JP2002260658A - Carbonaceous material and lithium secondary battery - Google Patents

Carbonaceous material and lithium secondary battery

Info

Publication number
JP2002260658A
JP2002260658A JP2001058399A JP2001058399A JP2002260658A JP 2002260658 A JP2002260658 A JP 2002260658A JP 2001058399 A JP2001058399 A JP 2001058399A JP 2001058399 A JP2001058399 A JP 2001058399A JP 2002260658 A JP2002260658 A JP 2002260658A
Authority
JP
Japan
Prior art keywords
phase
particles
fine particles
carbonaceous material
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001058399A
Other languages
Japanese (ja)
Other versions
JP4308446B2 (en
Inventor
Keiko Matsubara
恵子 松原
Toshiaki Tsuno
利章 津野
Kiin Chin
揆允 沈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2001058399A priority Critical patent/JP4308446B2/en
Priority to KR10-2001-0068302A priority patent/KR100424636B1/en
Priority to US10/087,247 priority patent/US6733922B2/en
Priority to CNB021058458A priority patent/CN1220291C/en
Publication of JP2002260658A publication Critical patent/JP2002260658A/en
Application granted granted Critical
Publication of JP4308446B2 publication Critical patent/JP4308446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbonaceous material having high charge and discharge capacity and superior cycle characteristics, at the same time. SOLUTION: Composite particles 3, each of which contains at least silicon and carbon and has a smaller particle diameter than that of a graphite particle 2, are dispersedly disposed around the graphite particle 2 in which a spacing d002 of a (002) plane obtained by wide-angle X-ray diffraction is less than 0.337 nm, and the graphite particle 2 and the composite particles 3 are coated by an amorphous carbon film 4. In this composite particle 3, a conductive carbon material is disposed around a Si grain comprising crystalline silicon, and the Si grains and the conductive carbon material are coated by a hard carbon film. Si grains are of a SiO2 phase, SiC phase and SiB4 phase deposited in the crystalline Si phase. The carbonaceous material 1 having this characteristic is adopted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用の炭素質材料及びリチウム二次電池に関するものであ
る。
TECHNICAL FIELD The present invention relates to a carbonaceous material for a lithium secondary battery and a lithium secondary battery.

【0002】[0002]

【従来の技術】小型軽量化及び高性能化が進んでいる携
帯電子機器のニーズに応えるため、リチウム二次電池の
高容量化が急務となっている。ところで、リチウム二次
電池の負極活物質の一つである黒鉛は、372mAh/
gの理論電気容量を有するが、これよりも高容量な負極
活物質を得ようとするためには、非晶質炭素材料や、あ
るいは炭素材料に代わる新規材料の開発を進める必要が
ある。黒鉛に代わる新規材料としては従来からケイ素や
その化合物が検討されている。ケイ素やその化合物は、
ケイ素自体がリチウムと合金を形成し、黒鉛よりも大き
な電気容量が得られることが知られている。そこで最近
では、リチウム二次電池の負極材料として、(1)黒鉛
にケイ素化合物の粉末を単に混合した材料や、(2)シ
ランカップリング剤等を用いて黒鉛表面に微粉末のケイ
素化合物等を化学的に固定した材料、(3)更に黒鉛系
炭素質物とSi等の金属質物とを非晶質な炭素質物で結
合または被覆した材料が提案されている。
2. Description of the Related Art In order to meet the needs of portable electronic devices that are becoming smaller, lighter and have higher performance, it is urgent to increase the capacity of lithium secondary batteries. By the way, graphite, which is one of the negative electrode active materials of the lithium secondary battery, is 372 mAh /
In order to obtain a negative electrode active material having a theoretical electric capacity of g but higher capacity, it is necessary to promote the development of an amorphous carbon material or a new material replacing the carbon material. As a new material replacing graphite, silicon and its compounds have been studied. Silicon and its compounds
It is known that silicon itself forms an alloy with lithium, and a larger electric capacity can be obtained than graphite. Therefore, recently, as a negative electrode material of a lithium secondary battery, (1) a material obtained by simply mixing a silicon compound powder with graphite, or (2) a fine powdered silicon compound or the like on the graphite surface using a silane coupling agent or the like. A chemically fixed material, and (3) a material in which a graphite-based carbon material and a metal material such as Si are bonded or covered with an amorphous carbon material have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記(1)の
材料では、黒鉛とケイ素化合物とが必ずしも密着してい
ないため、充放電サイクルの進行により黒鉛が膨張収縮
した際に、ケイ素化合物が黒鉛から遊離してしまい、こ
のケイ素化合物自体は電子伝導性が低いため、ケイ素化
合物が負極活物質として十分に利用されなくなり、リチ
ウム二次電池のサイクル特性が低下するという課題があ
った。
However, in the above-mentioned material (1), since the graphite and the silicon compound are not always in intimate contact with each other, when the graphite expands and contracts due to the progress of the charge / discharge cycle, the silicon compound becomes graphite. And the silicon compound itself has low electron conductivity, so that the silicon compound is not sufficiently used as a negative electrode active material, and there is a problem that the cycle characteristics of the lithium secondary battery are reduced.

【0004】また上記(2)の材料では、充放電サイク
ルが初期のうちは黒鉛にケイ素化合物が密着した状態で
保たれ、従ってケイ素化合物が黒鉛と同様に負極活物質
として機能するが、充放電サイクルが進むと、リチウム
との合金形成に伴ってケイ素化合物自体が膨張し、これ
によってシランカップリング剤による結合を破壊してケ
イ素化合物が黒鉛から遊離し、ケイ素化合物が負極活物
質として十分に利用されなくなり、リチウム二次電池の
サイクル特性が低下するという課題があった。また、負
極材料の製造の際に施されるシランカップリング処理が
均質に行われない場合があり、安定した品質の負極材料
が容易に得られるまでには至っていないという課題があ
った。
In the material (2), the charge / discharge cycle is maintained in a state where the silicon compound adheres to the graphite in the initial stage of the charge / discharge cycle. Therefore, the silicon compound functions as a negative electrode active material similarly to the graphite. As the cycle proceeds, the silicon compound itself expands with the formation of an alloy with lithium, thereby breaking the bond by the silane coupling agent and releasing the silicon compound from the graphite, and the silicon compound is sufficiently used as a negative electrode active material. And the cycle characteristics of the lithium secondary battery deteriorate. In addition, there is a problem that the silane coupling treatment performed during the production of the negative electrode material may not be performed homogeneously, and a stable quality of the negative electrode material has not been easily obtained.

【0005】更に上記(3)の材料でも上記(2)の材
料と同様な問題が発生する。即ち、充放電サイクルが進
むと、リチウムとの合金形成に伴う金属質物自体の膨張
により、非晶質炭素質物による結合を破壊して金属質物
が黒鉛系炭素質物から遊離し、金属質物が負極活物質と
して十分に利用されなくなり、リチウム二次電池のサイ
クル特性が低下するという課題があった。
Further, the material (3) causes the same problem as the material (2). That is, as the charge / discharge cycle progresses, the expansion of the metallic material itself due to the formation of an alloy with lithium breaks the bond formed by the amorphous carbonaceous material and releases the metallic material from the graphite-based carbonaceous material. There has been a problem that the lithium secondary battery is not sufficiently used as a substance, and the cycle characteristics of the lithium secondary battery deteriorate.

【0006】本発明は、上記事情に鑑みてなされたもの
であって、充放電容量が高いと同時にサイクル特性に優
れた炭素質材料を提供し、またこの炭素質材料を有する
リチウム二次電池を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a carbonaceous material having high charge / discharge capacity and excellent cycle characteristics, and a lithium secondary battery having the carbonaceous material. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成を採用した。本発明の炭素質
材料は、X線広角回折による(002)面の面間隔d00
2が0.337nm未満である黒鉛粒子の周りに、珪素
及び炭素を少なくとも含有するとともに前記黒鉛粒子よ
り粒径が小さな複合粒子が分散して配置され、かつ前記
黒鉛粒子及び前記複合粒子が0.37nm以上の面間隔
d002を有する非晶質炭素膜によって被覆されてなり、
前記複合粒子は、結晶質珪素からなるSi微粒子の周り
に導電性炭素材が配置されるとともに前記Si微粒子及
び前記導電性炭素材が硬質炭素膜により被覆されてな
り、前記Si微粒子は、結晶質Si相中にSiO2相、
SiC相及びSiB4相が析出したものであることを特
徴とする。
In order to achieve the above object, the present invention employs the following constitution. The carbonaceous material of the present invention has a (002) plane spacing d00 by X-ray wide-angle diffraction.
2, composite particles containing at least silicon and carbon and having a smaller particle size than the graphite particles are dispersedly arranged around the graphite particles having a particle diameter of less than 0.337 nm, and the graphite particles and the composite particles have a particle size of 0.3. Covered with an amorphous carbon film having a plane distance d002 of 37 nm or more,
The composite particles are formed by disposing a conductive carbon material around Si fine particles made of crystalline silicon, and coating the Si fine particles and the conductive carbon material with a hard carbon film. SiO 2 phase in Si phase,
It is characterized in that the SiC phase and the SiB 4 phase are precipitated.

【0008】なお本発明において、「周りに」の意義
は、黒鉛粒子に対する複合粒子の位置関係を表すもので
あって、黒鉛粒子の「表面上もしくは表面近傍」を意味
する。また、「周りに」の意義は、Si微粒子に対する
導電性炭素材の位置関係をも表すものであって、Si微
粒子の「表面上もしくは表面近傍」を意味する。更に
「分散して配置」の意義は、複数の複合粒子が凝集する
ことなく相互に分散した状態で黒鉛粒子の表面に接合若
しくは表面からわずかに離間して位置している状態を意
味する。また「被覆」の意義は、被覆対象粒子を完全に
覆うことによって被覆対象粒子同士を結合させる状態を
意味する。この場合、被覆対象粒子は必ずしも直接に接
していなくても良い。具体的には、黒鉛粒子及び複合粒
子を非晶質炭素膜によって被覆するとは、黒鉛粒子及び
複合粒子を非晶質炭素膜によって完全に覆って黒鉛粒子
と複合粒子を結合させることや、非晶質炭素膜中に複合
粒子を埋め込んで黒鉛粒子表面に近接させたことを意味
する。同様に、Si微粒子及び導電性炭素材を硬質炭素
膜によって被覆するとは、Si微粒子及び導電性炭素材
を硬質炭素膜によって完全に覆ってSi微粒子と導電性
炭素材を結合させることや、硬質炭素膜中に導電性炭素
材を埋め込んでSi微粒子表面に近接させたことを意味
する。更に、「析出」の意義は、結晶相の状態を説明す
る用語であり、母相中に母相と組成が異なる析出相が形
成された状態を意味する。即ち、即ち、SiO2相、S
iC相及びSiB4相がSi相中に一体不可分に含まれ
た状態を意味するのであり、Si相、SiO2相、Si
C相及びSiB4相が相互に物理的に分離した状態をい
うものではない。
In the present invention, the meaning of “around” indicates the positional relationship of the composite particles with respect to the graphite particles, and means “on or near the surface” of the graphite particles. The meaning of "around" also indicates the positional relationship of the conductive carbon material with respect to the Si fine particles, and means "on or near the surface" of the Si fine particles. Further, the meaning of “dispersed and arranged” means a state in which a plurality of composite particles are bonded to or slightly separated from the surface of the graphite particles in a state of being mutually dispersed without aggregation. The meaning of “coating” means a state in which the particles to be coated are bonded to each other by completely covering the particles to be coated. In this case, the particles to be coated need not necessarily be in direct contact. Specifically, to cover the graphite particles and the composite particles with the amorphous carbon film means that the graphite particles and the composite particles are completely covered with the amorphous carbon film to bond the graphite particles and the composite particles, Means that the composite particles are embedded in the carbonaceous carbon film and brought close to the graphite particle surface. Similarly, covering the Si fine particles and the conductive carbon material with the hard carbon film means that the Si fine particles and the conductive carbon material are completely covered with the hard carbon film, and the Si fine particles and the conductive carbon material are bonded. This means that a conductive carbon material was buried in the film and brought close to the surface of the Si fine particles. Further, the meaning of “precipitation” is a term for explaining the state of a crystal phase, and means a state in which a precipitation phase having a composition different from that of the parent phase is formed in the parent phase. That is, ie, SiO 2 phase, S
iC phase and SiB 4 phase does not mean a state contained in inseparable in the Si phase, Si phase, SiO 2 phase, Si
This does not mean that the C phase and the SiB 4 phase are physically separated from each other.

【0009】係る炭素質材料においては、黒鉛粒子及び
Si微粒子がLiを吸蔵するので、黒鉛粒子単独の場合
よりも充放電容量が向上する。また黒鉛粒子に対して高
比抵抗なSi微粒子の周りに導電性炭素材を配置するこ
とで、Si微粒子の導電性を見かけ上、向上させる。更
にSi微粒子を硬質炭素膜で被覆することにより、Li
の吸蔵・放出に伴うSi微粒子の体積膨張・収縮が機械
的に抑えられる。更にまた、黒鉛粒子と複合粒子を非晶
質炭素膜で覆うことにより、黒鉛粒子が直接に電解液に
触れることなく電解液分解が抑制されるとともに、複合
粒子が黒鉛粒子から脱落することがなく、更に充電によ
る体積膨張に起因するSi微粒子の微粉化を防止する。
In such a carbonaceous material, since the graphite particles and the Si fine particles occlude Li, the charge / discharge capacity is improved as compared with the case of the graphite particles alone. By arranging a conductive carbon material around Si fine particles having high specific resistance to graphite particles, the conductivity of Si fine particles is apparently improved. Further, by coating Si fine particles with a hard carbon film, Li
Volumetric expansion and contraction of the Si fine particles due to occlusion and release of the particles are mechanically suppressed. Furthermore, by covering the graphite particles and the composite particles with the amorphous carbon film, the decomposition of the electrolytic solution is suppressed without the graphite particles directly touching the electrolyte, and the composite particles do not fall off from the graphite particles. Further, it is possible to prevent the Si fine particles from being pulverized due to volume expansion due to charging.

【0010】更に、結晶質Si相中にSiO2相、Si
C相及びSiB4相が析出することにより、相対的にS
i相の含有量が低減するとともに、Si相に歪みを与え
て結晶性を低下させ、過度のLi吸蔵が抑制される。こ
れにより、Liの吸蔵・放出によるSi微粒子の膨張・
収縮が適度に抑制される。SiO2相、SiC相及びS
iB4相はLiと反応しないためそれ自身は容量をもた
ないが、Liイオンの拡散を促進するとともに、Si微
粒子の体積膨張による微粉化が抑制される。更に、Si
2相、SiC相及びSiB4相の全てを含むため、上記
の機能をより効果的に得ることができる。以上のことか
ら、本発明の炭素質材料では、充放電容量を高くすると
ともに、Si微粒子の体積膨張及び複合粒子の脱落、お
よび充電による体積膨張に起因するSi微粒子の微粉化
を抑制して、サイクル特性の低下を防止することが可能
になる。特に、Si微粒子の体積膨張による黒鉛粒子か
らの解離を防止してサイクル効率の低下をより効果的に
防止することが可能になる。また、Liイオンの拡散速
度が速まることにより、活物質が高密度に充填された電
極においても素早いLiイオンの吸蔵・放出を行うこと
ができ、充放電効率の向上が可能になる。
Further, a SiO 2 phase and a Si
The precipitation of the C phase and the SiB 4 phase results in the relative S
The content of the i-phase is reduced, and at the same time, the Si phase is distorted to lower the crystallinity, thereby suppressing excessive Li occlusion. As a result, the expansion and expansion of Si fine particles due to occlusion and release of Li
Shrinkage is moderately suppressed. SiO 2 phase, SiC phase and S
Since the iB 4 phase does not react with Li, it has no capacity of its own, but promotes diffusion of Li ions and suppresses pulverization due to volume expansion of Si fine particles. Further, Si
Since all of the O 2 phase, the SiC phase and the SiB 4 phase are included, the above function can be obtained more effectively. From the above, in the carbonaceous material of the present invention, while increasing the charge / discharge capacity, suppressing the pulverization of the Si fine particles due to the volume expansion of the Si fine particles and the dropout of the composite particles, and the volume expansion due to charging, It is possible to prevent the deterioration of the cycle characteristics. In particular, the dissociation of the Si fine particles from the graphite particles due to the volume expansion can be prevented, and the decrease in cycle efficiency can be more effectively prevented. In addition, by increasing the diffusion rate of Li ions, it is possible to quickly absorb and release Li ions even in an electrode filled with an active material at a high density, and to improve charge / discharge efficiency.

【0011】また本発明の炭素質材料は、先に記載の炭
素質材料であって、X線広角回折による前記Si相の
(111)面の回折強度をPSiとし、前記SiO2相の
(111)面の回折強度をPSiO2とし、前記SiC相の
(111)面の回折強度をPSi Cとし、前記SiB4相の
(104)面の回折強度をPSiBとしたとき、PSiO2/P
Siが0.005以上0.1以下であり、PSiC/PSi
0.005以上0.1以下であり、PSiB/PSiO2
0.1以上 5.0以下であり、PSiB/PSiCが0.1
以上 5.0以下であることを特徴とする。
Further, the carbonaceous material of the present invention comprises
A raw material, wherein the Si phase is analyzed by X-ray wide-angle diffraction.
Let the diffraction intensity of the (111) plane be PSiAnd the SiOTwoPhase
Let the diffraction intensity of the (111) plane be PSiO2And the SiC phase
Let the diffraction intensity of the (111) plane be PSi CAnd the SiBFourPhase
Let the diffraction intensity of the (104) plane be PSiBAnd PSiO2/ P
SiIs 0.005 or more and 0.1 or less, and PSiC/ PSiBut
0.005 or more and 0.1 or less, and PSiB/ PSiO2But
0.1 or more and 5.0 or less, and PSiB/ PSiCIs 0.1
It is characterized in that it is 5.0 or less.

【0012】係る炭素質材料においては、各相の回折強
度比が上記の範囲であるため、Si相の含有量が極端に
低下することがなく、Li吸蔵量が低下することがな
い。また、SiO2相、SiC相及びSiB4相の含有量
を最適化することにより、Si微粒子の体積膨張・収縮
を抑制する。従って、炭素質材料の充放電容量を大きく
し、更にSi微粒子の体積膨張による黒鉛粒子からの解
離、および充電による体積膨張に起因するSi微粒子の
微粉化を防いでサイクル効率の低下を防止することが可
能になる。
In such a carbonaceous material, since the diffraction intensity ratio of each phase is within the above range, the content of the Si phase does not extremely decrease and the Li occlusion amount does not decrease. Further, by optimizing the contents of the SiO 2 phase, the SiC phase and the SiB 4 phase, the volume expansion and contraction of the Si fine particles are suppressed. Accordingly, the charge / discharge capacity of the carbonaceous material is increased, and further, dissociation from the graphite particles due to the volume expansion of the Si particles and pulverization of the Si particles due to the volume expansion due to charging are prevented, thereby preventing a decrease in cycle efficiency. Becomes possible.

【0013】また本発明の炭素質材料は、先に記載の炭
素質材料であって、前記黒鉛粒子の粒径が2μm以上7
0μm以下の範囲であり、前記複合粒子の粒径が50n
mを越えて2μm以下の範囲であり、前記非晶質炭素膜
の膜厚が50nm以上5μm以下の範囲であることを特
徴とする。
Further, the carbonaceous material of the present invention is the above-mentioned carbonaceous material, wherein the graphite particles have a particle size of 2 μm or more and 7 μm or more.
0 μm or less, and the particle size of the composite particles is 50 n
m and 2 μm or less, and the film thickness of the amorphous carbon film is 50 nm or more and 5 μm or less.

【0014】黒鉛粒子の粒径が2μm未満では、黒鉛粒
子の粒径が複合粒子の粒径よりも相対的に小さくなり、
複合粒子を黒鉛粒子の表面に均一に付着させることが困
難になるので好ましくなく、粒径が70μmを越える
と、集電体との密着性が低下するとともに、電極内の空
隙も大きくなるので好ましくない。また複合粒子の粒径
を、50nmを越えて2μm以下、好ましくは50nm
を越えて500nm以下とするのは、黒鉛粒子の表面に
複合粒子を分散配置させるために複合粒子の粒径を黒鉛
粒子の最小粒径である2μm以下にする必要があるため
であり、さらに粒径を500nm以下とすれば膨張・収
縮による複合粒子の体積変化を小さくできるからであ
る。また粒径が50nm以下では、複合粒子に含まれる
Si微粒子の結晶構造の乱れが大きくなって、Li吸蔵
量が低下するので好ましくない。更に非晶質炭素膜の膜
厚を50nm未満にすると、黒鉛粒子が非晶質炭素膜に
よって完全に被覆されないおそれがあり、黒鉛粒子から
の複合粒子の脱落を防止できなくなるとともに電解液分
解を防止できなくなるおそれがあるので好ましくなく、
膜厚が5μmを越えると、非晶質炭素に起因する不可逆
容量の増加を招くとともに、リチウムイオンが黒鉛粒子
まで到達せず、Li吸蔵量が低下して充放電容量が低下
するので好ましくない。
If the particle size of the graphite particles is less than 2 μm, the particle size of the graphite particles becomes relatively smaller than the particle size of the composite particles,
It is not preferable because it becomes difficult to uniformly attach the composite particles to the surface of the graphite particles, and when the particle size exceeds 70 μm, the adhesion to the current collector is reduced, and the voids in the electrode are also preferably increased. Absent. Further, the particle size of the composite particles should be more than 50 nm and not more than 2 μm, preferably 50 nm.
Is set to 500 nm or less because the composite particles need to be 2 μm or less, which is the minimum particle size of the graphite particles, in order to disperse and arrange the composite particles on the surface of the graphite particles. If the diameter is 500 nm or less, the volume change of the composite particles due to expansion and contraction can be reduced. On the other hand, if the particle size is 50 nm or less, the crystal structure of the Si fine particles contained in the composite particles becomes more disordered, and the amount of Li occluded is undesirably reduced. Further, if the thickness of the amorphous carbon film is less than 50 nm, the graphite particles may not be completely covered with the amorphous carbon film, so that it is impossible to prevent the composite particles from falling off from the graphite particles and to prevent decomposition of the electrolytic solution. It is not preferable because it may not be possible,
If the film thickness exceeds 5 μm, the irreversible capacity due to the amorphous carbon is increased, and lithium ions do not reach the graphite particles.

【0015】また本発明の炭素質材料は、先に記載の炭
素質材料であって、前記Si微粒子の粒径が10nm以
上2μm未満の範囲であり、前記導電性炭素材の比抵抗
が10-4Ω・m以下であり、かつ前記硬質炭素膜の曲げ
強度が500kg/cm2以上であるとともに膜厚が1
0nm以上1μm以下であることを特徴とする。
Further, the carbonaceous material of the present invention is the carbonaceous material described above, wherein the particle size of the Si fine particles is in a range of 10 nm or more and less than 2 μm, and the specific resistance of the conductive carbon material is 10 −. 4 Ω · m or less, and the hard carbon film has a bending strength of 500 kg / cm 2 or more and a film thickness of 1
The thickness is not less than 0 nm and not more than 1 μm.

【0016】Si微粒子の粒径を10nm以上とするの
は、Si微粒子の結晶構造の乱れを防止してLi吸蔵量
を向上させるためであり、粒径を2μm未満とするの
は、複合粒子の粒径を黒鉛粒子の最小粒径である2μm
より小さくするためである。また、導電性炭素材の比抵
抗を10-4Ω・m以下とするのは、Si微粒子に十分な導
電性を付与するためである。更に、硬質炭素膜の曲げ強
度を500kg/cm2以上とするのは、Liの吸蔵、
放出に伴うSi微粒子の膨張・収縮を機械的に抑えて体
積変化を小さくするためであり、硬質炭素膜の膜厚を1
0nm以上1μm以下とするのは、膜厚が10nm未満
であると導電性炭素材とSi微粒子との結着力が低下す
るとともに複合粒子の体積膨張を抑制する効果がなくな
って好ましくないためであり、膜厚が1μmを越える
と、リチウムイオンがSi微粒子まで到達せず、充放電
容量が低下してしまうので好ましくないためである。
The reason why the particle size of the Si fine particles is set to 10 nm or more is to prevent disorder of the crystal structure of the Si fine particles and to improve the amount of Li occlusion. The particle size is 2 μm, the minimum particle size of graphite particles.
This is to make it smaller. Further, the specific resistance of the conductive carbon material is set to 10 −4 Ω · m or less in order to impart sufficient conductivity to the Si fine particles. Further, the bending strength of the hard carbon film is set to 500 kg / cm 2 or more because of the occlusion of Li,
This is for reducing the volume change by mechanically suppressing the expansion and contraction of the Si fine particles due to the release.
The reason for setting the thickness to 0 nm or more and 1 μm or less is that if the film thickness is less than 10 nm, the binding force between the conductive carbon material and the Si fine particles is reduced and the effect of suppressing the volume expansion of the composite particles is lost. This is because if the film thickness exceeds 1 μm, lithium ions do not reach the Si fine particles and the charge / discharge capacity decreases, which is not preferable.

【0017】また本発明のリチウム二次電池用の炭素質
材料は、先に記載の炭素質材料であって、前記複合粒子
の含有量が1重量%以上25重量%以下であることを特
徴とする。
The carbonaceous material for a lithium secondary battery according to the present invention is the carbonaceous material described above, wherein the content of the composite particles is 1% by weight or more and 25% by weight or less. I do.

【0018】複合粒子の含有量が1重量%未満では、炭
素材料のみを活物質とした場合を上回る充分な放電容量
を得ることができなくなるので好ましくない。一方、含
有量が25重量%を越えると炭素材料部分の寄与が少な
くなり、放電初期からSiの反応電位近くまで電圧が増
加してしまうので好ましくなく、更に複合粒子間の距離
が狭まって再凝集化し、Si微粒子による体積膨張・収
縮が起こりやすくなり、サイクル特性が低下するので好
ましくない。
If the content of the composite particles is less than 1% by weight, it is not preferable because a sufficient discharge capacity cannot be obtained as compared with the case where only the carbon material is used as the active material. On the other hand, if the content exceeds 25% by weight, the contribution of the carbon material portion decreases, and the voltage increases from the initial discharge to near the reaction potential of Si, which is not preferable. And the volume expansion and contraction due to the Si fine particles are liable to occur, and the cycle characteristics deteriorate, which is not preferable.

【0019】次に、本発明のリチウム二次電池は、先の
いずれかに記載の炭素質材料を備えたことを特徴とす
る。係るリチウム二次電池は、例えば、正極と、電解質
と、前記の負極材料を有する負極を少なくとも有するも
ので、円筒形、角形、コイン型、あるいはシート型等の
種々の形状からなる。尚、本発明のリチウム二次電池
は、ここで挙げた形態に限られるものではなく、このほ
かの形態からなるものであってもよい。係るリチウム二
次電池によれば、エネルギー密度が高く、サイクル特性
に優れたリチウム二次電池を構成することができる。
Next, a lithium secondary battery according to the present invention includes the carbonaceous material described above. Such a lithium secondary battery has, for example, at least a positive electrode, an electrolyte, and a negative electrode having the above-described negative electrode material, and has various shapes such as a cylindrical shape, a square shape, a coin shape, and a sheet shape. It should be noted that the lithium secondary battery of the present invention is not limited to the above-described embodiment, but may be formed in another embodiment. According to such a lithium secondary battery, a lithium secondary battery having high energy density and excellent cycle characteristics can be configured.

【0020】次に、本発明の炭素質材料の製造方法は、
結晶質珪素からなるSi微粒子をB 23粉末とともに炭
素るつぼ中で1300℃以上1400℃以下で焼成する
ことにより、結晶質Si相中にSiO2相、SiC相及
びSiB4相を析出させる工程と、前記Si微粒子に導
電性炭素材を付着するとともに、該Si微粒子を覆う高
分子材料皮膜を形成して複合粒子前駆体とし、更に該複
合粒子前駆体を焼成することにより前記高分子皮膜を硬
質炭素膜として複合粒子を得る工程と、黒鉛粒子に前記
Si微粒子を付着するとともに、該黒鉛粒子を覆う高分
子材料皮膜を形成して炭素質材料前駆体とし、更に該炭
素質材料前駆体を焼成することにより前記高分子皮膜を
非晶質炭素膜として炭素質材料を得る工程とからなるこ
とを特徴とする
Next, the method for producing a carbonaceous material according to the present invention comprises:
Si fine particles made of crystalline silicon TwoOThreeCharcoal with powder
Bake at 1300 ° C or higher and 1400 ° C or lower in a crucible
As a result, SiOTwoPhase, SiC phase
And SiBFourA step of precipitating a phase;
Attach the conductive carbon material and cover the Si fine particles.
Forming a molecular material film to form a composite particle precursor,
The polymer film is hardened by firing the composite particle precursor.
Obtaining composite particles as a porous carbon film;
Attach Si fine particles and cover the graphite particles
A carbonaceous material precursor to form a carbonaceous material precursor;
By baking the raw material precursor, the polymer film is formed.
Obtaining a carbonaceous material as an amorphous carbon film.
Characterized by

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1〜図4に、本発明のリチウム
二次電池用の炭素質材料の断面模式図を示す。この炭素
質材料は、黒鉛粒子の周りに複合粒子が分散して配置さ
れ、かつ黒鉛粒子と複合粒子とが非晶質炭素膜によって
被覆されてなるものである。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 show schematic cross-sectional views of a carbonaceous material for a lithium secondary battery of the present invention. In this carbonaceous material, composite particles are dispersedly arranged around graphite particles, and the graphite particles and the composite particles are covered with an amorphous carbon film.

【0022】ここで、「周りに」とは、黒鉛粒子に対す
る複合粒子の位置関係を表すものであって、黒鉛粒子の
「表面上もしくは表面近傍」を意味する。即ち、複合粒
子が黒鉛粒子の表面に接合した状態と、複合粒子が黒鉛
粒子の表面から離間して黒鉛粒子の周囲に位置すること
を含む。更に「分散して配置」とは、複数の複合粒子が
相互に分散した状態で黒鉛粒子の表面に接合若しくは表
面からわずかに離間して位置している状態を意味する。
尚、複合粒子同士が凝集しない程度で相互に接触してい
てもよい。また、「被覆」とは、被覆対象粒子を完全に
覆うことによって被覆対象粒子同士を結合させる状態を
意味する。この場合、被覆対象粒子は必ずしも直接に接
していなくても良い。具体的には、黒鉛粒子及び複合粒
子を非晶質炭素膜によって被覆するとは、黒鉛粒子及び
複合粒子を非晶質炭素膜によって完全に覆って黒鉛粒子
と複合粒子を結合させることや、非晶質炭素膜中に複合
粒子を埋め込んで黒鉛粒子表面に近接させたことを意味
する。従って本発明の炭素質材料には、以下に示すよう
な様々な形態のものが含まれる。
Here, "around" indicates the positional relationship of the composite particles with respect to the graphite particles, and means "on or near the surface" of the graphite particles. That is, this includes the state in which the composite particles are bonded to the surface of the graphite particles, and the case where the composite particles are separated from the surface of the graphite particles and located around the graphite particles. Further, “dispersed and arranged” means a state where a plurality of composite particles are bonded to or slightly separated from the surface of graphite particles in a state of being mutually dispersed.
The composite particles may be in contact with each other to the extent that they do not aggregate. Further, “coating” means a state in which the particles to be coated are bonded to each other by completely covering the particles to be coated. In this case, the particles to be coated need not necessarily be in direct contact. Specifically, to cover the graphite particles and the composite particles with the amorphous carbon film means that the graphite particles and the composite particles are completely covered with the amorphous carbon film to bond the graphite particles and the composite particles, Means that the composite particles are embedded in the carbonaceous carbon film and brought close to the graphite particle surface. Accordingly, the carbonaceous material of the present invention includes various forms as described below.

【0023】例えば、図1に示す炭素質材料1は、黒鉛
粒子2の表面に複数の複合粒子3…が相互に分散した状
態で接合し、非晶質炭素膜4が複合粒子3…の粒径より
も小さくかつ均一な膜厚で黒鉛粒子2と複合粒子3…を
被覆することにより構成されている。
For example, the carbonaceous material 1 shown in FIG. 1 is bonded to the surface of graphite particles 2 in a state where a plurality of composite particles 3 are dispersed in each other, and the amorphous carbon film 4 is formed of particles of the composite particles 3. It is constituted by coating the graphite particles 2 and the composite particles 3 with a uniform film thickness smaller than the diameter.

【0024】また図2に示す炭素質材料1は、複数の黒
鉛粒子2…の表面に複数の複合粒子3…が相互に分散し
た状態で接合し、非晶質炭素膜4が複合粒子3…の粒径
よりも大きくかつ均一な膜厚で黒鉛粒子2と複合粒子3
…を覆うように形成されるとととともに、この非晶質炭
素膜4によって複数の黒鉛粒子2…が結合されて構成さ
れている。図2では、2つまたは3つの黒鉛粒子2…が
非晶質炭素膜4によって結合されている状態を示すが、
これに限られず、4つ以上の黒鉛粒子2…が非晶質炭素
膜4によって結合されていても良い。
The carbonaceous material 1 shown in FIG. 2 is bonded to a surface of a plurality of graphite particles 2 in a state in which a plurality of composite particles 3 are mutually dispersed, and an amorphous carbon film 4 is formed of the composite particles 3. Graphite particles 2 and composite particles 3 having a uniform film thickness larger than the particle size of
Are formed so as to cover the plurality of graphite particles 2 by the amorphous carbon film 4. FIG. 2 shows a state in which two or three graphite particles 2 are bonded by an amorphous carbon film 4,
The present invention is not limited to this, and four or more graphite particles 2 may be bonded by the amorphous carbon film 4.

【0025】更に、図3に示す炭素質材料1は、黒鉛粒
子2の表面に複数の複合粒子3…が相互に分散した状態
で接合し、非晶質炭素膜4が黒鉛粒子2と複合粒子3…
を被覆することにより構成されている。図3に示す非晶
質炭素膜4の膜厚は不均一であり、例えば、黒鉛粒子2
のみを覆う部分では複合粒子3…の粒径よりも大きく設
定され、複合粒子3…を覆う部分では複合粒子3…の粒
径よりも小さく設定されている。
Further, the carbonaceous material 1 shown in FIG. 3 is bonded to the surface of the graphite particles 2 in a state in which a plurality of composite particles 3 are mutually dispersed, and the amorphous carbon film 4 is formed by the graphite particles 2 and the composite particles. 3 ...
Is formed. The thickness of the amorphous carbon film 4 shown in FIG.
The portion covering only the composite particles 3 is set to be larger than the particle size of the composite particles 3, and the portion covering the composite particles 3 is set to be smaller than the particle size of the composite particles 3.

【0026】更に、図4に示す炭素質材料1は、黒鉛粒
子2の表面に複数の複合粒子3…が相互に分散した状態
で接合し、非晶質炭素膜4が黒鉛粒子2と複合粒子3…
を被覆することにより構成されている。図4に示す非晶
質炭素膜4の膜厚は不均一であり、例えば、黒鉛粒子2
のみを覆う部分では複合粒子3…の粒径よりも大きく設
定され、複合粒子3…を覆う部分では複合粒子3…の粒
径よりも小さく設定され、しかも非晶質炭素膜4の表面
は複合粒子3…の形状を反映することなく凹凸のないな
めらかな面に形成されている。
Further, the carbonaceous material 1 shown in FIG. 4 is bonded to the surface of the graphite particles 2 in a state in which a plurality of composite particles 3 are mutually dispersed, and the amorphous carbon film 4 is formed by the graphite particles 2 and the composite particles. 3 ...
Is formed. The thickness of the amorphous carbon film 4 shown in FIG.
The portion covering only the composite particles 3 is set to be larger than the particle size of the composite particles 3. The portion covering the composite particles 3 is set to be smaller than the particle size of the composite particles 3. The particles 3 are formed on a smooth surface without irregularities without reflecting the shape of the particles 3.

【0027】本発明の炭素質材料は図1〜4に示したも
のに限られず、上記の用語の意義を満足する限り、どの
ようなものであっても良い。
The carbonaceous material of the present invention is not limited to those shown in FIGS. 1 to 4 and may be any material as long as the above terms are satisfied.

【0028】炭素質材料に含まれる黒鉛粒子1は、X線
広角回折による(002)面の面間隔d002が0.33
5nm以上0.337nm未満とされたものを用いるこ
とが好ましく、0.335nm以上0.34nm以下の
ものがより好ましい。面間隔d002が0.337nm以
上だと黒鉛粒子の結晶性が低下し、初期不可逆容量が著
しく増加するとともに、電子伝導性が低下するので好ま
しくない。また、黒鉛粒子2の粒径は、2μm以上70
μm以下の範囲が好ましい。黒鉛粒子2の粒径が2μm
未満では、黒鉛粒子2の粒径が複合粒子3…の粒径より
も相対的に小さくなり、複合粒子3…を黒鉛粒子2の表
面に均一に付着させることが困難になるので好ましくな
く、粒径が70μmを越えると、集電体との密着性が低
下するとともに、電極内の空隙も大きくなるので好まし
くない。
The graphite particles 1 contained in the carbonaceous material have a (002) plane spacing d002 of 0.33 by X-ray wide-angle diffraction.
It is preferable to use one having a thickness of 5 nm to less than 0.337 nm, more preferably 0.335 nm to 0.34 nm. If the plane distance d002 is 0.337 nm or more, the crystallinity of the graphite particles is reduced, the initial irreversible capacity is significantly increased, and the electron conductivity is undesirably reduced. The particle size of the graphite particles 2 is 2 μm or more and 70 μm or more.
The range of not more than μm is preferred. The particle size of the graphite particles 2 is 2 μm
Is smaller than the particle size of the composite particles 3, it is difficult to uniformly adhere the composite particles 3 to the surface of the graphite particles 2. If the diameter exceeds 70 μm, the adhesion to the current collector decreases, and the voids in the electrode also increase, which is not preferable.

【0029】次に非晶質炭素膜4は図1〜図4に示すよ
うに、黒鉛粒子2及び複合粒子3…を覆うとともに、複
合粒子3…を黒鉛粒子2の表面上に付着させている。こ
の非晶質炭素膜4は、図2に示すように黒鉛粒子2…同
士を結合させる作用もある。この非晶質炭素膜4は、熱
可塑性樹脂、熱硬化性樹脂、ビニル系樹脂、セルロース
系樹脂、フェノール系樹脂、石炭系ピッチ材料、石油系
ピッチ材料、タール系材料等のうち少なくとも一種を熱
処理して得られたもので、黒鉛化が比較的に進んでいな
いもので非晶質なものであり、0.37nm以上の面間
隔d002を有するものである。非晶質炭素膜4が非晶質
であるため、有機電解液が非晶質炭素膜4に触れても分
解するおそれがなく、炭素質材料1の充放電効率を高く
できる。非晶質炭素膜4の面間隔d002が0.37nm
未満であると、非晶質炭素膜4の結晶性が向上して黒鉛
構造に近づき、有機電解液を分解させてしまうおそれが
あるので好ましくない。
Next, as shown in FIGS. 1 to 4, the amorphous carbon film 4 covers the graphite particles 2 and the composite particles 3 and adheres the composite particles 3 to the surface of the graphite particles 2. . The amorphous carbon film 4 also has the function of bonding the graphite particles 2 to each other as shown in FIG. The amorphous carbon film 4 heat-treats at least one of a thermoplastic resin, a thermosetting resin, a vinyl resin, a cellulose resin, a phenol resin, a coal pitch material, a petroleum pitch material, a tar material, and the like. This is an amorphous material having relatively less graphitization, having an interplanar spacing d002 of 0.37 nm or more. Since the amorphous carbon film 4 is amorphous, the organic electrolyte does not decompose even if it touches the amorphous carbon film 4, and the charge / discharge efficiency of the carbonaceous material 1 can be increased. The plane spacing d002 of the amorphous carbon film 4 is 0.37 nm
If it is less than 10%, the crystallinity of the amorphous carbon film 4 is improved, and the amorphous carbon film 4 approaches a graphite structure, which may undesirably decompose the organic electrolyte.

【0030】また、非晶質炭素膜4によって複合粒子3
…を黒鉛粒子2の表面上に配置させているので、比較的
高比抵抗な複合粒子3…が黒鉛粒子2から遊離するのを
防止して、充放電反応に寄与しない複合粒子3…の発生
を防止できる。また、この非晶質炭素膜4は、上記の高
分子材料を溶解させた溶媒中に投入し、黒鉛粒子2の表
面に高分子材料を析出させ、更に焼成して得られたもの
なので、黒鉛粒子2全体を完全に被覆させることが可能
であり、また、密度が比較的低くリチウムイオンが透過
しやすいので、黒鉛粒子2及び複合粒子3…とリチウム
イオンとの反応を阻害することがない。非晶質炭素膜4
の膜厚は、50nm以上5μm以下の範囲であることが
好ましい。膜厚が50nm未満では、黒鉛粒子2が完全
に被覆されず、複合粒子3…が黒鉛粒子2から脱落する
おそれがあるので好ましくなく、膜厚が5μmを越える
と、非晶質炭素に起因する不可逆容量が増加するので好
ましくない。
The composite particles 3 are formed by the amorphous carbon film 4.
Are arranged on the surface of the graphite particles 2 to prevent the composite particles 3 having a relatively high specific resistance from being separated from the graphite particles 2 and to generate the composite particles 3 that do not contribute to the charge / discharge reaction. Can be prevented. The amorphous carbon film 4 is obtained by throwing it into a solvent in which the above-mentioned polymer material is dissolved, depositing the polymer material on the surface of the graphite particles 2, and further baking it. Since the entire particles 2 can be completely covered, and the density is relatively low and lithium ions are easily transmitted, the reaction between the graphite particles 2 and the composite particles 3 and the lithium ions is not hindered. Amorphous carbon film 4
Is preferably in the range from 50 nm to 5 μm. If the film thickness is less than 50 nm, the graphite particles 2 are not completely covered, and the composite particles 3 may fall off from the graphite particles 2, which is not preferable. If the film thickness exceeds 5 μm, it is caused by amorphous carbon. This is not preferable because the irreversible capacity increases.

【0031】次に複合粒子3…は、図5に示すように、
Si微粒子5の周りに導電性炭素材6…が配置されると
ともに、Si微粒子5と導電性炭素材6…とが硬質炭素
膜7によって被覆されてなるものである。また、Si微
粒子3…は、結晶質Si相中にSiO2相、SiC相及
びSiB4相が析出したものである。ここで、「周り
に」とは、Si微粒子5に対する導電性炭素材6…の位
置関係を表すものであって、Si微粒子5の「表面上も
しくは表面近傍」を意味する。即ち、導電性炭素材6…
がSi微粒子5の表面に接合した状態と、導電性炭素材
6…がSi微粒子5の表面から離間してSi微粒子5の
周囲に位置することを含む。また、Si微粒子5と導電
性炭素材6…とを硬質炭素膜7によって被覆するとは、
Si微粒子5及び導電性炭素材6…を硬質炭素膜7によ
って完全に覆ってSi微粒子5と導電性炭素材6…を結
合させることや、硬質炭素膜7中に導電性炭素材6…を
埋め込んでSi微粒子5表面に近接させたことを含む。
Next, the composite particles 3 are, as shown in FIG.
The conductive carbon materials 6 are arranged around the Si fine particles 5 and the hard carbon film 7 covers the Si fine particles 5 and the conductive carbon materials 6. The Si fine particles 3 are formed by depositing a SiO 2 phase, a SiC phase and a SiB 4 phase in a crystalline Si phase. Here, “around” indicates the positional relationship of the conductive carbon material 6 to the Si fine particles 5 and means “on or near the surface” of the Si fine particles 5. That is, the conductive carbon material 6 ...
Are in contact with the surface of the Si fine particles 5 and the conductive carbon material 6 is located around the Si fine particles 5 apart from the surface of the Si fine particles 5. Further, covering the Si fine particles 5 and the conductive carbon materials 6 with the hard carbon film 7 means that:
The Si fine particles 5 and the conductive carbon materials 6 are completely covered with the hard carbon film 7 to bond the Si fine particles 5 with the conductive carbon materials 6. The conductive carbon materials 6 are embedded in the hard carbon film 7. And that it is brought close to the surface of the Si fine particles 5.

【0032】更に、「析出」とは、結晶相の状態を説明
する用語であり、母相中に母相と組成が異なる析出相が
形成された状態を意味する。即ち、Si相中にSiO2
相、SiC相及びSiB4相が一体不可分に含まれた状
態を意味するのであり、Si相、SiO2相、SiC相
及びSiB4相が相互に物理的に分離した状態をいうも
のではない。
Further, "precipitation" is a term for explaining the state of a crystal phase, and means a state in which a precipitation phase having a composition different from that of the parent phase is formed in the parent phase. That is, in the Si phase, SiO 2
It means a state in which the SiC phase, the SiC phase and the SiB 4 phase are inseparably contained, and does not mean a state where the Si phase, the SiO 2 phase, the SiC phase and the SiB 4 phase are physically separated from each other.

【0033】複合粒子3の粒径は、50nmを越えて2
μm以下の範囲が好ましく、50nmを越えて500n
m以下の範囲がより好ましい。複合粒子3の粒径を2μ
m以下とするのは、黒鉛粒子2の表面に複合粒子3…を
分散配置させるためには複合粒子3…の粒径を黒鉛粒子
2の最小粒径である2μm以下にする必要があるためで
あり、更に粒径を500nm以下とすればリチウムの吸
蔵、放出に伴うSi微粒子5の膨張・収縮による体積変
化を小さくできるからである。また粒径の下限値を50
nmを越えてとする理由は、50nm以下であると複合
粒子3に含まれるSi微粒子5の結晶構造の乱れが大き
くなり、Li吸蔵量が低下して充放電容量が少なくなる
おそれがあるためである。
The particle size of the composite particles 3 exceeds 50 nm and is 2
μm or less, and preferably more than 50 nm and 500 n
m is more preferable. The particle size of the composite particles 3 is 2 μm
m or less because the particle size of the composite particles 3 must be 2 μm or less, which is the minimum particle size of the graphite particles 2, in order to disperse and arrange the composite particles 3 on the surface of the graphite particles 2. In addition, if the particle diameter is set to 500 nm or less, the volume change due to expansion and contraction of the Si fine particles 5 caused by insertion and extraction of lithium can be reduced. Also, the lower limit of the particle size is 50
The reason for exceeding 500 nm is that if it is 50 nm or less, the disorder of the crystal structure of the Si fine particles 5 contained in the composite particles 3 increases, and the amount of Li occluded may decrease and the charge / discharge capacity may decrease. is there.

【0034】Si微粒子5は結晶質珪素(Si相)を主
体として含み、更にSiO2相、SiC相及びSiB4
が析出してなるものであり、粒径が10nm以上2μm
未満の範囲のものである。珪素はリチウムと合金を形成
する元素であり、この珪素からなるSi相にリチウムイ
オンが作用することにより合金を形成する。特にリチウ
ムイオンはSi微粒子5の表面若しくはSi微粒子5内
部にある空隙部分に侵入して合金を形成し、これにより
Si微粒子5自体が膨張する。
The Si fine particles 5 contain crystalline silicon (Si phase) as a main component, and are further formed by depositing an SiO 2 phase, a SiC phase and a SiB 4 phase, and have a particle size of 10 nm or more and 2 μm or more.
Less than the range. Silicon is an element that forms an alloy with lithium, and an alloy is formed by the action of lithium ions on a Si phase made of silicon. In particular, lithium ions penetrate into the surface of the Si fine particles 5 or the voids inside the Si fine particles 5 to form an alloy, whereby the Si fine particles 5 themselves expand.

【0035】また、このSi微粒子5にはSiO2相、
SiC相及びSiB4相が含まれており、これらの相は
リチウムと反応しないためそれ自身は容量をもたない
が、リチウムイオンの拡散を促進する作用がある。従っ
て、Si相中にSiO2相、SiC相及びSiB4相が含
まれると、Si相中におけるリチウムイオンの拡散速度
が向上し、例えばこの炭素質材料が高密度に充填された
電極においても素早いLiイオンの吸蔵・放出を行うこ
とができ、充放電効率を向上させることができる。
The Si fine particles 5 contain an SiO 2 phase,
It contains a SiC phase and a SiB 4 phase, and these phases do not react with lithium and thus have no capacity per se, but have an effect of promoting diffusion of lithium ions. Therefore, when the SiO 2 phase, the SiC phase, and the SiB 4 phase are included in the Si phase, the diffusion rate of lithium ions in the Si phase is improved, and, for example, even in an electrode in which the carbonaceous material is densely filled, quickness is achieved. Li ions can be stored and released, and the charge and discharge efficiency can be improved.

【0036】また、Si微粒子5にSiO2相、SiC
相及びSiB4相が含まれると、相対的にSi相の含有
量が低下し、またSi相に歪みを与えて結晶性を低下さ
せる。これによりリチウムイオンの吸蔵量が若干低下す
るが、同時にリチウムの吸蔵・放出に伴うSi微粒子の
膨張、収縮も適度に抑制される。これにより、Si微粒
子の体積膨張による微粉化が抑制されるとともに、Si
微粒子の体積膨張による複合粒子の脱落が少なくなり、
サイクル特性の低下を防止できる。
Further, an SiO 2 phase, SiC
When the phase and the SiB 4 phase are contained, the content of the Si phase is relatively reduced, and the Si phase is strained to lower the crystallinity. As a result, the occlusion amount of lithium ions slightly decreases, but at the same time, the expansion and contraction of the Si fine particles due to occlusion and release of lithium are appropriately suppressed. This suppresses pulverization due to volume expansion of the Si fine particles,
Drops of composite particles due to volume expansion of the particles are reduced,
The cycle characteristics can be prevented from deteriorating.

【0037】具体的には、X線広角回折によるSi相の
(111)面の回折強度をPSiとし、SiO2相の(1
11)面の回折強度をPSiO2とし、SiC相の(11
1)面の回折強度をPSiCとし、SiB4相の(104)
面の回折強度をPSiBとしたとき、PSiO2/PSiが0.
005以上0.1以下であり、PSiC/PSiが0.00
5以上0.1以下であり、PSiB/PSiO2が0.1以上
5.0以下であり、PSi B/PSiCが0.1以上 5.0
以下であることが好ましい。PSiO2/PSiが0.005
未満であると、SiO2相の含有量が低下し、Si微粒
子5の膨張、収縮を抑制することができなくなり、また
リチウムイオンの拡散速度が低下するので好ましくな
い。PSiO2/PSiが0.1を越えると、Si微粒子5中
のSi相の含有量が低下して充放電容量が低下してしま
うので好ましくない。また、PSiC/PSiが0.005
未満の場合も、SiC相の含有量が低下し、Si微粒子
5の膨張、収縮を抑制することができなくなり、またリ
チウムイオンの拡散速度が低下するので好ましくなく、
SiC/PSiが0.1を越えるとSi微粒子5中のSi
相の含有量が低下して充放電容量が低下してしまうので
好ましくない。
[0037] Specifically, the diffraction intensity of the (111) plane of the Si phase by X-ray wide angle diffraction and P Si, the SiO 2 phase (1
11) The diffraction intensity of the plane is defined as P SiO2, and the (11)
A diffraction intensity 1) plane and P SiC, of SiB 4 phase (104)
Assuming that the diffraction intensity of the surface is P SiB , P SiO2 / P Si is 0.1 .
005 or more and 0.1 or less, and P SiC / P Si is 0.00
5 or more and 0.1 or less, and P SiB / P SiO2 is 0.1 or more
5.0 or less, and P Si B / P SiC is 0.1 or more 5.0
The following is preferred. 0.005 for P SiO2 / P Si
If it is less than 10%, the content of the SiO 2 phase is reduced, so that the expansion and contraction of the Si fine particles 5 cannot be suppressed, and the diffusion rate of lithium ions is undesirably reduced. If the ratio of P SiO2 / P Si exceeds 0.1, the content of the Si phase in the Si fine particles 5 decreases, and the charge / discharge capacity decreases, which is not preferable. Also, P SiC / P Si is 0.005
Also, the content of the SiC phase decreases, the expansion and shrinkage of the Si fine particles 5 cannot be suppressed, and the diffusion rate of lithium ions decreases.
If P SiC / P Si exceeds 0.1, Si in Si fine particles 5
It is not preferable because the content of the phase is reduced and the charge / discharge capacity is reduced.

【0038】更に、PSiB/PSiO2が0.1未満である
と、Si微粒子5の膨張、収縮を抑制する効果がほとん
どなくなるため好ましくない。また、PSiB/PSiO2
5.0を越えると、SiO2相がリチウムイオンの拡散
を促進させる効果を妨げるとともに、Si相の結晶構造
の歪みが大きくなりすぎて放電容量が減少してしまうた
め好ましくない。更にまた、PSiB/PSiCが0.1未満
であると、Si微粒子5の膨張、収縮を抑制する効果が
ほとんどなくなるため好ましくない。また、PSiB/P
SiCが5.0を越えると、SiC相がリチウムイオンの拡散
を促進させる効果を妨げるとともに、Si相の結晶構造
の歪みが大きくなりすぎて放電容量が減少してしまうた
め好ましくない。尚、SiO2相、SiC相は特にリチ
ウムイオンの拡散を促進させる効果が高く、SiB4
はSi微粒子5の膨張、収縮を抑制する効果が特に強い
が、それぞれ単独では上記のような効果を十分に発揮す
ることができず、全ての相が共存することにより、高効
率、高容量維持率を示す電極材料を得ることができる。
従って本発明においては、SiO2相、SiC相及びS
iB4相の全てを必ず含むことが好ましい。
Further, if the ratio of P SiB / P SiO2 is less than 0.1, the effect of suppressing the expansion and contraction of the Si fine particles 5 is hardly obtained, which is not preferable. On the other hand, if P SiB / P SiO2 exceeds 5.0, the effect of the SiO 2 phase to promote the diffusion of lithium ions is hindered, and the crystal structure of the Si phase becomes too large to decrease the discharge capacity. Therefore, it is not preferable. Furthermore, if P SiB / P SiC is less than 0.1, the effect of suppressing the expansion and contraction of the Si fine particles 5 is hardly obtained, which is not preferable. Also, P SiB / P
If SiC exceeds 5.0, the SiC phase hinders the effect of accelerating the diffusion of lithium ions, and the crystal structure of the Si phase becomes too large in strain, which is not preferable because the discharge capacity is reduced. The SiO 2 phase and the SiC phase have a particularly high effect of promoting the diffusion of lithium ions, and the SiB 4 phase has a particularly strong effect of suppressing the expansion and contraction of the Si fine particles 5. An electrode material exhibiting high efficiency and a high capacity retention ratio can be obtained by not being able to sufficiently exert the effect and having all phases coexist.
Therefore, in the present invention, the SiO 2 phase, SiC phase and S
It is preferred to include all of the iB 4 phases.

【0039】尚、Si微粒子5の粒径を10nm以上と
するのは、Si微粒子5の結晶構造の乱れを防止してL
i吸蔵量を向上させるためであり、粒径を2μm未満と
するのは、複合粒子3の粒径を黒鉛粒子2の最小粒径で
ある2μmより小さくする必要があるからである。
The reason why the particle size of the Si fine particles 5 is set to 10 nm or more is to prevent the crystal structure of the Si fine particles 5 from being disordered and to reduce the L size.
The reason why the particle size is set to be smaller than 2 μm is to improve the occlusion amount because the particle size of the composite particles 3 needs to be smaller than 2 μm, which is the minimum particle size of the graphite particles 2.

【0040】次に導電性炭素材6…は、Si微粒子5の
表面上または表面近傍に配置されてなるもので、図5で
はSi微粒子5の周りに粒子状の導電性炭素材6…が配
置されているが、導電性炭素材6…の形状は粒子状に限
られず、膜状、層状、繊維状等の様々な形態でもよい。
導電性炭素材6…は、半導体であるSi微粒子5の表面
に位置してSi微粒子5に見かけ上の導電性を付与す
る。この導電性炭素材6…の比抵抗は10-4Ω・m以下
の範囲が好ましい。比抵抗が10-4Ω・mを越えると、
Si微粒子5の見かけ上の導電性が低下してSi微粒子
5に対するリチウムイオンの充放電反応が円滑に進行せ
ず、炭素質材料の充放電容量を向上させることができな
くなるので好ましくない。導電性炭素材6…としては、
例えば、カーボンブラック、ケッチェンブラック、気相
成長炭素繊維(VGCF)等を例示できる。
Next, the conductive carbon materials 6 are arranged on or near the surface of the Si fine particles 5. In FIG. 5, the conductive carbon materials 6 are arranged around the Si fine particles 5. However, the shape of the conductive carbon material 6 is not limited to a particle shape, and may be various forms such as a film shape, a layer shape, and a fiber shape.
The conductive carbon materials 6 are located on the surface of the semiconductor Si fine particles 5 and impart apparent conductivity to the Si fine particles 5. The specific resistance of the conductive carbon materials 6 is preferably in the range of 10 −4 Ω · m or less. When the specific resistance exceeds 10 -4 Ω · m,
Since the apparent conductivity of the Si fine particles 5 is reduced, the charge / discharge reaction of lithium ions with respect to the Si fine particles 5 does not proceed smoothly, and the charge / discharge capacity of the carbonaceous material cannot be improved, which is not preferable. As the conductive carbon material 6,
For example, carbon black, Ketjen black, vapor grown carbon fiber (VGCF) and the like can be exemplified.

【0041】硬質炭素膜7は、Si微粒子5及び導電性
炭素材6…を覆うとともに、導電性炭素材6…をSi微
粒子5の表面上に配置させている。この硬質炭素膜7
は、ポリビニルアルコールやフェノール樹脂等を焼成し
て得られたもので、曲げ強度が500kg/cm2以上
であるとともに膜厚が10nm以上1μm以下のもので
ある。
The hard carbon film 7 covers the Si fine particles 5 and the conductive carbon materials 6. The conductive carbon materials 6 are arranged on the surface of the Si fine particles 5. This hard carbon film 7
Is obtained by sintering polyvinyl alcohol, a phenol resin or the like, and has a bending strength of 500 kg / cm 2 or more and a film thickness of 10 nm or more and 1 μm or less.

【0042】硬質炭素膜7は、リチウムイオンの充放電
反応に伴うSi微粒子5の膨張、収縮に起因して生じる
黒鉛粒子2からの複合粒子3の遊離を防止するためのも
ので、Si微粒子5の膨張、収縮を機械的に抑制する。
従って硬質炭素膜7の曲げ強度を500kg/cm2
上にすることが好ましい。曲げ強度が500kg/cm
2未満であると、Si微粒子5の膨張・収縮を機械的に
抑えることができなくなり、複合粒子3が黒鉛粒子2か
ら遊離するおそれがあるので好ましくない。また、硬質
炭素膜7の膜厚が10nm未満であると、導電性炭素材
6…とSi微粒子5との結着力が低下するとともに複合
粒子3の体積膨張を抑制する効果が低下して好ましくな
い。更に膜厚が1μmを越えると、非晶質炭素に起因す
る負可逆容量の増加を招くため好ましくない。
The hard carbon film 7 is used to prevent the release of the composite particles 3 from the graphite particles 2 caused by the expansion and contraction of the Si fine particles 5 caused by the charge / discharge reaction of lithium ions. Mechanically suppresses expansion and contraction.
Therefore, it is preferable that the bending strength of the hard carbon film 7 be 500 kg / cm 2 or more. Flexural strength of 500kg / cm
If it is less than 2 , the expansion and contraction of the Si fine particles 5 cannot be mechanically suppressed, and the composite particles 3 may be separated from the graphite particles 2, which is not preferable. If the thickness of the hard carbon film 7 is less than 10 nm, the binding force between the conductive carbon materials 6 and the Si fine particles 5 decreases, and the effect of suppressing the volume expansion of the composite particles 3 decreases. . Further, when the film thickness exceeds 1 μm, the negative reversible capacity increases due to amorphous carbon, which is not preferable.

【0043】そして、本発明の炭素質材料における上記
の複合粒子3の含有量は、1重量%以上25重量%以下
であることが好ましい。複合粒子3の含有量が1重量%
未満では、炭素材料のみを活物質とした場合を上回る充
分な放電容量を得ることができないので好ましくない。
また含有量が25重量%を越えると炭素材料部分の寄与
が少なくなり、放電初期からSiの反応電位に達してし
まい、電池の平均電圧が低下するので好ましくなく、更
に複合粒子3間の距離が狭まって再凝集化し、Si微粒
子5による体積膨張・収縮が起こりやすくなり、サイク
ル特性が低下するので好ましくない。
The content of the composite particles 3 in the carbonaceous material of the present invention is preferably 1% by weight or more and 25% by weight or less. The content of the composite particles 3 is 1% by weight.
If it is less than this, it is not preferable because a sufficient discharge capacity cannot be obtained as compared with the case where only the carbon material is used as the active material.
On the other hand, if the content exceeds 25% by weight, the contribution of the carbon material portion is reduced, the reaction potential of Si is reached from the beginning of discharge, and the average voltage of the battery is lowered. It is not preferable because it narrows and re-aggregates, volume expansion and contraction by the Si fine particles 5 easily occur, and the cycle characteristics deteriorate.

【0044】上記の炭素質材料1がリチウムイオンと反
応する場合は、リチウムイオンが主として黒鉛粒子2に
吸蔵されるとともにSi微粒子5…と化合して合金を形
成する。このSi微粒子5…の表面には導電性炭素材6
が付着していて導電性が見かけ上高くなっており、Si
微粒子5…に対してもリチウムイオンが容易に合金化す
る。このとき、黒鉛粒子2及びSi微粒子5…の体積が
膨張するが、Si微粒子5…は硬質炭素膜76により被
覆されているので、体積膨張が機械的に抑制され、Si
微粒子5…を含む複合粒子3…が黒鉛粒子2から解離す
ることがない。また、Si微粒子5…にはSi相とSi
2相、SiC相及びSiB4相が含まれることから、リ
チウムイオンの吸蔵量が抑制されてSi微粒子5…の体
積膨張が適度に抑えられ、これによっても、Si微粒子
5…を含む複合粒子3…が黒鉛粒子2から解離すること
がない。従って、Si微粒子5…を常に充放電反応に寄
与させることができ、充放電サイクルが進行しても炭素
質材料1の充放電容量が低下することがない。
When the carbonaceous material 1 reacts with lithium ions, the lithium ions are mainly absorbed by the graphite particles 2 and combined with the Si fine particles 5 to form an alloy. A conductive carbon material 6 is provided on the surface of the Si fine particles 5.
Is attached and the conductivity is apparently high, and Si
The lithium ions are easily alloyed with the fine particles 5. At this time, the volumes of the graphite particles 2 and the Si fine particles 5 expand, but since the Si fine particles 5 are covered with the hard carbon film 76, the volume expansion is mechanically suppressed,
The composite particles 3 including the fine particles 5 do not dissociate from the graphite particles 2. The Si fine particles 5 have Si phase and Si
Since the O 2 phase, the SiC phase, and the SiB 4 phase are included, the amount of lithium ions absorbed is suppressed, and the volume expansion of the Si fine particles 5 is appropriately suppressed. 3 do not dissociate from the graphite particles 2. Therefore, the Si fine particles 5 can always contribute to the charge / discharge reaction, and the charge / discharge capacity of the carbonaceous material 1 does not decrease even if the charge / discharge cycle proceeds.

【0045】また、黒鉛粒子2と複合粒子3…を非晶質
炭素膜4で覆うことにより、黒鉛粒子2が直接に有機電
解液に触れることがなく、有機電解液の分解が抑制され
る。また、複合粒子3…が黒鉛粒子2から脱落すること
がなく、更に充電による体積膨張に起因するSi微粒子
5…の微粉化が防止される。
Further, by covering the graphite particles 2 and the composite particles 3 with the amorphous carbon film 4, the graphite particles 2 do not come into direct contact with the organic electrolyte, and the decomposition of the organic electrolyte is suppressed. Further, the composite particles 3 do not fall off from the graphite particles 2, and further, the pulverization of the Si fine particles 5 due to volume expansion due to charging is prevented.

【0046】従って上記の炭素質材料1によれば、充放
電容量を高くするとともに、Si微粒子5…の体積膨張
及び複合粒子3…の脱落、並びに充電に伴う体積膨張に
起因するSi微粒子5…の微粉化を抑制して、サイクル
特性の低下を防止することができる。
Therefore, according to the carbonaceous material 1 described above, the charge / discharge capacity is increased, and the volume expansion of the Si fine particles 5, the dropout of the composite particles 3, and the volume expansion of the Si fine particles 5 due to the charge are caused. Can be suppressed, and a decrease in cycle characteristics can be prevented.

【0047】上記の炭素質材料は、例えば、次のように
して製造することができる。この炭素質材料の製造は、
複合粒子を製造する工程と、得られた複合粒子に黒鉛粒
子を混合し、これらを非晶質炭素膜で被覆する工程とか
らなる。まず、複合粒子を製造する工程では、Si相の
みからなるSi微粒子と、ホウ素源としてホウ素若しく
は酸化ホウ素等のホウ素化合物を用意し、Si微粒子ホ
ウ素またはホウ素化合物とを炭素製るつぼに投入して不
活性雰囲気中で1300〜1400℃程度で120〜3
00分間加熱する。この加熱により、るつぼの構成材料
である炭素とSi相とが反応してSi微粒子中にSiC
相が析出し、またホウ素源に含まれるホウ素とSi相と
が反応してSi微粒子中にSiB4相が析出し、更に、
僅かに混入した酸素とSi相が反応してSi微粒子中に
SiO2相が析出する。ただし、加熱温度が1300℃
未満及び/または加熱時間が120分未満であると、S
iC相、SiO2相及びSiB4相が十分に析出しないの
で好ましくなく、加熱温度が1400℃を越えるとSi
が溶融するため好ましくなく、加熱時間が300分を越
えると、SiC相、SiO2相及びSiB4相の析出量が
過大になるので好ましくない。
The above carbonaceous material can be produced, for example, as follows. The production of this carbonaceous material
It comprises a step of producing composite particles and a step of mixing graphite particles with the obtained composite particles and coating them with an amorphous carbon film. First, in the step of producing the composite particles, Si fine particles composed of only the Si phase and a boron compound such as boron or boron oxide as a boron source are prepared, and the Si fine particles boron or the boron compound are charged into a carbon crucible to be unreacted. 120-3 at about 1300-1400 ° C in an active atmosphere
Heat for 00 minutes. By this heating, carbon which is a constituent material of the crucible reacts with the Si phase, and SiC is contained in Si fine particles.
A phase is precipitated, and the boron contained in the boron source reacts with the Si phase to precipitate a SiB 4 phase in the Si fine particles.
The slightly mixed oxygen reacts with the Si phase to precipitate a SiO 2 phase in the Si fine particles. However, the heating temperature is 1300 ° C
And / or heating time is less than 120 minutes, S
Since the iC phase, SiO 2 phase and SiB 4 phase are not sufficiently precipitated, it is not preferable. If the heating temperature exceeds 1400 ° C., the Si
Is unfavorable because it melts. If the heating time exceeds 300 minutes, the amounts of the SiC phase, SiO 2 phase and SiB 4 phase deposited are undesirably excessive.

【0048】また、Si微粒子とホウ素、ホウ素化合物
等のホウ素源の混合割合は、10:1とすることが好ま
しい。Si微粒子に対してホウ素量が少ないと、SiB
4相の析出量が少なくなるので好ましくなく、ホウ素量
が過剰になると、Si相の結晶構造に歪みを与えすぎ
て、放電容量の低下を招くため好ましくない。
The mixing ratio between the Si fine particles and a boron source such as boron or a boron compound is preferably 10: 1. If the amount of boron is small relative to the Si fine particles, SiB
If the amount of boron is excessive, the amount of precipitation of the four phases is not preferable. If the amount of boron is excessive, the crystal structure of the Si phase is excessively distorted, and the discharge capacity is undesirably reduced.

【0049】次に、加熱後のSi微粒子と導電性炭素材
とを、乾式混合あるいは湿式混合により混合する。湿式
混合の場合、イソプロピルアルコール、アセトン、水等
の分散媒を用いることが好ましい。
Next, the heated Si fine particles and the conductive carbon material are mixed by dry mixing or wet mixing. In the case of wet mixing, it is preferable to use a dispersion medium such as isopropyl alcohol, acetone, and water.

【0050】次に、高分子材料を適当な溶媒に溶解し、
この溶液にSi微粒子と導電性炭素材の混合物を混合し
た後、溶媒を除去する。溶媒を除去することにより、S
i微粒子及び導電性炭素材に高分子膜を被覆した複合粒
子前駆体が形成される。なお、上記の高分子材料は、熱
可塑性樹脂、熱硬化性樹脂、ビニル系樹脂、セルロース
系樹脂、フェノール系樹脂のうち少なくとも一種を用い
ることが好ましく、特にフェノール樹脂を用いることが
好ましい。また石炭系ピッチ材料、石油系ピッチ材料、
タール系材料等のを用いてもよい。
Next, the polymer material is dissolved in a suitable solvent,
After mixing a mixture of Si fine particles and a conductive carbon material into this solution, the solvent is removed. By removing the solvent, S
A composite particle precursor in which the i-fine particles and the conductive carbon material are coated with a polymer film is formed. Note that as the above polymer material, it is preferable to use at least one of a thermoplastic resin, a thermosetting resin, a vinyl resin, a cellulose resin, and a phenol resin, and particularly preferably a phenol resin. Coal pitch materials, petroleum pitch materials,
A tar-based material or the like may be used.

【0051】次に、複合粒子前駆体を熱処理することに
より、高分子膜を炭化させて硬質炭素膜を形成する。熱
処理は、真空雰囲気中または不活性ガス雰囲気中で行う
ことが好ましく、熱処理温度は800℃以上1200℃
以下の範囲が好ましく、熱処理時間は120分以上行う
ことが好ましい。熱処理を真空雰囲気または不活性ガス
雰囲気で行うと、高分子膜の酸化が防止されて良好な硬
質炭素膜が形成できる。尚、熱処理温度が800℃未満
だと炭化が完全に行われず、硬質炭素膜の比抵抗が高
く、リチウムイオンの挿入・脱理が行われにくくなり好
ましくなく、熱処理温度が1200℃を越えると、Si
微粒子が炭化されてSiCが過剰に生成するとともに、
炭素膜の黒鉛化が進行し、膜の強度が低下するので好ま
しくない。同様に、熱処理時間が120分未満だと均一
な硬質炭素膜が形成できないので好ましくない。このよ
うにして、複合粒子が得られる。
Next, by heating the composite particle precursor, the polymer film is carbonized to form a hard carbon film. The heat treatment is preferably performed in a vacuum atmosphere or an inert gas atmosphere, and the heat treatment temperature is 800 ° C. or more and 1200 ° C.
The following range is preferable, and the heat treatment time is preferably 120 minutes or more. When the heat treatment is performed in a vacuum atmosphere or an inert gas atmosphere, oxidation of the polymer film is prevented, and a good hard carbon film can be formed. If the heat treatment temperature is less than 800 ° C., carbonization is not completely performed, the specific resistance of the hard carbon film is high, and insertion and removal of lithium ions are difficult to be performed, which is not preferable. If the heat treatment temperature exceeds 1200 ° C., Si
While the fine particles are carbonized, excessive SiC is generated,
Graphitization of the carbon film proceeds, and the strength of the film decreases, which is not preferable. Similarly, if the heat treatment time is less than 120 minutes, a uniform hard carbon film cannot be formed, which is not preferable. Thus, composite particles are obtained.

【0052】次の工程では得られた複合粒子に、乾式混
合あるいは湿式混合により黒鉛粒子を混合する。湿式混
合の場合、エタノール等の分散媒を用いることが好まし
い。
In the next step, graphite particles are mixed with the obtained composite particles by dry mixing or wet mixing. In the case of wet mixing, it is preferable to use a dispersion medium such as ethanol.

【0053】次に、別の高分子材料を適当な溶媒に溶解
し、この溶液に複合粒子及び黒鉛粒子の混合物を混合し
た後、溶媒を除去する。溶媒を除去することにより、複
合粒子及び黒鉛粒子に高分子膜を被覆した炭素質材料前
駆体が形成される。なお、上記の高分子材料は、熱可塑
性樹脂、熱硬化性樹脂、ビニル系樹脂、セルロース系樹
脂、フェノール系樹脂等の高分子材料のうち少なくとも
一種を用いることが好ましく、特にフェノール樹脂を用
いることが好ましい。また石炭系ピッチ材料、石油系ピ
ッチ材料、タール系材料等を用いても良い。
Next, another polymer material is dissolved in an appropriate solvent, a mixture of the composite particles and the graphite particles is mixed with the solution, and the solvent is removed. By removing the solvent, a carbonaceous material precursor in which the composite particles and the graphite particles are coated with the polymer film is formed. In addition, it is preferable to use at least one of the above polymer materials such as a thermoplastic resin, a thermosetting resin, a vinyl resin, a cellulose resin, and a phenol resin, and particularly to use a phenol resin. Is preferred. Further, a coal-based pitch material, a petroleum-based pitch material, a tar-based material, or the like may be used.

【0054】次に、炭素質材料前駆体を熱処理すること
により、高分子膜を炭化させて非晶質炭素膜を形成す
る。熱処理は、真空雰囲気中または不活性ガス雰囲気中
で行うことが好ましく、熱処理温度は800℃以上12
00℃以下の範囲が好ましく、熱処理時間は120分以
上行うことが好ましい。熱処理を真空雰囲気または不活
性ガス雰囲気で行うと、高分子膜の酸化が防止されて良
好な非晶質炭素膜が形成できる。尚、熱処理温度が80
0℃未満だと温度が低いために炭化が完全に行われず、
非晶質炭素膜の比抵抗が高く、リチウムイオンの挿入・
脱理が行われにくくなり好ましくなく、熱処理温度が1
200℃を越えるとSi微粒子が炭化されてSiCが過
剰に生成するとともに、高分子膜の黒鉛化が進行し、非
晶質炭素膜の強度が低下するので好ましくない。同様
に、熱処理時間が120分未満だと均一な硬質炭素膜が
形成できないので好ましくない。このようにして、本発
明に係る炭素質材料が得られる。
Next, by heat-treating the carbonaceous material precursor, the polymer film is carbonized to form an amorphous carbon film. The heat treatment is preferably performed in a vacuum atmosphere or an inert gas atmosphere.
The temperature is preferably in the range of not higher than 00 ° C., and the heat treatment is preferably performed for 120 minutes or more. When the heat treatment is performed in a vacuum atmosphere or an inert gas atmosphere, oxidation of the polymer film is prevented, and a favorable amorphous carbon film can be formed. The heat treatment temperature is 80
If the temperature is lower than 0 ° C., the carbonization is not completely performed due to the low temperature,
The amorphous carbon film has high specific resistance,
It is not preferable because delamination is difficult to be performed, and the heat treatment temperature is 1
If the temperature is higher than 200 ° C., the Si fine particles are carbonized, SiC is excessively generated, and the graphitization of the polymer film proceeds, so that the strength of the amorphous carbon film is undesirably reduced. Similarly, if the heat treatment time is less than 120 minutes, a uniform hard carbon film cannot be formed, which is not preferable. Thus, the carbonaceous material according to the present invention is obtained.

【0055】上記の炭素質材料を有する負極と、リチウ
ムの吸蔵・放出が可能な正極及び有機電解質とにより、
リチウム二次電池を構成することができる。正極として
は、例えば、LiMn24、LiCoO2、LiNi
2、LiFeO2、V25、TiS、MoS等のリチウ
ムの吸蔵、放出が可能な正極材料や、有機ジスルフィド
化合物または有機ポリスルフィド化合物等の正極材料を
含むものが例示できる。正極または負極の具体例とし
て、上記の正極材料または炭素質材料に、結着材と更に
必要に応じて導電助材を混合し、これらを金属箔若しく
は金属網からなる集電体に塗布してシート状に成形した
ものを例示できる。
The negative electrode having the above carbonaceous material, the positive electrode capable of inserting and extracting lithium, and the organic electrolyte form:
A lithium secondary battery can be configured. As the positive electrode, for example, LiMn 2 O 4 , LiCoO 2 , LiNi
Examples include a positive electrode material capable of inserting and extracting lithium, such as O 2 , LiFeO 2 , V 2 O 5 , TiS, and MoS, and a material including a positive electrode material such as an organic disulfide compound or an organic polysulfide compound. As a specific example of the positive electrode or the negative electrode, the above-described positive electrode material or carbonaceous material, a binder and further mixed with a conductive auxiliary as necessary, and applying these to a current collector made of a metal foil or a metal net. A sheet-shaped member can be exemplified.

【0056】有機電解質としては、例えば、非プロトン
性溶媒にリチウム塩が溶解されてなる有機電解液を例示
できる。非プロトン性溶媒としては、プロピレンカーボ
ネート、エチレンカーボネート、ブチレンカーボネー
ト、ベンゾニトリル、アセトニトリル、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、γ−ブチロラク
トン、ジオキソラン、4−メチルジオキソラン、N、N
−ジメチルホルムアミド、ジメチルアセトアミド、ジメ
チルスルホキシド、ジオキサン、1,2−ジメトキシエ
タン、スルホラン、ジクロロエタン、クロロベンゼン、
ニトロベンゼン、ジメチルカーボネート、メチルエチル
カーボネート、ジエチルカーボネート、メチルプロピル
カーボネート、メチルイソプロピルカーボネート、エチ
ルブチルカーボネート、ジプロピルカーボネート、ジイ
ソプロピルカーボネート、ジブチルカーボネート、ジエ
チレングリコール、ジメチルエーテル等の非プロトン性
溶媒、あるいはこれらの溶媒のうちの二種以上を混合し
た混合溶媒を例示でき、特にプロピレンカーボネート、
エチレンカーボネート、ブチレンカーボネートのいずれ
か1つを必ず含むとともにジメチルカーボネート、メチ
ルエチルカーボネート、ジエチルカーボネートのいずれ
か1つを必ず含むことが好ましい。
Examples of the organic electrolyte include an organic electrolyte in which a lithium salt is dissolved in an aprotic solvent. Examples of aprotic solvents include propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolan, 4-methyldioxolan, N, N
-Dimethylformamide, dimethylacetamide, dimethylsulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene,
Non-protic solvents such as nitrobenzene, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl butyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, diethylene glycol, dimethyl ether, and among these solvents Illustrative of the mixed solvent is a mixture of two or more of, especially propylene carbonate,
It is preferable to include at least one of ethylene carbonate and butylene carbonate and to include at least one of dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate.

【0057】また、リチウム塩としては、LiPF6
LiBF4、LiSbF6、LiAsF6、LiClO4
LiCF3SO3、Li(CF3SO22N、LiC49
SO3、LiSbF6、LiAlO4、LiAlCl4、Li
N(Cx2x+1SO2)(Cy2 y十1SO2)(ただし
x、yは自然数)、LiCl、LiI等のうちの1種ま
たは2種以上のリチウム塩を混合させてなるものを例示
でき、特にLiPF6、LiBF4のいずれか1つを含む
ものが好ましい。またこの他に、リチウム二次電池の有
機電解液として従来から知られているものを用いること
もできる。
As the lithium salt, LiPF 6 ,
LiBF 4, LiSbF 6, LiAsF 6 , LiClO 4,
LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9
SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , Li
One or more lithium salts of N (C x F 2x + 1 SO 2 ) (C y F 2 y10 1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, etc. are mixed. In particular, those containing any one of LiPF 6 and LiBF 4 are preferable. In addition, other known organic electrolytes for lithium secondary batteries can also be used.

【0058】また有機電解質の別の例として、PEO、
PVA等のポリマーに上記記載のリチウム塩のいずれか
を混合させたものや、膨潤性の高いポリマーに有機電解
液を含浸させたもの等、いわゆるポリマー電解質を用い
ても良い。更に、本発明のリチウム二次電池は、正極、
負極、電解質のみに限られず、必要に応じて他の部材等
を備えていても良く、例えば正極と負極を隔離するセパ
レータを具備しても良い。
As another example of the organic electrolyte, PEO,
A so-called polymer electrolyte may be used, such as a mixture of any of the above-described lithium salts in a polymer such as PVA, or a polymer obtained by impregnating a polymer having high swellability with an organic electrolyte. Further, the lithium secondary battery of the present invention has a positive electrode,
The invention is not limited to the negative electrode and the electrolyte, but may include other members as necessary. For example, a separator for separating the positive electrode from the negative electrode may be provided.

【0059】上記のリチウム二次電池によれば、上記の
炭素質材料1を備えているので、エネルギー密度が高
く、サイクル特性に優れたリチウム二次電池を構成する
ことができる。
According to the above-mentioned lithium secondary battery, since the above-mentioned carbonaceous material 1 is provided, a lithium secondary battery having a high energy density and excellent cycle characteristics can be constituted.

【0060】[0060]

【実施例】[実施例の炭素質材料の製造]平均粒径2μ
mのSi粉末10gと、酸化ホウ素1.4〜2.8gま
たはホウ素1gを、内容積200mlの炭素製るつぼに
入れ、アルゴンガス雰囲気中で1400℃で240分間
加熱した。Si微粒子はこの加熱処理により凝集後硬化
し、加熱前より大きな粒子となる。これをボールミル等
により300nmの粒度になるまで粉砕した。次に、粉
砕後のSi微粒子1重量部に、2重量部のカーボンブラ
ックを混合した。なお、カーボンブラックは比抵抗が1
-4Ω・mのものであった。次に10重量部のフェノー
ル樹脂をイソプロピルアルコールに溶解させた溶液を用
意し、この溶液に、先程のSi微粒子及びカーボンブラ
ックの混合物を混合し、十分に攪拌した後、溶媒を除去
した。このようにして、Si微粒子の表面にカーボンブ
ラックとフェノール樹脂被膜とが付着してなる複合粒子
前駆体を形成した。次に、この複合粒子前駆体をアルゴ
ン雰囲気中、1000℃で180分間熱処理することに
より、ポリビニルアルコール樹脂皮膜を炭化して厚さ
0.05μmの硬質炭素膜を形成した。尚、上記と同じ
条件でポリビニルアルコール樹脂を単独で炭化させた場
合、得られる炭化物の曲げ強度は800kg/cm2
度であることから、上記の硬質炭素膜の曲げ強度も同程
度であると推定される。このようにして複合粒子を得
た。
EXAMPLES [Production of carbonaceous material of Examples] Average particle size 2μ
10 g of Si powder and 1.4-2.8 g of boron oxide or 1 g of boron were placed in a carbon crucible having an internal volume of 200 ml, and heated at 1400 ° C. for 240 minutes in an argon gas atmosphere. The Si particles harden after aggregation by this heat treatment, and become larger particles than before heating. This was pulverized by a ball mill or the like until the particle size became 300 nm. Next, 2 parts by weight of carbon black was mixed with 1 part by weight of the pulverized Si fine particles. Carbon black has a specific resistance of 1
0 -4 Ω · m. Next, a solution prepared by dissolving 10 parts by weight of a phenol resin in isopropyl alcohol was prepared. The mixture of the Si fine particles and carbon black was mixed with the solution, and the mixture was sufficiently stirred, and then the solvent was removed. In this way, a composite particle precursor in which carbon black and a phenol resin film were adhered to the surface of the Si fine particles was formed. Next, this composite particle precursor was heat-treated at 1000 ° C. for 180 minutes in an argon atmosphere to carbonize the polyvinyl alcohol resin film to form a 0.05 μm thick hard carbon film. When the polyvinyl alcohol resin is carbonized alone under the same conditions as above, the bending strength of the obtained carbide is about 800 kg / cm 2, so the bending strength of the hard carbon film is estimated to be about the same. Is done. Thus, composite particles were obtained.

【0061】次に、平均粒径15μmの天然黒鉛の95
重量部に、5重量部の上記複合粒子を添加し、更にイソ
プロピルアルコールを加えて湿式混合した。尚、天然黒
鉛のX線広角回折による(002)面の面間隔d002は
0.3355nmであった。次に、上記の天然黒鉛と複
合粒子の混合物に、10重量部のフェノール樹脂を含む
イソプロピルアルコール溶液を添加して混合した後に、
イロプロピルアルコールを蒸発させた。このようにし
て、天然黒鉛の表面に複合粒子とポリビニルアルコール
樹脂皮膜とが付着してなる炭素質材料前駆体を形成し
た。
Next, 95% of natural graphite having an average particle size of 15 μm was used.
To the parts by weight, 5 parts by weight of the composite particles were added, and isopropyl alcohol was further added, followed by wet mixing. The spacing d002 of the (002) plane of the natural graphite by X-ray wide-angle diffraction was 0.3355 nm. Next, after adding and mixing an isopropyl alcohol solution containing 10 parts by weight of a phenol resin to the mixture of the natural graphite and the composite particles,
The isopropyl alcohol was evaporated. In this way, a carbonaceous material precursor formed by attaching the composite particles and the polyvinyl alcohol resin film to the surface of natural graphite was formed.

【0062】次に、この炭素質材料前駆体を、真空雰囲
気中、1000℃(1273K)で焼成することによ
り、フェノール樹脂を炭化させて厚さ0.05μmの非
晶質炭素膜とした。尚、上記と同じ条件でフェノール樹
脂を単独で炭化させた場合、得られる炭化物の(00
2)面の面間隔d002が0.39nm程度であることか
ら、上記の非晶質炭素膜の面間隔d002も同程度である
と推定される。このようにして実施例1〜4の炭素質材
料を得た。
Next, this carbonaceous material precursor was calcined in a vacuum atmosphere at 1000 ° C. (1273 K) to carbonize the phenol resin to form a 0.05 μm thick amorphous carbon film. When the phenol resin is carbonized alone under the same conditions as described above, (00)
2) Since the plane distance d002 between the planes is about 0.39 nm, it is estimated that the plane distance d002 of the amorphous carbon film is also about the same. Thus, the carbonaceous materials of Examples 1 to 4 were obtained.

【0063】[比較例の炭素質材料の製造]平均粒径
2.0μmのSi粉末10gと、酸化ホウ素2.8gま
たはホウ素1gを、内容積100mlのジルコニウム製
るつぼに入れ、アルゴンガス雰囲気中で1400℃で1
80分間加熱したこと以外は上記実施例1〜4と同様に
して、比較例1及び2の炭素質材料を得た。実施例2に
おいて作成した加熱後のSi微粒子を、ボールミル等に
より平均粒径が再び2μmの粒度になるまで粉砕したの
ち、実施例1〜4と同様の方法で比較例3の炭素質材料
を得た。更に、天然黒鉛のみからなる炭素質材料を比較
例4とした。
[Production of Carbon Material of Comparative Example] 10 g of Si powder having an average particle size of 2.0 μm and 2.8 g of boron oxide or 1 g of boron were placed in a crucible made of zirconium having an internal volume of 100 ml and placed in an argon gas atmosphere. 1 at 1400 ° C
Except for heating for 80 minutes, carbonaceous materials of Comparative Examples 1 and 2 were obtained in the same manner as in Examples 1 to 4. The heated Si fine particles prepared in Example 2 were pulverized again by a ball mill or the like until the average particle size became 2 μm, and the carbonaceous material of Comparative Example 3 was obtained in the same manner as in Examples 1 to 4. Was. Further, Comparative Example 4 was made of a carbonaceous material composed of only natural graphite.

【0064】[充放電試験用のテストセルの作成]上記
の実施例1〜4及び比較例1〜4の炭素質材料に、ポリ
フッ化ビニリデンを混合し、更にN−メチルピロリドン
を加えてスラリー液とした。このスラリー液を、ドクタ
ーブレード法により厚さ14μmの銅箔に塗布し、真空
雰囲気中で120℃、24時間乾燥させてN−メチルピ
ロリドンを揮発させた。このようにして、厚さ100μ
mの負極合材を銅箔上に積層した。なお、負極合材中の
ポリフッ化ビニリデンの含有量は8重量%であり、負極
合材の密度は1.5g/cm 3以上であった。そして、
負極合材を積層させた銅箔を直径13mmの円形に打ち
抜いて実施例1〜4及び比較例1〜4の負極電極とし
た。
[Preparation of Test Cell for Charge / Discharge Test]
Examples 1 to 4 and Comparative Examples 1 to 4
Mix vinylidene fluoride and add N-methylpyrrolidone
Was added to obtain a slurry liquid. This slurry liquid is
-Apply to 14μm thick copper foil by blade method and vacuum
After drying in an atmosphere at 120 ° C. for 24 hours, N-methylpi
Loridone was volatilized. Thus, the thickness of 100 μm
m of the negative electrode mixture was laminated on a copper foil. Note that, in the negative electrode mixture,
The content of polyvinylidene fluoride was 8% by weight.
The density of the mixture is 1.5 g / cm ThreeThat was all. And
A copper foil with a negative electrode mixture laminated is punched into a circle with a diameter of 13 mm.
Pull out the negative electrodes of Examples 1 to 4 and Comparative Examples 1 to 4.
Was.

【0065】実施例1〜4及び比較例1〜4の負極電極
を作用極とし、円形に打ち抜いた金属リチウム箔を対極
とし、作用極と対極との間に多孔質ポリプロピレンフィ
ルムからなるセパレータを挿入し、電解液としてジメチ
ルカーボネート(DMC)、ジエチルカーボネート(D
EC)及びエチレンカーボネート(EC)の混合溶媒に
溶質としてLiPF6が1(モル/L)の濃度となるよ
うに溶解させたものを用いて、コイン型のテストセルを
作成した。そして、充放電電流密度を0.2Cとし、充
電終止電圧を0V(L i/L i +)、放電終止電圧を
1.5V(L i/ Li+)として充放電試験を行っ
た。表1に、実施例1〜4及び比較例1、2の1サイク
ル目における放電容量及び充放電効率を示す。また、表
2に、実施例2及び比較例3、4の20サイクル目の放
電容量と1サイクル目の放電容量の容量比(20th/1st)
を示す。ただし、容量比の測定は、1C放電で行った。
Negative Electrodes of Examples 1-4 and Comparative Examples 1-4
Is the working electrode, and a metal lithium foil punched in a circular shape is the counter electrode.
Between the working electrode and the counter electrode.
Insert a separator made of
Carbonate (DMC), diethyl carbonate (D
EC) and ethylene carbonate (EC)
LiPF6 has a concentration of 1 (mol / L) as a solute.
Using a solution that has been melted, a coin-shaped test cell
Created. Then, the charge / discharge current density was set to 0.2 C,
The terminal voltage is 0 V (Li / Li) +), The discharge end voltage
1.5V (Li / Li+) As a charge / discharge test
Was. Table 1 shows one cycle of Examples 1 to 4 and Comparative Examples 1 and 2.
2 shows the discharge capacity and the charge / discharge efficiency at the grid line. Also, the table
FIG. 2 shows the discharge at the 20th cycle of Example 2 and Comparative Examples 3 and 4.
Capacity ratio between electric capacity and first cycle discharge capacity (20th / 1st)
Is shown. However, the measurement of the capacity ratio was performed by 1C discharge.

【0066】[0066]

【表1】 [Table 1]

【0067】「表2」 試料 加熱粉砕後のSi微粒子 容量比(20th/1st) 実施例2 0.3μm 88.0% 比較例3 2.0μm 81.2% 比較例4 − 84.4%[Table 2] Samples Si fine particles after heat pulverization Volume ratio (20th / 1st) Example 2 0.3 μm 88.0% Comparative example 3 2.0 μm 81.2% Comparative example 4-84.4%

【0068】表1に示すように、比較例1及び2の1サ
イクル目の放電容量が、実施例1〜4とほぼ同等か、若
しくは高くなっていることがわかる。これは、実施例1
〜4の場合、Si微粒子を炭素製るつぼ中で加熱したこ
とにより、Si微粒子のSi相中にSiC相が析出し、
リチウムと合金を形成するSi相の含有量が相対的に減
少したためと考えられる。一方、比較例1及び2は、ジ
ルコニウム製のるつぼを用いたため、Si微粒子のSi
相中にはSiC相が析出せず、このためSi相の含有量
が相対的に実施例1〜4よりも高くなったたためと考え
られる。
As shown in Table 1, it can be seen that the discharge capacity in the first cycle of Comparative Examples 1 and 2 is almost equal to or higher than Examples 1 to 4. This is the first embodiment
In the cases of Nos. To 4, the SiC phase was precipitated in the Si phase of the Si fine particles by heating the Si fine particles in the carbon crucible,
It is considered that the content of the Si phase forming an alloy with lithium was relatively reduced. On the other hand, in Comparative Examples 1 and 2, since a crucible made of zirconium was used, Si fine particles of Si were used.
It is considered that the SiC phase did not precipitate in the phase, and therefore the content of the Si phase was relatively higher than in Examples 1 to 4.

【0069】更に、実施例1〜3と実施例4とを放電容
量で比較すると、実施例4が高い放電容量を示してい
る。これは、実施例1〜3の場合、Si微粒子とB23
を混合して加熱したことにより、B23の酸素原子がS
iを酸化し、SiB4相の他にSiO2相が比較的多く析
出したため、Si相の含有量が相対的に減少したためと
考えられる。一方、実施例4では、Si微粒子とBとを
混合して加熱したため、実施例1〜3に比べて酸素が少
ない状況であり、雰囲気中の微小な残存酸素等によりわ
ずかにSiO2相が析出するものの、実施例1〜3より
もその量は少なく、このためSi相の含有量が相対的に
実施例1〜3よりも高くなったためと考えられる。
Further, when comparing Examples 1 to 3 and Example 4 in terms of discharge capacity, Example 4 shows a high discharge capacity. This is because, in the case of Examples 1 to 3, Si fine particles and B 2 O 3
And heated, the oxygen atoms of B 2 O 3 become S
This is probably because i was oxidized and a relatively large amount of SiO 2 phase precipitated in addition to the SiB 4 phase, so that the content of the Si phase was relatively reduced. On the other hand, in Example 4, since the Si fine particles and B were mixed and heated, the amount of oxygen was smaller than in Examples 1 to 3, and the SiO 2 phase was slightly precipitated due to minute residual oxygen and the like in the atmosphere. However, the amount was smaller than in Examples 1 to 3, and it is considered that the content of the Si phase was relatively higher than in Examples 1 to 3.

【0070】更に、実施例1〜3については、B23
添加量が増加するにつれて放電容量が低下している。こ
れは、B23の添加量が増加するに従ってSiB4相が
多く析出し、Si相の含有量が相対的に減少したためと
考えられる。
Further, in Examples 1 to 3 , the discharge capacity decreased as the added amount of B 2 O 3 increased. This is considered to be due to the fact that as the amount of B 2 O 3 added increased, more SiB 4 phase was precipitated, and the content of Si phase relatively decreased.

【0071】次に充放電効率については、表1から、実
施例1〜4の充放電効率が比較例1及び2よりも高くな
っていることがわかる。これは、Si微粒子中にSiC
相、SiO2相及びSiB4相が析出し、リチウムと合金
を形成するSi相の含有量が相対的に減少したために、
Si微粒子自体の膨張、収縮が適度に抑制され、これに
より複合粒子の黒鉛からの遊離が少なくなって、充放電
効率が向上したためと考えられる。また、SiC相、S
iO2相及びSiB4相の析出により、Si相の結晶性が
低下し、これによりSi相中におけるリチウムの拡散速
度が向上したとも、充放電効率向上の一因と考えられ
る。
Next, as for the charging / discharging efficiency, Table 1 shows that the charging / discharging efficiencies of Examples 1 to 4 are higher than those of Comparative Examples 1 and 2. This is because SiC
Phase, SiO 2 phase and SiB 4 phase are precipitated, and the content of the Si phase forming an alloy with lithium is relatively reduced.
It is considered that the expansion and contraction of the Si fine particles themselves were appropriately suppressed, whereby the release of the composite particles from the graphite was reduced, and the charge / discharge efficiency was improved. In addition, SiC phase, S
It is considered that the crystallinity of the Si phase is reduced due to the precipitation of the iO 2 phase and the SiB 4 phase, and the diffusion rate of lithium in the Si phase is improved.

【0072】図6には、実施例2の炭素質材料のSi微
粒子のX線回折パターンを示す。図6から明らかなよう
に、Si相の他に、SiC相、SiO2相及びSiB4
に由来する回折ピークが観察される。Si相の(11
1)面の回折強度をPSiとし、SiO2相の(111)
面の回折強度をPSiO2とし、SiC相の(111)面の
回折強度をPSiCとし、SiB4相の(104)面の回折
強度をPSiBとしたとき、図6から、PSiO2/PSi
0.034であり、PSiC/PSi=0.044であり、
SiB/PSiO2=1.50であり、PSiB/PSiC=1.
16であることがわかる。
FIG. 6 shows an X-ray diffraction pattern of Si fine particles of the carbonaceous material of Example 2. As is clear from FIG. 6, diffraction peaks derived from the SiC phase, the SiO 2 phase and the SiB 4 phase are observed in addition to the Si phase. (11)
1) The diffraction intensity of the plane is defined as P Si, and (111) of the SiO 2 phase
When the diffraction intensity of the surface and P SiO2, the diffraction intensity of the SiC phase (111) plane and P SiC, the diffraction intensity of SiB 4 phase (104) plane was P SiB, from Fig 6, P SiO2 / P Si =
0.034, and P SiC / P Si = 0.044,
P SiB / P SiO2 = 1.50, and P SiB / P SiC = 1.
It turns out that it is 16.

【0073】次に、表2から明らかなように、実施例2
の容量比は、比較例4よりも大幅に向上していることが
わかる。これは、1サイクル目の充放電効率が向上した
理由と同様に、Si微粒子中にSiC相、SiO2相及
びSiB4相が析出し、リチウムと合金を形成するSi
相の含有量が相対的に減少したために、Si微粒子自体
の膨張、収縮が適度に抑制され、これにより複合粒子の
黒鉛からの遊離が少なくなって、サイクル特性が向上し
たためと考えられる。また、SiC相、SiO2相及び
SiB4相の析出により、Si相の結晶性が低下し、こ
れによりSi相中におけるリチウムの拡散速度が向上し
たとも、サイクル特性向上の一因と考えられる。また、
比較例3の結果より、加熱焼成後のSi微粒子が大きい
とSi微粒子の膨脹、収縮を抑制する硬化が薄れること
がわかる。
Next, as apparent from Table 2, Example 2
It can be seen that the capacity ratio of the comparative example is much higher than that of the comparative example 4. This is because the SiC phase, the SiO 2 phase and the SiB 4 phase precipitate in the Si fine particles to form an alloy with lithium, similarly to the reason that the charge and discharge efficiency in the first cycle is improved.
It is considered that since the phase content was relatively reduced, the expansion and contraction of the Si fine particles themselves were moderately suppressed, whereby the release of the composite particles from the graphite was reduced, and the cycle characteristics were improved. In addition, it is considered that the crystallinity of the Si phase is reduced due to the precipitation of the SiC phase, the SiO 2 phase, and the SiB 4 phase, and the diffusion rate of lithium in the Si phase is improved. Also,
The results of Comparative Example 3 show that when the Si fine particles after heating and firing are large, the curing that suppresses the expansion and contraction of the Si fine particles is weakened.

【0074】[0074]

【発明の効果】以上、詳細に説明したように、本発明の
炭素質材料によれば、黒鉛粒子及びSi微粒子がLiを
吸蔵するので、黒鉛粒子単独の場合よりも充放電容量が
向上する。また黒鉛粒子に対して高比抵抗なSi微粒子
の周りに導電性炭素材を配置することで、Si微粒子の
導電性を見かけ上、向上させる。更にSi微粒子を硬質
炭素膜で被覆することにより、Liの吸蔵・放出に伴う
Si微粒子の体積膨張・収縮が機械的に抑えられる。更
にまた、黒鉛粒子と複合粒子を非晶質炭素膜で覆うこと
により、黒鉛粒子が直接に電解液に触れることなく電解
液分解が抑制されるとともに、複合粒子が黒鉛粒子から
脱落することがなく、更に充電による体積膨張に起因す
るSi微粒子の微粉化を防止する。更に、結晶質Si相
中にSiO 2相、SiC相及びSiB4相が析出すること
により、相対的にSi相の含有量が低減するとともに、
Si相に歪みを与えて結晶性を低下させ、過度のLi吸
蔵が抑制される。これにより、Liの吸蔵・放出による
Si微粒子の膨張・収縮が適度に抑制される。SiO2
相、SiC相及びSiB4相はLiと反応しないためそ
れ自身は容量をもたないが、Liイオンの拡散を促進す
るとともに、Si微粒子の体積膨張による微粉化が抑制
される。更に、SiO2相、SiC相及びSiB4相の全
てを含むため、上記の機能をより効果的に得ることがで
きる。以上のことから本発明の炭素質材料では、充放電
容量を高くするとともに、Si微粒子の体積膨張及び複
合粒子の脱落、および充電による体積膨張に起因するS
i微粒子の微粉化を抑制して、サイクル特性の低下を防
止することができる。
As described in detail above, the present invention
According to the carbonaceous material, graphite particles and Si fine particles convert Li.
Because of the occlusion, the charge / discharge capacity is higher than when graphite particles are used alone.
improves. Si fine particles with high specific resistance to graphite particles
By placing a conductive carbon material around the
Improve conductivity apparently. Further harden Si fine particles
By covering with carbon film, it accompanies the occlusion and release of Li
Volume expansion and contraction of the Si fine particles are mechanically suppressed. Change
In addition, cover graphite particles and composite particles with an amorphous carbon film.
Electrolysis without graphite particles directly touching the electrolyte
Liquid decomposition is suppressed and composite particles are converted from graphite particles.
It does not fall off and is also caused by volume expansion due to charging.
To prevent the Si fine particles from being pulverized. Furthermore, the crystalline Si phase
SiO inside TwoPhase, SiC phase and SiBFourPhase precipitation
Thereby, while the content of the Si phase is relatively reduced,
Strain is given to the Si phase to lower the crystallinity and excessive Li absorption
Storage is suppressed. Due to the absorption and release of Li
The expansion and contraction of the Si fine particles are appropriately suppressed. SiOTwo
Phase, SiC phase and SiBFourThe phase does not react with Li
Although it has no capacity, it promotes diffusion of Li ions.
And minimizing pulverization due to volume expansion of Si fine particles
Is done. Furthermore, SiOTwoPhase, SiC phase and SiBFourAll of the phases
The above functions can be obtained more effectively because
Wear. From the above, in the carbonaceous material of the present invention, charging and discharging
While increasing the capacity, the volume expansion and
S caused by dropout of composite particles and volume expansion due to charging
Suppresses the micronization of i-particles and prevents deterioration of cycle characteristics
Can be stopped.

【0075】また、本発明のリチウム二次電池によれ
ば、本発明に係る炭素質材料を負極として備えているの
で、エネルギー密度及びサイクル特性を向上させること
ができる。
Further, according to the lithium secondary battery of the present invention, since the carbonaceous material according to the present invention is provided as a negative electrode, energy density and cycle characteristics can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態である炭素質材料の一例を
示す断面模式図である。
FIG. 1 is a schematic sectional view showing an example of a carbonaceous material according to an embodiment of the present invention.

【図2】 本発明の実施形態である炭素質材料の別の一
例を示す断面模式図である。
FIG. 2 is a schematic cross-sectional view showing another example of the carbonaceous material according to the embodiment of the present invention.

【図3】 本発明の実施形態である炭素質材料の更に別
の一例を示す断面模式図である。
FIG. 3 is a schematic sectional view showing still another example of the carbonaceous material according to the embodiment of the present invention.

【図4】 本発明の実施形態である炭素質材料の他の一
例を示す断面模式図である。
FIG. 4 is a schematic sectional view showing another example of the carbonaceous material according to the embodiment of the present invention.

【図5】 本発明の実施形態である炭素質材料に含まれ
る複合粒子の一例を示す断面模式図である。
FIG. 5 is a schematic cross-sectional view showing an example of composite particles contained in a carbonaceous material according to an embodiment of the present invention.

【図6】 加熱後のSi微粒子のX線回折パターンを示
す図である。
FIG. 6 is a diagram showing an X-ray diffraction pattern of Si fine particles after heating.

【符号の説明】[Explanation of symbols]

1 炭素質材料 2 黒鉛粒子 3 複合粒子 4 非晶質炭素膜 5 Si微粒子 6 導電性炭素材 7 硬質炭素膜 DESCRIPTION OF SYMBOLS 1 Carbonaceous material 2 Graphite particle 3 Composite particle 4 Amorphous carbon film 5 Si fine particle 6 Conductive carbon material 7 Hard carbon film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沈 揆允 大韓民国天安市聖域洞508 サムスンエス ディーアイ株式会社内 Fターム(参考) 4G046 EA03 EA05 EB02 EB04 EB06 EC02 EC06 5H029 AJ05 AK03 AL01 AL06 AL07 AM00 AM03 AM04 AM06 AM16 CJ02 HJ05 5H050 AA07 BA17 CA07 CA08 CA09 CB01 CB07 CB08 DA03 FA17 FA18 GA02 HA13  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shen Ryunyun 508 Sanctuary Cave, Cheonan-si, Republic of Korea F-term in Samsung DIA Corporation (reference) 4G046 EA03 EA05 EB02 EB04 EB06 EC02 EC06 5H029 AJ05 AK03 AL01 AL06 AL07 AM00 AM03 AM04 AM06 AM16 CJ02 HJ05 5H050 AA07 BA17 CA07 CA08 CA09 CB01 CB07 CB08 DA03 FA17 FA18 GA02 HA13

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 X線広角回折による(002)面の面間
隔d002が0.337nm未満である黒鉛粒子の周り
に、珪素及び炭素を少なくとも含有するとともに前記黒
鉛粒子より粒径が小さな複合粒子が分散して配置され、
かつ前記黒鉛粒子及び前記複合粒子が0.37nm以上
の面間隔d002を有する非晶質炭素膜によって被覆され
てなり、 前記複合粒子は、結晶質珪素からなるSi微粒子の周り
に導電性炭素材が配置されるとともに前記Si微粒子及
び前記導電性炭素材が硬質炭素膜により被覆されてな
り、 前記Si微粒子は、結晶質Si相中にSiO2相、Si
C相及びSiB4相が析出したものであることを特徴と
する炭素質材料。
1. Around a graphite particle having a (002) plane spacing d002 of less than 0.337 nm according to X-ray wide-angle diffraction, composite particles containing at least silicon and carbon and having a smaller particle size than the graphite particle are provided. Distributed and arranged
And the graphite particles and the composite particles are coated with an amorphous carbon film having an interplanar spacing d002 of 0.37 nm or more, and the composite particles have a conductive carbon material around Si fine particles made of crystalline silicon. The Si fine particles and the conductive carbon material are covered with a hard carbon film while being disposed, and the Si fine particles are composed of SiO 2 phase, Si
A carbonaceous material, wherein a C phase and a SiB 4 phase are precipitated.
【請求項2】 X線広角回折による前記Si相の(11
1)面の回折強度をPSiとし、前記SiO2相の(11
1)面の回折強度をPSiO2とし、前記SiC相の(11
1)面の回折強度をPSiCとし、前記SiB4相の(10
4)面の回折強度をPSiBとしたとき、 PSiO2/PSiが0.005以上0.1以下であり、P
SiC/PSiが0.005以上0.1以下であり、PSiB
SiO2が0.1以上 5.0以下であり、PSiB/PSiC
が0.1以上 5.0以下であることを特徴とする請求
項1に記載の炭素質材料。
2. The method according to claim 1, wherein (11)
1) The diffraction intensity of the plane and P Si, the SiO 2 phase (11
1) The diffraction intensity of the plane is defined as P SiO2, and (11)
1) The diffraction intensity of the plane and P SiC, the SiB 4 phase (10
4) Assuming that the diffraction intensity of the plane is P SiB , P SiO2 / P Si is 0.005 or more and 0.1 or less;
SiC / P Si is 0.005 or more and 0.1 or less, and P SiB /
P SiO2 is 0.1 or more and 5.0 or less, and P SiB / P SiC
The carbonaceous material according to claim 1, wherein is not less than 0.1 and not more than 5.0.
【請求項3】 前記黒鉛粒子の粒径が2μm以上70μ
m以下の範囲であり、前記複合粒子の粒径が50nmを
越えて2μm以下の範囲であり、前記非晶質炭素膜の膜
厚が50nm以上5μm以下の範囲であることを特徴と
する請求項1または請求項2に記載の炭素質材料。
3. The graphite particles have a particle size of 2 μm or more and 70 μm or more.
m, the particle size of the composite particles is more than 50 nm and 2 μm or less, and the film thickness of the amorphous carbon film is 50 nm or more and 5 μm or less. The carbonaceous material according to claim 1 or 2.
【請求項4】 前記Si微粒子の粒径が10nm以上2
μm未満の範囲であり、前記導電性炭素材の比抵抗が1
-4Ω・m以下であり、かつ前記硬質炭素膜の曲げ強度
が500kg/cm2以上であるとともに膜厚が10n
m以上1μm以下であることを特徴とする請求項1ない
し請求項3のいずれかに記載の炭素質材料。
4. The method according to claim 1, wherein said Si fine particles have a particle size of at least 10 nm.
μm, and the specific resistance of the conductive carbon material is 1
0-4 Ω · m or less, and the bending strength of the hard carbon film is 500 kg / cm 2 or more and the film thickness is 10 n
The carbonaceous material according to any one of claims 1 to 3, wherein the carbonaceous material has a length of not less than m and not more than 1 µm.
【請求項5】 前記複合粒子の含有量が1重量%以上2
5重量%以下であることを特徴とする請求項1ないし請
求項4のいずれかに記載の炭素質材料。
5. The method according to claim 1, wherein the content of the composite particles is 1% by weight or more.
The carbonaceous material according to any one of claims 1 to 4, wherein the content is 5% by weight or less.
【請求項6】 請求項1ないし請求項5のいずれかに記
載の炭素質材料を備えたことを特徴とするリチウム二次
電池。
6. A lithium secondary battery comprising the carbonaceous material according to any one of claims 1 to 5.
【請求項7】 結晶質珪素からなるSi微粒子をB23
粉末とともに炭素るつぼ中で1300℃以上1400℃
以下で焼成することにより、結晶質Si相中にSiO2
相、SiC相及びSiB4相を析出させる工程と、 前記Si微粒子に導電性炭素材を付着するとともに、該
Si微粒子を覆う高分子材料皮膜を形成して複合粒子前
駆体とし、更に該複合粒子前駆体を焼成することにより
前記高分子皮膜を硬質炭素膜として複合粒子を得る工程
と、 黒鉛粒子に前記Si微粒子を付着するとともに、該黒鉛
粒子を覆う高分子材料皮膜を形成して炭素質材料前駆体
とし、更に該炭素質材料前駆体を焼成することにより前
記高分子皮膜を非晶質炭素膜として炭素質材料を得る工
程とからなることを特徴とする炭素質材料の製造方法。
7. Si fine particles composed of crystalline silicon are mixed with B 2 O 3
1300 ° C or more and 1400 ° C in a carbon crucible with powder
By sintering below, SiO 2 is contained in the crystalline Si phase.
Phases, and a step of precipitating the SiC phase and SiB 4 phases, as well as adhering the conductive carbon material in the Si fine particles, to form a polymeric material coating covering the Si fine composite particle precursor, further said composite particles A step of obtaining composite particles using the polymer film as a hard carbon film by firing the precursor; and forming a polymer material film covering the graphite particles while attaching the Si fine particles to the graphite particles. Obtaining a carbonaceous material using the polymer film as an amorphous carbon film by firing the carbonaceous material precursor as a precursor.
JP2001058399A 2001-03-02 2001-03-02 Carbonaceous material and lithium secondary battery Expired - Lifetime JP4308446B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001058399A JP4308446B2 (en) 2001-03-02 2001-03-02 Carbonaceous material and lithium secondary battery
KR10-2001-0068302A KR100424636B1 (en) 2001-03-02 2001-11-02 Carbonaceous material and lithium secondary battery comprising the same
US10/087,247 US6733922B2 (en) 2001-03-02 2002-03-01 Carbonaceous material and lithium secondary batteries comprising same
CNB021058458A CN1220291C (en) 2001-03-02 2002-03-02 Carbon-containing material and lithium secondary cell containg the same material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058399A JP4308446B2 (en) 2001-03-02 2001-03-02 Carbonaceous material and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2002260658A true JP2002260658A (en) 2002-09-13
JP4308446B2 JP4308446B2 (en) 2009-08-05

Family

ID=18918126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058399A Expired - Lifetime JP4308446B2 (en) 2001-03-02 2001-03-02 Carbonaceous material and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP4308446B2 (en)
KR (1) KR100424636B1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1363341A3 (en) * 2002-05-17 2004-01-14 Shin-Etsu Chemical Co., Ltd. Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2004139886A (en) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004214192A (en) * 2002-12-26 2004-07-29 Samsung Sdi Co Ltd Active material for negative electrode for lithium secondary battery and manufacturing method of the same
JP2005123185A (en) * 2003-10-10 2005-05-12 Lg Cable Ltd Lithium-ion secondary battery having ptc powder, and manufacturing method of the same
JP2005123175A (en) * 2003-09-26 2005-05-12 Jfe Chemical Corp Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery
JP2006252779A (en) * 2005-03-08 2006-09-21 Jfe Chemical Corp Anode material for lithium-ion secondary battery, its manufacturing method, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2007095563A (en) * 2005-09-29 2007-04-12 Sony Corp Negative electrode and battery
JP2007200868A (en) * 2006-01-27 2007-08-09 Ls Cable Ltd Anode material for secondary battery and secondary battery using the same, and manufacturing method of anode material for the secondary battery, and secondary battery using the same
CN100344016C (en) * 2005-09-12 2007-10-17 中国科学院上海硅酸盐研究所 Method for preparing silicon/carbon composite lithium ion battery cathode material under room temperature
JP2009087682A (en) * 2007-09-28 2009-04-23 Tdk Corp Composite particle for electrode and electrochemical device
JP2011249339A (en) * 2011-07-27 2011-12-08 Nec Corp Lithium secondary battery and method for manufacturing negative electrode thereof
US8092940B2 (en) 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
WO2012105009A1 (en) * 2011-02-02 2012-08-09 トヨタ自動車株式会社 Composite active material, method for manufacturing composite active material, and electric cell
JP2012151129A (en) * 2012-05-07 2012-08-09 Toshiba Corp Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte battery provided thereby
JP2012171861A (en) * 2011-02-22 2012-09-10 Research & Business Foundation Of Sungkyunkwan Univ Method for strengthening interface of carbon material using nano silicon carbide coating
WO2013161305A1 (en) * 2012-04-27 2013-10-31 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2014003036A1 (en) * 2012-06-29 2014-01-03 トヨタ自動車株式会社 Composite active material, solid-state battery and method for producing composite active material
WO2014080629A1 (en) * 2012-11-20 2014-05-30 昭和電工株式会社 Method for producing negative electrode material for lithium ion batteries
JP2014157817A (en) * 2013-02-15 2014-08-28 Samsung Sdi Co Ltd Negative active material, negative electrode employing the same, and lithium battery employing negative electrode
WO2015140907A1 (en) * 2014-03-17 2015-09-24 株式会社東芝 Active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, battery pack and method for producing active material for nonaqueous electrolyte secondary batteries
WO2017010476A1 (en) * 2015-07-16 2017-01-19 昭和電工株式会社 Production method for graphite-containing carbon powder for secondary battery, and carbon material for battery electrode
EP3675249A4 (en) * 2017-12-01 2020-11-11 LG Chem, Ltd. Anode for lithium secondary battery and lithium secondary battery comprising same
CN112687853A (en) * 2020-12-10 2021-04-20 安普瑞斯(南京)有限公司 Silica particle aggregate, preparation method thereof, negative electrode material and battery
US20210249648A1 (en) * 2020-02-10 2021-08-12 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
US11217783B2 (en) 2017-12-22 2022-01-04 Samsung Sdi Co., Ltd. Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
WO2024048288A1 (en) * 2022-09-01 2024-03-07 Dic株式会社 Negative electrode active material precursor, negative electrode active material, secondary battery, and method for producing negative electrode active material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004049473A2 (en) * 2002-11-26 2004-06-10 Showa Denko K.K. Electrode material comprising silicon and/or tin particles and production method and use thereof
CN102479948B (en) * 2010-11-30 2015-12-02 比亚迪股份有限公司 Negative active core-shell material of a kind of lithium ion battery and preparation method thereof and a kind of lithium ion battery
KR101718055B1 (en) * 2012-02-13 2017-03-20 삼성에스디아이 주식회사 Negative active material and lithium battery containing the material
CN105637692B (en) 2013-10-07 2019-08-20 株式会社Lg 化学 Secondary cell including silicon base compound
KR101673719B1 (en) * 2014-03-28 2016-11-07 주식회사 엘지화학 Negative active material for lithium secondary battery and method of preparing for the same
PL3656008T3 (en) * 2017-07-21 2022-11-07 Imerys Graphite & Carbon Switzerland Ltd. Carbon-coated silicon oxide / graphite composite particles, as well as preparation methods and applications of the same
KR102131262B1 (en) * 2018-08-14 2020-08-05 울산과학기술원 an anode active material, a method of preparing the anode active material, and Lithium secondary battery comprising an anode including the anode active material
KR102395188B1 (en) 2020-12-10 2022-05-10 한국메탈실리콘 주식회사 A method for manufacturing a silicon composite using a by-product of silicon and the silicon composite

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092940B2 (en) 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
US10038186B2 (en) 2002-05-08 2018-07-31 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
KR100765812B1 (en) * 2002-05-17 2007-10-10 신에쓰 가가꾸 고교 가부시끼가이샤 Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US7037581B2 (en) 2002-05-17 2006-05-02 Shin-Etsu Chemical Co., Ltd. Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
EP1363341A3 (en) * 2002-05-17 2004-01-14 Shin-Etsu Chemical Co., Ltd. Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2004139886A (en) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004214192A (en) * 2002-12-26 2004-07-29 Samsung Sdi Co Ltd Active material for negative electrode for lithium secondary battery and manufacturing method of the same
US7485395B2 (en) 2002-12-26 2009-02-03 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and method of preparing same
JP2005123175A (en) * 2003-09-26 2005-05-12 Jfe Chemical Corp Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery
JP2005123185A (en) * 2003-10-10 2005-05-12 Lg Cable Ltd Lithium-ion secondary battery having ptc powder, and manufacturing method of the same
JP2006252779A (en) * 2005-03-08 2006-09-21 Jfe Chemical Corp Anode material for lithium-ion secondary battery, its manufacturing method, anode for lithium-ion secondary battery, and lithium-ion secondary battery
CN100344016C (en) * 2005-09-12 2007-10-17 中国科学院上海硅酸盐研究所 Method for preparing silicon/carbon composite lithium ion battery cathode material under room temperature
JP2007095563A (en) * 2005-09-29 2007-04-12 Sony Corp Negative electrode and battery
JP2007200868A (en) * 2006-01-27 2007-08-09 Ls Cable Ltd Anode material for secondary battery and secondary battery using the same, and manufacturing method of anode material for the secondary battery, and secondary battery using the same
JP2009087682A (en) * 2007-09-28 2009-04-23 Tdk Corp Composite particle for electrode and electrochemical device
WO2012105009A1 (en) * 2011-02-02 2012-08-09 トヨタ自動車株式会社 Composite active material, method for manufacturing composite active material, and electric cell
US9325001B2 (en) 2011-02-02 2016-04-26 Toyota Jidosha Kabushiki Kaisha Composite active material, method for producing composite active material, and battery
JP2012171861A (en) * 2011-02-22 2012-09-10 Research & Business Foundation Of Sungkyunkwan Univ Method for strengthening interface of carbon material using nano silicon carbide coating
JP2011249339A (en) * 2011-07-27 2011-12-08 Nec Corp Lithium secondary battery and method for manufacturing negative electrode thereof
WO2013161305A1 (en) * 2012-04-27 2013-10-31 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014096343A (en) * 2012-04-27 2014-05-22 Toyota Industries Corp Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2012151129A (en) * 2012-05-07 2012-08-09 Toshiba Corp Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte battery provided thereby
WO2014003036A1 (en) * 2012-06-29 2014-01-03 トヨタ自動車株式会社 Composite active material, solid-state battery and method for producing composite active material
WO2014080629A1 (en) * 2012-11-20 2014-05-30 昭和電工株式会社 Method for producing negative electrode material for lithium ion batteries
JP5599527B1 (en) * 2012-11-20 2014-10-01 昭和電工株式会社 Method for producing negative electrode material for lithium ion battery
JP2014157817A (en) * 2013-02-15 2014-08-28 Samsung Sdi Co Ltd Negative active material, negative electrode employing the same, and lithium battery employing negative electrode
WO2015140907A1 (en) * 2014-03-17 2015-09-24 株式会社東芝 Active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, battery pack and method for producing active material for nonaqueous electrolyte secondary batteries
JPWO2015140907A1 (en) * 2014-03-17 2017-04-06 株式会社東芝 Non-aqueous electrolyte secondary battery active material, non-aqueous electrolyte secondary battery electrode, non-aqueous electrolyte secondary battery, battery pack, and method for producing non-aqueous electrolyte secondary battery active material
US10326129B2 (en) 2014-03-17 2019-06-18 Kabushiki Kaisha Toshiba Active material, electrode, nonaqueous electrolyte secondary battery, battery pack and production method of active material
WO2017010476A1 (en) * 2015-07-16 2017-01-19 昭和電工株式会社 Production method for graphite-containing carbon powder for secondary battery, and carbon material for battery electrode
EP3675249A4 (en) * 2017-12-01 2020-11-11 LG Chem, Ltd. Anode for lithium secondary battery and lithium secondary battery comprising same
US11575123B2 (en) 2017-12-01 2023-02-07 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery including the same
US11217783B2 (en) 2017-12-22 2022-01-04 Samsung Sdi Co., Ltd. Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
US20210249648A1 (en) * 2020-02-10 2021-08-12 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
CN112687853A (en) * 2020-12-10 2021-04-20 安普瑞斯(南京)有限公司 Silica particle aggregate, preparation method thereof, negative electrode material and battery
WO2024048288A1 (en) * 2022-09-01 2024-03-07 Dic株式会社 Negative electrode active material precursor, negative electrode active material, secondary battery, and method for producing negative electrode active material

Also Published As

Publication number Publication date
KR20020070762A (en) 2002-09-11
KR100424636B1 (en) 2004-03-24
JP4308446B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP4308446B2 (en) Carbonaceous material and lithium secondary battery
JP4104830B2 (en) Carbonaceous material, lithium secondary battery, and method for producing carbonaceous material
JP4104829B2 (en) Carbonaceous material and lithium secondary battery
JP4861120B2 (en) Negative electrode active material, production method thereof, and negative electrode and lithium battery employing the same
JP4137350B2 (en) Negative electrode material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode material for lithium secondary battery
US20190181440A1 (en) Prelithiated and methods for prelithiating an energy storage device
JP4790402B2 (en) Cathode active material, method for producing the same, and cathode and lithium battery using the same
JP5329858B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
US6733922B2 (en) Carbonaceous material and lithium secondary batteries comprising same
JP4740753B2 (en) Lithium battery for charging / discharging, and method for producing negative electrode active material contained in negative electrode of lithium battery for charging / discharging
KR101035361B1 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2020529709A (en) Negative electrode active material, negative electrode containing it and lithium secondary battery
JP4046601B2 (en) Negative electrode material for lithium secondary battery and lithium secondary battery using the same
JP5392960B2 (en) Lithium secondary battery
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP5505479B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2003223892A (en) Lithium secondary battery and method for manufacturing negative electrode material therefor
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
JP2012151129A (en) Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte battery provided thereby
JP2000348724A (en) Lithium nickel composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using it
JPH1111919A (en) Production method of conjugated carbon particle, conjugated carbon particle obtained by this production method, carbon paste using the conjugated carbon particle, negative pole for lithium secondary battery and lithium secondary battery
JPH11191408A (en) Negative active material for lithium ion secondary battery, and negative electrode plate and lithium ion secondary battery using the same
JP2000315500A (en) Slightly graphitizable carbon material for lithium ion secondary battery, its manufacture, and lithium ion secondary battery
JPH1111918A (en) Production method of graphite particle, graphite particle obtained by this production method, graphite paste using the graphite particle, negative pole for lithium secondary battery and lithium secondary battery
JP2000095565A (en) Production of graphite particles, graphite particles, graphite paste using the same, negative electrode for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090501

R150 Certificate of patent or registration of utility model

Ref document number: 4308446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term