JP2005116681A - 光半導体受光素子およびその製造方法 - Google Patents

光半導体受光素子およびその製造方法 Download PDF

Info

Publication number
JP2005116681A
JP2005116681A JP2003347066A JP2003347066A JP2005116681A JP 2005116681 A JP2005116681 A JP 2005116681A JP 2003347066 A JP2003347066 A JP 2003347066A JP 2003347066 A JP2003347066 A JP 2003347066A JP 2005116681 A JP2005116681 A JP 2005116681A
Authority
JP
Japan
Prior art keywords
ring
conductivity type
carrier concentration
layer
type region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003347066A
Other languages
English (en)
Inventor
Motoi Suhara
基 須原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003347066A priority Critical patent/JP2005116681A/ja
Publication of JP2005116681A publication Critical patent/JP2005116681A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

【課題】 ガードリングの外周部のエッジブレークダウン電圧を高めたアバランシェフォトダイオードおよびその製造方法を提供する。
【解決手段】 第1導電型の化合物半導体基板12の主面に入射光を吸収する光吸収層13と、禁制帯の不連続性を緩和する障壁緩和層14と、前記基板側に空乏層が伸びるのを防止する電界降下層15と、入射光に対して透明な窓層16を順次形成し、前記窓層16に水平方向のキャリア濃度が内周部から外周部にかけて階段状に減少する第2導電型のガードリング18と、前記ガードリング18の内側全面に円形状の第2導電型の拡散領域19を設ける。そして、ガードリング18の水平方向のキャリア濃度を内周部18a、中間部18b、外周部18cの3段の階段状に形成している。
【選択図】 図1

Description

本発明は、光半導体受光素子に係わり、特に光通信に用いられるアバランシェフォトダイオードおよびその製造方法に関する。
受光素子は光通信システムにおいて、光ファイバを通して伝播された光信号を感知して電気信号に変換するもので、この様な光半導体受光素子としてアバランシェフォトダイオードが多く使用されている。
アバランシェフォトダイオードとはpn接合に大きな逆バイアス電圧を加えて強い電界を形成し、入射した光により生成されたキャリアをこの電界で加速して、衝突によって二次キャリアを発生するという過程を次々に繰り返すアバランシェ効果を利用して光電子増倍をおこなうものである。
従って、アバランシェフォトダイオードにおいては、動作電圧はpn接合のブレークダウン電圧に近い値に設定されるので、pn接合面内で一様に降伏を起こすような均一な接合面が必要であが、通常、pn接合のエッジ部の曲率は中央部の曲率より小さいので逆バイアス電圧を加えると電界が集中しエッジ部の電界が中央部の電界より大きくなる。
その結果、中央部よりエッジ部でブレークダウンが生じるので、エッジブレークダウンを抑制するためにエッジ部にガードリングを設けてエッジ部のブレークダウン電圧が高くなるようにしている。
従来のガードリングを有するアバランシェフォトダイオードについて図を用いて説明する。図14は従来のアバランシェフォトダイオードの構造を示す断面図である。
図14に示すように、アバランシェフォトダイオード101は、n−InP基板102に順次形成されたn−InPバッファ層103、n−InGaAs光吸収層104、n−InGaAsP障壁緩和層105、n−InP電界降下層106、n−InP窓層107と、このn−InP窓層107に形成されたキャリア濃度の低いpガードリング108と、pガードリング108の内側全面に、キャリア濃度の高いp拡散領域109を有している。
さらに、n−InP窓層107の表面を保護する保護膜111、p拡散領域109に電気的接続をとるためのp側電極112とn側電極113、およびp拡散領域109に入射した光の反射を防止する反射防止膜114を有している。
これにより、p拡散領域109を通過した光はn−InGaAs光吸収層104に吸収されてキャリアを発生する。発生したキャリアはn−InP電界効果層106で加速されて増倍領域110でアバランシェ効果により増倍される。
しかしながら、このような構造のアバランシェフォトダイオード101では、p拡散領域109とpガードリング108のキャリア濃度の差によってp/p層の境界付近で水平方向の電界集中によるブレークダウンが起こり、pガードリング108とn−InP窓層107の間でエッジブレークダウンが生じる恐れがある。
図15はpガードリング108の水平方向のキャリア濃度分布を示す図、図14はpガードリング108の水平方向の電界強度分布を示す図である。
図15に示すように、例えば、キャリア濃度分布がp拡散領域109の6E19/cm3からpガードリング108の1E16/cm3程度までステップ状に急激に変化する場合に、図16に示すように、シミュレーションによれば、p/p層の境界付近に電界強度のピークaが見られ、水平方向に2.4E5V/cm程度の電界集中が生じていることが予想される。
このため、従来のアバランシェフォトダイオード101では、必ずしも十分なエッジブレークダウン電圧が得られず信頼性が低下するという問題がある。
これに対して、拡散層の表面の不純物濃度を低くして濃度勾配を緩くすることによりエッジブレークダウン電圧を向上させたガードリング構造を有するショットキーバリアダイオードが知られている(例えば、特許文献1参照。)。
特許文献1に開示されたショットキーバリアダイオードについて図を用いて説明する。図17はその深さ方向の不純物濃度プロファイルを示す図である。図17に示すように、ガードリング領域の拡散層の表面における不純物濃度を5E17/cm3以下に下げて深さ方向の濃度勾配を緩くし、拡散層の深さXを1.5μm以下に小さくして、ガードリング領域で起きていた破壊がn層で起きるようにしている。
しかしながら、特許文献1に開示されたショットキーバリアダイオードは深さ方向の濃度勾配に対するものであり、横方向の濃度勾配については何ら開示していない。
特開平10−173205号公報(3頁、図1)
上述した従来のアバランシェフォトダイオードでは、p拡散領域とpガードリングの水平方向の濃度勾配が大きいとp/p層の境界付近に過度な電界集中が生じるため、pガードリングの外周部でエッジブレークダウンが生じる恐れがあり、必ずしも十分なブレークダウン電圧が得られず信頼性が低下するという問題がある。
そのため、従来のアバランシェフオトダイオードを使用した光通信システムにおいては通信障害をもたらす恐れがある。
本発明は、上記問題点を解決するためになされたもので、ガードリングの外周部のエッジブレークダウン電圧を高めたアバランシェフォトダイオードおよびその製造方法を提供することを目的とする。
上記目的を達成するために、本発明の一態様のアバランシェフオトダイオードでは、第1導電型の化合物半導体基板の主面に形成された入射光を吸収する光吸収層と、前記光吸収層上に形成され、禁制帯の不連続性を緩和する障壁緩和層と、前記障壁緩和層上に形成され、前記化合物半導体基板側に印加される電界強度を抑える電界降下層と、前記電界降下層上に形成され、入射光に対して透明な窓層と、前記窓層にリング状に形成され、且つ前記リングの水平方向のキャリア濃度が前記リングの内周部から外周部にかけて階段状に減少する第2導電型領域と、前記リング状の第2導電型領域の内側全面に形成され、且つ前記リングの内周部に一部重複した円形状の第2導電型領域と、前記円形状の第2導電型領域に電気的接続をとるための電極とを有することを特徴としている。
本発明によれば、p+拡散領域とp−ガードリングの水平方向のキャリア濃度勾配を小さくしたので、p+/p−層の境界付近の電界強度低減と電界集中が抑制され、p+/p−層の境界付近でのブレークダウンの発生を防止できる。また、ガードリング外周部に向かってキャリア濃度が階段状に減少しているため、ガードリング外周端と窓層の間でのエッジブレークダウンの発生も抑制できる。
これにより、十分なブレークダウン電圧が得られ、信頼性の高いアバランシェフォトダイオードを提供することができる。
以下、本発明の実施例について図面を参照しながら説明する。
図1は本発明の実施例1に係わるアバランシェフォトダイオードを示す図で、図1(a)はその平面図、図1(b)は図1(a)のA−A線に沿って切断し、矢印方向に眺めた断面図である。
図1に示すように、本実施例のアバランシェフォトダイオード11は、n−InP基板12に、例えばMOCVD法により順次形成されたn−InPバッファ層13と、入射光を吸収するn−InGaAs光吸収層14と、禁制帯の不連続性を緩和するn−InGaAsP障壁緩和層15と、基板側に印加される電界強度を抑えるn−InP電界効果層16と、入射光に対して透明なn−InP窓層17を有している。
n−InP窓層17にはリング状のpガードリング18が形成され、このpガードリング18はキャリア濃度を順次低減した内周部18a、中間部18b、外周部18cを有している。これにより、pガードリング18の水平方向のキャリア濃度が内周部から外周部にかけて低減するように構成されている。
pガードリング18の内側全面にはキャリア濃度の高いp拡散領域19が形成される。p拡散領域19の外周部はpガードリング18の内周部18aに一部重複しており、p拡散領域19の厚さはpガードリング18の厚さより小さい。これにより、p拡散領域19とn−InP窓層17のpn接合領域にキャリアを増倍する厚さdの増倍領域20が形成される。
また、n−InP窓層17には表面を保護する保護膜21が形成され、p拡散領域19には入射した光の反射を防止する反射防止膜22が形成され、更に、p拡散領域19に電気的接続をとるためのp側電極23とn側電極24がそれぞれ形成されている。
図2はpガードリング18の水平方向のキャリア濃度分布を図15に示した従来例と比較して示したもので、図中の実線aが本実施例による場合、破線bが従来例による場合である。
図2から明らかなように、実験によればキャリア濃度はp拡散領域19の6E19/cm3程度に対して、pガードリング18の内周部18aで3E19/cm3程度、中間部18bで1E18/cm3程度、外周部18cで1E17/cm3程度と3段の階段状のキャリア濃度分布が得られている。
これにより、p拡散領域19からpガードリング18のへの水平方向のキャリア濃度勾配が緩やかになり、p拡散領域19とpガードリング18のp/p層の境界付近での電界強度を下げることが可能である。
図3はpガードリング18の水平方向のキャリア濃度分布に基づいてシミュレーションにより求めた電界強度分を図16に示した従来例と比較して示したもので、図中の実線aが本実施例による場合、破線bが従来例による場合である。
図3から明らかなように、シミュレーションによればp拡散領域19からpガードリング18への水平方向のキャリア濃度勾配を緩やにしたことによりp/p層の境界付近での電界強度はブロードなピークcを示し、電界強度は9E4V/cm程度と従来例に比べて約1/3に低減している。
図4はアバランシェフォトダイオード11の逆方向の電圧電流特性を測定した結果を従来例と比較して示したもので、図中の実線aが本実施例による場合、実線bが従来例による場合である。
図4から明らかなように、実験によればブレークダウン電圧(逆方向電流が100μAになる逆方向電圧をブレークダウン電圧と称す)は従来例に比べて約7V向上している。また、従来例に見られる局所的なブレークダウンを示すキンクcも見られないことから十分なブレークダウン電圧が得られている。
更に、階段状のキャリア濃度分布を種々変えた実験から、十分なブレークダウン電圧が得られるように電界強度を低減するには、pガードリング18の内周部18aでの階段状のキャリア濃度はp拡散領域19のキャリア濃度からこのキャリア濃度の1/10倍の範囲内にあり、pガードリング18の外周部18cでの階段状のキャリア濃度は入射光に対して透明なn−InP窓層17のキャリア濃度からこのキャリア濃度の10倍の範囲内にあることが好ましい。
以上説明したように、実施例1に係わるアバランシェフォトダイオードでは、pガードリング18にキャリア濃度を順次低減した内周部18a、中間部18b、外周部18cを有しているので、ガードリング18において内周部から外周部に向かって水平方向のキャリア濃度が階段状に減少するキャリア濃度分布が得られる。
これによって、p拡散領域19からpガードリング18への水平方向のキャリア濃度勾配が緩やかになり、p拡散領域19とpガードリング18のp/p層の境界付近での電界強度を下げることが可能である。
従って、pガードリング18の外周部18cでのエッジブレークダウン電圧が高まり、アバランシェフォトダイオードのブレークダウン電圧が向上する。
ここでは、p拡散領域19からpガードリング18の水平方向のキャリア濃度分布が3段の階段状の場合について説明したが、pガードリング18の内周部18aでの階段状のキャリア濃度がp拡散領域19のキャリア濃度の1/10以内、pガードリング18の外周部18cでの階段状のキャリア濃度がn−InP窓層17のキャリア濃度の10倍以内であれば、pガードリング18の中間部18bのキャリア濃度分布は特に限定されない。
例えば、pガードリング18の中間部18bのキャリア濃度分布が傾斜状で2段の階段状としても、あるいは更に段数を増やした階段状としても構わない。
次に、段数を更に増やすことにより、pガードリング18の水平方向のキャリア濃度分布を傾斜状とした場合の変形例について説明する。
(実施例1の変形例)
図5および図6は実施例1の変形例に係わるガードリング18のキャリア濃度および電界強度分布を示す図である。本変形例において、上記実施例1と同一の構成部分には、同一符号を付してその部分の説明は省略し、異なる部分について説明する。
本変形例が実施例1と異なる点は、ガードリング18において内周部から外周部に向かって水平方向のキャリア濃度分布の段数を更に多段、例えば7〜11段に増やすことにより、水平方向のキャリア濃度分布を滑らかな傾斜状にしたことにある。
図5はpガードリング18の水平方向のキャリア濃度分布を図15に示した従来例と比較して示したもので、図中の実線aが本実施例による場合、破線bが従来例による場合である。また、図中の破線c1、c2は本変形例の実線aを2段の傾斜で近似した線、破線d1、d2は従来例の破線bを2段の傾斜で近似した線を示している。
図5から明らかなように、実験によればキャリア濃度はp拡散領域19の6E19/cm3に対して、p拡散領域19と接しているpガードリング18の内周部18aで6〜1E19/cm3、p拡散領域19と離れているpガードリング18の外周部18cで1E19〜1E16/cm3と傾斜状のキャリア濃度分布が得られている。
ここでは、濃度分布の傾斜を数値化するために、キャリア濃度が1桁(1decade)低下するのに要する水平方向の距離を傾斜率と定義する。例えば、破線c2は水平方向の距離が5.0μmのときにキャリア濃度は1E18cm−3であり、キャリア濃度が1桁低下して1E17cm−3になる水平方向の距離は5.5μmである。これより破線c2の傾斜率は(5.5−5.0)μm/(1decade)=0.5μm/decadeとなる。
同様に、破線c2の傾斜率は約3.2μm/decade、破線d1の傾斜率は約0.16μm/decade、破線d2の傾斜率は5.4μm/decadeとなる。傾斜率の定義より、数値が大きいほど傾斜が緩やかであることを示している。
これにより、p拡散領域19からpガードリング18のへの水平方向のキャリア濃度勾配が緩やかになり、p拡散領域19とpガードリング18のp/p層の境界付近での電界強度を更に下げることが可能である。
図6はpガードリング18の水平方向のキャリア濃度分布に基づいてシミュレーションにより求めた電界強度分を図16に示した従来例と比較して示したもので、図中の実線aが本実施例による場合、破線bが従来例による場合である。
図6から明らかなように、シミュレーションによればp拡散領域19からpガードリング18への水平方向のキャリア濃度勾配を緩やにしたことによりp/p層の境界付近での電界強度はブロードなピークcを示し、電界強度は7E4V/cm程度と従来例に比べて約1/3以下に低減している。
更に、傾斜状のキャリア濃度分布を種々変えた実験から、十分なブレークダウン電圧が得られるように電界強度を低減するには、破線c1で示すpガードリング18の内周部18aの傾斜率および破線c2で示すpガードリング18の外周部18cの傾斜率は、それぞれ破線d1で示す従来例のpガードリング108の内周部の傾斜率より大きく、且つ破線c1の傾斜率が破線c2の傾斜率より大きい範囲内にあることが好ましい。
以上説明したように、実施例1の変形例に係わるアバランシェフォトダイオードでは、pガードリング18にキャリア濃度を傾斜状に低減した内周部18aと外周部18cを有しているので、ガードリング18において内周部18aから外周部18cに向かって水平方向のキャリア濃度が傾斜状に減少するキャリア濃度分布が得られる。
これによって、p拡散領域19からpガードリング18への水平方向のキャリア濃度勾配が更に緩やかになり、p拡散領域19とpガードリング18のp/p層の境界付近での電界強度を更に下げることが可能である。
従って、pガードリング18の外周部18cでのエッジブレークダウン電圧が高まり、アバランシェフォトダイオードのブレークダウン電圧が向上する。
図7乃至図13は、上述の実施例1に係わるアバランシェフォトダイオード11の製造方法を工程順に示す図である。各図は、図1のガードリング18およびp拡散領域19を形成する部分を示している。
図7は能動層30を形成した化合物半導体基板を示す断面図、図8乃至図12は外周に向かってキャリア濃度が階段状に減少するガードリング18を形成する工程を示す図で、各図において(a)はその平面図、(b)はB−B線乃至F−F線に沿って切断し、矢印方向に眺めた断面図、図13はp拡散領域19を形成する工程を示す図で、図13(a)はその平面図、図13(b)はG−G線に沿って切断し、矢印方向に眺めた断面図である。
始めに、能動層30を形成する。即ち、図7に示すように、化合物半導体基板、例えばn−InP基板12の主面に、例えばMOCVD法により下地となるn−InPバッファ層13を、例えばキャリア濃度1〜5E18/cm3、厚さ2〜3μm程度形成する。
続けて、入射光を検出するInGaAs光吸収層14を、例えばキャリア濃度0.8〜2E15/cm3、厚さ1.2μm程度、InPとInGaAsの禁制帯の不連続性を緩和するためのInGaAsP障壁緩和層15を、例えばキャリア濃度2〜9E15/cm3、厚さ0.5μm程度、n−InP基板12の側へ印加される電界強度を抑えるn−InP電界降下層16を、例えばキャリア濃度6〜8E16/cm3、厚さ0.3μm程度に順次形成する。
最後に、入射光に対して透明なn−InP窓層17を、例えばキャリア濃度1〜5E15/cm3、厚さ1μm程度形成してMOCVD法によるエピタキシャル成長を終了する。これにより、能動層30が形成される。
次に、ガードリング18を形成する。即ち、図8に示すように、n−InP窓層17に絶縁膜、例えばシリコン酸化膜31をCVD法により厚さ0.2μm程度形成した後、フォトリソグラフィ法により内径20μm、外径30μm程度のリング状のシリコン酸化膜開口溝32を形成する。
次に、図9に示すように、n−InP窓層17にレジスト膜33を、例えば厚さ2μm程度形成した後、フォトリソグラフィ法によりシリコン酸化膜開口溝32の内周に沿ってシリコン酸化膜開口溝32の幅W、例えば5μmより小さい溝幅W1、例えば2μm程度のリング状のレジスト膜開口溝34を形成する。
その後、n−InP窓層17にレジスト膜33a、33bをマスクとしてp型ドーパント、例えばBeをドーズ量1E14/cm2、加速電圧200Kev程度でイオン注入する。これにより、ガードリング18の内周部18aが形成され、ドーズ量が外周部に向けて階段状に減少する1段目の分布aが得られる。
次に、図10に示すように、レジスト膜33のみを選択的に、例えばCDE法により厚さ1.5μm程度ステップエッチングするとレジスト膜33a、33bの側面も同時にエッチングされて後退する。一方、シリコン酸化膜31aはエッチングされないので、これにより、シリコン酸化膜31aを内周としレジスト膜33bを外周とする溝幅がW2のリング状の開口溝35が形成される。
その後、n−InP窓層17にレジスト膜33a、33bとシリコン酸化膜31aをマスクとしてp型ドーパント、例えばBeをドーズ量1E13/cm2、加速電圧200Kev程度でイオン注入する。これにより、ガードリング18の中間部18bが形成され、ドーズ量が外周部に向けて階段状に減少する2段目の分布bが得られる。
次に、図11に示すように、更にレジスト膜33のみを選択的に厚さ0.5μm程度ステップエッチングするとレジスト膜33はすべて除去されてシリコン酸化膜31a、31bが露出するので、最初のシリコン酸化膜開口溝32の溝幅Wが得られる。
その後、n−InP窓層17にシリコン酸化膜31a、31bをマクスとしてp型ドーパント、例えばBeをドーズ量1E12/cm2、加速電圧200Kev程度でイオン注入する。これにより、ガードリング18の外周部18cが形成され、ドーズ量が外周部に向けて階段状に減少する3段目の分布cが得られる。
次に、図12に示すように、シリコン酸化膜31a、31bを、例えばフッ酸を含む溶液でエッチングして除去した後、イオン注入したBeを電気的に活性化するための熱処理を、例えば水素雰囲気中、温度650〜700℃程度でおこなう。これにより、キャリア濃度が外周部に向かって階段状に減少する分布dを持つガードリング18が形成される。
次に、図13に示すように、ガードリング18が形成されたn−InP窓層17に誘電体膜、例えばCVD法によりシリコン窒化膜36を厚さ0.1μm程度形成した後、フォトリソグラフィ法によりガードリングの内周部18aと一部重なる大きさ、例えば直径21μm程度のホールパターン37を形成する。
次に、シリコン窒化膜36をマスクとして、p型不純物、例えば熱拡散法によりZnを増倍領域20の厚さdが得られるようにキャリア濃度1〜10E19/cm3程度に拡散させる。これにより、ガードリング18の内周部18aに一部重複して内側全面に円形状のp拡散領域19が形成され、p拡散領域19からガードリング18への水平方向に階段状のキャリア濃度分布eが得られる。
次に、p拡散領域19に入射光の反射を防止する反射防止膜22を形成した後にp側電極23を形成し、続いてn−InP基板12の主面と反対の面にn側電極24を形成する。最後に、チッブに分割することにより図1に示したアバランシェフォトダイオード11を製造した。
以上説明したように、実施例2に係わるアバランシェフォトダイオードの製造方法によれば、ガードリング18において外周に向かって階段状に減少するキャリア濃度分布を形成することができる。
これによって、p拡散領域19からガードリング18への水平方向のキャリア濃度勾配を緩やかにすることができるので、p拡散領域19とガードリング18の境界での電界強度を下げることが可能である。
従って、p+拡散領域19とガードリング18の境界での電界集中が抑制され、ブレークダウンの発生を防止できる。また、ガードリング外周部に向かってキャリア濃度が緩やかに減少しているためガードリング外周部と窓層との間のエッジブレークダウン発生も抑制できるので、アバランシェフォトダイオード11のブレークダウン電圧が向上する。
ここでは、ガードリング18のキャリア濃度が外周に向かって階段状に減少させる場合について説明したが、図10の工程における繰り返し回数を更に増やすことにより、キャリア濃度が外周に向かって傾斜状に減少させることが可能である。
また、化合物半導体層をMOCVD法により形成する場合について説明したがMBE法によっても構わない。
本発明の実施例1に係わるアバランシェフォトダイオードを示す断面図。 本発明の実施例1に係わるアバランシェフォトダイオードの水平方向のキャリア濃度分布を示す図。 本発明の実施例1に係わるアバランシェフォトダイオードの水平方向の電界強度分布を示す図。 本発明の実施例1に係わるアバランシェフォトダイオードのブレークダウン電圧を示す図。 本発明の実施例1の変形例に係わるアバランシェフォトダイオードの水平方向のキャリア濃度分布を示す図。 本発明の実施例1の変形例に係わるアバランシェフォトダイオードの水平方向の電界強度分布を示す図。 本発明の実施例2に係わるアバランシェフォトダイオードの製造工程を示す図。 本発明の実施例2に係わるアバランシェフォトダイオードの製造工程を示す図。 本発明の実施例2に係わるアバランシェフォトダイオードの製造工程を示す図。 本発明の実施例2に係わるアバランシェフォトダイオードの製造工程を示す図。 本発明の実施例2に係わるアバランシェフォトダイオードの製造工程を示す図。 本発明の実施例2に係わるアバランシェフォトダイオードの製造工程を示す図。 本発明の実施例2に係わるアバランシェフォトダイオードの製造工程を示す図。 従来のアバランシェフォトダイオードを示す図。 従来のアバランシェフォトダイオードの水平方向のキャリア濃度分布を示す図。 従来のアバランシェフォトダイオードの水平方向の電界強度分布を示す図。 ショットキーバリアダイオードの深さ方向の不純物濃度分布を示す図。
符号の説明
11 アバランシェフオトダイオード
12 n−InP基板
13 n−InPバッファ層
14 n−InGaAs光吸収層
15 n−InGaAsP障壁緩和層
16 n−InP電圧降下層
17 n−InP窓層
18 ガードリング
18a ガードリング内周部
18b ガードリング中間部
18c ガードリング外周部
19 p拡散領域
20 増倍領域
21 保護膜
22 反射防止膜
23 p側電極
24 n側電極
30 能動層
31 シリコン酸化膜
32 シリコン酸化膜開口溝
33 レジスト膜
34 レジスト膜開口溝
35 開口溝
36 シリコン窒化膜
37 ホール

Claims (10)

  1. 第1導電型の化合物半導体基板の主面に形成された入射光を吸収する光吸収層と、前記光吸収層上に形成され、禁制帯の不連続性を緩和する障壁緩和層と、
    前記障壁緩和層上に形成され、前記化合物半導体基板側に印加される電界強度を抑える電界降下層と、
    前記電界降下層上に形成され、入射光に対して透明な窓層と、
    前記窓層にリング状に形成され、且つ前記リングの水平方向のキャリア濃度が前記リングの内周部から外周部にかけて階段状に減少する第2導電型領域と、
    前記リング状の第2導電型領域の内側全面に形成され、且つ前記リングの内周部に一部重複した円形状の第2導電型領域と、
    前記円形状の第2導電型領域に電気的接続をとるための電極と、
    を有することを特徴とする光半導体受光素子。
  2. 前記リングの内周部に形成される階段状に減少するキャリア濃度は、前記円形状の第2導電型領域のキャリア濃度からこのキャリア濃度の1/10倍の範囲内にあり、前記リングの外周部に形成される階段状に減少するキャリア濃度は、前記入射光に対して透明な窓層のキャリア濃度からこのキャリア濃度の10倍の範囲内にあることを特徴とする請求項1記載の光半導体受光素子。
  3. 前記リングの内周部と外周部のキャリア濃度は、前記円形状の第2導電型領域のキャリア濃度の1/10倍から、前記入射光に対して透明な窓層のキャリア濃度の10倍の範囲内にあり、階段状に減少していることを特徴とする請求項2記載の光半導体受光素子。
  4. 第1導電型の化合物半導体基板の主面に形成された入射光を吸収する光吸収層と、前記光吸収層上に形成され、禁制帯の不連続性を緩和する障壁緩和層と、
    前記障壁緩和層上に形成され、前記化合物半導体基板側に印加される電界強度を抑える電界降下層と、
    前記電界降下層上に形成され、入射光に対して透明な窓層と、
    前記窓層にリング状に形成され、且つ前記リングの水平方向のキャリア濃度が前記リングの内周部から外周部にかけて傾斜状に減少する第2導電型領域と、
    前記リング状の第2導電型領域の内側全面に形成され、且つ前記リングの内周部に一部重した円形状の第2導電型領域と、
    前記円形状の第2導電型領域に電気的接続をとるための電極と、
    を具備し、
    前記リングの内周部から外周部にかけて傾斜状に減少するキャリア濃度は、前記リングの内周部および外周部のいずれにおいても0.2μm/decadeより大きいキャリア濃度の傾斜率を有し、且つ前記リングの内周部におけるキャリア濃度の傾斜率が前記リングの外周部におけるキャリア濃度の傾斜率より大きい傾斜率を有することを特徴とする光半導体受光素子。
  5. 第1導電型の化合物半導体基板の主面に入射光を吸収する光吸収層、禁制帯の不連続性を緩和する障壁緩和層、前記基板側に印加される電界強度を抑える電界降下層、および入射光に対して透明な窓層を順次形成する工程と、
    前記窓層に形成された絶縁膜にリング状の絶縁膜開口溝パターンを形成する工程と、
    前記窓層に前記リングの水平方向のキャリア濃度が前記リングの内周部から外周部にかけて階段状または傾斜状に減少するリング状の第2導電型領域を形成する工程と、
    前記リング状の第2導電型領域の内側全面に前記リングの内周部に一部重複した円形状の第2導電型領域を形成する工程と、
    前記円形状の第2導電型領域に電気的接続を取るための電極を形成する工程と、
    を有することを特徴とする光半導体受光素子の製造方法。
  6. 前記窓層に前記リングの水平方向のキャリア濃度が前記リングの内周部から外周部にかけて階段状または傾斜状に減少するリング状の第2導電型領域を形成する工程は、
    前記リング状の絶縁膜開口溝が形成された窓層にレジスト膜を形成して、フオトリゾグラフィ法により前記リング状の絶縁膜開口溝の内周に沿って前記リング状の絶縁膜開口溝の幅より小さい溝幅のリング状のレジスト開口溝を形成した後、前記リング状のレジスト開口溝に第2導電型の不純物をイオン注入する第1の工程と、
    前記レジスト膜をステップエッチングして前記レジスト膜を後退させることにより前記リング状のレジスト開口溝の幅を水平方向に広げた後、前記絶縁膜およびレジスト膜をマスクとして前記窓層に第2導電型の不純物をイオン注入する第2の工程と、
    前期第1および第2の工程をイオン注入のドーズ量を順次減少させながら繰り返す第3の工程と、
    前記イオン注入された不純物を活性化する熱処理工程と、
    を有することを特徴とする請求項5記載の光半導体受光素子の製造方法。
  7. 前記窓層に前記リングの水平方向のキャリア濃度が前記リングの内周部から外周部にかけて階段状または傾斜状に減少するリング状の第2導電型領域を形成する工程は、
    前記第3の工程における繰り返し数を変えて作り分けることを特徴とする請求項6記載の光半導体受光素子の製造方法。
  8. 前記リング状の第2導電型領域の内側全面に前記リングの内周部に一部重複した円形状の第2導電型領域を形成する工程は、
    前記リング状の第2導電型領域が形成された窓層に絶縁膜を形成して、フオトリゾグラフィ法により前記リング状の第2導電型領域の内周に沿って前記リングの内周部に一部重複する大きさのホールを形成した後、前記絶縁膜をマスクとして前記窓層に第2導電型の不純物を熱拡散させる工程と、
    を有することを特徴とする請求項5記載の光半導体受光素子の製造方法。
  9. 前記リング状の第2導電型領域にイオン注入する第2導電型の不純物はBeであることを特徴とする請求項6記載の光半導体受光素子の製造方法。
  10. 前記円形状の第2導電型領域に熱拡散する第2導電型の不純物はZnであることを特徴とする請求項8記載の光半導体受光素子の製造方法。
JP2003347066A 2003-10-06 2003-10-06 光半導体受光素子およびその製造方法 Pending JP2005116681A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347066A JP2005116681A (ja) 2003-10-06 2003-10-06 光半導体受光素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347066A JP2005116681A (ja) 2003-10-06 2003-10-06 光半導体受光素子およびその製造方法

Publications (1)

Publication Number Publication Date
JP2005116681A true JP2005116681A (ja) 2005-04-28

Family

ID=34539774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347066A Pending JP2005116681A (ja) 2003-10-06 2003-10-06 光半導体受光素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP2005116681A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123410A1 (ja) * 2005-05-18 2006-11-23 Mitsubishi Denki Kabushiki Kaisha アバランシェフォトダイオード
US7816684B2 (en) 2007-09-14 2010-10-19 Samsung Mobile Display Co., Ltd. Light emitting display device and method of fabricating the same
US7977126B2 (en) 2007-07-04 2011-07-12 Samsung Mobile Display Co., Ltd. Method of manufacturing organic light emitting device having photo diode
CN102157599A (zh) * 2010-09-25 2011-08-17 中国科学院上海微系统与信息技术研究所 用于雪崩光电二极管的能带递变倍增区结构及其制备方法
US8076669B2 (en) 2007-09-14 2011-12-13 Samsung Mobile Display Co., Ltd. Organic light emitting display and method of manufacturing the same
WO2012096010A1 (ja) * 2011-01-14 2012-07-19 三菱電機株式会社 半導体装置の製造方法
US8592881B2 (en) 2007-07-04 2013-11-26 Samsung Display Co., Ltd. Organic light emitting element and method of manufacturing the same
CN109494276A (zh) * 2018-12-18 2019-03-19 暨南大学 一种高速高效可见光增敏硅基雪崩光电二极管阵列
JP2022524628A (ja) * 2019-03-12 2022-05-09 デファン リミテッド ライアビリティ カンパニー アバランシェ光検出器(変形形態)およびこれを製造するための方法(変形形態)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8698268B2 (en) 2005-05-18 2014-04-15 Mitsubishi Electric Corporation Avalanche photodiode and method for manufacturing the avalanche photodiode
WO2006123410A1 (ja) * 2005-05-18 2006-11-23 Mitsubishi Denki Kabushiki Kaisha アバランシェフォトダイオード
US8592881B2 (en) 2007-07-04 2013-11-26 Samsung Display Co., Ltd. Organic light emitting element and method of manufacturing the same
US7977126B2 (en) 2007-07-04 2011-07-12 Samsung Mobile Display Co., Ltd. Method of manufacturing organic light emitting device having photo diode
US9368558B2 (en) 2007-07-04 2016-06-14 Samsung Display Co., Ltd. Organic light emitting element and method of manufacturing the same
US7816684B2 (en) 2007-09-14 2010-10-19 Samsung Mobile Display Co., Ltd. Light emitting display device and method of fabricating the same
US8076669B2 (en) 2007-09-14 2011-12-13 Samsung Mobile Display Co., Ltd. Organic light emitting display and method of manufacturing the same
CN102157599B (zh) * 2010-09-25 2013-03-13 中国科学院上海微系统与信息技术研究所 用于雪崩光电二极管的能带递变倍增区结构及其制备方法
CN102157599A (zh) * 2010-09-25 2011-08-17 中国科学院上海微系统与信息技术研究所 用于雪崩光电二极管的能带递变倍增区结构及其制备方法
WO2012096010A1 (ja) * 2011-01-14 2012-07-19 三菱電機株式会社 半導体装置の製造方法
JP5479616B2 (ja) * 2011-01-14 2014-04-23 三菱電機株式会社 半導体装置の製造方法
US9059086B2 (en) 2011-01-14 2015-06-16 Mitsubishi Electric Corporation Method of manufacturing semiconductor device
CN109494276A (zh) * 2018-12-18 2019-03-19 暨南大学 一种高速高效可见光增敏硅基雪崩光电二极管阵列
JP2022524628A (ja) * 2019-03-12 2022-05-09 デファン リミテッド ライアビリティ カンパニー アバランシェ光検出器(変形形態)およびこれを製造するための方法(変形形態)
JP7455407B2 (ja) 2019-03-12 2024-03-26 デファン リミテッド ライアビリティ カンパニー アバランシェ光検出器(変形形態)およびこれを製造するための方法(変形形態)

Similar Documents

Publication Publication Date Title
JP4609430B2 (ja) アバランシェフォトダイオード
US4651187A (en) Avalanche photodiode
US6015721A (en) Method of manufacturing an avalanche photodiode
KR940011103B1 (ko) 반도체 수광소자
EP1898471A1 (en) Avalanche photo diode
EP3206234B1 (en) Semiconductor element with a single photon avalanche diode and method for manufacturing such semiconductor element
CA1289233C (en) Avalanche photodiode
KR100617724B1 (ko) 애벌랜치 포토다이오드의 제작 방법
JP6879617B2 (ja) 受光素子の製造方法
KR20080064761A (ko) 반도체 장치
US20100148216A1 (en) Semiconductor light receiving element and method for manufacturing semiconductor light receiving element
JP2005116681A (ja) 光半導体受光素子およびその製造方法
JP4985298B2 (ja) アバランシェフォトダイオード
CN111066157A (zh) 半导体受光元件及其制造方法
WO2024092961A1 (zh) 半导体器件及其制造方法
JPS6244431B2 (ja)
US10658538B2 (en) Optical detection device
JP2012174783A (ja) フォトダイオードおよびフォトダイオードアレイ
EP0001139A1 (en) Radiation-sensitive avalanche diode and method of manufacturing same
JP6194524B2 (ja) ノイズ電流を抑制したフォトダイオード及びそれを形成する方法
JP2004200302A (ja) アバランシェフォトダイオード
KR101393080B1 (ko) 평면형 애벌랜치 포토다이오드 및 그 제조방법
JP2763352B2 (ja) 半導体受光素子
JPH05102517A (ja) アバランシエフオトダイオードとその製造方法
JP3074574B2 (ja) 半導体受光素子の製造方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606