JP2005114247A - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP2005114247A
JP2005114247A JP2003349200A JP2003349200A JP2005114247A JP 2005114247 A JP2005114247 A JP 2005114247A JP 2003349200 A JP2003349200 A JP 2003349200A JP 2003349200 A JP2003349200 A JP 2003349200A JP 2005114247 A JP2005114247 A JP 2005114247A
Authority
JP
Japan
Prior art keywords
indoor
temperature
heat exchanger
humidity
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003349200A
Other languages
English (en)
Other versions
JP4391188B2 (ja
Inventor
Jiro Okajima
次郎 岡島
Koyu Tanaka
航祐 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003349200A priority Critical patent/JP4391188B2/ja
Publication of JP2005114247A publication Critical patent/JP2005114247A/ja
Application granted granted Critical
Publication of JP4391188B2 publication Critical patent/JP4391188B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】 簡単な構成で恒温恒湿を実現し、省エネルギー化が図れ、安定した温度湿度制御性を持つ空気調和装置を提供する。
【解決手段】 冷却又は加熱の別を任意に選択可能な空気調和装置が有する室内機に搭載される複数の室内側熱交換器のうち、少なくとも1台を、室内温度、室内湿度、目標設定温度、及び目標設定湿度とから上記室内機の冷却量及び除湿量を制御し、残りの少なくとも1台の室内側熱交換器を、室内温度と目標設定温度とから上記室内機の加熱量を制御し、また室内湿度と目標設定湿度とから上記室内機の加湿量を制御することで、緻密で安定した温湿度制御が可能になり、大きなエネルギー量を要する電気ヒータも不要になる。
【選択図】 図1

Description

本発明は、空調運転時のエネルギー消費の低減を図る空気調和装置に係り、室内空気を所定の温湿度環境にする際に能力負荷に応じて最適な運転を行うための冷媒回路構成及びその運転制御方法に関するものである。
精密機械工場、印刷工場、製薬工場、醸造工場、手術室、博物館、収蔵庫等においては、生産品等の品質保持、歩留まり向上、生産性向上等のため、室内環境の温度、湿度が一定に保たれる必要があり、このための空気調和装置として恒温恒湿制御システムが用いられている。(例えば特許文献1参照)。
上記恒温恒湿制御システムは、温度センサで室内空気の温湿度を検知し、室内の空調負荷を判断し、要求される室内空気の設定温湿度と比較して、冷却運転、加熱運転、又は除湿運転を行う。また、必要に応じ加湿装置を付加して、目標温湿度となるよう制御されている。
特開平3−148545号公報(第245頁、第1図)
従来の空気調和装置では、空気調和装置自体に加湿機能が組み込まれていないために、特別の加湿装置をオプション的に組み込んだり、空気調和装置とは別に加湿装置を設置して一定の加湿運転を行うが、緻密な温湿度制御ができないという問題点があった。
また、従来から温湿度の制御性が良い露点温度制御による温湿度制御を行う際、除湿のための再熱には効率の低い電気ヒータを使うため、莫大なエネルギー消費を必要とする問題点があり、特に、外気温が室内環境に近い中間期(春や秋)では、冷却空気の再加熱や再加湿の必要が生じるため、ヒータを組み込んだ従来の装置では経済性を著しく損なっていた。
更に、ヒートポンプで冷房運転による冷却、再熱を行う際に、外気温度が低い場合には安定した運転ができず、一定範囲の冷却温度が実現できないために温湿度の制御性が不安定になって、要求温湿度空間が実現できないという問題点があった。
本発明は上述の課題を解決するために為されたものであり、簡単な構成で恒温恒湿を実現し、省エネルギー化が図れ、安定した温度湿度制御性を持つ空気調和装置を提供することを目的としている。
本発明に係る空気調和装置においては、圧縮機と、四方切換弁と、熱源側熱交換器と、熱源側送風機と、を有する熱源機と、複数の室内側熱交換器と、上記室内側熱交換器の冷媒流量制御手段と、室内側送風機と、を有する少なくとも1台の室内機と、を有し、上記室内機が有する複数の室内側熱交換器がそれぞれ冷却又は加熱の別を任意に選択可能な空気調和装置であって、室内側空気の温度検出手段と、湿度検出手段と、目標温度設定手段と、目標湿度設定手段と、を有し、上記複数の室内側熱交換器のうち少なくとも1台を、室内温度、室内湿度、目標設定温度、及び目標設定湿度とから上記室内機の冷却量及び除湿量を制御し、残りの少なくとも1台の室内側熱交換器を、室内温度と目標設定温度とから上記室内機の加熱量を制御するものである。
本発明では、冷房及び暖房の同時運転が可能な冷凍サイクルを使った冷却、除湿、再熱を行うことで、省エネ性が高く、また設置簡便性の高い空気調和装置を得ることができる。更に、加湿器制御と併せることで、冷却、加熱、除湿、加湿の4つのパターンが可能となり、精度の高い温湿度制御を行うことができる。
実施の形態1.
図1は本発明の実施の形態1を示す空気調和装置の冷媒回路図である。
図において、熱源器Xと、中継機Yと、室内機Zとが、冷媒配管で接続されて空気調和装置のシステムを構成している。室内機Zは、2台以上の任意の台数が接続されることもある。
熱源機X内には、容量可変な圧縮機1と、四方切換弁2と、熱源機側熱交換器3と、アキュムレータ4と、第一の流量制御装置5とが冷媒配管で接続され、また、熱源機側熱交換器3と第一の接続配管6との間に第一の逆止弁8、四方切換弁2と第二の接続配管7との間に第二の逆止弁9、四方切換弁2と第一の接続配管6との間に第三の逆止弁10、熱源機側熱交換器3と第二の接続配管7との間に第四の逆止弁11がそれぞれ設けられる。
第一の逆止弁8は熱源機側熱交換器3から第一の接続配管6の方向へのみ、第二の逆止弁9は第二の接続配管7から四方切換弁2の方向へのみ、第三の逆止弁10は四方切換弁2から第一の接続配管6の方向へのみ、第四の逆止弁11は第二の接続配管7から熱源機側熱交換器3の方向へのみ、それぞれ冷媒流通が制限される。
圧縮機1と四方切換弁2との間には第一の圧力検出手段12、四方切換弁2とアキュムレータ4との間には第二の圧力検出手段13が設けられる。
また、熱源機側熱交換器3に空気を送り込むための熱源機側送風機14が設けられ、送風量可変に制御される。
第一の接続配管6と第二の接続配管7は、それぞれ室外機Xと中継機Yとの間に接続され、第一の接続配管6は第二の接続配管よりも配管径が小さい。
次に、中継機Y内では、第一の接続配管6から気液分離装置20と、第一の熱交換部21と、第二の流量制御装置22(ここでは電子式膨張弁)と、第二の熱交換部23と、第三の接続配管24とが配管接続され、
第二の熱交換部23と第三の接続配管24との間から第一のバイパス配管25が分岐し、第三の流量制御装置26と、第三の熱交換部23、第一の熱交換部21とを経て、第二の接続配管7と第四の接続配管27とを結ぶ配管に接続され、
また、第二の流量制御装置22と第二の熱交換部23との間の配管から分岐し、第五の接続配管28に到る配管と、気液分離装置20から分岐し、第六の接続配管29に到る配管がそれぞれ設けられている。
第一の熱交換部21及び第二の熱交換部23では、それぞれ第一のバイパス配管25側の配管と、気液分離装置20から第三の接続配管24に到る配管とが、互いに熱交換可能なように構成されている。
第三の接続配管24、第四の接続配管27、第五の接続配管28、第六の接続配管29は、それぞれ中継機Yと室内機Zの間に接続される。
更に、室内機Z内では、第三の接続配管24から第四の流量制御装置30aと、第一の室内側熱交換器31aと、第四の接続配管27とが配管接続され、また、第五の接続配管28から第五の流量制御装置30bと、第二の室内側熱交換器31bと、第六の接続配管29とが配管接続される。
第一の室内側熱交換器31aと第二の室内側熱交換器31bの、それぞれ第四の流量制御装置30aと第五の流量制御装置30b側配管には、それぞれ第一の温度検出手段32aと第二の温度検出手段32bが設けられ、また、第一の室内側熱交換器31aと第二の室内側熱交換器31bの反対側配管には、第三の温度検出手段33aと第四の温度検出手段33bが設けられる。
第一の室内側熱交換器31a及び第二の室内側熱交換器31bに室内の被空調空気を送り込むための室内側送風機34が設けられ、第一の室内側熱交換器31a及び第二の室内側熱交換器31bの下流側風路には加湿装置40が設けられる。
また、吸込み空気RAの乾球温度を検知するための室温センサTs、及び吸込み空気RAの湿度を検知するための湿度センサHsが、室内機Zの吸込側風路に設置される。
次に、この空気調和装置の冷媒回路動作について説明する。
本装置では、室内側の複数の熱交換器が冷房又は暖房の任意の運転モードで空調運転が行えるもので、冷房運転のみ、暖房運転のみの他、室内機全体の冷房負荷が暖房負荷より大きい場合は冷房主体運転、一方、室内機全体の暖房負荷が冷房負荷より大きい場合は暖房主体運転の4つの運転モードが選択可能である。
まず、冷房負荷が大きい冷房主体運転について説明する。
圧縮機1から吐出された高温高圧の冷媒ガスは、四方切換弁2を経て熱源機側熱交換器3に流入し、ここで熱源機側送風機14により送風される空気と熱交換して気液二相の高温高圧状態となる。
気液二相の高温高圧状態の冷媒は、第一の逆止弁8、第一の接続配管6を経て中継機Yの気液分離装置20へ送られ、ここでガス冷媒と液冷媒に分離され、分離されたガス冷媒は、暖房しようとする第二の室内側熱交換器31bに流入して室内空気と熱交換して凝縮液化し、室内を暖房する。更に、第二の室内側熱交換器31b出口側の冷媒過冷却度(以下サブクール量と称する)により、ほぼ弁開度が全開状態に調整制御された第五の流量制御装置30bを通過して少し減圧される。即ち、第五の流量制御装置30bでは、一定の関数に従って、サブクール量が大きければ弁開度を大きくし、小さければ弁開度を小さくして凝縮量を制御する。
一方、気液分離装置20で分離された液冷媒は、上述の第二の室内側熱交換器31bを通った冷媒と合流して、第四の流量制御装置30aで減圧された後、第一の室内側熱交換器31aに流入し、室内空気と熱交換して蒸発ガス化され室内を冷房する。第四の流量制御装置30aの弁開度は、第一の室内側熱交換器31a出口の冷媒過熱度(以下スーパーヒート量と称する)により制御され、即ち、一定の関数に従って、スーパーヒート量が大きければ弁開度を大きくし、小さければ弁開度を小さくして蒸発量を制御し、ここで冷媒は蒸発圧力まで減圧される。
更に、第一の室内側熱交換器31aを経てガス状態となった冷媒は、第四の接続配管27、第二の接続配管7、第二の逆止弁9、四方切換弁2、及びアキュムレータ4を経て圧縮機1に吸入される。
また、気液分離装置20で分離された液冷媒のうち、一部は第一のバイパス配管25へ入り、第三の流量制御装置26で減圧された後、第二の熱交換部23と第一の熱交換部21において、第二の流量制御装置22に流入する冷媒との間で熱交換を行い、ここで蒸発したバイパス配管25内の冷媒は、第二の接続配管7、第二の逆止弁9、四方切換弁2、及びアキュムレータ4を経て圧縮機1に吸入される。
熱源機側熱交換器3では、容量可変な圧縮機1の容量と風量可変な熱源機側送風機14の送風量を調節して、室内機Zの熱交換器における蒸発温度(冷房の場合)及び凝縮温度(暖房の場合)が予め定められた目標温度になるように調整することにより、任意の熱交換量を得ることができ、室内機では目標とする暖房能力または冷房能力を得ることができる。
次に、暖房負荷が大きい暖房主体運転について説明する。
圧縮機1から吐出された高温高圧の冷媒ガスは、四方切換弁2、第三の逆止弁10、第一の接続配管6を通して中継機Yへ送られ、気液分離装置20、第六の接続配管29を経て、暖房しようとする第二の室内側熱交換器31bで室内空気と熱交換して凝縮液化され室内を暖房する。
凝縮液化した冷媒は、第五の流量制御装置30bで少し減圧され、第五の接続配管28を通って、第二の流量制御装置22の室内機Z側配管で合流し、第三の接続配管24を通って第四の流量制御装置30aで減圧され、冷房しようとする第一の室内機側熱交換器31aで熱交換して蒸発し、ガス状態となって室内を冷房した後、第二の接続配管7に到る。
第五の流量制御装置30bの冷媒流量は、第二の室内側熱交換器31b出口側のサブクール量により、又第四の流量制御装置30aの冷媒流量は、第一の室内側熱交換器31a出口のスーパーヒート量により制御される。
一方、第二の室内側熱交換器31bで室内空気と熱交換して凝縮液化され室内を暖房し、凝縮液化した冷媒の大部分は、第五の流量制御装置30b、第五の接続配管28、及び第二の熱交換部23を経て、第一のバイパス配管25に分岐されるため、上述の第一の熱交換器31aにはほとんど冷媒は流れない。そして、第一のバイパス配管25に分岐した冷媒は第三の流量制御装置26、第二の接続配管7を経て熱源機Xに入り、第一の流量制御装置5、第四の逆止弁11、熱源機側熱交換器3に流入し、ここで熱源機側送風機14によって送風される空気と熱交換して蒸発しガス状態となり、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される。
ここで、冷房主体運転の場合と同様、熱源機側熱交換器3では、容量可変な圧縮機1の容量と風量可変な熱源機側送風機14の送風量を調節して、室内機Zの熱交換器における蒸発温度(冷房の場合)及び凝縮温度(暖房の場合)が予め定められた目標温度になるように調整することにより、任意の熱交換量を得ることができ、室内機では目標とする暖房能力または冷房能力を得ることができる。
次に、この空気調和装置を使った露点制御方式による室内空気の温湿度制御方法について説明する。
図2は、一般に高精度な温度湿度制御方法として利用される露点制御方式の模式図であり、室内機Z内に組み込まれているものである。
図において、温湿度コントローラ(HSL)51は蒸発温度Twの検出値に従って、第四の流量調整装置30aを制御することで冷房用の第一の室内熱交換器31aの蒸発温度(冷却量)を一定にする。また、温度コントローラ(TC)52は室温センサTsからの空調室内の吸込空気温度情報に従って、第五の流量制御装置30bを制御して加熱量を決定し、湿度コントローラ(HC)53は湿度センサHsからの空調室内の吸込空気湿度情報に従って、加湿装置40の加湿量制御装置41を制御して加湿量を決定する。
温湿度コントローラ51には設定温度Tsp及び設定湿度Hspの双方の入力情報、温度コントローラ52は設定温度Tspの入力情報、湿度コントローラ53は設定湿度Hspの入力情報が、室内機Z内部に設けられた各コントローラの入力設定部又は室内機Z外に設置されたリモコン等の入力設定部から、それぞれ得られる。
一般に温度湿度制御方法は冷却、除湿、加熱、加湿の4つの操作を組み合わせて制御を行うが、露点温度制御では、本願のような恒温恒湿装置において、より正確に相対湿度を制御する。即ち、露点温度制御以外には、温度で冷却と加熱(再熱)量、湿度で加湿と除湿量を制御する方法があるが、この場合、冷却と除湿は同時に行われるため安定ポイントが無く、必ずハンチングを起こしてしまう。これに対し、露点温度制御は冷却を一定の温度にして、加熱又は加湿を調整するため、温湿度の制御性は良い。
このため、一旦所定の室内温湿度に対応した露点温度になるように冷却・除湿により運転制御し、その調整過程で、室内顕熱負荷の不足分は再加熱により、潜熱負荷の不足分は再加湿により調節される。
この制御法では、上記温度及び湿度による入力から、冷却(除湿)、加熱、及び加湿の三出力を同時に得るような変則的な制御系を、冷却(除湿)、加熱、及び加湿についてそれぞれ独立した三つの制御系に分割することによって制御し易くしている。即ち、設定温度湿度Tsp、Hsp入力を冷却(除湿)制御に、設定温度Tsp入力を加熱制御に、及び設定湿度Hsp入力を加湿制御に、それぞれ分割して制御する。
図3は、本発明の実施の形態1を示す温湿度制御の動作フロー図であり、露点温度制御による温湿度コントローラ(HSL)51、温度コントローラ(TC)52、及び湿度コントローラ(HC)53の制御の流れを示したものである。
図において、設定温度Tsp、設定湿度Hspが入力され(ステップS1)、室温センサ値Tsの検出値(ステップ2)に従って、室内空気温度が設定温度よりも低いTsp−Ts>0の場合(ステップ3)、即ち、冷房負荷よりも暖房負荷の方が大きい暖房主体運転の場合(ステップ4)は、設定温度Tspと設定湿度Hspから想定される室内露点温度以下に目標蒸発温度Etmを定めて、この目標蒸発温度Etmになるように容量可変な圧縮機1の容量を調節することによって、第一の室内熱交換器31aの蒸発温度を制御する(ステップ5)。
本願の冷凍サイクルでは、第一の室内熱交換器31aが冷却及び除湿を行い、かつ第二の室内熱交換器31bが暖房を行うことで、冷却、除湿、及び再熱量の調整が可能である。再熱(加熱)量は第二の室内熱交換器31bのサブクール量が所定値になるように制御し(ステップ6)、冷却量は第一のバイパス配管25の第三の流量制御装置26への冷媒バイパス量を調整することにより調節する(ステップ7)。即ち、第一の室内熱交換器31aの冷却量は、冷媒を第三の流量制御装置26によってバイパスする分、冷却量が小さくなり、その結果、第二の室内熱交換器31bの再熱(加熱)量の方が大きくなり、冷却除湿を行いながら暖房運転を行うことができる。
一方、湿度センサ値Hsが設定湿度Hspを下回る場合(ステップ8)には、加湿装置40を稼動(ステップ9)させれば良い。
また、室内空気温度が設定温度よりも低いTsp−Ts<0の場合、即ち、暖房負荷よりも冷房負荷の方が大きい冷房主体運転の場合(ステップ10)は、設定温度Tspと設定湿度Hspから想定される室内露点温度以下に目標蒸発温度を定めて、この目標蒸発温度になるように容量可変な圧縮機1の容量を調節することによって、第一の室内熱交換器31aの蒸発温度を制御する(ステップ11)。
本願の冷凍サイクルでは、第一の室内熱交換器31aが冷却及び除湿を行い、かつ第二の室内熱交換器31bが暖房を行うことで、冷却、除湿、及び再熱量の調整が可能である。冷却量は第一の室内熱交換器31aのスーパーヒート量が所定値になるように第四の流量制御装置30aの弁開度により制御する(ステップ12)。また、再熱(加熱)量は室温センサ値Tsが設定温度よりも高ければ第五の流量制御装置30bの弁開度を小さくし、逆の場合は弁開度を大きくすることで、再熱量が調整される(ステップ13)。第五の流量調節装置30bの弁開度を小さくすることにより、第一の室内熱交換器31aでの冷却能力が、第二の室内熱交換器31bでの暖房能力に打ち勝ち、その結果、冷房が主体の運転となる。
一方、湿度センサ値Hsが設定湿度Hspを下回る場合には、加湿装置40を稼動(ステップ9)させれば良い。
図4は、本発明の実施の形態1を示す温湿度制御の動作フロー図であり、上述とは異なる他の温湿度制御方法による制御の流れを示したものである。第一の室内熱交換器31aの冷却能力、第二の室内熱交換器31bの加熱能力がそれぞれ要求する値が得られるよう、それぞれスーパーヒート量、サブクール量の調整が第四の流量制御装置30a、第五の流量制御装置30bで行われる。
図において、室温センサ値Tsが設定温度Tspより低い暖房主体運転の場合(ステップ21)には、熱源機側熱交換器3の熱源機側送風機14の風量を下げて熱源機側熱交換器3での蒸発量を増加させることで、スーパーヒート量が大きくなって第二の室内熱交換器31bの目標加熱能力が得られる(ステップ22)。逆に、室温センサ値Tsが設定温度Tspより高い冷房主体運転の場合(ステップ23)は、熱源機側送風機14の風量を上げて熱源機側熱交換器3での蒸発量を減少させることで、サブクール量が大きくなって第一の室内熱交換器31aの目標冷却能力が得られる(ステップ24)。
一方、湿度センサ値Hsが設定湿度Hspを下回る場合(ステップ25)には、加湿装置40を稼動させれば良い。
従って、エネルギー消費量の大きい電気ヒータ等を取り付けずに、室内側熱交換器の冷却量、再熱量を冷媒流量調整で変化させることによって、冷凍サイクルで冷却、除湿、再熱が、簡易に行うことができ、また、加湿装置を適宜組み込むことで、一つの空気調和装置で、露点温度制御が可能になる。
また、暖房主体運転の冷却、除湿、再熱を行う場合で、外気温度が低い場合(0℃以下)は、熱源機側熱交換器3の蒸発温度が0℃以下になり、冷却を行う第一の室内側熱交換器31aの蒸発温度も0℃以下となるため、一定範囲で所定の冷却能力が得られず、冷却温度が実現できないために温湿度の制御性が不安定になって、要求温湿度空間が実現できない。
この場合、室内側の要求蒸発温度が0℃以上で目標温度になるように容量可変な圧縮機1の容量及び熱源機側送風機14の送風量を調節しても、第一の室内側熱交換器31aの蒸発温度は0℃以下になってしまうことになる。
ところが、第一の流量制御装置5によって冷媒流量調整を行うことによって、熱交換器間の圧力損失を調整すれば、第一の室内熱交換器31aの蒸発温度と熱源機側熱交換器3の蒸発温度を変えることができる。例えば、第一の室内熱交換器31aの要求蒸発温度が10℃の場合、第一の流量制御装置5で弁開度の調整を行い、冷媒を減圧して熱源機側熱交換器3の蒸発温度を0℃することができる。
なお、第一の流量制御装置5の設置位置は、図1では室外機X内に設置されているが、第一の室内側熱交換器31a又は第二の室内熱交換器31bの冷媒出口と熱源機側熱交換器3の冷媒入口の間の配管であればどこでも良い。
以上のように、低外気時には絞り機構の調整によって、冷却側の室内側熱交換器の蒸発温度を適正に制御するので、広い外気温度範囲での温度湿度制御が可能になる。
実施の形態2.
図5は本発明の実施の形態2を示す空気調和装置の冷媒回路図である。
図において、第二のバイパス回路61が第一の流量制御装置5に平行に設けられ、第二のバイパス回路61上には第五の逆止弁62と第一の開閉弁63が設けている。
外気温度が比較的高めである場合、第二の接続配管7(及び第一の接続配管6)の長さが長く配管圧損によって熱源側熱交換器3と第一の室内側熱交換器31aとの間の圧力差が確保できて第一の室内側熱交換器31aの蒸発温度が目標温度に保つことができる場合、又は冷房運転の場合には、第一の流量制御装置5による流量制御は必要で無いため、これを閉状態にし、第一開閉弁63を開状態にして第二のバイパス配管61に冷媒を流す。
次に、冷媒回路動作を説明する。
この冷媒回路では実施の形態1で説明した暖房主体運転(暖房運転容量が冷房運転容量より大きい場合)の動作を示し、第一の流量制御装置5は、主に外気温度が低い場合や第二の接続配管7(及び第一の接続配管6)の長さが短く配管圧損が小さい場合に使用するが、上述のように外気温度が比較的高めのとき、第二の接続配管7(及び第一の接続配管6)の長さが長い場合、又は冷房運転の場合には第一の流量制御装置5で冷媒流量を制御すると圧力損失が過大になって低圧側圧力(圧縮機1の吸入圧力)の低下を引き起こす。
従って、このような場合には第一の流量制御装置5を通過させず、第二のバイパス配管61に冷媒を流通させれば、低圧側圧力の低下を抑えて、蒸発圧力を一定に保ち、延いては圧縮機1の効率を高めて入力を低減させることができるため、装置の省エネルギー化を図ることができる。
実施の形態3.
図6は本発明の実施の形態3を示す空気調和装置の冷媒回路図である。
図において、第二の接続配管7と第二の逆止弁9との間の配管に第二の開閉弁64が設けられ、第三のバイパス回路65が第二の開閉弁64に平行に設けられ、第三のバイパス回路65上には第三の開閉弁66aと第一の毛細管67a、第四の開閉弁66bと第二の毛細管67b、及び第五の開閉弁66cと第三の毛細管67cが並列に設けられている。
第二の開閉弁64〜第五の開閉弁66cの4つの開閉弁の開閉、及び第一の毛細管67a〜第三の毛細管67cの3種類の毛細管の内径、長さの流量設定によって、第二の接続配管7と第二の逆止弁9の間の冷媒流量は8通りのパターンが得られる。
更に、第三のバイパス回路65中の毛細管と開閉弁の数を増やせば、冷媒流量のパターン数は増加する。
図1に示したような第一の流量制御装置5(ここでは電子式膨張弁)は第二の接続配管7に接続されているが、この低圧側の配管は一般的に冷媒物性の比容積の関係から管径が大きく、これに接続する弁は高価である。
従って、本実施の形態で示すような毛細管と開閉弁の組合せによる冷媒流量調節機構を設ければ、電子式膨張弁のような高価な弁装置に較べて安価な装置が得られる。
実施の形態4.
図7は本発明の実施の形態4を示す空気調和装置の冷媒回路図である。
図において、第一の接続配管6と熱源側熱交換器3との間の配管と、アキュムレータ4との間に第三のバイパス回路68を設け、第三のバイパス回路68上には第六の開閉弁69と第四の毛細管70を備えている。
ここで、冷房主体運転の冷却、除湿、再熱を行う場合で、外気温度が高く(例えば45℃湿度60%以上)、また室温が高い(例えば35℃湿度60%以上)場合のように、冷房負荷が高い状態で冷凍サイクルを運転すると、高圧側冷媒圧力が高くなり、高圧防止機器等の安全装置が作動し易い状態になる。
このとき、第六の開閉弁69を開き、熱源側熱交換器3出口側の高圧部とアキュムレータ4の低圧部を第四の毛細管70を介して連通させてやることにより、高圧の上昇を抑えることができて、幅広い温度領域での空調運転ができるようになって装置信頼性が増す。
本発明の実施の形態1を示す空気調和装置の冷媒回路図である。 一般に高精度な温度湿度制御方法として利用される露点制御方式の模式図である。 本発明の実施の形態1を示す温湿度制御の動作フロー図である。 本発明の実施の形態1を示す温湿度制御の動作フロー図である。 本発明の実施の形態2を示す空気調和装置の冷媒回路図である。 本発明の実施の形態3を示す空気調和装置の冷媒回路図である。 本発明の実施の形態4を示す空気調和装置の冷媒回路図である。
符号の説明
X 熱源器、Y 中継機、Z 室内機、Ts 室温センサ(値)、Hs 湿度センサ、Tw 蒸発温度、Etm 目標蒸発温度、1 圧縮機、2 四方切換弁、3 熱源機側熱交換器、4 アキュムレータ、5 第一の流量制御装置、6 第一の接続配管、7 第二の接続配管、8 第一の逆止弁、9 第二の逆止弁、10 第三の逆止弁、11 第四の逆止弁、12 第一の圧力検出手段、13 第二の圧力検出手段、14 熱源機側送風機、20 気液分離装置、21 第一の熱交換部21、22 第二の流量制御装置、23 第二の熱交換部、24 第三の接続配管、25 第一のバイパス配管、26 第三の流量制御装置、27 第四の接続配管、28 第五の接続配管、29 第六の接続配管、30a 第四の流量制御装置、31a 第一の室内側熱交換器、32a 第一の温度検出手段、32b 第二の温度検出手段、33a 第三の温度検出手段、33b 第四の温度検出手段33b、34 室内側送風機、40 加湿装置、51 温湿度コントローラ、52 温度コントローラ、53 湿度コントローラ、61 第二のバイパス回路、62 第五の逆止弁、63 第一の開閉弁、64 第二の開閉弁、65 第三のバイパス回路、66a 第三の開閉弁、66b 第四の開閉弁、66c 第五の開閉弁、67a 第一の毛細管、67b 第二の毛細管、67c 第三の毛細管、68 第三のバイパス回路、69 第六の開閉弁、70 第四の毛細管。

Claims (8)

  1. 圧縮機と、四方切換弁と、熱源側熱交換器と、熱源側送風機と、を有する熱源機と、
    複数の室内側熱交換器と、上記室内側熱交換器の冷媒流量制御手段と、室内側送風機と、を有する少なくとも1台の室内機と、
    を有し、
    上記室内機が有する複数の室内側熱交換器がそれぞれ冷却又は加熱の別を任意に選択可能な空気調和装置であって、
    室内側空気の温度検出手段と、湿度検出手段と、目標温度設定手段と、目標湿度設定手段と、を有し、
    上記複数の室内側熱交換器のうち少なくとも1台を、室内温度、室内湿度、目標設定温度、及び目標設定湿度とから上記室内機の冷却量及び除湿量を制御し、残りの少なくとも1台の室内側熱交換器を、室内温度と目標設定温度とから上記室内機の加熱量を制御することを特徴とする空気調和装置。
  2. 室内機内部又は上記室内機外部の室内に加湿装置を有し、室内湿度と目標設定湿度とから上記室内機の加湿量を制御することを特徴とする請求項1に記載の空気調和装置。
  3. 室内側熱交換器の冷媒流量制御手段を用いて上記室内熱交換器の冷却量又は加熱量を制御することを特徴とする請求項1に記載の空気調和装置。
  4. 熱源側熱交換器の送風量を変化させて室内熱交換器の冷却量又は加熱量を制御することを特徴とする請求項1に記載の空気調和装置。
  5. 熱源側熱交換器と室内側熱交換器との間の低圧側配管に冷媒流量制御手段を備えていることを特徴とする請求項1に記載の空気調和装置。
  6. 冷媒流量制御手段と並列に開閉器を有するバイパス配管を備えていることを特徴とする請求項5に記載の空気調和装置。
  7. 冷媒流量制御手段と並列に開閉器と毛細管とを有するバイパス配管を少なくとも一つ備えていることを特徴とする請求項5に記載の空気調和装置。
  8. 熱源側熱交換器出口から圧縮機吸入側に冷媒流量制御手段を介してバイパス配管を備えていることを特徴とする請求項1に記載の空気調和装置。
JP2003349200A 2003-10-08 2003-10-08 空気調和装置 Expired - Fee Related JP4391188B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349200A JP4391188B2 (ja) 2003-10-08 2003-10-08 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349200A JP4391188B2 (ja) 2003-10-08 2003-10-08 空気調和装置

Publications (2)

Publication Number Publication Date
JP2005114247A true JP2005114247A (ja) 2005-04-28
JP4391188B2 JP4391188B2 (ja) 2009-12-24

Family

ID=34541130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349200A Expired - Fee Related JP4391188B2 (ja) 2003-10-08 2003-10-08 空気調和装置

Country Status (1)

Country Link
JP (1) JP4391188B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100082521A (ko) * 2009-01-09 2010-07-19 삼성전자주식회사 가전기기 및 이의 제어방법
JP2010261713A (ja) * 2010-07-23 2010-11-18 Mitsubishi Electric Corp 空気調和装置
KR101556975B1 (ko) * 2009-02-24 2015-10-02 엘지전자 주식회사 공기조화기
JP2019178805A (ja) * 2018-03-30 2019-10-17 日本ピーマック株式会社 空気調和装置及び空気調和システム、並びに空気調和設備
CN113654109A (zh) * 2020-05-12 2021-11-16 青岛海尔空调器有限总公司 空调器及其控制方法、控制装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100082521A (ko) * 2009-01-09 2010-07-19 삼성전자주식회사 가전기기 및 이의 제어방법
KR101579827B1 (ko) 2009-01-09 2015-12-24 삼성전자 주식회사 가전기기 및 이의 제어방법
KR101556975B1 (ko) * 2009-02-24 2015-10-02 엘지전자 주식회사 공기조화기
JP2010261713A (ja) * 2010-07-23 2010-11-18 Mitsubishi Electric Corp 空気調和装置
JP2019178805A (ja) * 2018-03-30 2019-10-17 日本ピーマック株式会社 空気調和装置及び空気調和システム、並びに空気調和設備
JP7072426B2 (ja) 2018-03-30 2022-05-20 日本ピーマック株式会社 空気調和装置及び空気調和システム、並びに空気調和設備
CN113654109A (zh) * 2020-05-12 2021-11-16 青岛海尔空调器有限总公司 空调器及其控制方法、控制装置
CN113654109B (zh) * 2020-05-12 2023-03-21 青岛海尔空调器有限总公司 空调器及其控制方法、控制装置

Also Published As

Publication number Publication date
JP4391188B2 (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
KR100437803B1 (ko) 냉난방 동시형 멀티공기조화기 및 그 제어방법
KR100437805B1 (ko) 냉난방 동시형 멀티공기조화기 및 그 제어방법
EP0496505B1 (en) Air-conditioning system
US8020395B2 (en) Air conditioning apparatus
JP2004085193A (ja) マルチ空気調和機、及びその運転方法
JP2974179B2 (ja) 多室型空気調和機
WO2012085965A1 (ja) 空気調和機
JP2007147203A (ja) 空気調和装置
JP3643162B2 (ja) 空気調和装置
JP4391188B2 (ja) 空気調和装置
JP7154035B2 (ja) 空気調和装置
JP3729552B2 (ja) 空気調和装置
JP2005291553A (ja) マルチ型空気調和装置
KR20120114997A (ko) 공기 조화기
JP2004108715A (ja) 多室用空気調和機
JP3626517B2 (ja) 空気調和装置
JP7374633B2 (ja) 空気調和機及び空気調和システム
JPH0833225B2 (ja) 多室用空気調和機
JP2002286273A (ja) 空気調和装置
KR20080084482A (ko) 공기 조화기의 제어방법
JPH08136078A (ja) 多室冷暖房装置
JP3748620B2 (ja) 空気調和装置
US20240133573A1 (en) Air-conditioning apparatus
WO2022215204A1 (ja) 空気調和機
JPH08128748A (ja) 多室型空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4391188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees