残炭率が10〜50%のフェノール樹脂を、炭素質材料Bの前駆体としては、残炭率が50〜90%のコールタールピッチを用いることが好ましい。   The precursor of the carbonaceous material is preferably tar pitches and / or resins. Tar pitches are preferably used as a precursor of the carbonaceous material B (that is, a precursor of a carbonaceous material having a relatively high residual carbon ratio) because the amount of voids after carbonization is relatively small. On the other hand, since the amount of voids after carbonization is relatively large, resins are preferable as a precursor of the carbonaceous material A (that is, a precursor of a carbonaceous material having a relatively low residual carbon ratio). Specifically, as petroleum-based or coal-based tar pitches, coal tar, tar light oil, tar medium oil, tar heavy oil, naphthalene oil, anthracene oil, coal tar pitch, pitch oil, mesophase pitch, oxygen-crosslinked petroleum pitch, heavy Examples include oil. Examples of the resins include thermoplastic resins such as polyvinyl alcohol, phenol resins, and furan resins. For example, a phenol resin having a residual carbon ratio of 10 to 50% is used as the precursor of the carbonaceous material A, and a coal tar pitch having a residual carbon ratio of 50 to 90% is used as the precursor of the carbonaceous material B. Is preferred.

残炭率が相対的に低い炭素質材料Aの前駆体は、加熱後の炭素質材料に多くの空隙を生じさせるので、主に金属周辺の空隙形成の役割を担う。一方、残炭率が相対的に高い炭素質材料Bの前駆体は、加熱後の炭素質材料に発生する空隙が少なく、緻密な炭素質材料を形成することができるので、主に複合粒子の最表層を形成し、複合粒子を包囲する役割を担う。その結果、これを含有する負極材料を用いたリチウムイオン二次電池の不可逆容量の低減(初期充放電効率の向上)が可能になる。したがって、本発明の複合粒子の製造過程において、炭素質材料Aの前駆体を先に、金属や黒鉛質材料と混合して複合化した後、炭素質材料Bの前駆体を混合して、複合化する必要がある。   Since the precursor of the carbonaceous material A having a relatively low residual carbon ratio generates many voids in the heated carbonaceous material, it mainly plays a role of void formation around the metal. On the other hand, the precursor of the carbonaceous material B having a relatively high residual carbon ratio has few voids generated in the carbonaceous material after heating and can form a dense carbonaceous material. It forms the outermost layer and plays the role of surrounding the composite particles. As a result, it is possible to reduce the irreversible capacity (improvement of initial charge / discharge efficiency) of a lithium ion secondary battery using a negative electrode material containing the same. Therefore, in the manufacturing process of the composite particles of the present invention, the precursor of the carbonaceous material A is first mixed with a metal or a graphite material, and then combined, and then the precursor of the carbonaceous material B is mixed and combined. It is necessary to make it.

炭素質材料A、Bの前駆体の残炭率の高低が逆の場合、すなわち、炭素質材料A、Bの前駆体の混合順序が前記と逆の場合には、空隙の形成も、最表層の形成も不完全なものになり、これを負極材料に用いてなるリチウムイオン二次電池のサイクル特性と初期充放電容量の改良効果が得られない。また、該炭素質材料が1種類の炭素質材料の前駆体のみに由来する場合には、その残炭率に実質的な差がないので、該空隙の形成、または不可逆容量の低減のいずれか一方の効果しか得られない。   When the remaining carbon ratio of the precursors of the carbonaceous materials A and B is reversed, that is, when the mixing order of the precursors of the carbonaceous materials A and B is opposite to the above, the formation of voids is also the outermost layer. As a result, the cycle characteristics and the initial charge / discharge capacity of the lithium ion secondary battery using this as a negative electrode material cannot be improved. Further, when the carbonaceous material is derived from only one type of carbonaceous material precursor, there is no substantial difference in the residual carbon ratio, so either the formation of the voids or the reduction of the irreversible capacity Only one effect can be obtained.

(リチウムと合金化可能な金属)
リチウムと合金化可能な金属は、Al、Pb、Zn、Sn、Bi、In、Mg、Ga、Cd、Ag、Si、B、Au、Pt、Pd、Sb、Ge、Niなどであり、これら金属の2種以上の合金であってもよい。合金には、上記以外の元素をさらに含有していてもよい。好ましい金属はシリコンSiおよびスズSnであり、特に好ましいのは入手しやすいシリコンである。また、これら金属の化合物は、リチウムとの合金化による体積膨張が金属より小さいので、金属の一部が酸化物、窒化物、炭化物などの化合物であってもよい。好ましいのはシリコン酸化物およびスズ酸化物であり、特に好ましいのは、入手しやすいシリコン酸化物である。金属と金属化合物を併用する場合、その合計量に対して、金属化合物は10〜95質量%とすることが好ましい。この範囲であると、膨張を低減する効果が発揮される。さらに好ましいのは50〜95質量%である。
金属の平均粒子径は10μm以下であるのが好ましく、5μm以下であることがより好ましい。10μmを超えるとサイクル特性の改良効果が小さくなる場合がある。
金属の形状は特に制約されない。粒状、球状、板状、鱗片状、針状、糸状などのいずれであってもよい。ここで、平均粒子径とはレーザー回折式粒度計で測定される累積度数が体積分率で50%となる粒径を意味する。
(Metal that can be alloyed with lithium)
Metals that can be alloyed with lithium are Al, Pb, Zn, Sn, Bi, In, Mg, Ga, Cd, Ag, Si, B, Au, Pt, Pd, Sb, Ge, Ni, and the like. Two or more kinds of alloys may be used. The alloy may further contain elements other than those described above. Preferred metals are silicon Si and tin Sn, and particularly preferred is readily available silicon. In addition, since these metal compounds have a volume expansion due to alloying with lithium smaller than that of the metal, a part of the metal may be a compound such as an oxide, a nitride, or a carbide. Preferred are silicon oxide and tin oxide, and particularly preferred is readily available silicon oxide. When using a metal and a metal compound together, it is preferable that a metal compound shall be 10-95 mass% with respect to the total amount. Within this range, the effect of reducing expansion is exhibited. More preferred is 50 to 95% by mass.
The average particle diameter of the metal is preferably 10 μm or less, and more preferably 5 μm or less. If it exceeds 10 μm, the effect of improving the cycle characteristics may be reduced.
The shape of the metal is not particularly limited. Any of a granular shape, a spherical shape, a plate shape, a scale shape, a needle shape, a thread shape and the like may be used. Here, the average particle diameter means a particle diameter at which the cumulative frequency measured with a laser diffraction particle size meter is 50% in volume fraction.

(黒鉛質材料)
黒鉛質材料はリチウムイオンを吸蔵・放出できるものであればよく、特に限定されない。その一部または全部が黒鉛質で形成されているもの、例えば、タール、ピッチ類を最終的に1500℃以上で熱処理(黒鉛化)して得られる人造黒鉛や天然黒鉛などである。具体的には、石油系または石炭系のタールピッチ類などの易黒鉛化性炭素材料を、熱処理して重縮合させたメソフェーズ焼成体、メソフェーズ小球体、コークス類を1500℃以上、好ましくは2800〜3300℃で黒鉛化処理して得ることができる。
黒鉛質材料の形状は、球状、塊状、板状、鱗片状、繊維状などのいずれでもよいが、特に鱗片状または鱗片状に近い形状のものが好ましい。また、前記した各種の混合物、造粒物、被覆物、積層物であってもよい。また、液相、気相、固相における各種化学的処理、熱処理、酸化処理、物理的処理などを施したものであってもよい。
黒鉛質材料の平均粒子径は1〜30μm、特に3〜15μmであるのが好ましい。
(Graphite material)
The graphite material is not particularly limited as long as it can occlude and release lithium ions. Artificial graphite or natural graphite obtained by heat treatment (graphitization) of tar or pitch at a temperature of 1500 ° C. or higher is finally used, for example, part or all of which is made of graphite. Specifically, mesophase fired bodies, mesophase spherules, and cokes obtained by heat-treating and polycondensing easily graphitizable carbon materials such as petroleum-based or coal-based tar pitches are 1500 ° C. or higher, preferably 2800- It can be obtained by graphitization at 3300 ° C.
The shape of the graphite material may be any of a spherical shape, a block shape, a plate shape, a flaky shape, a fibrous shape, and the like, but a flaky shape or a shape close to a flaky shape is particularly preferable. Moreover, the above-mentioned various mixtures, granulated products, coatings, and laminates may be used. Further, it may be subjected to various chemical treatments in the liquid phase, gas phase, and solid phase, heat treatment, oxidation treatment, physical treatment, and the like.
The average particle diameter of the graphite material is preferably 1 to 30 μm, particularly preferably 3 to 15 μm.

本発明は前記複合粒子を含有するリチウムイオン二次電池用負極材料であり、または該負極材料を用いるリチウムイオン二次電池用負極であり、さらには、該負極を用いるリチウムイオン二次電池である。
(負極)
本発明のリチウムイオン二次電池用の負極は、通常の負極の成形方法に準じて作製されるが、化学的、電気化学的に安定な負極を得ることができる方法であれば何ら制限されない。負極の作製時には、本発明の複合粒子に結合剤を加えて、予め調製した負極合剤を用いることが好ましい。結合剤としては、電解質に対して、化学的および電気化学的に安定性を示すものが好ましく、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系樹脂粉末、ポリエチレン、ポリビニルアルコールなどの樹脂粉末、カルボキシメチルセルロースなどが用いられる。これらを併用することもできる。結合剤は、通常、負極合剤の全量中の1〜20質量%程度の割合で用いられる。
The present invention is a negative electrode material for a lithium ion secondary battery containing the composite particles, or a negative electrode for a lithium ion secondary battery using the negative electrode material, and further a lithium ion secondary battery using the negative electrode. .
(Negative electrode)
The negative electrode for a lithium ion secondary battery of the present invention is produced according to a normal negative electrode molding method, but is not limited as long as it is a method capable of obtaining a chemically and electrochemically stable negative electrode. When preparing the negative electrode, it is preferable to use a negative electrode mixture prepared in advance by adding a binder to the composite particles of the present invention. As the binder, those showing chemical and electrochemical stability with respect to the electrolyte are preferable. For example, fluorine-based resin powders such as polytetrafluoroethylene and polyvinylidene fluoride, and resin powders such as polyethylene and polyvinyl alcohol Carboxymethyl cellulose and the like are used. These can also be used together. A binder is normally used in the ratio of about 1-20 mass% in the whole quantity of a negative electrode mixture.

より具体的には、まず、本発明の複合粒子を分級などにより所望の粒度に調整し、結合剤と混合して得た混合物を溶剤に分散させ、ペースト状にして負極合剤を調製する。すなわち、本発明の複合粒子と、結合剤を、水、イソプロピルアルコール、N−メチルピロリドン、ジメチルホルムアミドなどの溶剤と混合して得たスラリーを、公知の攪拌機、混合機、混練機、ニーダーなどを用いて攪拌混合して、ペーストを調製する。該ペーストを、集電材の片面または両面に塗布し、乾燥すれば、負極合剤層が均一かつ強固に接着した負極が得られる。負極合剤層の膜厚は10〜200μm、好ましくは20〜100μmである。   More specifically, first, the composite particles of the present invention are adjusted to a desired particle size by classification or the like, and a mixture obtained by mixing with a binder is dispersed in a solvent to prepare a negative electrode mixture in the form of a paste. That is, a slurry obtained by mixing the composite particles of the present invention and a binder with a solvent such as water, isopropyl alcohol, N-methylpyrrolidone, dimethylformamide, and the like, using a known stirrer, mixer, kneader, kneader, etc. Use to stir and mix to prepare paste. When the paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly and firmly bonded is obtained. The film thickness of the negative electrode mixture layer is 10 to 200 μm, preferably 20 to 100 μm.

また、本発明の負極は、本発明の複合粒子と、ポリエチレン、ポリビニルアルコールなどの樹脂粉末を乾式混合し、金型内でホットプレス成型して作製することもできる。
負極合剤層を形成した後、プレスなどの圧着を行うと、負極合剤層と集電体との接着強度をより高めることができる。
負極の作製に用いる集電体の形状としては、特に限定されることはないが、箔状、メッシュ、エキスパンドメタルなどの網状などである。集電材の材質としては、銅、ステンレス、ニッケルなどが好ましい。集電体の厚みは、箔状の場合で5〜20μm程度であるのが好ましい。
なお、本発明の負極は、リチウムと合金化可能な金属、黒鉛質材料と炭素質材料を含有する複合粒子に、天然黒鉛などの黒鉛質材料、さらに非晶質ハードカーボンなどの炭素質材料、フェノール樹脂などの有機物、シリコンなどの金属、酸化スズなどの金属化合物などを配合してもよい。
The negative electrode of the present invention can also be produced by dry-mixing the composite particles of the present invention and resin powders such as polyethylene and polyvinyl alcohol and hot pressing in a mold.
When the negative electrode mixture layer is formed and then subjected to pressure bonding such as pressing, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased.
The shape of the current collector used for producing the negative electrode is not particularly limited, but may be a foil shape, a mesh shape, a net shape such as expanded metal, or the like. The material for the current collector is preferably copper, stainless steel, nickel or the like. The thickness of the current collector is preferably about 5 to 20 μm in the case of a foil.
The negative electrode of the present invention includes a metal that can be alloyed with lithium, a composite particle containing a graphite material and a carbonaceous material, a graphite material such as natural graphite, and a carbonaceous material such as amorphous hard carbon, You may mix | blend organic substances, such as a phenol resin, metals, such as a silicon | silicone, metal compounds, such as a tin oxide.

(リチウムイオン二次電池)
リチウムイオン二次電池は、通常、負極、正極および非水電解質を主たる電池構成要素とし、正極および負極はそれぞれリチウムイオンの担持体からなり、充電時にはリチウムイオンが負極中に吸蔵され、放電時には負極から離脱する電池機構によっている。
本発明のリチウムイオン二次電池は、負極材料として本発明の負極材料を用いること以外は特に限定されず、正極、電解質、セパレータなどの他の電池構成要素については一般的なリチウムイオン二次電池の要素に準じる。
(Lithium ion secondary battery)
A lithium ion secondary battery usually has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main battery components. The positive electrode and the negative electrode are each composed of a lithium ion carrier, and lithium ions are occluded in the negative electrode during charging, and the negative electrode during discharging. By battery mechanism to detach from.
The lithium ion secondary battery of the present invention is not particularly limited except that the negative electrode material of the present invention is used as the negative electrode material, and other battery components such as a positive electrode, an electrolyte, and a separator are general lithium ion secondary batteries. According to the elements of

(正極)
正極は、例えば正極材料と結合剤および導電剤よりなる正極合剤を集電体の表面に塗布することにより形成される。正極の材料(正極活物質)は、充分量のリチウムを吸蔵/離脱し得るものを選択するのが好ましく、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物などのリチウム含有化合物、一般式MX Mo6 8-y (式中Mは少なくとも一種の遷移金属元素であり、Xは0≦X≦4、Yは0≦Y≦1の範囲の数値である)で表されるシェブレル相化合物、活性炭、炭素繊維などである。バナジウム酸化物は、V2 5 、V6 13、V2 4 、V3 8 で示されるものである。
(Positive electrode)
The positive electrode is formed, for example, by applying a positive electrode mixture comprising a positive electrode material, a binder and a conductive agent to the surface of the current collector. The positive electrode material (positive electrode active material) is preferably selected from materials that can occlude / release a sufficient amount of lithium, and lithium such as lithium-containing transition metal oxides, transition metal chalcogenides, vanadium oxides, and lithium compounds thereof. Containing compound, general formula M X Mo 6 S 8-y (wherein M is at least one transition metal element, X is a numerical value in the range of 0 ≦ X ≦ 4, Y is 0 ≦ Y ≦ 1) Chevrel phase compounds, activated carbon, carbon fiber and the like. The vanadium oxide is represented by V 2 O 5 , V 6 O 13 , V 2 O 4 , or V 3 O 8 .

リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。複合酸化物は単独で使用しても、2種類以上を組合わせて使用してもよい。リチウム含有遷移金属酸化物は、具体的には、LiM1 1-X2 X 2 (式中M1 、M2 は少なくとも一種の遷移金属元素であり、Xは0≦X≦1の範囲の数値である)、またはLiM1 1-Y2 Y 4 (式中M1 、M2 は少なくとも一種の遷移金属元素であり、Yは0≦Y≦1の範囲の数値である)で示される。
1 、M2 で示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましいのはCo、Fe、Mn、Ti、Cr、V、Alなどである。好ましい具体例は、LiCoO2 、LiNiO2 、LiMnO2 、LiNi0.9 Co0.1 2 、LiNi0.5 Mn0.5 2 などである。
リチウム含有遷移金属酸化物は、例えば、リチウム、遷移金属の酸化物、水酸化物、塩類等を出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素雰囲気下600〜1000℃の温度で焼成することにより得ることができる。
The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. The composite oxide may be used alone or in combination of two or more. Specifically, the lithium-containing transition metal oxide is LiM 1 1-X M 2 X O 2 (wherein M 1 and M 2 are at least one transition metal element, and X is in the range of 0 ≦ X ≦ 1. LiM 1 1-Y M 2 Y O 4 (wherein M 1 and M 2 are at least one transition metal element, and Y is a value in the range of 0 ≦ Y ≦ 1). Indicated.
The transition metal elements represented by M 1 and M 2 are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., preferably Co, Fe, Mn, Ti, Cr , V, Al, etc. Preferred examples are LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.9 Co 0.1 O 2 , LiNi 0.5 Mn 0.5 O 2 and the like.
Examples of the lithium-containing transition metal oxide include lithium, transition metal oxides, hydroxides, salts, and the like as starting materials, and these starting materials are mixed in accordance with the composition of the desired metal oxide, and are mixed under an oxygen atmosphere. It can be obtained by firing at a temperature of ˜1000 ° C.

正極活物質は、前記化合物を単独で使用しても2種類以上併用してもよい。例えば、正極中に炭酸リチウム等の炭酸塩を添加することができる。また、正極を形成するに際しては、従来公知の導電剤や結着剤などの各種添加剤を適宜に使用することができる。
正極は、前記正極材料、結合剤、および正極に導電性を付与するための導電剤よりなる正極合剤を、集電体の両面に塗布して正極合剤層を形成して作製される。結合剤としては、負極の作製に使用されるものと同じものが使用可能である。導電剤としては、黒鉛化物、カーボンブラックなど公知のものが使用される。
集電体の形状は特に限定されないが、箔状またはメッシュ、エキスパンドメタル等の網状等のものが用いられる。集電体の材質は、アルミニウム、ステンレス、ニッケル等である。その厚さは10〜40μmのものが好適である。
The positive electrode active material may be used alone or in combination of two or more. For example, a carbonate such as lithium carbonate can be added to the positive electrode. Moreover, when forming a positive electrode, conventionally well-known various additives, such as a electrically conductive agent and a binder, can be used suitably.
The positive electrode is produced by applying a positive electrode mixture comprising the positive electrode material, a binder, and a conductive agent for imparting conductivity to the positive electrode on both sides of the current collector to form a positive electrode mixture layer. As the binder, the same one as that used for producing the negative electrode can be used. As the conductive agent, known materials such as graphitized materials and carbon black are used.
The shape of the current collector is not particularly limited, but a foil shape or a mesh shape such as a mesh or expanded metal is used. The material of the current collector is aluminum, stainless steel, nickel or the like. The thickness is preferably 10 to 40 μm.

正極も負極と同様に、正極合剤を溶剤中に分散させペースト状にし、このペースト状の正極合剤を集電体に塗布、乾燥して正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス等の圧着を行ってもよい。これにより正極合剤層が均一且つ強固に集電材に接着される。   Similarly to the negative electrode, the positive electrode mixture may be formed in a paste by dispersing the positive electrode mixture in a solvent, and the paste-like positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After forming the agent layer, pressure bonding such as pressing may be further performed. As a result, the positive electrode mixture layer is uniformly and firmly bonded to the current collector.

(非水電解質)
本発明のリチウムイオン二次電池に用いられる非水電解質としては、通常の非水電解液に使用される電解質塩であり、例えば、LiPF6 、LiBF4 、LiAsF6 、LiClO4 、LiB(C6 5 )、LiCl、LiBr、LiCF3 SO3 、LiCH3 SO3 、LiN(CF3 SO2 2 、LiC(CF3 SO2 3 、LiN(CF3 CH2 OSO2 2 、LiN(CF3 CF2 OSO2 2 、LiN(HCF2 CF2 CH2 OSO2 2 、LiN((CF3 2 CHOSO2 2 、LiB[(C6 3 ((CF3 2 4 、LiAlCl4 、LiSiF6 などのリチウム塩を用いることができる。特にLiPF6 、LiBF4 が酸化安定性の点から好ましく用いられる。
電解質中の電解質塩濃度は、0.1〜5mol /lが好ましく、0.5〜3.0mol/l がより好ましい。
(Nonaqueous electrolyte)
The non-aqueous electrolyte used in the lithium ion secondary battery of the present invention, an electrolyte salt used in the conventional non-aqueous electrolyte, for example, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5), LiCl, LiBr, LiCF 3 SO 3, LiCH 3 SO 3, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) 3, LiN (CF 3 CH 2 OSO 2) 2, LiN (CF 3 CF 2 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN ((CF 3 ) 2 CHOSO 2 ) 2 , LiB [(C 6 H 3 ((CF 3 ) 2 ] 4 , LiAlCl 4 Lithium salts such as LiSiF 6 can be used, and LiPF 6 and LiBF 4 are particularly preferably used from the viewpoint of oxidation stability.
The electrolyte salt concentration in the electrolyte is preferably 0.1 to 5 mol / l, more preferably 0.5 to 3.0 mol / l.

非水電解質液とするための溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1,1 −または1,2 −ジメトキシエタン、1,2 −ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1 ,3−ジオキソラン、4 −メチル−1 ,3 −ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。   Examples of the solvent for preparing the non-aqueous electrolyte include carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2 -Methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, ethers such as anisole and diethyl ether, thioethers such as sulfolane and methylsulfolane, acetonitrile, chloronitrile, propionitrile, etc. Nitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethylorthoformate, nitrobenzene, benzoyl chloride, benzobromide An aprotic organic solvent such as yl, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, dimethyl sulfite can be used.

非水電解質を高分子固体電解質、高分子ゲル電解質などの高分子電解質とする場合には、マトリクスとして可塑剤(非水電解液)でゲル化された高分子化合物を用いる。該マトリクス高分子化合物としては、ポリエチレンオキサイドやその架橋体などのエーテル系樹脂、ポリメタクリレート系樹脂、ポリアクリレート系樹脂、ポリビニリデンフルオライド(PVDF)やビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂などを単独、もしくは混合して用いることができる。
これらの中で、酸化還元安定性の観点などから、ポリビニリデンフルオライドやビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系樹脂を用いることが好ましい。
使用される可塑剤としては、前記の電解質塩や非水溶媒が使用できる。高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は0.1〜5mol /lが好ましく、0.5〜2.0mol/l がより好ましい。
When the nonaqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte or polymer gel electrolyte, a polymer compound gelled with a plasticizer (nonaqueous electrolyte) is used as a matrix. Examples of the matrix polymer compound include ether-based resins such as polyethylene oxide and cross-linked products thereof, polymethacrylate-based resins, polyacrylate-based resins, polyvinylidene fluoride (PVDF), and vinylidene fluoride-hexafluoropropylene copolymers. Fluorine resins can be used alone or in combination.
Among these, from the viewpoint of oxidation-reduction stability, it is preferable to use a fluorine-based resin such as polyvinylidene fluoride or vinylidene fluoride-hexafluoropropylene copolymer.
As the plasticizer to be used, the above electrolyte salt or non-aqueous solvent can be used. In the case of a polymer gel electrolyte, the electrolyte salt concentration in the non-aqueous electrolyte as a plasticizer is preferably from 0.1 to 5 mol / l, more preferably from 0.5 to 2.0 mol / l.

高分子電解質の作製は特に限定されないが、例えば、マトリックスを構成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融・溶解する方法、混合用有機溶媒に、高分子化合物、リチウム塩、および非水溶媒を溶解させた後、混合用有機溶媒を蒸発させる方法、重合性モノマー、リチウム塩および非水溶媒を混合し、混合物に紫外線、電子線または分子線などを照射して、重合性モノマーを重合させ、高分子化合物を得る方法などを挙げることができる。
高分子電解質中の非水溶媒の割合は10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると、導電率が低くなり、90質量%を超えると、機械的強度が弱くなり、成膜化しにくい。
The production of the polymer electrolyte is not particularly limited. For example, a method of mixing a polymer compound constituting a matrix, a lithium salt and a non-aqueous solvent (plasticizer) and heating to melt and dissolve the polymer compound, for mixing A method in which a polymer compound, a lithium salt, and a non-aqueous solvent are dissolved in an organic solvent, and then the organic solvent for mixing is evaporated. A polymerizable monomer, a lithium salt, and a non-aqueous solvent are mixed. Alternatively, a method of polymerizing a polymerizable monomer by irradiating a molecular beam or the like to obtain a polymer compound can be exemplified.
The ratio of the nonaqueous solvent in the polymer electrolyte is preferably 10 to 90% by mass, and more preferably 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and it will be difficult to form a film.

(セパレータ)
本発明のリチウムイオン二次電池においては、セパレータを使用することもできる。セパレータは特に限定されるものではないが、例えば織布、不織布、合成樹脂製微多孔膜などが挙げられる。合成樹脂製微多孔膜が好適であるが、なかでもポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗の面で好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等である。
本発明のリチウムイオン二次電池においては、ポリマー電解質を用いることも可能である。
(Separator)
In the lithium ion secondary battery of the present invention, a separator can also be used. Although a separator is not specifically limited, For example, a woven fabric, a nonwoven fabric, a synthetic resin microporous film, etc. are mentioned. A synthetic resin microporous membrane is preferred, and among them, a polyolefin microporous membrane is preferred in terms of thickness, membrane strength, and membrane resistance. Specifically, it is a microporous membrane made of polyethylene and polypropylene, or a microporous membrane that combines these.
In the lithium ion secondary battery of the present invention, a polymer electrolyte can also be used.

ポリマー電解質を用いたリチウムイオン二次電池は、一般にポリマー電池と呼ばれ、本発明の複合粒子を用いてなる負極と、正極およびポリマー電解質から構成される。例えば、負極、ポリマー電解質、正極の順に積層し、電池外装材内に収容することで作製される。なお、これに加えて、さらに、負極と正極の外側にポリマー電解質を配するようにしてもよい。   A lithium ion secondary battery using a polymer electrolyte is generally called a polymer battery, and is composed of a negative electrode using the composite particles of the present invention, a positive electrode, and a polymer electrolyte. For example, the negative electrode, the polymer electrolyte, and the positive electrode are laminated in this order, and are housed in a battery outer packaging material. In addition to this, a polymer electrolyte may be further arranged outside the negative electrode and the positive electrode.

さらに、本発明のリチウムイオン二次電池の構造は任意であり、その形状、形態について特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが好ましい。高分子固体電解質電池やポリマー電池の場合には、ラミネートフィルムに封入した構造とすることもできる。   Furthermore, the structure of the lithium ion secondary battery of the present invention is arbitrary, and is not particularly limited with respect to its shape and form, and may be cylindrical, rectangular, depending on the application, mounted equipment, required charge / discharge capacity, etc. It can be arbitrarily selected from a mold, a coin mold, a button mold, and the like. In order to obtain a sealed nonaqueous electrolyte battery with higher safety, it is preferable to include a means for detecting an increase in the internal pressure of the battery and shutting off the current when there is an abnormality such as overcharging. In the case of a polymer solid electrolyte battery or a polymer battery, a structure enclosed in a laminate film can also be used.

次に本発明を実施例および比較例により具体的に説明するが、本発明はこれらの例に限定されるものではない。また、実施例および比較例では、図1に示すような構成の評価用ボタン型二次電池を作製して評価した。実電池は、本発明の目的に基づき、公知の方法に準じて作製することができる。   EXAMPLES Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these examples. In Examples and Comparative Examples, evaluation button type secondary batteries having the configuration as shown in FIG. 1 were produced and evaluated. A real battery can be manufactured according to a well-known method based on the objective of this invention.

実施例および比較例において、炭素質材料の前駆体の残炭率はJIS K2425の固定炭素法に準拠して以下のように測定した。
炭素質材料1gをるつぼに量り取り、ふたをしないで430℃の電気炉で30分間加熱した。その後、二重るつぼとし、800℃の電気炉で30分間加熱して揮発分を除き、残分の百分率を残炭率とした。
複合粒子の平均粒子径はレーザー回折式粒度分布計(セイシン社製、LS−5000)を用いて測定し、累積度数が体積分率で50%となる粒子径とした。
複合粒子全体の空隙率は、水銀ポロシメーターを用いて全空隙の容積を測定し、複合粒子の全体の容積に対する割合を求めた。
複合粒子の全空隙に対する金属周辺の空隙の割合は、粒子断面の走査型電子顕微鏡観察から二次元的に空隙領域の面積割合を算出することによって求め、50個の複合粒子の断面における計測結果の平均値を採用した。ここで、空隙が金属の表面の少なくとも一部に直接接して存在すれば金属周辺の空隙とした。
In Examples and Comparative Examples, the residual carbon ratio of the precursor of the carbonaceous material was measured as follows in accordance with the fixed carbon method of JIS K2425.
1 g of carbonaceous material was weighed into a crucible and heated in an electric furnace at 430 ° C. for 30 minutes without a lid. Then, it was made into a double crucible and heated in an electric furnace at 800 ° C. for 30 minutes to remove volatile components, and the remaining percentage was defined as the residual coal rate.
The average particle size of the composite particles was measured using a laser diffraction particle size distribution meter (manufactured by Seishin Co., Ltd., LS-5000), and the particle size was such that the cumulative frequency was 50% in volume fraction.
The porosity of the entire composite particles was determined by measuring the volume of all the voids using a mercury porosimeter and determining the ratio of the total volume of the composite particles.
The ratio of the voids around the metal to the total voids of the composite particles is obtained by calculating the area ratio of the void region two-dimensionally from the scanning electron microscope observation of the particle cross section. The average value was adopted. Here, if the void exists in direct contact with at least a part of the surface of the metal, the void around the metal is defined.

(実施例1)
(複合粒子の製造)
フェノール樹脂[住友ベークライト(株)製、残炭率50%]のエタノール溶液に、金属シリコン粉末[高純度化学研究所(株)製、平均粒子径2μm]を分散させたスラリーと、天然黒鉛[(株)中越黒鉛工業所製、平均粒子径10μm]を、二軸加熱ニーダーを用いて、150℃で1時間混練し、混練物を得た。その際、固形分比率がフェノール樹脂:シリコン粉末:天然黒鉛=18:6:76となるように調製した。
次いで、コールタールピッチ[JFEケミカル(株)製、残炭率60%]にタール中油を混合し、コールタールピッチ溶液を調製した。該溶液と該混練物を、二軸加熱ニーダーを用いて、200℃で1時間混練した。その際、固形分比率がコールタールピッチ:該混練物=30:70となるように調製した。混練後、真空にして該混練物中の溶媒を除去した。
(Example 1)
(Manufacture of composite particles)
A slurry in which a metal silicon powder [manufactured by Kojundo Chemical Laboratory Co., Ltd., average particle size 2 μm] is dispersed in an ethanol solution of a phenol resin [manufactured by Sumitomo Bakelite Co., Ltd., residual carbon ratio 50%], and natural graphite [ (Made by Chuetsu Graphite Industries Co., Ltd., average particle size 10 μm) was kneaded at 150 ° C. for 1 hour using a biaxial heating kneader to obtain a kneaded product. At that time, the solid content ratio was adjusted to be phenol resin: silicon powder: natural graphite = 18: 6: 76.
Subsequently, a coal tar pitch oil [manufactured by JFE Chemical Co., Ltd., residual carbon ratio 60%] was mixed with a tar oil in a tar to prepare a coal tar pitch solution. The solution and the kneaded product were kneaded at 200 ° C. for 1 hour using a biaxial heating kneader. At that time, the solid content ratio was adjusted to be coal tar pitch: the kneaded material = 30: 70. After kneading, a vacuum was applied to remove the solvent in the kneaded product.

得られた混練物を、粗粉砕した後、1000℃で10時間加熱し、該混練物が実質的に揮発物を含有しない状態にした。すなわち、フェノール樹脂およびコールタールピッチを炭素化した。得られた複合粒子の平均粒子径は15μmであった。加熱前の混練物と、得られた複合粒子のシリコン/天然黒鉛/炭素質材料の組成と、測定した複合粒子全体の空隙率、および複合粒子の全空隙に対する金属周辺の空隙の割合を表1に示した。
該複合粒子は、図2に示すように、シリコン11と天然黒鉛12が、コールタールピッチ由来の炭素質材料Aおよびフェノール樹脂由来の炭素質材料Bと一体化した複合粒子となっており、金属周辺に空隙が存在するものであった。
The obtained kneaded material was coarsely pulverized and then heated at 1000 ° C. for 10 hours to make the kneaded material substantially free of volatiles. That is, the phenol resin and coal tar pitch were carbonized. The average particle diameter of the obtained composite particles was 15 μm. Table 1 shows the composition of the kneaded material before heating, the composition of the obtained composite particles of silicon / natural graphite / carbonaceous material, the measured porosity of the entire composite particles, and the ratio of the voids around the metal to the total voids of the composite particles. It was shown to.
As shown in FIG. 2, the composite particle is a composite particle in which silicon 11 and natural graphite 12 are integrated with a carbonaceous material A derived from coal tar pitch and a carbonaceous material B derived from a phenol resin. There were voids around.

(負極合剤ペーストの作製)
前記複合粒子90質量%と、ポリフッ化ビニリデン10質量%をN−メチルピロリドンに入れ、ホモミキサーを用いて2000rpm で30分間攪拌混合し、有機溶剤系負極合剤を調製した。
(Preparation of negative electrode mixture paste)
90% by mass of the composite particles and 10% by mass of polyvinylidene fluoride were placed in N-methylpyrrolidone, and stirred and mixed at 2000 rpm for 30 minutes using a homomixer to prepare an organic solvent-based negative electrode mixture.

(作用電極の作製)
前記負極合剤ペーストを銅箔に均一な厚さで塗布し、真空中90℃で溶剤を揮発させ、乾燥し、負極合剤層をハンドプレスによって加圧した。銅箔と負極合剤層を直径15.5mmの円柱状に打抜いて、集電体と、該集電体に密着した負極合剤とからなる作用電極を作製した。
(Production of working electrode)
The negative electrode mixture paste was applied to a copper foil with a uniform thickness, the solvent was volatilized in a vacuum at 90 ° C., dried, and the negative electrode mixture layer was pressed by a hand press. A copper foil and a negative electrode mixture layer were punched into a cylindrical shape having a diameter of 15.5 mm to produce a working electrode composed of a current collector and a negative electrode mixture adhered to the current collector.

(対極の作製)
リチウム金属箔ニッケルネットに押付け、直径15.5mmの円柱状に打抜いて、ニッケルネットからなる集電体と、該集電体に密着したリチウム金属箔からなる対極を作製した。
(Production of counter electrode)
The lithium metal foil was pressed onto a nickel net and punched into a cylindrical shape with a diameter of 15.5 mm to produce a current collector made of nickel net and a counter electrode made of lithium metal foil in close contact with the current collector.

(電解液・セパレータ)
エチレンカーボネート33vol%とメチルエチルカーボネート67vol%を混合してなる混合溶媒に、LiPF6 を1mol/dm3 となる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体に含浸させ、電解液が含浸したセパレータを作製した。
(Electrolyte / Separator)
LiPF 6 was dissolved at a concentration of 1 mol / dm 3 in a mixed solvent obtained by mixing 33 vol% ethylene carbonate and 67 vol% methyl ethyl carbonate to prepare a non-aqueous electrolyte. The obtained nonaqueous electrolytic solution was impregnated into a polypropylene porous body to produce a separator impregnated with the electrolytic solution.

(評価電池)
評価電池として、図1に示すボタン型二次電池を作製した。
集電体7bに密着した負極2と、集電体7aに密着した正極4との間に、電解液を含浸させたセパレータ5を挟んで、積層した。その後、負極集電体7b側が外装カップ1内に、正極集電体7a側が外装缶3内に収容されるように、外装カップ1と外装缶3とを合わせた。その際、外装カップ1と外装缶3との周縁部に、絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。
該評価電池について、温度25℃で下記のような充放電実験を行い、放電容量、初期充放電効率、サイクル特性を計算した。評価結果を表2に示した。
(Evaluation battery)
A button-type secondary battery shown in FIG. 1 was produced as an evaluation battery.
A separator 5 impregnated with an electrolytic solution was sandwiched between the negative electrode 2 in close contact with the current collector 7b and the positive electrode 4 in close contact with the current collector 7a. Thereafter, the outer cup 1 and the outer can 3 were combined so that the negative electrode current collector 7 b side was accommodated in the outer cup 1 and the positive electrode current collector 7 a side was accommodated in the outer can 3. At that time, an insulating gasket 6 was interposed between the peripheral edges of the outer cup 1 and the outer can 3, and both peripheral edges were caulked and sealed.
The evaluation battery was subjected to the following charge / discharge experiments at a temperature of 25 ° C., and the discharge capacity, initial charge / discharge efficiency, and cycle characteristics were calculated. The evaluation results are shown in Table 2.

(放電容量・初期充放電効率)
0.9mAの電流値で回路電圧が0mVに達するまで定電流充電を行い、回路電圧が0mVに達した時点で定電圧充電に切替え、さらに電流値が20μAになるまで充電を続けた。その間の通電量から充電容量を求めた。その後、120分間休止した。次に、0.9mAの電流値で回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。次式から初期充放電効率を計算した。なお、この試験では、リチウムを黒鉛質粒子へ吸蔵する過程を充電、離脱する過程を放電とした。
初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)× 100
(Discharge capacity and initial charge / discharge efficiency)
The constant current charging was performed until the circuit voltage reached 0 mV at a current value of 0.9 mA. When the circuit voltage reached 0 mV, switching was made to constant voltage charging, and the charging was continued until the current value reached 20 μA. The charging capacity was determined from the amount of electricity applied during that time. Then, it rested for 120 minutes. Next, constant current discharge was performed until the circuit voltage reached 1.5 V at a current value of 0.9 mA, and the discharge capacity was determined from the amount of electricity supplied during this period. The initial charge / discharge efficiency was calculated from the following equation. In this test, the process of occluding lithium into the graphite particles was charged and the process of detaching was defined as discharge.
Initial charge / discharge efficiency (%) = (first cycle discharge capacity / first cycle charge capacity) × 100

(サイクル特性)
放電容量、初期充放電効率を評価した評価電池とは別の評価電池を同様に作製し、以下のような評価を行った。
回路電圧が0mVに達するまで4.0mAの電流値で定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、120分間休止した。次に、4.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。20回充放電を繰返した。次式を用いてサイクル特性を計算した。
サイクル特性=(第20サイクルにおける放電容量/第1サイクルにおける放電容 量)×100
電池特性(放電容量、初期充放電効率およびサイクル特性)についての評価結果を表2に示した。
表2に示すように、作用電極に実施例1の複合粒子を用いて得られた評価電池は、高い放電容量を示し、かつ高い初期充放電効率を有する。さらに、優れたサイクル特性を示す。
(Cycle characteristics)
An evaluation battery different from the evaluation battery that evaluated the discharge capacity and the initial charge / discharge efficiency was similarly produced, and the following evaluation was performed.
After constant current charging at a current value of 4.0 mA until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and then rested for 120 minutes. Next, constant current discharge was performed at a current value of 4.0 mA until the circuit voltage reached 1.5 V, and the discharge capacity was obtained from the energization amount during this period. Charging / discharging was repeated 20 times. The cycle characteristics were calculated using the following formula.
Cycle characteristics = (discharge capacity in 20th cycle / discharge capacity in 1st cycle) × 100
Table 2 shows the evaluation results for battery characteristics (discharge capacity, initial charge / discharge efficiency, and cycle characteristics).
As shown in Table 2, the evaluation battery obtained using the composite particles of Example 1 as the working electrode exhibits a high discharge capacity and has a high initial charge / discharge efficiency. Furthermore, it exhibits excellent cycle characteristics.

(実施例2)
実施例1における複合粒子の固形分比率をフェノール樹脂:シリコン粉末:天然黒鉛=27:6:67となるように変更する以外は、実施例1と同様に、複合粒子を作製した。得られた複合粒子の平均粒子径は14μmであった。加熱前の混練物と、複合粒子のシリコン:天然黒鉛:炭素質材料の組成と、測定した複合粒子全体の空隙率、および複合粒子の全空隙に対する金属周辺の空隙の割合を表1に示した。また、実施例1と同様の方法と条件で、該複合粒子、負極および非水電解質を用いてリチウムイオン二次電池を作製した。該電池の放電容量、初期充放電効率とサイクル特性を実施例1と同様に測定し、評価結果を表2に示した。
表2に示すように、作用電極に実施例2の複合粒子を用いて得られた評価電池は、高い放電容量を示し、かつ高い初期充放電効率を有する。さらに、優れたサイクル特性を示す。
(Example 2)
Composite particles were produced in the same manner as in Example 1, except that the solid content ratio of the composite particles in Example 1 was changed to phenol resin: silicon powder: natural graphite = 27: 6: 67. The average particle diameter of the obtained composite particles was 14 μm. Table 1 shows the composition of the kneaded product before heating, the composition of silicon: natural graphite: carbonaceous material of the composite particles, the measured porosity of the composite particles, and the ratio of the voids around the metal to the total voids of the composite particles. . In addition, a lithium ion secondary battery was produced using the composite particles, the negative electrode, and the nonaqueous electrolyte under the same method and conditions as in Example 1. The discharge capacity, initial charge / discharge efficiency and cycle characteristics of the battery were measured in the same manner as in Example 1, and the evaluation results are shown in Table 2.
As shown in Table 2, the evaluation battery obtained using the composite particles of Example 2 as the working electrode shows a high discharge capacity and has a high initial charge / discharge efficiency. Furthermore, it exhibits excellent cycle characteristics.

(実施例3)
実施例1において用いたフェノール樹脂とコールタールピッチを、それぞれ異なるフェノール樹脂[JFEケミカル(株)製:残炭率40%]と異なるコールタールピッチ[JFEケミカル(株)製:残炭率65%]に代える以外は、実施例1と同様に複合粒子を製造した。得られた複合粒子の平均粒子径は15μmであった。加熱前の混練物と、複合粒子のシリコン:天然黒鉛:炭素質材料の組成と、測定した複合粒子全体の空隙率、および複合粒子の全空隙に対する金属周辺の空隙の割合を表1に示した。また、実施例1と同様な方法と条件で、該複合粒子、負極および非水電解質を用いて、リチウムイオン二次電池を作製した。該電池の放電容量、初期充放電効率とサイクル特性を実施例1と同様に測定し、評価結果を表2に示した。
表2に示すように、作用電極に実施例3の複合粒子を用いて得られた評価電池は、高い放電容量を示し、かつ高い初期充放電効率を有する。さらに、優れたサイクル特性を示す。
(Example 3)
The phenol resin and coal tar pitch used in Example 1 are different from each other in phenol resin [manufactured by JFE Chemical Co., Ltd .: residual carbon ratio 40%] and coal tar pitch [manufactured by JFE Chemical Co., Ltd .: residual carbon ratio 65%]. ] Composite particles were produced in the same manner as in Example 1, except that The average particle diameter of the obtained composite particles was 15 μm. Table 1 shows the composition of the kneaded product before heating, the composition of silicon: natural graphite: carbonaceous material of the composite particles, the measured porosity of the composite particles, and the ratio of the voids around the metal to the total voids of the composite particles. . In addition, a lithium ion secondary battery was produced using the composite particles, the negative electrode, and the nonaqueous electrolyte under the same method and conditions as in Example 1. The discharge capacity, initial charge / discharge efficiency and cycle characteristics of the battery were measured in the same manner as in Example 1, and the evaluation results are shown in Table 2.
As shown in Table 2, the evaluation battery obtained using the composite particles of Example 3 as the working electrode exhibits a high discharge capacity and has a high initial charge / discharge efficiency. Furthermore, it exhibits excellent cycle characteristics.

(実施例4)
実施例1において用いたシリコン粉末に代えて、スズ粉末(Aldrich 社製、平均粒子径1μm)を用い、フェノール樹脂のエタノール溶液中で天然黒鉛と混合する際に、固形分比率がフェノール樹脂:スズ粉末:天然黒鉛=18:27:55となるように調製する以外は、実施例1と同様な方法と条件で、複合粒子を作製した。得られた複合粒子の平均粒子径は12μmであった。加熱前の混練物と、複合粒子のスズ粉末:天然黒鉛:炭素質材料の組成と、測定した複合粒子全体の空隙率、および複合粒子の全空隙に対する金属周辺の空隙の割合を表1に示した。また、実施例1と同様な方法と条件で、該複合粒子、負極および非水電解質を用いて、リチウムイオン二次電池を作製した。該電池の放電容量、初期充放電効率とサイクル特性を実施例1と同様に測定し、評価結果を表2に示した。
表2に示すように、作用電極に実施例4の複合粒子を用いて得られた評価電池は、高い放電容量を示し、かつ高い初期充放電効率を有する。さらに、優れたサイクル特性を示す。
Example 4
In place of the silicon powder used in Example 1, tin powder (Aldrich, average particle size 1 μm) was used, and when mixed with natural graphite in an ethanol solution of phenol resin, the solid content ratio was phenol resin: tin. Composite particles were produced in the same manner and under the same conditions as in Example 1 except that powder: natural graphite = 18: 27: 55. The average particle diameter of the obtained composite particles was 12 μm. Table 1 shows the kneaded material before heating, the composition of tin powder of composite particles: natural graphite: carbonaceous material, the measured porosity of the composite particles, and the ratio of the voids around the metal to the total voids of the composite particles. It was. In addition, a lithium ion secondary battery was produced using the composite particles, the negative electrode, and the nonaqueous electrolyte under the same method and conditions as in Example 1. The discharge capacity, initial charge / discharge efficiency and cycle characteristics of the battery were measured in the same manner as in Example 1, and the evaluation results are shown in Table 2.
As shown in Table 2, the evaluation battery obtained using the composite particles of Example 4 as the working electrode exhibits a high discharge capacity and has a high initial charge / discharge efficiency. Furthermore, it exhibits excellent cycle characteristics.

(実施例5)
実施例1において、シリコン粉末に加えて、一酸化ケイ素粉末[(株)高純度化学研究所製、平均粒子径10μm]を用い、シリコン粉末50質量部と一酸化ケイ素粉末50質量部を配合したフェノール樹脂のエタノール溶液中で天然黒鉛と混合する際に、固形分比率がフェノール樹脂:(シリコン粉末+一酸化ケイ素粉末):天然黒鉛=17.6:8.7:73.8となるように調製し、ついで、コールタ−ルピッチ溶液と混練する際に、固形分比率がコールタールピッチ:該混練物=27.5:72.5となるように調製する以外は、実施例1と同様な方法と条件で、複合粒子を作製した。得られた複合粒子の平均粒子径は20μmであった。加熱前の混練物と、複合粒子のシリコン:一酸化ケイ素:天然黒鉛:炭素質材料の組成と、測定した複合粒子全体の空隙率、および複合粒子の全空隙に対する金属周辺の空隙の割合を表1に示した。また、実施例1と同様な方法と条件で、該複合粒子、負極および非水電解質を用いて、リチウムイオン二次電池を作製した。該電池の放電容量、初期充放電効率とサイクル特性を実施例1と同様に測定し、評価結果を表2に示した。
表2に示すように、作用電極に実施例5の複合粒子を用いて得られた評価電池は、高い放電容量を示し、かつ高い初期充放電効率を有する。さらに、優れたサイクル特性を示す。
(Example 5)
In Example 1, in addition to silicon powder, silicon monoxide powder [manufactured by Kojundo Chemical Laboratory Co., Ltd., average particle size 10 μm] was used, and 50 parts by mass of silicon powder and 50 parts by mass of silicon monoxide powder were blended. When mixing with natural graphite in an ethanol solution of phenol resin, the solid content ratio is phenol resin: (silicon powder + silicon monoxide powder): natural graphite = 17.6: 8.7: 73.8 The same method as in Example 1, except that the solid content ratio is equal to coal tar pitch: the kneaded material = 27.5: 72.5 when kneaded with the coal tar pitch solution. Composite particles were produced under the conditions described above. The average particle diameter of the obtained composite particles was 20 μm. The composition of the kneaded product before heating, the composite particle silicon: silicon monoxide: natural graphite: carbonaceous material, the measured porosity of the entire composite particle, and the ratio of the void around the metal to the total void of the composite particle are shown. It was shown in 1. In addition, a lithium ion secondary battery was produced using the composite particles, the negative electrode, and the nonaqueous electrolyte under the same method and conditions as in Example 1. The discharge capacity, initial charge / discharge efficiency and cycle characteristics of the battery were measured in the same manner as in Example 1, and the evaluation results are shown in Table 2.
As shown in Table 2, the evaluation battery obtained using the composite particles of Example 5 as the working electrode exhibits a high discharge capacity and has a high initial charge / discharge efficiency. Furthermore, it exhibits excellent cycle characteristics.

(比較例1)
実施例1で使用したのと同じ金属、黒鉛質材料および炭素質材料を使用し、これらを一括して混練した、すなわち、フェノール樹脂、金属シリコン粉末、天然黒鉛およびコールタールピッチをタール中油を溶媒として、二軸加熱ニーダーで同時に混練した後、混練物を加熱し、溶媒を除去し、乾燥した。得られた混練物を粉砕し、1000℃で10時間焼成する以外は、実施例1と同様に、複合粒子を作製した。得られた複合粒子の平均粒子径は15μmであった。加熱前の混練物と、複合粒子のシリコン:天然黒鉛:炭素質材料の組成と、測定した複合粒子全体の空隙率、および複合粒子の全空隙に対する金属周辺の空隙の割合を表1に示した。また、実施例1と同様の方法と条件で、該複合粒子、負極および非水電解質を用いてリチウムイオン二次電池を作製した。該電池の放電容量、初期充放電効率とサイクル特性を実施例1と同様に測定し、評価結果を表2に示した。
表2に示すように、シリコン粒子の周辺に空隙が存在しない比較例1では、高い初期充放電効率やサイクル特性が得られない。これは、充放電時のシリコン粒子の膨張・収縮により複合粒子の構造が破壊され、導電性の低下や活物質の集電体からの剥離が発生したためと考えられる。
(Comparative Example 1)
The same metal, graphite material and carbonaceous material used in Example 1 were used, and these were kneaded together, that is, phenol resin, metal silicon powder, natural graphite and coal tar pitch were mixed with oil in tar. Then, after kneading simultaneously with a biaxial heating kneader, the kneaded product was heated to remove the solvent and dried. Composite particles were produced in the same manner as in Example 1 except that the obtained kneaded material was pulverized and fired at 1000 ° C. for 10 hours. The average particle diameter of the obtained composite particles was 15 μm. Table 1 shows the composition of the kneaded product before heating, the composition of silicon: natural graphite: carbonaceous material of the composite particles, the measured porosity of the composite particles, and the ratio of the voids around the metal to the total voids of the composite particles. . In addition, a lithium ion secondary battery was produced using the composite particles, the negative electrode, and the nonaqueous electrolyte under the same method and conditions as in Example 1. The discharge capacity, initial charge / discharge efficiency and cycle characteristics of the battery were measured in the same manner as in Example 1, and the evaluation results are shown in Table 2.
As shown in Table 2, in Comparative Example 1 in which no voids exist around the silicon particles, high initial charge / discharge efficiency and cycle characteristics cannot be obtained. This is presumably because the structure of the composite particles was destroyed by the expansion / contraction of the silicon particles during charge / discharge, resulting in a decrease in conductivity and separation of the active material from the current collector.

Figure 2005123175
Figure 2005123175

Figure 2005123175
Figure 2005123175

充放電試験に用いるためのボタン型評価電池の構造を示す模式断面図である。It is a schematic cross section which shows the structure of the button type evaluation battery for using for a charging / discharging test. 本発明の実施例1の複合粒子の断面の模式図である。It is a schematic diagram of the cross section of the composite particle of Example 1 of this invention.

符号の説明Explanation of symbols

1 外装カップ
2 作用電極
3 外装缶
4 対極
5 セパレータ
6 絶縁ガスケット
7a、7b 集電体
11 金属シリコン
12 天然黒鉛
13 コールタールピッチ由来炭素質材料
14 フェノール樹脂由来の炭素質材料
15 空隙
DESCRIPTION OF SYMBOLS 1 Exterior cup 2 Working electrode 3 Exterior can 4 Counter electrode 5 Separator 6 Insulating gasket 7a, 7b Current collector 11 Metal silicon 12 Natural graphite 13 Carbon material derived from coal tar pitch 14 Carbonaceous material derived from phenol resin 15 Void

Claims (8)

リチウムと合金化可能な金属、黒鉛質材料および炭素質材料からなる複合粒子において、該複合粒子が空隙を有し、かつ該複合粒子の全空隙に対する、金属周辺の空隙の割合が20%以上であることを特徴とする複合粒子。   In composite particles made of a metal that can be alloyed with lithium, a graphite material, and a carbonaceous material, the composite particles have voids, and the ratio of voids around the metal to the total voids of the composite particles is 20% or more Composite particles characterized by being. 前記金属がシリコンであることを特徴とする請求項1に記載の複合粒子。   The composite particle according to claim 1, wherein the metal is silicon. 前記金属がシリコンであり、該シリコンの一部が酸化物であることを特徴とする請求項1に記載の複合粒子。   The composite particle according to claim 1, wherein the metal is silicon, and a part of the silicon is an oxide. リチウムと合金化可能な金属と、黒鉛質材料および炭素質材料Aの前駆体を混合し、得られた複合粒子に該炭素質材料Aの前駆体よりも残炭率の高い炭素質材料Bの前駆体を混合した後、加熱することを特徴とする複合粒子の製造方法。   A metal that can be alloyed with lithium, a graphite material, and a precursor of carbonaceous material A are mixed, and the obtained composite particles are made of carbonaceous material B having a higher residual carbon ratio than the precursor of carbonaceous material A. A method for producing composite particles, wherein the precursor is mixed and then heated. 前記炭素質材料Aの残炭率が、前記炭素質材料Bの残炭率に比して10%以上低いことを特徴とする請求項4に記載の複合粒子の製造方法。   The method for producing composite particles according to claim 4, wherein a carbon residue rate of the carbonaceous material A is 10% or more lower than a carbon residue rate of the carbonaceous material B. 請求項1〜3のいずれか1項に記載の複合粒子を含むことを特徴とするリチウムイオン二次電池用負極材料。   A negative electrode material for a lithium ion secondary battery, comprising the composite particles according to claim 1. 請求項6に記載のリチウムイオン二次電池用負極材料を用いることを特徴とするリチウムイオン二次電池用負極。   A negative electrode for a lithium ion secondary battery, wherein the negative electrode material for a lithium ion secondary battery according to claim 6 is used. 請求項7に記載のリチウムイオン二次電池用負極を用いることを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery using the negative electrode for a lithium ion secondary battery according to claim 7.
JP2004277371A 2003-09-26 2004-09-24 Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery Active JP3995050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277371A JP3995050B2 (en) 2003-09-26 2004-09-24 Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003336422 2003-09-26
JP2004277371A JP3995050B2 (en) 2003-09-26 2004-09-24 Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2005123175A true JP2005123175A (en) 2005-05-12
JP3995050B2 JP3995050B2 (en) 2007-10-24

Family

ID=34622123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277371A Active JP3995050B2 (en) 2003-09-26 2004-09-24 Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3995050B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109631A (en) * 2005-09-15 2007-04-26 Nissan Motor Co Ltd Electrode for battery
JP2007141504A (en) * 2005-11-15 2007-06-07 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery
WO2008047768A1 (en) * 2006-10-16 2008-04-24 Panasonic Corporation Composite negative active material for non-aqueous electrolyte secondary battery, process for production of the same, and non-aqueous electrolyte secondary battery using the same
JP2009129914A (en) * 2007-11-27 2009-06-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing this
WO2010074243A1 (en) 2008-12-26 2010-07-01 積水化学工業株式会社 Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
JP2011527982A (en) * 2008-07-15 2011-11-10 ユニバーシテート デュースブルク−エッセン Insertion of silicon and / or tin into porous carbon substrate
US8399131B2 (en) 2007-06-01 2013-03-19 Panasonic Corporation Composite negative electrode active material and non-aqueous electrolyte secondary battery
WO2013088712A1 (en) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013088711A1 (en) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2013099278A1 (en) * 2011-12-28 2013-07-04 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
JP2013182706A (en) * 2012-02-29 2013-09-12 Sumitomo Bakelite Co Ltd Precursor for negative electrode, manufacturing method of precursor for negative electrode, production method of material for negative electrode, electrode and lithium ion secondary battery
US8562869B2 (en) 2006-12-19 2013-10-22 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
KR101328982B1 (en) * 2006-04-17 2013-11-13 삼성에스디아이 주식회사 Anode active material and method of preparing the same
US8709653B2 (en) 2004-03-08 2014-04-29 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
CN104332616A (en) * 2014-09-09 2015-02-04 刘剑洪 Graphene coated graphite composite lithium ion battery negative material and its preparation method
WO2015022964A1 (en) * 2013-08-14 2015-02-19 東ソー株式会社 Composite active material for lithium secondary batteries and method for producing same
KR101502897B1 (en) * 2007-12-28 2015-03-17 삼성에스디아이 주식회사 Composite for anode active material, anode materials and lithium battery using the same
WO2015059859A1 (en) * 2013-10-24 2015-04-30 株式会社大阪チタニウムテクノロジーズ Powder for negative electrodes of lithium ion secondary batteries
US9252428B2 (en) 2012-04-25 2016-02-02 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2016035274A1 (en) * 2014-09-01 2016-03-10 三洋電機株式会社 Nonaqueous-electrolyte secondary-battery negative-electrode active material
JP2016056095A (en) * 2011-12-16 2016-04-21 Jfeケミカル株式会社 Method for producing amorphous carbon particle
JP2017130274A (en) * 2016-01-18 2017-07-27 東ソー株式会社 Negative electrode material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
JP2018006332A (en) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2018006331A (en) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2018170246A (en) * 2017-03-30 2018-11-01 東ソー株式会社 Composite active material for lithium secondary battery and manufacturing method therefor
WO2020059225A1 (en) 2018-09-19 2020-03-26 Jsr株式会社 Electrode-manufacturing device
JP2020068191A (en) * 2017-12-27 2020-04-30 東ソー株式会社 Composite active material for lithium secondary battery and manufacturing method thereof
WO2020084949A1 (en) 2018-10-24 2020-04-30 Jmエナジー株式会社 Electrode manufacturing device and electrode manufacturing method
WO2020110433A1 (en) 2018-11-28 2020-06-04 Jmエナジー株式会社 Electrode production method, method for producing electricity storage device, and electrode production apparatus
WO2020152986A1 (en) 2019-01-23 2020-07-30 Jmエナジー株式会社 Doping system and doping method
WO2020152980A1 (en) 2019-01-23 2020-07-30 Jmエナジー株式会社 Electrode production system and electrode production method
WO2020170607A1 (en) 2019-02-20 2020-08-27 Jmエナジー株式会社 Electrode manufacturing system, cleaning unit, and electrode manufacturing method
WO2020208965A1 (en) 2019-04-10 2020-10-15 Jmエナジー株式会社 Electrode production method and method for producing electricity storage device
CN112038590A (en) * 2019-06-04 2020-12-04 中国科学院物理研究所 Novel solid-state battery and positive electrode material thereof
WO2021039085A1 (en) 2019-08-30 2021-03-04 Jmエナジー株式会社 Method for manufacturing doped electrode, and method for manufacturing power storage device
CN112768644A (en) * 2020-04-16 2021-05-07 西安越遴新材料研究院有限公司 Modification method for coating silicon-carbon composite negative electrode material interface by using modified asphalt
WO2021106286A1 (en) 2019-11-28 2021-06-03 Jmエナジー株式会社 Method for producing electrode
WO2021131124A1 (en) 2019-12-26 2021-07-01 Jmエナジー株式会社 Method for manufacturing electrode, method for manufacturing power storage device, and electrode manufacturing device
WO2021157157A1 (en) 2020-02-04 2021-08-12 武蔵エナジーソリューションズ株式会社 Doping system, and method for manufacturing electrode
CN113270571A (en) * 2020-02-17 2021-08-17 丰田自动车株式会社 Method for manufacturing lithium ion secondary battery and negative electrode material
WO2022102381A1 (en) 2020-11-10 2022-05-19 武蔵エナジーソリューションズ株式会社 Manufacturing method for secondary battery and manufacturing method for doped electrode
WO2022270063A1 (en) 2021-06-24 2022-12-29 武蔵エナジーソリューションズ株式会社 Method for manufacturing doped electrode
WO2023276314A1 (en) 2021-06-28 2023-01-05 武蔵エナジーソリューションズ株式会社 Doped electrode manufacturing method and doped electrode manufacturing system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650954B1 (en) 2010-12-10 2016-09-28 Hitachi Chemical Co., Ltd. Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101669512B1 (en) * 2012-11-21 2016-10-26 쇼와 덴코 가부시키가이샤 Method for producing negative electrode material for lithium ion batteries
ES2928150T3 (en) 2017-10-05 2022-11-15 Umicore Nv Negative electrode material for lithium-ion secondary batteries, method of manufacturing the same, negative electrode paste, negative electrode sheet and lithium-ion secondary battery

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286763A (en) * 1992-04-07 1993-11-02 Mitsubishi Petrochem Co Ltd Electrode material
JPH08231273A (en) * 1995-02-24 1996-09-10 Asahi Organic Chem Ind Co Ltd Production of carbide and negative electrode containing particles of the same
JPH10321226A (en) * 1997-05-21 1998-12-04 Asahi Chem Ind Co Ltd Secondary battery
JPH1197014A (en) * 1997-09-18 1999-04-09 Toshiba Corp Electrode material for secondary battery
JPH11279785A (en) * 1998-03-31 1999-10-12 Osaka Gas Co Ltd Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
JPH11343109A (en) * 1998-03-25 1999-12-14 Osaka Gas Co Ltd Carbon material and its production, negative pole for lithium secondary battery and lithium secondary battery
JP2000173612A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP2000203818A (en) * 1999-01-13 2000-07-25 Hitachi Chem Co Ltd Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2001345100A (en) * 2000-05-31 2001-12-14 Hitachi Chem Co Ltd Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP2002151066A (en) * 2000-11-09 2002-05-24 Sanyo Electric Co Ltd Negative electrode material for lithium secondary battery
JP2002216751A (en) * 2000-11-14 2002-08-02 Mitsui Mining Co Ltd Composite material for lithium secondary battery negative electrode and lithium secondary battery
JP2002231225A (en) * 2001-02-01 2002-08-16 Hitachi Chem Co Ltd Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP2002260658A (en) * 2001-03-02 2002-09-13 Samsung Sdi Co Ltd Carbonaceous material and lithium secondary battery
JP2003303588A (en) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd Electrode material and method of manufacturing the same, and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3369589B2 (en) * 1992-04-07 2003-01-20 三菱化学株式会社 Electrode material
JPH05286763A (en) * 1992-04-07 1993-11-02 Mitsubishi Petrochem Co Ltd Electrode material
JPH08231273A (en) * 1995-02-24 1996-09-10 Asahi Organic Chem Ind Co Ltd Production of carbide and negative electrode containing particles of the same
JPH10321226A (en) * 1997-05-21 1998-12-04 Asahi Chem Ind Co Ltd Secondary battery
JPH1197014A (en) * 1997-09-18 1999-04-09 Toshiba Corp Electrode material for secondary battery
JPH11343109A (en) * 1998-03-25 1999-12-14 Osaka Gas Co Ltd Carbon material and its production, negative pole for lithium secondary battery and lithium secondary battery
JPH11279785A (en) * 1998-03-31 1999-10-12 Osaka Gas Co Ltd Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
JP2000173612A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP2000203818A (en) * 1999-01-13 2000-07-25 Hitachi Chem Co Ltd Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2001345100A (en) * 2000-05-31 2001-12-14 Hitachi Chem Co Ltd Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP2002151066A (en) * 2000-11-09 2002-05-24 Sanyo Electric Co Ltd Negative electrode material for lithium secondary battery
JP2002216751A (en) * 2000-11-14 2002-08-02 Mitsui Mining Co Ltd Composite material for lithium secondary battery negative electrode and lithium secondary battery
JP3466576B2 (en) * 2000-11-14 2003-11-10 三井鉱山株式会社 Composite material for negative electrode of lithium secondary battery and lithium secondary battery
JP2002231225A (en) * 2001-02-01 2002-08-16 Hitachi Chem Co Ltd Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP2002260658A (en) * 2001-03-02 2002-09-13 Samsung Sdi Co Ltd Carbonaceous material and lithium secondary battery
JP2003303588A (en) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd Electrode material and method of manufacturing the same, and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012082B2 (en) 2004-03-08 2015-04-21 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US8709653B2 (en) 2004-03-08 2014-04-29 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
JP2007109631A (en) * 2005-09-15 2007-04-26 Nissan Motor Co Ltd Electrode for battery
JP2007141504A (en) * 2005-11-15 2007-06-07 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery
KR101328982B1 (en) * 2006-04-17 2013-11-13 삼성에스디아이 주식회사 Anode active material and method of preparing the same
US8906557B2 (en) 2006-04-17 2014-12-09 Samsung Sdi Co., Ltd. Anode active material and method of preparing the same
WO2008047768A1 (en) * 2006-10-16 2008-04-24 Panasonic Corporation Composite negative active material for non-aqueous electrolyte secondary battery, process for production of the same, and non-aqueous electrolyte secondary battery using the same
US8562869B2 (en) 2006-12-19 2013-10-22 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
US8399131B2 (en) 2007-06-01 2013-03-19 Panasonic Corporation Composite negative electrode active material and non-aqueous electrolyte secondary battery
US9391314B2 (en) 2007-11-27 2016-07-12 Samsung Sdi Co., Ltd. Negative active material, method of preparing the same, and rechargeable lithium battery including the same
JP2009129914A (en) * 2007-11-27 2009-06-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing this
KR101502897B1 (en) * 2007-12-28 2015-03-17 삼성에스디아이 주식회사 Composite for anode active material, anode materials and lithium battery using the same
JP2011527982A (en) * 2008-07-15 2011-11-10 ユニバーシテート デュースブルク−エッセン Insertion of silicon and / or tin into porous carbon substrate
US8940192B2 (en) 2008-12-26 2015-01-27 Sekisui Chemical Co., Ltd. Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
KR101511821B1 (en) * 2008-12-26 2015-05-18 세키스이가가쿠 고교가부시키가이샤 Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
WO2010074243A1 (en) 2008-12-26 2010-07-01 積水化学工業株式会社 Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
JP2013144633A (en) * 2011-12-16 2013-07-25 Jfe Chemical Corp Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
WO2013088711A1 (en) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing hardly graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2016056095A (en) * 2011-12-16 2016-04-21 Jfeケミカル株式会社 Method for producing amorphous carbon particle
US9379384B2 (en) 2011-12-16 2016-06-28 Jfe Chemical Corporation Method for producing non-graphitizable carbon material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2013144632A (en) * 2011-12-16 2013-07-25 Jfe Chemical Corp Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
US9735421B2 (en) 2011-12-16 2017-08-15 Jfe Chemical Corporation Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
WO2013088712A1 (en) * 2011-12-16 2013-06-20 Jfeケミカル株式会社 Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2016104698A (en) * 2011-12-16 2016-06-09 Jfeケミカル株式会社 Amorphous carbon particle
WO2013099278A1 (en) * 2011-12-28 2013-07-04 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
JPWO2013099278A1 (en) * 2011-12-28 2015-04-30 パナソニックIpマネジメント株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US10050262B2 (en) 2011-12-28 2018-08-14 Panasonic Intellectual Property Mangement Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP2013182706A (en) * 2012-02-29 2013-09-12 Sumitomo Bakelite Co Ltd Precursor for negative electrode, manufacturing method of precursor for negative electrode, production method of material for negative electrode, electrode and lithium ion secondary battery
US9252428B2 (en) 2012-04-25 2016-02-02 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US10749178B2 (en) 2013-08-14 2020-08-18 Tosoh Corporation Composite active material for lithium secondary batteries and method for producing same
WO2015022964A1 (en) * 2013-08-14 2015-02-19 東ソー株式会社 Composite active material for lithium secondary batteries and method for producing same
WO2015059859A1 (en) * 2013-10-24 2015-04-30 株式会社大阪チタニウムテクノロジーズ Powder for negative electrodes of lithium ion secondary batteries
JPWO2015059859A1 (en) * 2013-10-24 2017-03-09 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode of lithium ion secondary battery
JPWO2016035274A1 (en) * 2014-09-01 2017-06-15 三洋電機株式会社 Anode active material for non-aqueous electrolyte secondary battery
US10062903B2 (en) 2014-09-01 2018-08-28 Sanyo Electric Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary battery
CN106797025A (en) * 2014-09-01 2017-05-31 三洋电机株式会社 Anode for nonaqueous electrolyte secondary battery active material
US10741833B2 (en) 2014-09-01 2020-08-11 Sanyo Electric Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary battery
CN106797025B (en) * 2014-09-01 2019-06-18 三洋电机株式会社 Anode for nonaqueous electrolyte secondary battery active material
WO2016035274A1 (en) * 2014-09-01 2016-03-10 三洋電機株式会社 Nonaqueous-electrolyte secondary-battery negative-electrode active material
CN104332616A (en) * 2014-09-09 2015-02-04 刘剑洪 Graphene coated graphite composite lithium ion battery negative material and its preparation method
JP2017130274A (en) * 2016-01-18 2017-07-27 東ソー株式会社 Negative electrode material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery
JP2018006332A (en) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2018006331A (en) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2018170246A (en) * 2017-03-30 2018-11-01 東ソー株式会社 Composite active material for lithium secondary battery and manufacturing method therefor
JP7293645B2 (en) 2017-12-27 2023-06-20 東ソー株式会社 Composite active material for lithium secondary battery and manufacturing method thereof
JP2020068191A (en) * 2017-12-27 2020-04-30 東ソー株式会社 Composite active material for lithium secondary battery and manufacturing method thereof
JP7452599B2 (en) 2017-12-27 2024-03-19 東ソー株式会社 Composite active material for lithium secondary batteries
WO2020059225A1 (en) 2018-09-19 2020-03-26 Jsr株式会社 Electrode-manufacturing device
WO2020084949A1 (en) 2018-10-24 2020-04-30 Jmエナジー株式会社 Electrode manufacturing device and electrode manufacturing method
WO2020110433A1 (en) 2018-11-28 2020-06-04 Jmエナジー株式会社 Electrode production method, method for producing electricity storage device, and electrode production apparatus
WO2020152986A1 (en) 2019-01-23 2020-07-30 Jmエナジー株式会社 Doping system and doping method
WO2020152980A1 (en) 2019-01-23 2020-07-30 Jmエナジー株式会社 Electrode production system and electrode production method
WO2020170607A1 (en) 2019-02-20 2020-08-27 Jmエナジー株式会社 Electrode manufacturing system, cleaning unit, and electrode manufacturing method
WO2020208965A1 (en) 2019-04-10 2020-10-15 Jmエナジー株式会社 Electrode production method and method for producing electricity storage device
CN112038590A (en) * 2019-06-04 2020-12-04 中国科学院物理研究所 Novel solid-state battery and positive electrode material thereof
CN112038590B (en) * 2019-06-04 2023-05-02 中国科学院物理研究所 Novel solid-state battery and positive electrode material thereof
WO2021039085A1 (en) 2019-08-30 2021-03-04 Jmエナジー株式会社 Method for manufacturing doped electrode, and method for manufacturing power storage device
US11811046B2 (en) 2019-11-28 2023-11-07 Musashi Energy Solutions Co., Ltd. Method for manufacturing electrode
WO2021106286A1 (en) 2019-11-28 2021-06-03 Jmエナジー株式会社 Method for producing electrode
WO2021131124A1 (en) 2019-12-26 2021-07-01 Jmエナジー株式会社 Method for manufacturing electrode, method for manufacturing power storage device, and electrode manufacturing device
WO2021157157A1 (en) 2020-02-04 2021-08-12 武蔵エナジーソリューションズ株式会社 Doping system, and method for manufacturing electrode
JP7290124B2 (en) 2020-02-17 2023-06-13 トヨタ自動車株式会社 Manufacturing method and negative electrode material for lithium ion secondary battery
US11721833B2 (en) 2020-02-17 2023-08-08 Toyota Jidosha Kabushiki Kaisha Method of producing lithium ion secondary battery and negative electrode material
JP2021128917A (en) * 2020-02-17 2021-09-02 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery, and negative electrode material
CN113270571B (en) * 2020-02-17 2024-02-13 丰田自动车株式会社 Method for manufacturing lithium ion secondary battery and negative electrode material
CN113270571A (en) * 2020-02-17 2021-08-17 丰田自动车株式会社 Method for manufacturing lithium ion secondary battery and negative electrode material
CN112768644A (en) * 2020-04-16 2021-05-07 西安越遴新材料研究院有限公司 Modification method for coating silicon-carbon composite negative electrode material interface by using modified asphalt
WO2022102381A1 (en) 2020-11-10 2022-05-19 武蔵エナジーソリューションズ株式会社 Manufacturing method for secondary battery and manufacturing method for doped electrode
WO2022270063A1 (en) 2021-06-24 2022-12-29 武蔵エナジーソリューションズ株式会社 Method for manufacturing doped electrode
WO2023276314A1 (en) 2021-06-28 2023-01-05 武蔵エナジーソリューションズ株式会社 Doped electrode manufacturing method and doped electrode manufacturing system

Also Published As

Publication number Publication date
JP3995050B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP3995050B2 (en) Composite particles for negative electrode material of lithium ion secondary battery and method for producing the same, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP4809617B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4927384B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4996830B2 (en) Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6316466B2 (en) Carbonaceous coated graphite particles, production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014029833A (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP2011243567A (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4855696B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4723830B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
JP4996827B2 (en) Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5156195B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4785341B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN112424118A (en) Method for producing monolithic mesophase graphitized article
JP2004063411A (en) Complex graphite material, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5133543B2 (en) Method for producing mesocarbon microsphere graphitized material
JP5066132B2 (en) Polycrystalline mesocarbon microsphere graphitized product, negative electrode active material, and lithium ion secondary battery
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JP5865273B2 (en) Method for producing graphite material
JP4628007B2 (en) Carbon material manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4143354B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP2004083398A (en) Polycrystalline mesocarbon microsphere graphitized article, its manufacturing method, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060801

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3995050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6