JP2000315500A - Slightly graphitizable carbon material for lithium ion secondary battery, its manufacture, and lithium ion secondary battery - Google Patents

Slightly graphitizable carbon material for lithium ion secondary battery, its manufacture, and lithium ion secondary battery

Info

Publication number
JP2000315500A
JP2000315500A JP11123713A JP12371399A JP2000315500A JP 2000315500 A JP2000315500 A JP 2000315500A JP 11123713 A JP11123713 A JP 11123713A JP 12371399 A JP12371399 A JP 12371399A JP 2000315500 A JP2000315500 A JP 2000315500A
Authority
JP
Japan
Prior art keywords
graphitizable carbon
lithium ion
ion secondary
secondary battery
xylenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11123713A
Other languages
Japanese (ja)
Inventor
Hidetoshi Morotomi
秀俊 諸富
Hiroki Okamoto
寛己 岡本
Tetsuo Shiode
哲夫 塩出
Yasuhiro Mogi
康弘 茂木
Ryuichi Yazaki
隆一 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Adchemco Corp
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Adchemco Corp
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Adchemco Corp, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP11123713A priority Critical patent/JP2000315500A/en
Publication of JP2000315500A publication Critical patent/JP2000315500A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbon material with less irreversible capacity and large discharge capacity by using a resin mainly containing xylenol as a unit skeleton as a raw material of a slightly graphitizable carbon porous body. SOLUTION: As a raw material of a slightly graphitizable carbon material, a slightly graphitizable carbon porous body using a resin mainly containing xylenol as a unit skeleton is used. Especially, xylenol resin having a unit skeleton of each single isomer of xylenol or mixture is preferably used as the raw material of the slightly graphitizable carbon material. The slightly graphitizable carbon material for lithium ion secondary battery is the slightly graphitizable carbon material made of xylenol resin having this skeleton, and is formed by depositing thermally decomposed carbon. At this time, when a powder body of the slightly graphitizable carbon body is formed, the thermally decomposed carbon is deposited using the powder body as a base material, and an open pore with an optimal volume is formed as a lithium ion storage site, this becomes a small diameter inlet through which lithium ion in electrolyte can travel and an organic solvent in electrolyte cannot travel, and has less irreversible capacity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、負極材料として高
性能なリチウムイオン二次電池用の難黒鉛化性炭素材
料、該材料の製造方法、及びこれらの材料を用いたリチ
ウムイオン二次電池に関する。
The present invention relates to a non-graphitizable carbon material for a high performance lithium ion secondary battery as a negative electrode material, a method for producing the material, and a lithium ion secondary battery using these materials. .

【0002】[0002]

【従来の技術】近年、電子機器や通信機器の小型化及び
軽量化が急速に進んでおり、これらの駆動用電源として
用いられる二次電池に対しても小型化及び軽量化の要求
が強く、高エネルギー密度で且つ高電圧を有するリチウ
ムイオン二次電池が提案されている。リチウムイオン二
次電池は、正極に、例えば、コバルト酸リチウムを使用
し、リチウムイオンを吸蔵、離脱する黒鉛或いは難黒鉛
化性炭素材料を負極に使用することで、充電時にリチウ
ムイオンが炭素質材料に吸蔵され、放電時にこれらのリ
チウムイオンが負極から放出されるように構成されてお
り、リチウムイオンが、正極と負極との間を往来するだ
けで充放電が行われる。
2. Description of the Related Art In recent years, miniaturization and weight reduction of electronic devices and communication devices have been rapidly progressing, and there is a strong demand for miniaturization and weight reduction of secondary batteries used as power sources for driving these devices. A lithium ion secondary battery having a high energy density and a high voltage has been proposed. Lithium-ion secondary batteries use, for example, lithium cobaltate for the positive electrode, and use graphite or a non-graphitizable carbon material for absorbing and releasing lithium ions for the negative electrode, so that lithium ions can be converted to a carbonaceous material during charging. These lithium ions are released from the negative electrode during discharge, and charge / discharge is performed only by the lithium ions moving between the positive electrode and the negative electrode.

【0003】そして、リチウムイオン二次電池の負極材
料には、天然黒鉛などの高結晶黒鉛材料、石油或いは石
炭系の重質油から誘導されるMCMB(メソカーボンマ
イクロビーズ)やメソフェーズピッチの粉末のような易
黒鉛化炭素原料を黒鉛化したもの(以下、これらを黒鉛
化性炭素材料と呼ぶ)、又は、フルフリルアルコールや
フェノール樹脂などを炭素化した難黒鉛化性の炭素材料
などが使用されている。これらの中でも、近年、黒鉛の
理論容量である372mAh/gを超える放電容量を示
す難黒鉛化性の炭素材料が注目されている。これら難黒
鉛化性の炭素材料は、サイクル特性の面でも黒鉛化性炭
素材料よりも優れている。
[0003] The negative electrode material of the lithium ion secondary battery includes high crystalline graphite material such as natural graphite, MCMB (mesocarbon microbeads) derived from petroleum or coal-based heavy oil, and powder of mesophase pitch. Such graphitizable carbon raw materials are graphitized (hereinafter referred to as graphitizable carbon materials), or non-graphitizable carbon materials obtained by carbonizing furfuryl alcohol or phenol resin are used. ing. Among these, in recent years, a non-graphitizable carbon material exhibiting a discharge capacity exceeding 372 mAh / g, which is the theoretical capacity of graphite, has attracted attention. These non-graphitizable carbon materials are superior to the graphitizable carbon materials also in terms of cycle characteristics.

【0004】しかしながら、リチウムイオン二次電池の
負極材料として、これらの難黒鉛化性の炭素材料を用い
た場合には、不可逆容量が大きいという問題点があっ
た。ここで言う不可逆容量とは、初回のリチウムイオン
の充電量と、放電量の差のことであり、この値が大きい
と、電池にする際に余分なリチウムが必要となるので好
ましくない。このような不可逆容量が、どのようなメカ
ニズムで起こるのか、その原因については未だ明確にさ
れてはいないが、難黒鉛化性の炭素材料を構成している
芳香環の活性な部分に、リチウムイオンの存在下、電解
液が分解され、リチウム塩としてトラップされるなどの
モデルが考えられている。
However, when these non-graphitizable carbon materials are used as the negative electrode material of the lithium ion secondary battery, there is a problem that the irreversible capacity is large. The irreversible capacity referred to here is the difference between the charge amount of lithium ions and the discharge amount of lithium ions for the first time. If this value is large, extra lithium is required when the battery is used, which is not preferable. Although the mechanism by which such irreversible capacity occurs and the cause thereof have not been clarified yet, the active portion of the aromatic ring constituting the non-graphitizable carbon material contains lithium ion. A model has been considered in which the electrolyte is decomposed and trapped as a lithium salt in the presence of.

【0005】これに対し、特開平07−230803号
公報、特開平07−230804号公報においては、熱
分解炭素を析出させることにより、難黒鉛化性の炭素材
料の細孔径を、電解液中のリチウムイオンが通過可能
で、且つ、電解液中の有機溶媒が実質的に通過不可能な
径に調整し、不可逆容量を小さくすることが提案されて
いる。しかしながら、本発明者らの検討によれば、熱分
解炭素を単純に析出させただけでは、不可逆容量を小さ
くできたとしても、必ずしも放電容量の大きい炭素材料
が得られるものではなかった。
[0005] On the other hand, in JP-A-07-230803 and JP-A-07-230804, by depositing pyrolytic carbon, the pore diameter of the non-graphitizable carbon material can be reduced in the electrolyte. It has been proposed to adjust the diameter so that lithium ions can pass therethrough and the organic solvent in the electrolytic solution cannot pass substantially, thereby reducing the irreversible capacity. However, according to the study of the present inventors, even if the irreversible capacity can be reduced by simply depositing pyrolytic carbon, a carbon material having a large discharge capacity cannot always be obtained.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、リチウムイオン二次電池用の負極材として好適な、
不可逆容量が小さく、しかも放電容量の大きなリチウム
イオン二次電池用の難黒鉛化性炭素材料、及びこれを用
いた優れた特性のリチウムイオン二次電池を提供するこ
とにある。又、本発明の目的は、基材である難黒鉛化性
の粉体状の炭素多孔体に、熱分解炭素を析出させて、リ
チウムイオン二次電池の電解液中のリチウムイオンが通
過可能で、且つ、電解液中の有機溶媒が実質的に通過不
可能な径の細孔を有するようにした難黒鉛化性の炭素材
料でありながら、不可逆容量が小さく、しかも放電容量
の大きなリチウムイオン二次電池用の負極材として好適
なリチウムイオン二次電池用の難黒鉛化性炭素材料が安
定して得られる難黒鉛化性炭素材料の製造方法を提供す
ることにある。
Accordingly, an object of the present invention is to provide a negative electrode material suitable for a lithium ion secondary battery.
An object of the present invention is to provide a non-graphitizable carbon material for a lithium ion secondary battery having a small irreversible capacity and a large discharge capacity, and a lithium ion secondary battery having excellent characteristics using the same. Another object of the present invention is to deposit pyrolytic carbon on a non-graphitizable powdery carbon porous body as a base material so that lithium ions in an electrolyte of a lithium ion secondary battery can pass through. In addition, although it is a non-graphitizable carbon material having pores of a diameter that does not allow the organic solvent in the electrolyte to substantially pass, a lithium ion battery having a small irreversible capacity and a large discharge capacity is used. An object of the present invention is to provide a method for producing a non-graphitizable carbon material, which can stably obtain a non-graphitizable carbon material for a lithium ion secondary battery suitable as a negative electrode material for a secondary battery.

【0007】[0007]

【課題を解決するための手段】上記の目的は、下記の本
発明によって達成される。即ち、本発明は、熱分解炭素
を析出させた難黒鉛化性炭素多孔体であって、該難黒鉛
化性炭素多孔体がキシレノールを単位骨格とした樹脂を
原料として構成されていることを特徴とするリチウムイ
オン二次電池用の難黒鉛化性炭素材料、該材料の製造方
法、及びこれらの材料を用いたリチウムイオン二次電池
である。
The above objects are achieved by the present invention described below. That is, the present invention is a non-graphitizable carbon porous material obtained by depositing pyrolytic carbon, wherein the non-graphitizable carbon porous material is constituted by using a resin having xylenol as a unit skeleton as a raw material. A non-graphitizable carbon material for a lithium ion secondary battery, a method for producing the material, and a lithium ion secondary battery using these materials.

【0008】本発明者らは、上記した従来の課題を解決
するために鋭意検討の結果、熱分解炭素を析出させる基
材である難黒鉛化性炭素多孔体原料として、キシレノー
ル樹脂を使用することによって、放電容量の大きな難黒
鉛化性炭素粉体材料が得られることを見出して本発明に
至った。キシレノール樹脂を原料として使用した難黒鉛
化性炭素粉体材料が、なぜ、一般的に用いられているフ
ェノール樹脂を原料としたものよりも放電容量が大きく
なるかの原因は明らかではないが、以下のように考えら
れる。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned conventional problems, and as a result, have found that xylenol resin is used as a non-graphitizable carbon porous material which is a base material on which pyrolytic carbon is deposited. As a result, the present inventors have found that a non-graphitizable carbon powder material having a large discharge capacity can be obtained. It is not clear why the non-graphitizable carbon powder material using xylenol resin as a raw material has a larger discharge capacity than that of a generally used phenol resin as a raw material, but Think like.

【0009】即ち、キシレノール樹脂は、フェノール樹
脂と比較して側鎖の多い構造となっているため、乾留・
炭化、及び賦活などの操作の中で、フェノール樹脂に比
較し、適度な大きさを持ったオープンポアが生成し易
く、これが、リチウムイオンの吸蔵サイトとして最適な
ものとなっているためと考えられる。又、本発明者らの
更なる検討の結果、キシレノール樹脂を原料とした難黒
鉛化性炭素多孔体の粉状体を基材として用い、特定の方
法によって熱分解炭素を析出させることで、上記多孔体
の細孔が、リチウムイオン二次電池の電解液中のリチウ
ムイオンが通過可能で、且つ、電解液中の有機溶媒が実
質的に通過不可能な径となるように構成すれば、リチウ
ムイオン二次電池の負極材として好適な、放電容量が大
きく、しかも不可逆容量の小さな難黒鉛化性炭素粉体が
得られることがわかった。
That is, since the xylenol resin has a structure having more side chains as compared with the phenol resin,
During operations such as carbonization and activation, open pores having an appropriate size are easily generated as compared to phenolic resin, which is considered to be the most suitable as a lithium ion occlusion site. . Further, as a result of further studies by the present inventors, using a powdery material of a non-graphitizable carbon porous body using a xylenol resin as a raw material as a base material, and precipitating pyrolytic carbon by a specific method, If the pores of the porous body are configured such that the lithium ions in the electrolyte of the lithium ion secondary battery can pass therethrough and the organic solvent in the electrolyte has a diameter that is substantially impermeable, lithium It was found that a non-graphitizable carbon powder having a large discharge capacity and a small irreversible capacity suitable as a negative electrode material of an ion secondary battery was obtained.

【0010】[0010]

【発明の実施の形態】次に、好ましい実施の形態を挙げ
て本発明を更に詳細に説明する。本発明においては、難
黒鉛化性炭素材料の原料として、キシレノールを単位骨
格とした樹脂を原料とする難黒鉛化性炭素多孔体を用い
ることを特徴とする。特に、キシレノールの各異性体単
独或いは各異性体の混合物からなる単位骨格を有するキ
シレノール樹脂を難黒鉛化性炭素材料の原料に用いるこ
とが好ましい。具体的には、例えば、3,5−キシレノ
ールを単独で単位骨格としたキシレノール樹脂や、2,
4−キシレノール、2,5−キシレノール、3,5−キ
シレノール、2,3−キシレノール及び3,4−キシレ
ノールから選ばれる複数の単量体が適宜な割合で混合さ
れた混合物を単位骨格としたキシレノール樹脂などが挙
げられる。
Next, the present invention will be described in more detail with reference to preferred embodiments. The present invention is characterized in that as the raw material of the non-graphitizable carbon material, a non-graphitizable carbon porous body using a resin having xylenol as a unit skeleton is used. In particular, it is preferable to use a xylenol resin having a unit skeleton composed of each isomer of xylenol alone or a mixture of each isomer as a raw material of the non-graphitizable carbon material. Specifically, for example, a xylenol resin having 3,5-xylenol alone as a unit skeleton,
Xylenol having a unit skeleton of a mixture in which a plurality of monomers selected from 4-xylenol, 2,5-xylenol, 3,5-xylenol, 2,3-xylenol, and 3,4-xylenol are mixed at an appropriate ratio Resins.

【0011】更に、本発明のリチウムイオン二次電池用
の難黒鉛化性炭素材料は、このような骨格を有するキシ
レノール樹脂からなる難黒鉛化性炭素多孔体であって、
熱分解炭素が析出されたものであるが、その際に、下記
のような方法で、難黒鉛化性炭素多孔体の粉状体を形成
し、更に、これを基材として熱分解炭素を析出させれ
ば、リチウムイオンの吸蔵サイトとして最適な適度な大
きさ(容積)を持ったオープンポアが形成され、しか
も、その細孔が、リチウムイオン二次電池の電解液中の
リチウムイオンが通過可能で、且つ、電解液中の有機溶
媒が実質的に通過不可能な細孔入口径を有するように調
整されるので、不可逆容量が小さく、しかも放電容量の
大きなリチウムイオン二次電池用の難黒鉛化性炭素材料
となる。以下、キシレノールを単位骨格とした樹脂を原
料とする難黒鉛化性炭素多孔体からなる基材に、熱分解
炭素を析出させる方法について説明する。
Further, the non-graphitizable carbon material for a lithium ion secondary battery of the present invention is a non-graphitizable carbon porous body made of a xylenol resin having such a skeleton,
Pyrolytic carbon is deposited, and at this time, a powdery material of a non-graphitizable carbon porous body is formed by the following method, and further, pyrolytic carbon is deposited using this as a base material. By doing so, an open pore with an appropriate size (volume) that is optimal as a lithium ion storage site is formed, and the pores can pass lithium ions in the electrolyte of the lithium ion secondary battery And the organic solvent in the electrolyte is adjusted so as to have a pore entrance diameter that is substantially impermeable, so that the irreversible capacity is small and the non-graphite for a lithium ion secondary battery having a large discharge capacity is difficult. Carbonizable material. Hereinafter, a method of depositing pyrolytic carbon on a base material made of a non-graphitizable carbon porous material using a resin having xylenol as a unit skeleton will be described.

【0012】先ず、先に挙げたようなキシレノール樹脂
を原料とし、常法に従って、窒素などの不活性雰囲気
中、500〜1200℃程度の温度で乾留し、炭化し
て、難黒鉛化性炭素多孔体を作成し、本発明のリチウム
イオン二次電池用の難黒鉛化性炭素材料の基材とする。
この際、熱処理した状態の炭素材料をそのまま基材とし
て使用してもよいが、リチウムのドープ量をより多くす
るためには、更に、賦活等の処理で細孔容積を増加させ
たものを基材として用いることが好ましい。この際の賦
活処理は、水蒸気、或いは、二酸化炭素やハロゲンガス
などを用いる気相賦活でも、溶融水酸化カリウム法など
の薬液賦活でも、一般的な方法を用いて行なえばよい。
又、賦活処理までの形状については、数mm程度のペレ
ットでも、平均粒径数十μmの粉体状でもよいが、数m
m程度のペレットで賦活まで行った場合は、賦活終了後
に、平均粒径が数十μmの粉体状(微粉状)とし、これ
を基材として使用し、下記の方法で熱分解炭素を析出さ
せることが好ましい。
First, the xylenol resin as described above is used as a raw material, and dry-distilled in an inert atmosphere such as nitrogen at a temperature of about 500 to 1200 ° C., carbonized, and carbonized to obtain a non-graphitizable carbon. A body is prepared and used as a base material of the non-graphitizable carbon material for the lithium ion secondary battery of the present invention.
At this time, the heat-treated carbon material may be used as it is as the substrate, but in order to increase the doping amount of lithium, it is necessary to further increase the pore volume by a treatment such as activation. It is preferably used as a material. The activation treatment at this time may be performed using a general method, whether it is a vapor phase activation using water vapor, carbon dioxide, a halogen gas, or the like, or a chemical liquid activation such as a molten potassium hydroxide method.
The shape up to the activation treatment may be a pellet of about several mm or a powder having an average particle size of several tens μm.
When activation is performed with pellets of about m, the powder is made into a powder (fine powder) having an average particle size of several tens of μm after the activation is completed, and this is used as a base material to deposit pyrolytic carbon by the following method. Preferably.

【0013】次に、上記のようにして得られた難黒鉛化
性炭素多孔体を基材として用い、窒素或いはアルゴンな
どの不活性雰囲気中、エチレン、トルエンなどの炭化水
素気流下で、この微粉状の難黒鉛化性炭素多孔体の細孔
表面に熱分解炭素を析出させ、本発明の難黒鉛化性炭素
材料を得る。この処理は、固定層、流動層、移動層、或
いはロータリーキルンなどの反応器で行うことができ
る。又、熱分解炭素を良好な状態で析出させるために
は、処理を、600〜1000℃の温度範囲で行なうこ
とが好ましい。この際の炭化水素の導入方法としては、
不活性ガスにより希釈しながら導入してもよいし、その
まま反応器内に導入してもよい。
Next, using the non-graphitizable carbon porous body obtained as described above as a base material, this fine powder is produced in an inert atmosphere such as nitrogen or argon under a stream of a hydrocarbon such as ethylene or toluene. Pyrolytic carbon is deposited on the surface of the pores of the porous, non-graphitizable carbon material to obtain the non-graphitizable carbon material of the present invention. This treatment can be performed in a reactor such as a fixed bed, a fluidized bed, a moving bed, or a rotary kiln. In order to deposit the pyrolytic carbon in a favorable state, the treatment is preferably performed at a temperature in the range of 600 to 1000 ° C. At this time, as a method of introducing the hydrocarbon,
It may be introduced while being diluted with an inert gas, or may be directly introduced into the reactor.

【0014】上記のように、原料としてキシレノール樹
脂を使用し、基材である難黒鉛化性炭素多孔体を作成し
て、その後、該基材の細孔表面に熱分解炭素を析出させ
ることで、基材である難黒鉛化性炭素多孔体に、リチウ
ムイオンをドープするのに最適な細孔の容積を変えるこ
となく熱分解炭素が析出し、しかも、細孔入口径が、リ
チウムイオン二次電池の電解液中のリチウムイオンが通
過可能で、且つ、電解液中の有機溶媒が実質的に通過不
可能な径の細孔を有するように調整される結果、得られ
る難黒鉛化性炭素粉体は、不可逆容量が小さく、放電容
量の大きな、優れた特性のリチウムイオン二次電池を構
成し得る優れた負極材となる。
As described above, a xylenol resin is used as a raw material, a non-graphitizable carbon porous body as a base material is prepared, and then pyrolytic carbon is deposited on the pore surface of the base material. In addition, pyrolytic carbon is deposited on the non-graphitizable carbon porous material as the base material without changing the pore volume, which is optimal for doping lithium ions. The non-graphitizable carbon powder obtained as a result of being adjusted so that lithium ions in the electrolyte of the battery can pass therethrough and the organic solvent in the electrolyte has pores of a substantially impossible diameter. The body is an excellent negative electrode material having a small irreversible capacity and a large discharge capacity and capable of constituting a lithium ion secondary battery having excellent characteristics.

【0015】以下、本発明のリチウムイオン二次電池に
使用する各材料について説明する。電極板を形成する活
物質層は、少なくとも、下記に挙げるような活物質と結
着剤(バインダー)とからなる電極塗工液から形成され
る。本発明のリチウムイオン二次電池では、負極活物質
として、前記した構成を有する本発明の難黒鉛化性炭素
材料を使用することを特徴とする。一方、正極物質とし
ては、例えば、LiCoO2、LiMn24等のリチウ
ム酸化物、TiS2、MnO2、MoO3、V25等のカ
ルコゲン化合物のうちの一種、或いは、これらの複数種
を組み合わせて用いればよく、これによって、4ボルト
程度の高い放電電圧のリチウムイオン二次電池が得られ
る。これらの活物質は、形成される塗工膜(活物質層)
中に均一に分散されるようにすることが好ましい。この
ためには、正及び負の活物質として、1〜100μmの
範囲の粒径を有する、平均粒径が5〜40μm程度、更
に好ましくは10〜25μm程度の粉体を用いることが
好ましい。
Hereinafter, each material used in the lithium ion secondary battery of the present invention will be described. The active material layer forming the electrode plate is formed from an electrode coating solution comprising at least the following active material and a binder. The lithium ion secondary battery of the present invention is characterized in that the non-graphitizable carbon material of the present invention having the above-described configuration is used as a negative electrode active material. On the other hand, examples of the cathode material include lithium oxides such as LiCoO 2 and LiMn 2 O 4 and chalcogen compounds such as TiS 2 , MnO 2 , MoO 3 and V 2 O 5 , or a plurality thereof. Can be used in combination, whereby a lithium ion secondary battery having a high discharge voltage of about 4 volts can be obtained. These active materials are formed as a coating film (active material layer)
It is preferable that the particles are uniformly dispersed therein. For this purpose, it is preferable to use, as the positive and negative active materials, powder having an average particle diameter of about 5 to 40 μm, more preferably about 10 to 25 μm, having a particle diameter in the range of 1 to 100 μm.

【0016】又、活物質層を構成する結着剤としては、
例えば、熱可塑性樹脂、即ち、ポリエステル樹脂、ポリ
アミド樹脂、ポリアクリル酸エステル樹脂、ポリカーボ
ネート樹脂、ポリウレタン樹脂、セルロース樹脂、ポリ
オレフィン樹脂、ポリビニル樹脂、ふっ素系樹脂及びポ
リイミド樹脂等から任意に選択して使用することができ
る。
Further, as a binder constituting the active material layer,
For example, a thermoplastic resin, that is, a polyester resin, a polyamide resin, a polyacrylate resin, a polycarbonate resin, a polyurethane resin, a cellulose resin, a polyolefin resin, a polyvinyl resin, a fluororesin, a polyimide resin, and the like are arbitrarily used. be able to.

【0017】上記のような電極板を構成する活物質層
は、以下のような方法によって作成することができる。
先ず、上記に挙げた材料から適宜に選択された結着剤と
微粉末状の活物質とを適当な分散媒を用いて、混練或い
は分散溶解して電極用の塗工液を作製する。次に、得ら
れた塗工液を用いて、集電体上に塗工する。塗工する方
法としては、グラビア、グラビアリバース、ダイコート
及びスライドコート等の方式を用いればよい。その後、
塗工した塗工液を乾燥させる乾燥工程を経て、所望の膜
厚の活物質層を形成して正及び負の電極板とする。
The active material layer constituting the above-mentioned electrode plate can be formed by the following method.
First, a binder and a fine powdered active material appropriately selected from the above-mentioned materials are kneaded or dispersed and dissolved using an appropriate dispersion medium to prepare a coating solution for an electrode. Next, using the obtained coating liquid, coating is performed on the current collector. As a coating method, a method such as gravure, gravure reverse, die coating, and slide coating may be used. afterwards,
Through a drying step of drying the applied coating liquid, an active material layer having a desired thickness is formed to obtain positive and negative electrode plates.

【0018】電極板に用いられる集電体としては、例え
ば、アルミニウムや銅等の金属箔が好ましく用いられ
る。金属箔の厚さとしては、10〜30μm程度のもの
を用いる。又、以上のように作製した正極及び負極の電
極板を用いてリチウムイオン二次電池を作製する場合に
は、電解液として、溶質のリチウム塩を有機溶媒に溶か
した非水電解液を用いる。この際に使用される有機溶媒
としては、例えば、環状エステル類、鎖状エステル類、
環状エーテル類、鎖状エーテル類等が挙げられる。具体
的には、例えば、環状エステル類としては、プロピレン
カーボネート等が、又、環状エーテル類としては、テト
ラヒドロフラン等が、又、鎖状エーテル類としては、
1,2−ジメトキシエタン等が挙げられ、これらを好適
に用いることができる。
As the current collector used for the electrode plate, for example, a metal foil such as aluminum or copper is preferably used. The thickness of the metal foil is about 10 to 30 μm. When a lithium ion secondary battery is manufactured using the positive and negative electrode plates manufactured as described above, a non-aqueous electrolyte in which a solute lithium salt is dissolved in an organic solvent is used as an electrolyte. As the organic solvent used at this time, for example, cyclic esters, chain esters,
Cyclic ethers, chain ethers, and the like; Specifically, for example, as cyclic esters, propylene carbonate and the like, as cyclic ethers, tetrahydrofuran and the like, and as chain ethers,
1,2-dimethoxyethane and the like can be mentioned, and these can be suitably used.

【0019】又、上記に挙げた有機溶媒と共に非水電解
液を形成する溶質のリチウム塩としては、例えば、Li
ClO4、LiBF4、LiPF6、LiAsF6、LiC
l、LiBr等の無機リチウム塩や、LiB(C
65)4、LiN(SO2CF3)2、LiC(SO2CF3)3
LiOSO2CF3、LiOSO225、LiOSO2
37、LiOSO249、LiOSO2511、Li
OSO2613、LiOSO2715等の有機リチウム
塩等を用いることができる。
The solute lithium salt which forms a non-aqueous electrolyte with the above-mentioned organic solvents includes, for example, Li
ClO 4, LiBF 4, LiPF 6 , LiAsF 6, LiC
l, an inorganic lithium salt such as LiBr, or LiB (C
6 H 5) 4, LiN ( SO 2 CF 3) 2, LiC (SO 2 CF 3) 3,
LiOSO 2 CF 3 , LiOSO 2 C 2 F 5 , LiOSO 2 C
3 F 7, LiOSO 2 C 4 F 9, LiOSO 2 C 5 F 11, Li
Organic lithium salts such as OSO 2 C 6 F 13 and LiOSO 2 C 7 F 15 can be used.

【0020】[0020]

【実施例】次に、実施例及び比較例を挙げて本発明を更
に具体的に説明する。 <実施例1>3,5−キシレノール樹脂をヘキサミンで
硬化したものを原料として、常法に従って、乾留・炭化
して炭素多孔体を得た。その後、これを二酸化炭素で賦
活を行って難黒鉛化性の炭素多孔体を得た。この炭素多
孔体を、微粉砕機で平均粒径20μm程度の微粉状とし
て、本実施例で用いる基材とした。次に、この微粉体を
2g程度、石英管に装入し、電気炉にセットする。この
石英管を窒素で置換した後、窒素を流しながら石英管温
度を900℃にする。石英管の温度が900℃になった
のを確認して、3vol%トルエンを含んだ窒素を、ガ
ス滞留時間として0.02minとなるように石英管内
に導入し、熱分解炭素を、基材である難黒鉛化性炭素の
炭素多孔体の細孔表面上に析出させた。その際、導入を
開始した時間から1時間でトルエンを含んだ窒素の導入
をやめ、窒素に切り替え、石英管を冷却し、この後、石
英管より試料を取り出して、本実施例の難黒鉛化性炭素
材料を得た。更に、得られた難黒鉛化性炭素材料につい
て、後述する方法で、電極材料としての評価を行った。
その結果を表1に示したが、本実施例の難黒鉛化性炭素
材料は、不可逆容量が小さく(初期効率が高く)、しか
も放電容量の大きな、負極材料として最適な特性を有す
ることを確認できた。
Next, the present invention will be described more specifically with reference to examples and comparative examples. <Example 1> Using a material obtained by curing a 3,5-xylenol resin with hexamine as a raw material, dry distillation and carbonization were performed according to a conventional method to obtain a porous carbon material. Thereafter, this was activated with carbon dioxide to obtain a non-graphitizable carbon porous body. This carbon porous body was made into a fine powder having an average particle size of about 20 μm by a fine pulverizer, and used as a base material used in this example. Next, about 2 g of this fine powder is charged into a quartz tube and set in an electric furnace. After replacing the quartz tube with nitrogen, the temperature of the quartz tube is set to 900 ° C. while flowing nitrogen. After confirming that the temperature of the quartz tube reached 900 ° C., nitrogen containing 3 vol% toluene was introduced into the quartz tube so that the gas residence time was 0.02 min, and pyrolytic carbon was applied to the base material. Certain non-graphitizable carbon was deposited on the surface of the pores of a carbon porous material. At that time, the introduction of nitrogen containing toluene was stopped for one hour from the time when the introduction was started, the nitrogen was switched to nitrogen, and the quartz tube was cooled. A functional carbon material was obtained. Further, the obtained non-graphitizable carbon material was evaluated as an electrode material by a method described later.
The results are shown in Table 1, and it was confirmed that the non-graphitizable carbon material of the present example has a small irreversible capacity (high initial efficiency) and a large discharge capacity, and has optimal characteristics as a negative electrode material. did it.

【0021】<実施例2>先ず、2,4+2,5−キシ
レノールが40%、3,5−キシレノールが40%、
2,3−キシレノールが10%、3,4−キシレノール
が5%、その他5%の割合の混合キシレノール類から合
成されたキシレノール樹脂を原料とし、熱硬化させたも
のを微粉砕機で、平均粒径25μm程度の微粉状とす
る。この微粉体を常法に従って、乾留・炭化を行った
後、塩素で賦活を行って、難黒鉛化性炭素多孔体を得
た。この微粉体を基材として用い、実施例1と同様に、
トルエンを含んだガスで熱分解炭素を30min間析出
させて、本実施例の難黒鉛化性炭素材料を得た。更に、
得られた難黒鉛化性炭素材料について、実施例1と同様
に、後述する方法で、電極材料としての評価を行った。
その結果、表1に示した通り、本実施例の難黒鉛化性炭
素材料は、不可逆容量が小さく、しかも放電容量の大き
な、負極材料として最適な特性を有することを確認でき
た。
<Example 2> First, 2,4 + 2,5-xylenol was 40%, 3,5-xylenol was 40%,
A xylenol resin synthesized from a mixed xylenol of 10% of 2,3-xylenol, 5% of 3,4-xylenol, and 5% of other materials was used as a raw material. Fine powder with a diameter of about 25 μm. The fine powder was subjected to dry distillation and carbonization according to a conventional method, and then activated with chlorine to obtain a non-graphitizable carbon porous body. Using this fine powder as a base material, as in Example 1,
Pyrolytic carbon was precipitated for 30 minutes with a gas containing toluene to obtain a non-graphitizable carbon material of this example. Furthermore,
The obtained non-graphitizable carbon material was evaluated as an electrode material in the same manner as in Example 1 by the method described below.
As a result, as shown in Table 1, it was confirmed that the non-graphitizable carbon material of the present example has the small irreversible capacity and the large discharge capacity, and has the optimal characteristics as the negative electrode material.

【0022】<比較例1>レゾール型のフェノール樹脂
をヘキサミンで硬化したものを原料として、常法に従っ
て、乾留・炭化した。その後、二酸化炭素で賦活を行
い、難黒鉛化性の炭素多孔体を得た。この炭素多孔体を
微粉砕機で、平均粒径20μm程度の微粉状とし、これ
を基材として用いた。この微粉体を2g程度、石英管に
装入し、電気炉にセットする。熱分解炭素の析出は、実
施例1と同様の方法で行い、本比較例の難黒鉛化性炭素
材料を得た。更に、得られた難黒鉛化性炭素材料につい
て、後述する方法で、電極材料としての評価を行った。
その結果、表1に示した通り、本比較例の難黒鉛化性炭
素材料は、不可逆容量が大きく(初期効率が低く)、放
電容量も、実施例の場合と比較して、小さいものであっ
た。
Comparative Example 1 A resol type phenol resin cured with hexamine was used as a raw material and dry-distilled and carbonized according to a conventional method. Thereafter, activation was performed with carbon dioxide to obtain a non-graphitizable carbon porous body. This carbon porous body was made into a fine powder having an average particle diameter of about 20 μm by a fine pulverizer and used as a base material. About 2 g of this fine powder is charged into a quartz tube and set in an electric furnace. Precipitation of pyrolytic carbon was performed in the same manner as in Example 1 to obtain a non-graphitizable carbon material of this comparative example. Further, the obtained non-graphitizable carbon material was evaluated as an electrode material by a method described later.
As a result, as shown in Table 1, the non-graphitizable carbon material of this comparative example has a large irreversible capacity (low initial efficiency) and a small discharge capacity as compared with the example. Was.

【0023】<比較例2>比較例1で使用したと同じ難
黒鉛化性の炭素多孔体を、微粉砕機で平均粒径25μm
程度の微粉状とする。この微粉体を、常法に従って乾留
・炭化を行った後、塩素で賦活を行って難黒鉛化性炭素
多孔体を得た。これを基材として用い、この微粉体を2
g程度、石英管に装入し、電気炉にセットする。熱分解
炭素の析出は、実施例1と同様にして行い、本比較例の
難黒鉛化性炭素材料を得た。更に、得られた難黒鉛化性
炭素材料について、後述する方法で、電極材料としての
評価を行った。その結果、表1に示した通り、本比較例
の難黒鉛化性炭素材料は、比較例1の場合よりも良いも
のの、不可逆容量が大きく(初期効率が低く)、放電容
量も、実施例の場合と比較して、小さかった。
<Comparative Example 2> The same non-graphitizable carbon porous body as used in Comparative Example 1 was obtained using a pulverizer to obtain an average particle size of 25 μm.
It is in the form of fine powder. This fine powder was subjected to dry distillation and carbonization according to a conventional method, and then activated with chlorine to obtain a non-graphitizable carbon porous body. Using this as a substrate, this fine powder
About g, place in a quartz tube and set in an electric furnace. Precipitation of pyrolytic carbon was performed in the same manner as in Example 1 to obtain a non-graphitizable carbon material of this comparative example. Further, the obtained non-graphitizable carbon material was evaluated as an electrode material by a method described later. As a result, as shown in Table 1, although the non-graphitizable carbon material of this comparative example was better than that of Comparative Example 1, it had a large irreversible capacity (low initial efficiency) and a discharge capacity of Example. It was small compared to the case.

【0024】[0024]

【評価】電極材料としての評価方法 図1に、テストセルの構造を示す。1は炭素を用いた電
極、2は対極として用いるリチウム電極、3は両極間の
セパレータ、4は電解液、5はリチウム電極でなる参照
電極である。各負極材1として、細孔入口径の処理調整
を終えた実施例及び比較例の難黒鉛化性炭素粒子を用
い、該粒子に対して10重量%のポリフッ化ビニリデン
を結合剤として加え、N−メチル−2−ピロリジノンを
用いてペースト状にした後、直径10mm、厚さ0.5
mmのコイン型にプレス成型したものを用いた。電解液
には、プロピレンカーボネートとジメトキシエタンの
1:1混合溶液に、支持電解質として過塩素酸リチウム
(LiClO4)を1M加えたものを用いた。
[Evaluation] Evaluation method as electrode material FIG. 1 shows the structure of the test cell. 1 is an electrode using carbon, 2 is a lithium electrode used as a counter electrode, 3 is a separator between both electrodes, 4 is an electrolyte, and 5 is a reference electrode composed of a lithium electrode. As each negative electrode material 1, the non-graphitizable carbon particles of Examples and Comparative Examples in which the treatment of the pore entrance diameter was completed were used, and 10% by weight of polyvinylidene fluoride was added as a binder to the particles. -Methyl-2-pyrrolidinone into a paste, diameter 10 mm, thickness 0.5
What was press-molded into a mm coin type was used. As the electrolytic solution, a solution obtained by adding 1 M of lithium perchlorate (LiClO 4 ) as a supporting electrolyte to a 1: 1 mixed solution of propylene carbonate and dimethoxyethane was used.

【0025】図2に、製作したテストセルについて充放
電試験を行った際の電流電位変化の概念図を示した。
尚、厳密に言うと、このテストセルにおいては、炭素極
は正極となり、炭素極へのリチウムのドーピングは放電
ということになるが、実電池に合わせて便宜上この過程
を充電と呼ぶこととする。図2に示したように、負極の
炭素電極の通電前の初期電位は、リチウム参照電極に対
して約1.5Vであり、電流密度0.53mA/cm2
の定電流で通電を開始し、充電を行った。図2に示され
ているように、この間に電極電位は徐々に下降した。そ
こで、電極電位が1mVに達したときに、定電流から定
電位に切換えて電流密度が微小になった時に電源を切
り、2時間休止後に、電位の回復が10mV程度以下に
なった時を充電終了とした。そして、2時間の休止の
後、放電を行った。放電は、0.53mA/cm2の定
電流で開始し、電位が1.5Vに達した時点で放電終了
とした。
FIG. 2 shows a conceptual diagram of a change in current potential when a charge / discharge test is performed on the manufactured test cell.
Strictly speaking, in this test cell, the carbon electrode serves as a positive electrode, and doping of the carbon electrode with lithium means discharge, but this process will be referred to as charging for convenience in accordance with the actual battery. As shown in FIG. 2, the initial potential of the negative electrode before energization was about 1.5 V with respect to the lithium reference electrode, and the current density was 0.53 mA / cm 2.
Was started at a constant current of, and charging was performed. As shown in FIG. 2, the electrode potential gradually decreased during this time. Therefore, when the electrode potential reaches 1 mV, the current is switched from the constant current to the constant potential, and the power is turned off when the current density becomes very small. Ended. After a pause of 2 hours, discharge was performed. The discharge was started at a constant current of 0.53 mA / cm 2 , and was terminated when the potential reached 1.5 V.

【0026】実施例及び比較例の難黒鉛化性炭素粒子を
用いた前記した構成のテストセルで、上記のようにして
充放電を行なって求めた充電容量及び放電容量を表1に
示した。尚、上記において、充放電容量は、炭素1g当
たりの容量である。
Table 1 shows the charge capacity and the discharge capacity obtained by performing the charging and discharging as described above in the test cells having the above-described configuration using the non-graphitizable carbon particles of the examples and the comparative examples. In the above description, the charge / discharge capacity is the capacity per 1 g of carbon.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
リチウムイオン二次電池用の負極材として好適な、不可
逆容量が小さく、しかも放電容量の大きなリチウムイオ
ン二次電池用の難黒鉛化性炭素材料、及びこれを用いた
優れた特性のリチウムイオン二次電池が提供される。
又、本発明によれば、難黒鉛化性炭素の原料をキシレノ
ール樹脂にすることによって、リチウムイオンをドープ
するのに最適な細孔を有する難黒鉛化性炭素多孔体の容
積を変えることなしに、熱分解炭素を析出させることで
細孔入口径を、リチウムイオンが通過可能で、該リチウ
ムイオンに比べて大きな分子サイズを有する有機溶媒が
通過不可能な径の細孔を有する、不可逆容量が小さく、
しかも放電容量の大きな、リチウムイオン二次電池の負
極材として最適な難黒鉛化性炭素が容易に製造できるリ
チウムイオン二次電池用の難黒鉛化性炭素材料の製造方
法が提供される。
As described above, according to the present invention,
A non-graphitizable carbon material for a lithium ion secondary battery having a small irreversible capacity and a large discharge capacity, suitable as a negative electrode material for a lithium ion secondary battery, and a lithium ion secondary material having excellent characteristics using the same. A battery is provided.
Further, according to the present invention, by using a xylenol resin as the raw material of the non-graphitizable carbon, the volume of the non-graphitizable carbon porous body having an optimal pore for doping lithium ions can be changed. By depositing pyrolytic carbon, the pore inlet diameter, through which lithium ions can pass, having pores of a diameter through which an organic solvent having a larger molecular size than the lithium ions cannot pass, has an irreversible capacity. small,
In addition, a method for producing a non-graphitizable carbon material for a lithium ion secondary battery, which has a large discharge capacity and can easily produce a graphitizable carbon optimal as a negative electrode material of the lithium ion secondary battery is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】難黒鉛化性炭素材料の電極材料としての評価に
用いたテストセルの構造を示す図である。
FIG. 1 is a view showing the structure of a test cell used for evaluating a non-graphitizable carbon material as an electrode material.

【図2】充放電試験を行った際の電流電位変化を示す概
念図である。
FIG. 2 is a conceptual diagram illustrating a change in current potential when a charge / discharge test is performed.

【符号の説明】[Explanation of symbols]

1:電極 2:リチウム電極 3:セパレータ 4:電解液 5:参照電極 1: electrode 2: lithium electrode 3: separator 4: electrolyte 5: reference electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 寛己 東京都千代田区九段北4−1−3 アドケ ムコ株式会社内 (72)発明者 塩出 哲夫 東京都千代田区九段北4−1−3 アドケ ムコ株式会社内 (72)発明者 茂木 康弘 東京都千代田区九段北4−1−3 アドケ ムコ株式会社内 (72)発明者 矢崎 隆一 東京都港区西新橋1−16−7 日本酸素株 式会社内 Fターム(参考) 4G046 CA04 CB02 CB05 CB09 CC02 5H003 AA02 BA01 BB01 BC01 5H029 AJ03 AK02 AK03 AL06 AM03 AM04 AM05 AM07 CJ02 CJ28 DJ14 DJ16  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiromi Okamoto 4-1-3 Kudankita, Chiyoda-ku, Tokyo Ad Chemco Inc. (72) Inventor Tetsuo Shiode 4-1-3, Kudankita, Chiyoda-ku, Tokyo Muco Co., Ltd. (72) Inventor Yasuhiro Mogi 4-1-3 Kudankita, Chiyoda-ku, Tokyo Adke Muco Co., Ltd. (72) Inventor Ryuichi Yazaki 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo Nippon Sanso Corporation F term (reference) 4G046 CA04 CB02 CB05 CB09 CC02 5H003 AA02 BA01 BB01 BC01 5H029 AJ03 AK02 AK03 AL06 AM03 AM04 AM05 AM07 CJ02 CJ28 DJ14 DJ16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱分解炭素を析出させた難黒鉛化性炭素
多孔体であって、該難黒鉛化性炭素多孔体がキシレノー
ルを単位骨格とした樹脂を原料として構成されているこ
とを特徴とするリチウムイオン二次電池用の難黒鉛化性
炭素材料。
1. A non-graphitizable carbon porous material obtained by depositing pyrolytic carbon, characterized in that the non-graphitizable carbon porous material is composed of a resin having xylenol as a unit skeleton. Non-graphitizable carbon material for lithium ion secondary batteries.
【請求項2】 樹脂が、キシレノールの各異性体単独或
いは各異性体の混合物からなる単位骨格を有するキシレ
ノール樹脂である請求項1に記載のリチウムイオン二次
電池用の難黒鉛化性炭素材料。
2. The non-graphitizable carbon material for a lithium ion secondary battery according to claim 1, wherein the resin is a xylenol resin having a unit skeleton composed of each isomer of xylenol alone or a mixture of each isomer.
【請求項3】 キシレノールを単位骨格とした樹脂を原
料とする難黒鉛化性炭素多孔体からなる粉体状の基材を
用い、該基材を、不活性雰囲気中、炭化水素気流下で加
熱して熱分解炭素を析出させることで、リチウムイオン
二次電池の電解液中のリチウムイオンが通過可能で、且
つ、電解液中の有機溶媒が実質的に通過不可能な細孔径
を有するように調整することを特徴とするリチウムイオ
ン二次電池用の難黒鉛化性炭素材料の製造方法。
3. A powdery base material made of a non-graphitizable carbon porous material made of a resin having xylenol as a unit skeleton, and the base material is heated in an inert atmosphere under a hydrocarbon stream. By depositing pyrolytic carbon, lithium ions in the electrolyte of the lithium ion secondary battery can pass, and the organic solvent in the electrolyte has a pore size that is substantially impermeable. A method for producing a non-graphitizable carbon material for a lithium ion secondary battery, the method comprising adjusting.
【請求項4】 請求項3に記載のリチウムイオン二次電
池用の難黒鉛化性炭素材料の製造方法によって製造され
たことを特徴とするリチウムイオン二次電池用の難黒鉛
化性炭素材料。
4. A non-graphitizable carbon material for a lithium ion secondary battery produced by the method for producing a non-graphitizable carbon material for a lithium ion secondary battery according to claim 3.
【請求項5】 請求項1又は請求項4に記載のリチウム
イオン二次電池用の難黒鉛化性炭素材料を負極の構成要
素としたことを特徴とするリチウムイオン二次電池。
5. A lithium ion secondary battery comprising the non-graphitizable carbon material for a lithium ion secondary battery according to claim 1 or 4 as a component of a negative electrode.
JP11123713A 1999-04-30 1999-04-30 Slightly graphitizable carbon material for lithium ion secondary battery, its manufacture, and lithium ion secondary battery Pending JP2000315500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11123713A JP2000315500A (en) 1999-04-30 1999-04-30 Slightly graphitizable carbon material for lithium ion secondary battery, its manufacture, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11123713A JP2000315500A (en) 1999-04-30 1999-04-30 Slightly graphitizable carbon material for lithium ion secondary battery, its manufacture, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2000315500A true JP2000315500A (en) 2000-11-14

Family

ID=14867528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11123713A Pending JP2000315500A (en) 1999-04-30 1999-04-30 Slightly graphitizable carbon material for lithium ion secondary battery, its manufacture, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2000315500A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855413A (en) * 2012-11-28 2014-06-11 中国科学院大连化学物理研究所 Porous carbon material used for lithium-air cell anode
CN106663810A (en) * 2014-08-08 2017-05-10 株式会社吴羽 Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
JPWO2016140368A1 (en) * 2015-03-05 2018-02-22 株式会社クレハ Method for producing mixed negative electrode material for nonaqueous electrolyte secondary battery and mixed negative electrode material for nonaqueous electrolyte secondary battery obtained by the production method
US9966603B2 (en) 2013-03-29 2018-05-08 Nec Corporation Negative electrode carbon material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
US10411261B2 (en) 2014-08-08 2019-09-10 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anodes
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode
CN115053372A (en) * 2020-01-31 2022-09-13 松下知识产权经营株式会社 Negative electrode active material for aqueous secondary battery, negative electrode for aqueous secondary battery, and aqueous secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103855413A (en) * 2012-11-28 2014-06-11 中国科学院大连化学物理研究所 Porous carbon material used for lithium-air cell anode
US9966603B2 (en) 2013-03-29 2018-05-08 Nec Corporation Negative electrode carbon material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
CN106663810A (en) * 2014-08-08 2017-05-10 株式会社吴羽 Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
EP3179542A1 (en) 2014-08-08 2017-06-14 Kureha Corporation Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
US10411261B2 (en) 2014-08-08 2019-09-10 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anodes
US10424790B2 (en) 2014-08-08 2019-09-24 Kureha Corporation Carbonaceous material for non-aqueous electrolyte secondary battery anode
EP3686975A1 (en) * 2014-08-08 2020-07-29 Kureha Corporation Production method for carbonaceous material for non-aqueous electrolyte secondary battery anode, and carbonaceous material for non-aqueous electrolyte secondary battery anode
US10797319B2 (en) 2014-08-08 2020-10-06 Kureha Corporation Production method for carbonaceous material for non-aqueous electrolyte secondary battery anode, and carbonaceous material for non-aqueous electrolyte secondary battery anode
EP3179542B1 (en) * 2014-08-08 2022-03-02 Kureha Corporation Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
JPWO2016140368A1 (en) * 2015-03-05 2018-02-22 株式会社クレハ Method for producing mixed negative electrode material for nonaqueous electrolyte secondary battery and mixed negative electrode material for nonaqueous electrolyte secondary battery obtained by the production method
CN115053372A (en) * 2020-01-31 2022-09-13 松下知识产权经营株式会社 Negative electrode active material for aqueous secondary battery, negative electrode for aqueous secondary battery, and aqueous secondary battery
CN115053372B (en) * 2020-01-31 2023-09-15 松下知识产权经营株式会社 Negative electrode active material for aqueous secondary battery, negative electrode for aqueous secondary battery, and aqueous secondary battery

Similar Documents

Publication Publication Date Title
KR100589309B1 (en) Negative active material for lithium secondary battery, lithium secondary battery comprising the same, and preparing method of negative active material for lithium secondary battery
JP4861120B2 (en) Negative electrode active material, production method thereof, and negative electrode and lithium battery employing the same
JP5329858B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
JP4308446B2 (en) Carbonaceous material and lithium secondary battery
KR101361567B1 (en) Composite graphite particles and use of same
US7229713B2 (en) Electrode and battery using the same
JP4104829B2 (en) Carbonaceous material and lithium secondary battery
KR101035361B1 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
JPH11339777A (en) Manufacture of secondary battery negative electrode
KR20190093177A (en) Anode active material, anode and lithium secondary battery comprising the same
JP2002008720A (en) Nonaqueous electrolyte battery
KR20070109118A (en) Anode active material comprising metal nanocrystal composite, method of preparing the same, and anode and lithium battery having the material
KR101105877B1 (en) Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries using the same
JP2012151129A (en) Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte battery provided thereby
JPH10294111A (en) Graphite carbon material coated with graphite for lithium secondary battery negative electrode material and its manufacture
JP2000251890A (en) Negative electrode for nonaqueous electrolyte secondary battery, and secondary battery using the same
JP2004234977A (en) Positive electrode material for lithium secondary battery, manufacturing method of same, and lithium secondary battery using same
JP2000315500A (en) Slightly graphitizable carbon material for lithium ion secondary battery, its manufacture, and lithium ion secondary battery
KR100269918B1 (en) A negative active material for a lithium-based secondary cell and a method of preparing the same
JPH10284053A (en) Electrode for secondary battery, secondary battery using it, and manufacture of electrode for secondary battery
JPH11339778A (en) Manufacture of secondary battery negative electrode
JPH11191408A (en) Negative active material for lithium ion secondary battery, and negative electrode plate and lithium ion secondary battery using the same
JP2000315501A (en) Hard-graphitizable carbon material for lithium ion secondary battery, manufacture of the material, and lithium ion secondary battery using the material
JP4026972B2 (en) Method for producing negative electrode material for lithium secondary battery
JP2000195502A (en) Nonaqueous system secondary battery