JP2005109080A - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor Download PDF

Info

Publication number
JP2005109080A
JP2005109080A JP2003339223A JP2003339223A JP2005109080A JP 2005109080 A JP2005109080 A JP 2005109080A JP 2003339223 A JP2003339223 A JP 2003339223A JP 2003339223 A JP2003339223 A JP 2003339223A JP 2005109080 A JP2005109080 A JP 2005109080A
Authority
JP
Japan
Prior art keywords
solid electrolytic
capacitor element
solution
electrolytic capacitor
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003339223A
Other languages
Japanese (ja)
Other versions
JP4982027B2 (en
Inventor
Kazuaki Fuse
一明 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2003339223A priority Critical patent/JP4982027B2/en
Publication of JP2005109080A publication Critical patent/JP2005109080A/en
Application granted granted Critical
Publication of JP4982027B2 publication Critical patent/JP4982027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a solid electrolytic capacitor capable of reducing ESR. <P>SOLUTION: Anode foil, on which an oxide film layer is formed and cathode foil are wound via a separator for forming a capacitor element and repairing formation, is formed on the capacitor element. Subsequently, a polymerizable monomer solution, whose concentration is prepared to 25-32wt%, is impregnated into the capacitor element for setting the porosity of the capacitor element to 80-85%. Then, an oxidizing solution, whose concentration is prepared to 45-55wt%, is impregnated for generating the polymerization reaction of a conductive polymer in the capacitor element to form a solid electrolytic layer. After that, the capacitor element is inserted into a packaged case, sealing rubber is fitted to the edge of an opening, caulking machining is made for sealing, and aging is conducted, forming the solid electrolytic capacitor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体電解コンデンサの製造方法に係り、特に、固体電解コンデンサの等価直列抵抗(以下、ESRと記す)を低減させるべく改良を施した固体電解コンデンサの製造方法に関するものである。   The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor that has been improved to reduce the equivalent series resistance (hereinafter referred to as ESR) of the solid electrolytic capacitor.

タンタルあるいはアルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極側対向電極としての弁作用金属を焼結体あるいはエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化、低コスト化に欠かせないものとなっている。   An electrolytic capacitor using a metal having a valve action such as tantalum or aluminum is obtained by expanding the dielectric by making the valve action metal as the anode-side counter electrode into the shape of a sintered body or an etching foil. Since it is small and a large capacity can be obtained, it is widely used. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has features such as small size, large capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high functionality and low cost of electronic equipment.

この種の固体電解コンデンサにおいて、小型、大容量用途としては、一般に、アルミニウム等の弁作用金属からなる陽極箔と陰極箔をセパレータを介在させて巻回してコンデンサ素子を形成し、このコンデンサ素子に駆動用電解液を含浸し、アルミニウム等の金属製ケースや合成樹脂製のケースにコンデンサ素子を収納し、密閉した構造を有している。なお、陽極材料としては、アルミニウムを初めとしてタンタル、ニオブ、チタン等が使用され、陰極材料には、陽極材料と同種の金属が用いられる。   In this type of solid electrolytic capacitor, as a small-sized and large-capacity application, an anode foil and a cathode foil made of a valve metal such as aluminum are generally wound with a separator interposed therebetween to form a capacitor element. It is impregnated with a driving electrolyte, and has a sealed structure in which a capacitor element is housed in a metal case such as aluminum or a case made of synthetic resin. As the anode material, aluminum, tantalum, niobium, titanium and the like are used, and as the cathode material, the same kind of metal as the anode material is used.

また、固体電解コンデンサに用いられる固体電解質としては、二酸化マンガンや7、7、8、8−テトラシアノキノジメタン(TCNQ)錯体が知られているが、近年、反応速度が緩やかで、かつ陽極電極の酸化皮膜層との密着性に優れたポリエチレンジオキシチオフェン(以下、PEDTと記す)等の導電性ポリマーに着目した技術(特許文献1参照)が存在している。   As solid electrolytes used for solid electrolytic capacitors, manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known. There is a technique (see Patent Document 1) that focuses on a conductive polymer such as polyethylenedioxythiophene (hereinafter referred to as PEDT) having excellent adhesion to an oxide film layer of an electrode.

このような巻回型のコンデンサ素子にPEDT等の導電性ポリマーからなる固体電解質層を形成するタイプの固体電解コンデンサは、以下のようにして作成される。まず、アルミニウム等の弁作用金属からなる陽極箔の表面を塩化物水溶液中での電気化学的なエッチング処理により粗面化して、多数のエッチングピットを形成した後、ホウ酸アンモニウム等の水溶液中で電圧を印加して誘電体となる酸化皮膜層を形成する(化成)。陽極箔と同様に、陰極箔もアルミニウム等の弁作用金属からなるが、その表面にはエッチング処理を施すのみである。   A solid electrolytic capacitor of a type in which a solid electrolyte layer made of a conductive polymer such as PEDT is formed on such a wound capacitor element is produced as follows. First, the surface of the anode foil made of valve action metal such as aluminum is roughened by electrochemical etching treatment in an aqueous chloride solution to form many etching pits, and then in an aqueous solution such as ammonium borate. A voltage is applied to form an oxide film layer serving as a dielectric (chemical conversion). Similar to the anode foil, the cathode foil is made of a valve metal such as aluminum, but the surface is only subjected to etching treatment.

このようにして表面に酸化皮膜層が形成された陽極箔とエッチングピットのみが形成された陰極箔とを、セパレータを介して巻回してコンデンサ素子を形成する。続いて、修復化成を施したコンデンサ素子に、3,4−エチレンジオキシチオフェン(以下、EDTと記す)等の重合性モノマーと酸化剤溶液をそれぞれ吐出し、あるいは両者の混合液に浸漬して、コンデンサ素子内で重合反応を促進し、PEDT等の導電性ポリマーからなる固体電解質層を生成する。その後、このコンデンサ素子を有底筒状の外装ケースに収納し、ケースの開口部を封ロゴムで封止して固体電解コンデンサを作成する。
特開平2−15611号公報
Thus, the anode foil having the oxide film layer formed on the surface and the cathode foil having only the etching pits are wound through a separator to form a capacitor element. Subsequently, a polymerizable monomer such as 3,4-ethylenedioxythiophene (hereinafter referred to as EDT) and an oxidizer solution are respectively discharged into the capacitor element subjected to restoration conversion, or immersed in a mixed solution of the two. The polymerization reaction is promoted in the capacitor element, and a solid electrolyte layer made of a conductive polymer such as PEDT is generated. Thereafter, the capacitor element is housed in a bottomed cylindrical outer case, and the opening of the case is sealed with a sealing rubber to produce a solid electrolytic capacitor.
JP-A-2-15611

ところで、近年、電子情報機器はデジタル化され、さらにこれらの電子情報機器の心臓部であるマイクロプロセッサ(MPU)の駆動周波数の高速化が進んでいる。これに伴って、消費電力の増大化が進み、発熱による信頼性の問題が顕在化してきたため、その対策として駆動電圧の低減化が図られてきた。   By the way, in recent years, electronic information devices have been digitized, and the driving frequency of a microprocessor (MPU) which is the heart of these electronic information devices has been increased. Along with this, the power consumption has been increasing and the problem of reliability due to heat generation has become obvious. Therefore, the drive voltage has been reduced as a countermeasure.

上記駆動電圧の低減化を図るため、マイクロプロセッサに高精度な電力を供給する回路として電圧制御モジュールと呼ばれるDC−DCコンバーターが広く使用されており、その出力側コンデンサには、電圧降下を防ぐためESRの低いコンデンサが多数用いられている。このような低ESR特性を有するコンデンサとして、上述したような固体電解コンデンサが実用化され、多用されている。   In order to reduce the drive voltage, a DC-DC converter called a voltage control module is widely used as a circuit for supplying highly accurate power to the microprocessor, and the output side capacitor is used to prevent a voltage drop. Many capacitors with low ESR are used. As the capacitor having such a low ESR characteristic, the solid electrolytic capacitor as described above has been put into practical use and widely used.

しかしながら、マイクロプロセッサの駆動周波数の高速化は著しく、それに伴って消費電力がさらに増大し、それに対応するために電圧降下を防ぐためのコンデンサからの供給電力のさらなる増大化が求められている。すなわち、大きな電力を短時間で供給することができなければならず、このために固体電解コンデンサには大容量化、小型化、低電圧化と共に、さらに優れたESR特性が要求されている。
なお、このような問題点は、重合性モノマーとしてEDTを用いた場合に限らず、他のチオフェン誘導体、ピロール、アニリン等を用いた場合にも同様に生じていた。
However, the increase in the driving frequency of the microprocessor is remarkable, and accordingly, the power consumption further increases. In order to cope with this, further increase in the power supplied from the capacitor to prevent the voltage drop is required. That is, a large amount of power must be able to be supplied in a short time. For this reason, solid electrolytic capacitors are required to have higher ESR characteristics as well as larger capacity, smaller size, and lower voltage.
Such a problem occurs not only when EDT is used as the polymerizable monomer but also when other thiophene derivatives, pyrrole, aniline, and the like are used.

本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、ESRをさらに低減させることができる固体電解コンデンサの製造方法を提供することにある。   The present invention has been proposed to solve the above-described problems of the prior art, and an object thereof is to provide a method for manufacturing a solid electrolytic capacitor capable of further reducing ESR.

本発明者は、上記課題を解決すべく、ESRを従来よりもさらに低減させることができる固体電解コンデンサの製造方法について鋭意検討を重ねた結果、本発明を完成するに至ったものである。すなわち、本発明者は、モノマー溶液を含浸したコンデンサ素子の空隙率を80〜85%とし、酸化剤溶液の濃度を45〜55wt%とすることによって、良好な結果が得られることを見出したものである。   In order to solve the above-mentioned problems, the present inventor has intensively studied a method for producing a solid electrolytic capacitor capable of further reducing ESR as compared with the prior art, and has completed the present invention. That is, the present inventors have found that good results can be obtained by setting the porosity of the capacitor element impregnated with the monomer solution to 80 to 85% and the concentration of the oxidant solution to 45 to 55 wt%. It is.

(固体電解コンデンサの製造方法)
本発明に係る固体電解コンデンサの製造方法は以下の通りである。すなわち、表面に酸化皮膜層が形成された陽極箔と陰極箔を、セパレータを介して巻回してコンデンサ素子を形成し、このコンデンサ素子に修復化成を施す。続いて、このコンデンサ素子に濃度を25〜32wt%に調製した重合性モノマー溶液を含浸して、コンデンサ素子の空隙率を80〜85%とした。その後、濃度を45〜55wt%に調製した酸化剤溶液を含浸して、コンデンサ素子内で導電性ポリマーの重合反応を発生させ、固体電解質層を形成する。その後、このコンデンサ素子を外装ケースに挿入し、開口端部に封口ゴムを装着して、加締め加工によって封止した後、エージングを行い、固体電解コンデンサを形成する。
(Method for manufacturing solid electrolytic capacitor)
The manufacturing method of the solid electrolytic capacitor according to the present invention is as follows. That is, an anode foil and a cathode foil having an oxide film layer formed on the surface thereof are wound through a separator to form a capacitor element, and this capacitor element is subjected to restoration conversion. Subsequently, this capacitor element was impregnated with a polymerizable monomer solution having a concentration adjusted to 25 to 32 wt%, so that the porosity of the capacitor element was 80 to 85%. Thereafter, an oxidant solution adjusted to a concentration of 45 to 55 wt% is impregnated to cause a polymerization reaction of the conductive polymer in the capacitor element, thereby forming a solid electrolyte layer. Thereafter, the capacitor element is inserted into an outer case, a sealing rubber is attached to the opening end, and sealing is performed by caulking, and then aging is performed to form a solid electrolytic capacitor.

なお、重合性モノマー及び酸化剤をコンデンサ素子に含浸する方法としては、重合性モノマー溶液にコンデンサ素子を浸漬した後、酸化剤溶液に浸漬する方法、あるいはコンデンサ素子に重合性モノマーを注入した後、酸化剤溶液を注入する方法を用いることができる。   In addition, as a method of impregnating the capacitor element with the polymerizable monomer and the oxidizing agent, after immersing the capacitor element in the polymerizable monomer solution, after immersing in the oxidizing agent solution, or after injecting the polymerizable monomer into the capacitor element, A method of injecting an oxidant solution can be used.

(空隙率)
モノマー溶液を含浸したコンデンサ素子の空隙率は、80〜85%が好ましい。空隙率が85%より大きいと、含浸されるモノマーの量が少なすぎて、形成される導電性ポリマーが減少するため、静電容量が低下し、ESRは増大する。一方、空隙率が80%より小さいと、含浸される酸化剤が少なく、形成される導電性ポリマーの導電性が低下するため、ESRが上昇する。
(Porosity)
The porosity of the capacitor element impregnated with the monomer solution is preferably 80 to 85%. If the porosity is greater than 85%, the amount of monomer impregnated is too small and the amount of conductive polymer formed decreases, resulting in a decrease in capacitance and an increase in ESR. On the other hand, when the porosity is less than 80%, the amount of the oxidant to be impregnated is small, and the conductivity of the formed conductive polymer is lowered, so that the ESR is increased.

また、空隙率を上記の範囲に調整する方法は、モノマー溶液の濃度を調整することにより行う。モノマー溶液の濃度が低いと、揮発成分が多くなるため、空隙率を大きくすることができるからである。このモノマー溶液の濃度は、25〜32wt%とすることが好ましい。その理由は、モノマー溶液の濃度を25〜32wt%とすると所望の空隙率を得ることができるからである。   The method for adjusting the porosity to the above range is performed by adjusting the concentration of the monomer solution. This is because, when the concentration of the monomer solution is low, the volatile components increase, so that the porosity can be increased. The concentration of the monomer solution is preferably 25 to 32 wt%. This is because a desired porosity can be obtained when the concentration of the monomer solution is 25 to 32 wt%.

(EDT)
重合性モノマーとしてEDTを用いた場合、コンデンサ素子に含浸するEDT溶液としては、その濃度が25〜32wt%となるようにEDTを揮発性溶媒に溶解させたものを用いることが好ましい。
前記揮発性溶媒としては、ペンタン等の炭化水素類、テトラヒドロフラン等のエーテル類、ギ酸エチル等のエステル類、アセトン等のケトン類、メタノール等のアルコール類、アセトニトリル等の窒素化合物等を用いることができるが、なかでも、メタノール、エタノール、アセトン等が好ましい。
(EDT)
When EDT is used as the polymerizable monomer, it is preferable to use an EDT solution impregnated in the capacitor element in which EDT is dissolved in a volatile solvent so that its concentration is 25 to 32 wt%.
Examples of the volatile solvent include hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, nitrogen compounds such as acetonitrile, and the like. Of these, methanol, ethanol, acetone and the like are preferable.

(酸化剤)
酸化剤としては、エタノールに溶解したパラトルエンスルホン酸第二鉄、過ヨウ素酸もしくはヨウ素酸の水溶液を用いることができ、酸化剤の溶媒に対する濃度は45〜55wt%が好ましく、50〜55wt%がより好ましい。酸化剤の溶媒に対する濃度が高い程、ESRは低減する。なお、酸化剤の溶媒としては、上記モノマー溶液に用いた揮発性溶媒を用いることができ、なかでもエタノールが好適である。酸化剤の溶媒としてエタノールが好適であるのは、蒸気圧が低いため蒸発しやすく、残存する量が少ないためであると考えられる。
(Oxidant)
As the oxidizing agent, an aqueous solution of ferric paratoluenesulfonate, periodic acid or iodic acid dissolved in ethanol can be used, and the concentration of the oxidizing agent with respect to the solvent is preferably 45 to 55 wt%, and 50 to 55 wt%. More preferred. The higher the oxidant concentration in the solvent, the lower the ESR. As the oxidant solvent, the volatile solvent used in the monomer solution can be used, and ethanol is particularly preferable. Ethanol is suitable as the oxidant solvent because it is easy to evaporate due to its low vapor pressure and the remaining amount is small.

(修復化成の化成液)
修復化成の化成液としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液を用いることができるが、なかでも、リン酸二水素アンモニウムを用いることが望ましい。また、浸漬時間は、5〜120分が望ましい。
(Chemical solution for restoration conversion)
As the chemical solution for restoration chemical conversion, phosphoric acid type chemicals such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid type chemicals such as ammonium borate, and adipic acid type chemicals such as ammonium adipate, etc. Although a liquid can be used, it is preferable to use ammonium dihydrogen phosphate. The immersion time is preferably 5 to 120 minutes.

(他の重合性モノマー)
本発明に用いられる重合性モノマーとしては、上記EDTの他に、EDT以外のチオフェン誘導体、アニリン、ピロール、フラン、アセチレンまたはそれらの誘導体であって、所定の酸化剤により酸化重合され、導電性ポリマーを形成するものであれば適用することができる。なお、チオフェン誘導体としては、下記の構造式のものを用いることができる。

Figure 2005109080
(Other polymerizable monomers)
As the polymerizable monomer used in the present invention, in addition to the above EDT, a thiophene derivative other than EDT, aniline, pyrrole, furan, acetylene or a derivative thereof, which is oxidatively polymerized with a predetermined oxidizing agent, is a conductive polymer. As long as it forms, it can be applied. As the thiophene derivative, one having the following structural formula can be used.
Figure 2005109080

(作用・効果)
上述したように、モノマー溶液を含浸したコンデンサ素子の空隙率を80〜85%とし、酸化剤溶液の濃度を45〜55wt%とすることによって、良好な結果が得られた理由は、酸化剤の含浸性、浸透性が向上し、重合の進行状態が向上して、良好な導電性ポリマーが形成されるためと考えられる。
(Action / Effect)
As described above, the reason why good results were obtained by setting the porosity of the capacitor element impregnated with the monomer solution to 80 to 85% and the concentration of the oxidant solution to 45 to 55 wt. This is probably because the impregnation property and permeability are improved, the progress of polymerization is improved, and a good conductive polymer is formed.

本発明によれば、ESRをさらに低減させることができる固体電解コンデンサの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the solid electrolytic capacitor which can further reduce ESR can be provided.

続いて、以下のようにして製造した実施例及び比較例に基づいて本発明をさらに詳細に説明する。   Subsequently, the present invention will be described in more detail based on Examples and Comparative Examples manufactured as follows.

(実施例1)
表面に酸化皮膜層が形成された陽極箔と陰極箔に電極引き出し手段を接続し、両電極箔をセパレータを介して巻回してコンデンサ素子を形成した。そして、このコンデンサ素子をリン酸二水素アンモニウム水溶液に40分間浸漬して、修復化成を行った。
一方、所定の容器にEDTの30wt%エタノール溶液を注入し、ここにコンデンサ素子を浸漬してEDT溶液を含浸した後、乾燥した。この際の素子空隙率は80%であった。次いで、所定の容器に45wt%のパラトルエンスルホン酸第二鉄のエタノール溶液を注入して、前記のコンデンサ素子を浸漬して酸化剤溶液を含浸し、120℃、60分加熱して、コンデンサ素子内でPEDTの重合反応を発生させ、固体電解質層を形成した。
そして、このコンデンサ素子を有底筒状の外装ケースに挿入し、開口端部に封口ゴムを装着して、加締め加工によって封止した。その後に、エージングを行い、固体電解コンデンサを形成した。
(Example 1)
An electrode lead means was connected to the anode foil and the cathode foil having an oxide film layer formed on the surface, and both electrode foils were wound through a separator to form a capacitor element. And this capacitor | condenser element was immersed in ammonium dihydrogen phosphate aqueous solution for 40 minutes, and restoration | restoration conversion was performed.
On the other hand, a 30 wt% ethanol solution of EDT was poured into a predetermined container, and a capacitor element was immersed therein to impregnate the EDT solution, followed by drying. The element porosity at this time was 80%. Next, a 45 wt% ferric paratoluenesulfonic acid ethanol solution is poured into a predetermined container, the capacitor element is immersed, impregnated with an oxidant solution, heated at 120 ° C. for 60 minutes, and then the capacitor element The polymerization reaction of PEDT was generated in the inside to form a solid electrolyte layer.
And this capacitor | condenser element was inserted in the bottomed cylindrical outer case, the sealing rubber | gum was attached to the opening edge part, and it sealed by the crimping process. Thereafter, aging was performed to form a solid electrolytic capacitor.

(実施例2)
素子空隙率を80%、酸化剤溶液の濃度を50wt%とした。その他の条件及び工程は、実施例1と同様である。
(実施例3)
EDT溶液の濃度を25wt%として、素子空隙率を85%とした。その他の条件及び工程は、実施例1と同様である。
(実施例4)
EDT溶液の濃度を25wt%として、素子空隙率を85%とし、酸化剤溶液の濃度を55wt%とした。その他の条件及び工程は、実施例1と同様である。
(Example 2)
The element porosity was 80%, and the concentration of the oxidant solution was 50 wt%. Other conditions and steps are the same as in Example 1.
(Example 3)
The concentration of the EDT solution was 25 wt%, and the element porosity was 85%. Other conditions and steps are the same as in Example 1.
Example 4
The concentration of the EDT solution was 25 wt%, the element porosity was 85%, and the concentration of the oxidant solution was 55 wt%. Other conditions and steps are the same as in Example 1.

(比較例1)
EDT溶液の濃度を38wt%として、素子空隙率を75%とし、酸化剤溶液の濃度を55wt%とした。その他の条件及び工程は、実施例1と同様である。
(比較例2)
EDT溶液の濃度を10wt%として、素子空隙率を95%とし、酸化剤溶液の濃度を55wt%とした。その他の条件及び工程は、実施例1と同様である。
(Comparative Example 1)
The concentration of the EDT solution was 38 wt%, the element porosity was 75%, and the concentration of the oxidant solution was 55 wt%. Other conditions and steps are the same as in Example 1.
(Comparative Example 2)
The concentration of the EDT solution was 10 wt%, the element porosity was 95%, and the concentration of the oxidant solution was 55 wt%. Other conditions and steps are the same as in Example 1.

[比較結果]
上記の方法により得られた実施例及び比較例について、ESRを調べたところ表1に示すような結果が得られた。

Figure 2005109080
[Comparison result]
When the ESR was examined for the examples and comparative examples obtained by the above method, the results shown in Table 1 were obtained.
Figure 2005109080

表1から明らかなように、空隙率を80〜85%とした実施例1〜4はいずれも、比較例1、2に比べてESRが低減した。特に、酸化剤溶液の濃度が55wt%と同一である実施例4と、比較例1、2とを比べると、実施例4のESRは比較例1の約76%、比較例2の55%に低減した。   As is clear from Table 1, in all of Examples 1 to 4 in which the porosity was 80 to 85%, ESR was reduced as compared with Comparative Examples 1 and 2. In particular, when Example 4 in which the concentration of the oxidant solution is the same as 55 wt% is compared with Comparative Examples 1 and 2, the ESR of Example 4 is about 76% of Comparative Example 1 and 55% of Comparative Example 2. Reduced.

次に、空隙率が80%と同一である実施例1と実施例2とを比べると、酸化剤溶液の濃度が高い実施例2の方が、ESR特性は良好であった。また、空隙率が85%と同一である実施例3と実施例4とを比べると、酸化剤溶液の濃度が高い実施例4の方が、ESR特性は良好であった。
また、酸化剤溶液の濃度が45wt%と同一である実施例1と実施例3とを比べると、空隙率が大きい実施例3の方が、ESR特性は良好であった。
Next, when Example 1 and Example 2 in which the porosity is the same as 80% are compared, Example 2 having a higher concentration of the oxidant solution has better ESR characteristics. Further, when Example 3 and Example 4 having the same porosity of 85% were compared, Example 4 having a higher concentration of the oxidant solution had better ESR characteristics.
Further, comparing Example 1 and Example 3 in which the concentration of the oxidant solution is the same as 45 wt%, Example 3 having a larger porosity has better ESR characteristics.

Claims (4)

陽極箔と陰極箔とをセパレータを介して巻回したコンデンサ素子に、重合性モノマー溶液を含浸した後、酸化剤溶液を含浸して、導電性ポリマーからなる固体電解質層を形成する固体電解コンデンサの製造方法において、
前記重合性モノマー溶液を含浸したコンデンサ素子の空隙率を80〜85%とし、前記酸化剤溶液の濃度を45〜55wt%とすることを特徴とする固体電解コンデンサの製造方法。
A solid electrolytic capacitor in which a capacitor element in which an anode foil and a cathode foil are wound through a separator is impregnated with a polymerizable monomer solution and then impregnated with an oxidant solution to form a solid electrolyte layer made of a conductive polymer. In the manufacturing method,
A method for manufacturing a solid electrolytic capacitor, wherein a porosity of a capacitor element impregnated with the polymerizable monomer solution is 80 to 85%, and a concentration of the oxidant solution is 45 to 55 wt%.
前記重合性モノマー溶液の濃度を25〜32wt%とすることを特徴とする請求項1に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the concentration of the polymerizable monomer solution is 25 to 32 wt%. 前記重合性モノマーが、チオフェン誘導体であることを特徴とする請求項1又は請求項2に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the polymerizable monomer is a thiophene derivative. 前記チオフェン誘導体が、3,4−エチレンジオキシチオフェンであることを特徴とする請求項3に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 3, wherein the thiophene derivative is 3,4-ethylenedioxythiophene.
JP2003339223A 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP4982027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339223A JP4982027B2 (en) 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339223A JP4982027B2 (en) 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2005109080A true JP2005109080A (en) 2005-04-21
JP4982027B2 JP4982027B2 (en) 2012-07-25

Family

ID=34534462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339223A Expired - Fee Related JP4982027B2 (en) 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4982027B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321475A (en) * 1997-05-22 1998-12-04 Sanyo Electric Co Ltd Manufacture of solid electrolytic capacitor
JP2001284189A (en) * 2000-03-30 2001-10-12 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
JP2003100557A (en) * 2001-09-27 2003-04-04 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
JP2003173933A (en) * 2001-12-07 2003-06-20 Japan Carlit Co Ltd:The Solid-state electrolytic capacitor and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321475A (en) * 1997-05-22 1998-12-04 Sanyo Electric Co Ltd Manufacture of solid electrolytic capacitor
JP2001284189A (en) * 2000-03-30 2001-10-12 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
JP2003100557A (en) * 2001-09-27 2003-04-04 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
JP2003173933A (en) * 2001-12-07 2003-06-20 Japan Carlit Co Ltd:The Solid-state electrolytic capacitor and its manufacturing method

Also Published As

Publication number Publication date
JP4982027B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4821818B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP4780893B2 (en) Solid electrolytic capacitor
JP4982027B2 (en) Manufacturing method of solid electrolytic capacitor
JP4780894B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP4608865B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314774B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720074B2 (en) Manufacturing method of solid electrolytic capacitor
JP4483504B2 (en) Conductive material and solid electrolytic capacitor using the same
JP4529404B2 (en) Manufacturing method of solid electrolytic capacitor
JP4529403B2 (en) Manufacturing method of solid electrolytic capacitor
JP4363022B2 (en) Manufacturing method of solid electrolytic capacitor
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720076B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005085911A (en) Method for manufacturing solid electrolytic capacitor
JP4314938B2 (en) Manufacturing method of solid electrolytic capacitor
JP4378908B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4639504B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005109079A (en) Solid electrolytic capacitor and its manufacturing method
JP2004128048A (en) Solid electrolytic capacitor
JP4474886B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4110905B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101215

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4982027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees