JP2005093298A - Anisotropic conductive film for inspecting electronic part and inspection method for electronic part using it - Google Patents

Anisotropic conductive film for inspecting electronic part and inspection method for electronic part using it Download PDF

Info

Publication number
JP2005093298A
JP2005093298A JP2003326810A JP2003326810A JP2005093298A JP 2005093298 A JP2005093298 A JP 2005093298A JP 2003326810 A JP2003326810 A JP 2003326810A JP 2003326810 A JP2003326810 A JP 2003326810A JP 2005093298 A JP2005093298 A JP 2005093298A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive film
film
electronic component
film substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003326810A
Other languages
Japanese (ja)
Other versions
JP4256237B2 (en
Inventor
Masato Noro
真人 野呂
Fumiteru Asai
文輝 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003326810A priority Critical patent/JP4256237B2/en
Priority to AT04021330T priority patent/ATE419661T1/en
Priority to DE602004018720T priority patent/DE602004018720D1/en
Priority to EP04021330A priority patent/EP1515399B1/en
Priority to KR1020040072303A priority patent/KR20050026683A/en
Priority to SG200405710A priority patent/SG110194A1/en
Priority to TW093127253A priority patent/TW200515644A/en
Priority to US10/936,946 priority patent/US7156669B2/en
Publication of JP2005093298A publication Critical patent/JP2005093298A/en
Application granted granted Critical
Publication of JP4256237B2 publication Critical patent/JP4256237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anisotropic conductive film for inspecting an electronic part hardly polluting an electrode of the electronic part to be inspected or a circuit pattern surface of a circuit board in a wide range of temperature, and to provide a highly reliable inspection method for the electronic part using the anisotropic conductive film. <P>SOLUTION: This anisotropic conductive film for inspecting the electronic part has a structure wherein a plurality of conduction paths made of a conductive material are mutually insulated and arranged penetrating a film substrate containing an epoxy resin having a naphthalene framework cross-linked by a phenol resin and acrylic rubber in a thickness direction, and both ends of each conduction path are exposed to front and rear faces of the film substrate. In this inspection method for electronic part, the anisotropic conductive film is arranged between the electronic part and the circuit board, and a current is applied to the electronic part while applying a load in a direction in which the anisotropic conductive film and the electronic part are pushed by a predetermined contact load. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子部品検査用の異方導電性フィルムおよびそれを用いた半導体素子などといった電子部品や電子部品を含む半導体装置などの検査方法に関する。   The present invention relates to an inspection method for an electronic component such as an anisotropic conductive film for electronic component inspection and a semiconductor element using the same, and a semiconductor device including the electronic component.

半導体素子、電子部品や回路基板の導通検査時においては、部品や基板の電極部分に直接プローブピンを接触させて電気信号を検出する方法が一般的であった。そのようなプローブピンの接触による場合、プローブピンを検査対象の部品等の電極位置に合わせる必要があるため、検査対象の部品等毎に専用のプローブ治具を作製する必要があった。近時、電子部品や回路基板の電極の大きさや電極間隔が小さくなっており、プローブピンの製造が困難あるいはコスト高になるといった問題が生じており、電子部品等の導通検査では異方導電性フィルムの使用が提案されている(特許文献1)。
国際公開第98/07216号パンフレット
When conducting a continuity test of a semiconductor element, an electronic component, or a circuit board, a method of detecting an electrical signal by bringing a probe pin into direct contact with an electrode portion of the component or the board is generally used. In the case of such probe pin contact, since it is necessary to align the probe pin with the electrode position of the component to be inspected, it is necessary to prepare a dedicated probe jig for each component to be inspected. Recently, the size and spacing of electrodes on electronic components and circuit boards have become smaller, which has caused problems such as difficulty in manufacturing probe pins and increased costs. The use of a film has been proposed (Patent Document 1).
International Publication No. 98/07216 Pamphlet

しかし、異方導電性フィルムを用いる場合、高温での電子部品の導通検査においては、電極間のコンタクト性不良が発生したり、「金属電極部が汚染される」などの問題があることを本発明者らは見出した。なお、導電ゴムを用いた簡易的な導通検査を行うに際しても、電子部品と回路基板との実装に不良が発生するという問題があった。   However, when using anisotropic conductive films, there are problems such as poor contact between the electrodes and “contamination of the metal electrode part” in the continuity inspection of electronic components at high temperatures. The inventors have found. In addition, when performing a simple continuity test using a conductive rubber, there is a problem that a defect occurs in the mounting between the electronic component and the circuit board.

本発明は、上記課題を解決するためになされたものであり、20〜150℃の広い温度範囲において検査対象の電子部品の電極や回路基板の配線パターン表面を汚染しにくい、電子部品検査用の異方導電性フィルムを提供することを主たる課題とする。また、そのような異方導電性フィルムを用いた電子部品の信頼性の高い検査方法の提供をも課題とする。   The present invention has been made in order to solve the above-described problems, and is intended for electronic component inspection, which hardly contaminates the electrodes of electronic components to be inspected and the wiring pattern surfaces of circuit boards in a wide temperature range of 20 to 150 ° C. The main object is to provide an anisotropic conductive film. Another object of the present invention is to provide a highly reliable inspection method for electronic parts using such an anisotropic conductive film.

本発明者らは、上記課題を解決するため鋭意研究を行った結果、金属電極部の汚染は、異方導電性フィルムから発生する低分子量成分や、導電ゴム(シリコーン製)からのシリコーン成分が上記金属電極部に付着してしまうことに起因するものであることを見出した。この知見をもとに、さらに鋭意研究を行った結果、以下の内容の本発明を完成するに至った。
(1)フェノール樹脂で架橋されたナフタレン骨格エポキシ樹脂と、アクリルゴムとを含むフィルム基板中に、導電性材料からなる複数の導通路が、互いに絶縁された状態で、かつ該フィルム基板を厚み方向に貫通した状態で配置され、各導通路は上記フィルム基板の表裏面に両端部が露出した構造を有する、電子部品検査用の異方導電性フィルム。
(2)上記異方導電性フィルムの構造全体の弾性率が20℃〜150℃において1MPa〜100MPaであり、当該異方導電性フィルムの厚みが30μm〜500μmである、上記(1)記載の異方導電性フィルム。
(3)上記導通路の両端がフィルム基板の表裏面から突出しており、上記導通路のうちフィルム基板を貫通する部分は、直径5μm〜30μmの金属導線からなり、上記導通路のフィルム基板からの突出部分は、フィルム基板外に延長している上記金属導線自体からなるか、あるいは、上記金属導線の端部にめっきにより形成された金属凸部からなる、上記(1)または(2)記載の異方導電性フィルム。
(4)上記(1)〜(3)のいずれかに記載の異方導電性フィルムを、少なくとも1つの電極を備える電子部品と回路基板との間に、上記電子部品の電極と異方導電性フィルムの導通路とが接触するように配置して、電子部品の1つの電極あたり50g/mm〜5000g/mmの接触荷重で、異方導電性フィルムと電子部品とを押し付ける方向に荷重をかけながら、電子部品に通電する、電子部品の検査方法。
(5)上記荷重をかけることにより、異方導電性フィルムが圧縮されて、当該フィルムの厚みが5μm〜150μm減少する、上記(4)記載の検査方法。
As a result of intensive studies to solve the above problems, the present inventors have found that the contamination of the metal electrode part is caused by low molecular weight components generated from anisotropic conductive films and silicone components from conductive rubber (made of silicone). It has been found that this is due to the adhesion to the metal electrode part. As a result of further diligent research based on this knowledge, the present invention having the following contents was completed.
(1) In a film substrate containing a naphthalene skeleton epoxy resin cross-linked with a phenol resin and acrylic rubber, a plurality of conductive paths made of a conductive material are insulated from each other, and the film substrate is arranged in the thickness direction. An anisotropic conductive film for electronic component inspection, having a structure in which both ends are exposed on the front and back surfaces of the film substrate.
(2) The elastic modulus of the whole structure of the anisotropic conductive film is 1 MPa to 100 MPa at 20 ° C. to 150 ° C., and the anisotropic conductive film has a thickness of 30 μm to 500 μm. Conductive film.
(3) Both ends of the conduction path protrude from the front and back surfaces of the film substrate, and a portion of the conduction path that penetrates the film substrate is made of a metal conductor having a diameter of 5 μm to 30 μm. (1) or (2) described above, wherein the projecting portion is composed of the metal conductor itself extending outside the film substrate, or a metal convex portion formed by plating at an end of the metal conductor. Anisotropic conductive film.
(4) The anisotropic conductive film according to any one of the above (1) to (3), the electrode of the electronic component and the anisotropic conductivity between the electronic component including at least one electrode and the circuit board. It arranged so that the conductive paths of the film are in contact, with one electrode per 50g / mm 2 ~5000g / mm 2 of the contact load of the electronic component, a load in a direction to press the anisotropic conductive film and the electronic component A method for inspecting an electronic component in which the electronic component is energized while being applied.
(5) The inspection method according to (4), wherein the anisotropic conductive film is compressed by applying the load, and the thickness of the film is reduced by 5 μm to 150 μm.

本発明の電子部品検査用の異方導電性フィルムは、20℃〜150℃における電子部品等の検査に使用したときに低分子量成分の付着による金属電極部の汚染を低減することができる。また、本発明の電子部品の検査方法は、コンタクト性に優れる信頼性の高い検査方法である。   The anisotropic conductive film for inspection of electronic parts of the present invention can reduce contamination of the metal electrode part due to adhesion of low molecular weight components when used for inspection of electronic parts at 20 ° C. to 150 ° C. Further, the electronic component inspection method of the present invention is a highly reliable inspection method with excellent contact properties.

以下、図面を参照して本発明を詳細に説明する。図1は、本発明の異方導電性フィルムを用いた電子部品の検査を模式的に表す。本発明の異方導電性フィルム1の基本的な構造は、特許文献1記載のものと同様に、絶縁材料からなる板状のフィルム基板10内に、導通路11がフィルム基板10を厚み方向に貫通した状態で、互いに絶縁されて配列されている構造である。本発明は、上記フィルム基板10が以下に詳述する樹脂・ゴムを含む点に特徴がある。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows inspection of an electronic component using the anisotropic conductive film of the present invention. The basic structure of the anisotropic conductive film 1 of the present invention is the same as that described in Patent Document 1, and a conductive path 11 extends in the thickness direction in a plate-like film substrate 10 made of an insulating material. It is the structure which is mutually insulated and arranged in the state which penetrated. The present invention is characterized in that the film substrate 10 includes a resin / rubber described in detail below.

上記フィルム基板10は、フェノール樹脂で架橋されたナフタレン骨格エポキシ樹脂と、アクリルゴムとを含む。各樹脂の詳細は後述するが、ナフタレン骨格エポキシ樹脂に対してフェノール樹脂が架橋剤として作用することにより耐熱性を発現し、さらにアクリルゴムを含有することで柔軟性が同時に発現する。このようなフィルム基板10を得る方法は公知のフィルム製造方法を参照してもよく、例えば、適切な溶剤にナフタレン骨格エポキシ樹脂、フェノール樹脂およびアクリルゴムを加えた後に、フィルム状に成形する方法等が例示される。   The film substrate 10 includes a naphthalene skeleton epoxy resin crosslinked with a phenol resin and acrylic rubber. Although details of each resin will be described later, heat resistance is exhibited by the phenol resin acting as a crosslinking agent for the naphthalene skeleton epoxy resin, and flexibility is simultaneously exhibited by containing acrylic rubber. A method for obtaining such a film substrate 10 may refer to a known film manufacturing method. For example, a method of forming a film after adding a naphthalene skeleton epoxy resin, a phenol resin and an acrylic rubber to an appropriate solvent, etc. Is exemplified.

フィルム基板10の全重量に占める、フェノール樹脂で架橋されたナフタレン骨格エポキシ樹脂およびアクリルゴムの合計重量は、好ましくは50%以上、より好ましくは70〜90%である。フィルム基板10に含まれていてもよい上記樹脂・ゴム以外の材料としては、例えば、ポリウレタン樹脂やポリオルガノシロキサン樹脂などが例示されるが、本発明の特性に影響しないものであれば特に制限はない。   The total weight of the phenolic resin-crosslinked naphthalene skeleton epoxy resin and acrylic rubber in the total weight of the film substrate 10 is preferably 50% or more, more preferably 70 to 90%. Examples of materials other than the resin and rubber that may be included in the film substrate 10 include polyurethane resins and polyorganosiloxane resins, but there are no particular limitations as long as they do not affect the characteristics of the present invention. Absent.

得られるフィルム基板の耐熱性の観点から、フィルム基板10の製造に際して、ナフタレン骨格エポキシ樹脂100重量部に対して加えるフェノール樹脂の量は、好ましくは30〜100重量部であり、より好ましくは50〜70重量部である。電極などの接点とのコンタクト性の観点から、フィルム基板10の製造に際して、ナフタレン骨格エポキシ樹脂100重量部に対して加えるアクリルゴムの量は、好ましくは50〜500重量部であり、より好ましくは70〜250重量部である。   From the viewpoint of heat resistance of the obtained film substrate, the amount of the phenol resin added to 100 parts by weight of the naphthalene skeleton epoxy resin in the production of the film substrate 10 is preferably 30 to 100 parts by weight, and more preferably 50 to 50 parts by weight. 70 parts by weight. From the viewpoint of contact with contacts such as electrodes, the amount of acrylic rubber added to 100 parts by weight of the naphthalene skeleton epoxy resin in the production of the film substrate 10 is preferably 50 to 500 parts by weight, more preferably 70. ~ 250 parts by weight.

「ナフタレン骨格エポキシ樹脂」とは、分子構造中にナフタレン骨格と2個以上のオキシラン環(エポキシ基)とを有する化合物をさす。ナフタレン骨格エポキシ樹脂は、通常、硬化剤(フェノール、アミン他活性水素を持つ化合物)と併用して、3次元網目状ポリマーを形成させて利用される。ナフタレン骨格エポキシ樹脂に占めるナフタレン骨格の割合は特に限定はないが、得られるフィルム基板の耐熱性の点から、好ましくは30重量%であり、より好ましくは40〜70重量%である。   The “naphthalene skeleton epoxy resin” refers to a compound having a naphthalene skeleton and two or more oxirane rings (epoxy groups) in the molecular structure. The naphthalene skeleton epoxy resin is usually used in combination with a curing agent (phenol, amine or other compound having active hydrogen) to form a three-dimensional network polymer. The proportion of the naphthalene skeleton in the naphthalene skeleton epoxy resin is not particularly limited, but is preferably 30% by weight and more preferably 40 to 70% by weight from the viewpoint of heat resistance of the obtained film substrate.

ナフタレン骨格エポキシ樹脂は、周知の樹脂であり、その製法もまた周知であって特に限定されない。   The naphthalene skeleton epoxy resin is a well-known resin, and its production method is also well-known and is not particularly limited.

「フェノール樹脂」とは、フェノールまたはその誘導体とアルデヒドとの縮合によって得られる樹脂である。フェノールまたはその誘導体としては、フェノール、クレゾール等を挙げることができる。アルデヒドとしてはホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド等を挙げることができる。   “Phenolic resin” is a resin obtained by condensation of phenol or a derivative thereof with an aldehyde. Examples of phenol or derivatives thereof include phenol and cresol. Examples of the aldehyde include formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde and the like.

フェノール樹脂は、周知の樹脂であり、その製法もまた周知であって特に限定されない。   The phenol resin is a well-known resin, and its production method is also well-known and is not particularly limited.

「フェノール樹脂で架橋されたナフタレン骨格エポキシ樹脂」とは、上述のナフタレン骨格エポキシ樹脂のオキシラン環(エポキシ基)と、フェノール樹脂とが結合することにより形成される、2次元または3次元の連続構造を有する樹脂である。   The “naphthalene skeleton epoxy resin crosslinked with a phenol resin” is a two-dimensional or three-dimensional continuous structure formed by bonding the oxirane ring (epoxy group) of the naphthalene skeleton epoxy resin and the phenol resin. It is resin which has.

「アクリルゴム」とは、アクリル酸アルキルエステルを主体とした合成ゴムである。アルキルエステルとしては、メチルエステル、エチルエステル、ブチルエステル等が例示される。   “Acrylic rubber” is a synthetic rubber mainly composed of alkyl acrylate. Examples of the alkyl ester include methyl ester, ethyl ester, butyl ester and the like.

アクリルゴムは周知であって、その製法もまた周知であり特に限定されない。   Acrylic rubber is well known and its production method is also well known and not particularly limited.

本発明で用いるフィルム基板10は、上述の樹脂・ゴムを含む板状物であり、その厚みは特に限定はないが、好ましくは30μm〜350μm程度であり、より好ましくは30μm〜150μm程度である。   The film substrate 10 used in the present invention is a plate-like material containing the above-described resin / rubber, and the thickness thereof is not particularly limited, but is preferably about 30 μm to 350 μm, more preferably about 30 μm to 150 μm.

本発明の電子部品検査用の異方導電性フィルムにおいては、上述のフィルム基板10中に、導電性材料からなる複数の導通路11が、互いに絶縁された状態で、かつ該フィルム基板10を厚み方向に貫通した状態で配置されている。各導通路11の両端部は上記フィルム基板10の表裏面に露出している。   In the anisotropic conductive film for electronic component inspection according to the present invention, a plurality of conductive paths 11 made of a conductive material are insulated from each other in the above-described film substrate 10 and the film substrate 10 is thickened. It is arranged in a state penetrating in the direction. Both ends of each conduction path 11 are exposed on the front and back surfaces of the film substrate 10.

導通路11がフィルム基板10を厚み方向に貫通する態様としては、図1記載の如く、フィルム基板10の厚み方向と同じ方向に貫通する態様や、前記厚み方向から傾斜をつけて貫通する態様(図示せず)などであってもよいし、導通路11がフィルム基板10内で直線状ではなく湾曲しながら貫通する態様であってもよい(図示せず)。これらの態様のうちで、検査対象の電子部品2の電極2aや回路基板3の配線パターン3aへの接触性を考慮すると、導通路11がフィルム基板10内で傾斜していたり、湾曲していることが好ましい。各々の導通路11の断面形状は、円形や多角形など、どのような形状であってもよい。検査対象の電子部品2の電極2aごとに、1個〜3個程度の導通路11が接触する程度に導通路11が密に配置されているのが好ましい。複数の導通路11を互いに絶縁させることで、電子部品2の電極2aや回路基板3の配線パターン3aごとの導通の有無を独立に検査することができる。図2(a)および図4は、フィルム基板10の一面にあらわれる導通路11の配列パターンを示している。なお、図2(b)は図2(a)のX−X断面の模式図である。導通路11は、図4に示すような正方行列状であってもよいし、図2(a)に示すような最密状であってもよいし、その他ランダムな密集状態であってもよいが、微細な電極に対応するには最密状が好ましい。   As a mode in which the conductive path 11 penetrates the film substrate 10 in the thickness direction, as shown in FIG. 1, a mode of penetrating in the same direction as the thickness direction of the film substrate 10 or a mode of penetrating with an inclination from the thickness direction ( (Not shown) or the like, or the conductive path 11 may be curved in the film substrate 10 while being curved (not shown). Among these aspects, the conduction path 11 is inclined or curved in the film substrate 10 in consideration of contact with the electrode 2a of the electronic component 2 to be inspected and the wiring pattern 3a of the circuit board 3. It is preferable. The cross-sectional shape of each conduction path 11 may be any shape such as a circle or a polygon. It is preferable that the conductive paths 11 are densely arranged so that one to three conductive paths 11 are in contact with each electrode 2a of the electronic component 2 to be inspected. By insulating the plurality of conduction paths 11 from each other, the presence or absence of conduction for each of the electrodes 2a of the electronic component 2 and the wiring pattern 3a of the circuit board 3 can be inspected independently. FIG. 2A and FIG. 4 show an arrangement pattern of the conduction paths 11 appearing on one surface of the film substrate 10. FIG. 2B is a schematic view of the XX cross section of FIG. The conducting path 11 may have a square matrix shape as shown in FIG. 4, a close-packed shape as shown in FIG. 2A, or other random dense state. However, the close-packed state is preferable to cope with fine electrodes.

導通路11の材料としては、公知の導電性材料が挙げられるが、電気特性の点で銅、金、アルミニウム、ニッケルなどの金属材料が好ましく、さらには導電性の観点から、銅、金がより好ましい。導電性や弾性率などの点から、導通路11は、フィルム基板10に形成した貫通孔内に金属材料をメッキで析出させて得たものであってもよいが、より好ましくは、金属線をフィルム基板を貫通させて導通路とした態様である。金属線の中でも、例えばJIS 3 3103に規定された銅線などのように電気を伝えるべく製造された金属導線が好ましく、電気的特性、機械的特性、さらにはコストの点で最も優れた導通路となる。導通路11の断面(フィルム基板10の厚み方向と垂直な断面)の形状、大きさ、数は、本発明の異方導電性フィルムの用途により適宜選択することができる。ピッチ50μm以下のようなファインピッチの電極配置パターンに対応するには、導通路11の直径は、好ましくは5μm〜30μmであり、より好ましくは5μm〜20μmである。ここで、導通路11の断面が円形状でない場合は、その断面積が上記直径の円と略同面積であることが好ましい。   Examples of the material of the conduction path 11 include known conductive materials, but metal materials such as copper, gold, aluminum, and nickel are preferable from the viewpoint of electrical characteristics, and copper and gold are more preferable from the viewpoint of conductivity. preferable. From the viewpoint of conductivity and elastic modulus, the conductive path 11 may be obtained by depositing a metal material in a through-hole formed in the film substrate 10 by plating. In this embodiment, a conductive path is formed by penetrating the film substrate. Among metal wires, for example, a metal conductor manufactured to transmit electricity, such as a copper wire defined in JIS 3 3103, is preferable, and the most excellent conduction path in terms of electrical characteristics, mechanical characteristics, and cost. It becomes. The shape, size, and number of the cross section (cross section perpendicular to the thickness direction of the film substrate 10) of the conductive path 11 can be appropriately selected depending on the use of the anisotropic conductive film of the present invention. In order to correspond to an electrode arrangement pattern with a fine pitch such as a pitch of 50 μm or less, the diameter of the conduction path 11 is preferably 5 μm to 30 μm, more preferably 5 μm to 20 μm. Here, when the cross section of the conduction path 11 is not circular, it is preferable that the cross-sectional area is substantially the same area as the circle of the said diameter.

導通路11の両端は、フィルム基板10の表裏面に露出していればよいが、電子部品2の電極2aや回路基板3の配線パターン3aへの接触性を高める点から、導通路11の両端がフィルム基板の表裏から突出していることが好ましい(図3(b)参照)。このとき、突出の程度は、フィルム基板10の表裏各面から、好ましくは5μm〜80μm程度、より好ましくは10μm〜30μm程度である。導通路11の突出部分は、フィルム基板10を貫通する導通路11の両端部にめっきで形成した金属凸部であってもよいし、フィルム基板10を貫通する金属導線自体が延長したものであってもよい。特にフィルム基板10を貫通する導通路11の酸化を防止することを考慮した場合、突出部分の形成段階でめっきにより酸化を防止することが好ましい。導通路11がフィルム基板10から突出している場合、その突出部分の表面を、導電性が高い金属材料や耐腐食性に優れた金やニッケルなどの材料でさらに被覆してもよい。   Both ends of the conductive path 11 only need to be exposed on the front and back surfaces of the film substrate 10, but both ends of the conductive path 11 are improved in terms of improving the contact property to the electrode 2 a of the electronic component 2 and the wiring pattern 3 a of the circuit board 3. Preferably protrudes from the front and back of the film substrate (see FIG. 3B). At this time, the degree of protrusion is preferably about 5 μm to 80 μm, more preferably about 10 μm to 30 μm, from the front and back surfaces of the film substrate 10. The protruding portion of the conductive path 11 may be a metal convex portion formed by plating on both ends of the conductive path 11 that penetrates the film substrate 10, or the metal conductive wire itself that penetrates the film substrate 10 extends. May be. In particular, in consideration of preventing oxidation of the conductive path 11 penetrating the film substrate 10, it is preferable to prevent oxidation by plating at the stage of forming the protruding portion. When the conductive path 11 protrudes from the film substrate 10, the surface of the protruding portion may be further covered with a metal material having high conductivity or a material such as gold or nickel having excellent corrosion resistance.

図3は、本発明の異方導電性フィルムの一態様の部分模式図である。この図に記載のように、フィルム基板10の樹脂材料と導通路11との間にさらに他の材料からなる層12が設けられてもよい。この層12は、何層にも重ねて設けてもよく、また、絶縁性、導電性など、用途や求められる特性に応じて材料を選択すればよい。導通路11を取り巻く層12に用い得る材料としては、ポリイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリウレタン樹脂等が挙げられる。   FIG. 3 is a partial schematic view of one embodiment of the anisotropic conductive film of the present invention. As shown in this figure, a layer 12 made of another material may be provided between the resin material of the film substrate 10 and the conduction path 11. The layer 12 may be provided in layers, and the material may be selected according to the application and required characteristics such as insulation and conductivity. Examples of a material that can be used for the layer 12 surrounding the conduction path 11 include a polyimide resin, a polyamide resin, a polyester resin, and a polyurethane resin.

本発明の異方導電性フィルムの構造全体の20℃〜150℃における弾性率は、好ましくは1MPa〜100MPaであり、より好ましくは10MPa〜20MPaである。弾性率を1MPa以上にすることで、検査対象の電子部品2への接着性が過大になるのを防いで検査後に電子部品2を回収しやすくなる。また、弾性率が100MPa以下であれば、後述する適切な接触荷重の印加により、基板のうねり、チップのそり等を容易に吸収し得るので、導通路11の損傷などに起因する導通不良を低減できる。   The elastic modulus at 20 ° C. to 150 ° C. of the entire structure of the anisotropic conductive film of the present invention is preferably 1 MPa to 100 MPa, more preferably 10 MPa to 20 MPa. By setting the elastic modulus to 1 MPa or more, it is possible to prevent the adhesiveness to the electronic component 2 to be inspected from becoming excessive and to easily collect the electronic component 2 after the inspection. Further, if the elastic modulus is 100 MPa or less, the application of an appropriate contact load described later can easily absorb substrate undulation, chip warpage, and the like, thereby reducing conduction failure due to damage to the conduction path 11 and the like. it can.

異方導電性フィルムの構造全体の弾性率とは、フィルム基板10および導通路11を含んだ完成品としての異方導電性フィルムの弾性率であり、以下のような引張試験により測定される。
・測定装置 ティー・エイ・インスツルメント・ジャパン株式会社製 粘弾性測定装置RSA−II、
・試験片 100μm×5mm×22.5mm、
・測定条件 試験片の面拡張方向のうちの一方向に対し、周波数10Hz、温度20℃、150℃での物性を引張りモードで測定する。
The elastic modulus of the entire structure of the anisotropic conductive film is the elastic modulus of the anisotropic conductive film as a finished product including the film substrate 10 and the conductive path 11 and is measured by the following tensile test.
・ Measuring device Viscoelasticity measuring device RSA-II manufactured by TA Instruments Japan Co., Ltd.
・ Test piece 100 μm × 5 mm × 22.5 mm,
Measurement conditions The physical properties at a frequency of 10 Hz, a temperature of 20 ° C., and 150 ° C. are measured in a tensile mode with respect to one direction of the surface expansion direction of the test piece.

異方導電性フィルムの弾性率を制御する方法は特に問わないが、弾性率を向上させる方法を以下に例示する。
・アクリルゴムの配合量を少なくする。
・ナフタレン骨格エポキシ樹脂に占めるナフタレン骨格の割合の小さい材料を使用する。
・一分子中に複数の官能基を有するエポキシ樹脂やフェノール樹脂を使用する。
異方導電性フィルムの弾性率を低下させるには、上記とは逆の方法を講じればよい。
A method for controlling the elastic modulus of the anisotropic conductive film is not particularly limited, but a method for improving the elastic modulus is exemplified below.
・ Reduce the amount of acrylic rubber.
-Use a material with a small proportion of naphthalene skeleton in the naphthalene skeleton epoxy resin.
-Use epoxy resin or phenol resin with multiple functional groups in one molecule.
In order to reduce the elastic modulus of the anisotropic conductive film, a method opposite to the above may be taken.

本発明の異方導電性フィルムの厚みは好ましくは30μm〜500μmであり、より好ましくは50μm〜200μmである。厚みが30μm以上であれば、被検査対象物の電極(特に段差の大きいもの)へのコンタクト性が優れる点で好ましい。また、厚みが500μm以下であれば、導通経路の長さの影響による伝送ロスが少なくてすむ点で好ましい。異方導電性フィルムの厚みとは、当該異方導電性フィルムの2点間の距離のうちフィルム基板10の面拡張方向と垂直な方向の最大の長さをいう。よって、導通路11がフィルム基板10から突出していない場合には、異方導電性フィルムの厚みはフィルム基板10の厚みに等しくなり、導通路11がフィルム基板10から突出している場合には、異方導電性フィルムの厚みは、通常、導通路11の両端部間の距離となる(図3における長さT)。   The thickness of the anisotropic conductive film of this invention becomes like this. Preferably they are 30 micrometers-500 micrometers, More preferably, they are 50 micrometers-200 micrometers. A thickness of 30 μm or more is preferable in that the contact property to the electrode (particularly one having a large step) of the object to be inspected is excellent. Moreover, if thickness is 500 micrometers or less, it is preferable at the point which can reduce the transmission loss by the influence of the length of a conduction path. The thickness of the anisotropic conductive film refers to the maximum length in the direction perpendicular to the surface expansion direction of the film substrate 10 out of the distance between two points of the anisotropic conductive film. Therefore, when the conductive path 11 does not protrude from the film substrate 10, the thickness of the anisotropic conductive film is equal to the thickness of the film substrate 10, and when the conductive path 11 protrudes from the film substrate 10, the thickness of the anisotropic conductive film is different. The thickness of the directionally conductive film is usually the distance between both ends of the conduction path 11 (length T in FIG. 3).

上記のような異方導電性フィルム1を製造するに際し、導通路11がフィルム基板10を貫通した構造のものを得る方法は特に限定されない。そのような方法の一例として、特許文献1記載のように、多数の絶縁導線を密に束ねた状態で互いに分離できないように固定し、各絶縁電極と角度をなす面を切断面として、所望のフィルム厚さにスライスする方法が挙げられる。当該方法はより具体的には、次の(1)〜(7)、もしくは(1)〜(5)と(7)の工程を有する製造方法が挙げられる。
(1)芯材に上述のナフタレン骨格エポキシ樹脂、フェノール樹脂またはアクリルゴムのいずれかを主体成分とするフィルムを巻く工程、
(2)その上に直径5〜30μmの金属導線を一定間隔を保つようにして巻く工程、
(3)さらにその上に、フィルム、金属導線、フィルム、金属導線、・・・と繰り返し巻く工程、
(4)前記(3)の工程で得られたコイルを加熱および/または加圧して、巻きつけられたフィルムどうしを融着および/または圧着させて一体化し、コイルブロックを形成する工程、
(5)前記(4)の工程で得られたコイルブロックを、巻きつけた絶縁導線と角度をなして交差する平面を断面として所定のフィルム厚みに切断する工程、
(6)前記(5)で得られたフィルム状物の絶縁性樹脂の部分をエッチングし、金属導線をフィルム基板面から突出させる工程、
(7)上記(5)あるいは(6)で得られたフィルム状物のフィルム基板面に露出している金属導線の端面にさらに金属を堆積させて、フィルム基板面から突起させる工程。
When manufacturing the anisotropic conductive film 1 as described above, a method for obtaining a structure in which the conductive path 11 penetrates the film substrate 10 is not particularly limited. As an example of such a method, as described in Patent Document 1, a large number of insulated conductors are fixed in a tightly bundled state so that they cannot be separated from each other, and a surface that forms an angle with each insulated electrode is used as a cut surface. The method of slicing to film thickness is mentioned. More specifically, the method includes a production method having the following steps (1) to (7) or (1) to (5) and (7).
(1) A step of winding a film mainly comprising any of the above-mentioned naphthalene skeleton epoxy resin, phenol resin or acrylic rubber on the core material,
(2) A step of winding a metal conductor having a diameter of 5 to 30 μm on the metal conductor so as to maintain a constant interval;
(3) Furthermore, a film, a metal conducting wire, a film, a metal conducting wire,.
(4) A step of heating and / or pressurizing the coil obtained in the step (3) to fuse and / or press-bond the wound films to form a coil block;
(5) A step of cutting the coil block obtained in the step (4) into a predetermined film thickness with a plane intersecting with the wound insulated conductor at an angle,
(6) A step of etching the insulating resin portion of the film-like material obtained in (5) above, and causing the metal conductor to protrude from the film substrate surface,
(7) A step of further depositing a metal on the end surface of the metal conductor exposed on the film substrate surface of the film-like product obtained in (5) or (6) above and projecting from the film substrate surface.

次に、上述の異方導電性フィルムを用いる本発明の検査方法を説明する。本発明の検査対象は少なくとも1つの電極をもつ電子部品である。ここで、「電子部品」とは、通電によって機能を発現する部品であり、半導体素子、液晶パネル、高周波部品等を含む概念である。電子部品を組み込んだ電子機器、半導体装置について、本発明の検査方法を適用することは、組み込んだ電子部品の検査方法の適用に該当する。   Next, the inspection method of the present invention using the above-described anisotropic conductive film will be described. The inspection object of the present invention is an electronic component having at least one electrode. Here, the “electronic component” is a component that exhibits a function when energized, and includes a semiconductor element, a liquid crystal panel, a high-frequency component, and the like. Applying the inspection method of the present invention to an electronic device or semiconductor device incorporating an electronic component corresponds to application of the inspection method of the incorporated electronic component.

本発明の検査方法は、図1に示すように、上記異方導電性フィルム1を、電子部品2と回路基板3との間に挟み、そのように挟んだまま後述する所定の荷重をかけながら電子部品2に導通させることを特徴とする。この方法では、電子部品2や回路基板3に反りやうねりあるいは段差があっても、これらを異方導電性フィルム1が自ら変形することで吸収し、電子部品の電極2aと、それに対応する回路基板3上の回路パターン3aとが、好ましい最小限の荷重で適切に接触する。   1, the anisotropic conductive film 1 is sandwiched between an electronic component 2 and a circuit board 3, and a predetermined load to be described later is applied while sandwiched as shown in FIG. The electronic component 2 is electrically connected. In this method, even if the electronic component 2 and the circuit board 3 are warped, swelled or stepped, they are absorbed by the anisotropic conductive film 1 being deformed by itself, and the electrode 2a of the electronic component and the corresponding circuit are absorbed. The circuit pattern 3a on the substrate 3 is appropriately in contact with a preferable minimum load.

ここで、「回路基板」は、電子部品2を実装すべき製品としての回路基板であってもよく、また、それをモデルとして製作した検査治具としての回路基板であってもよい。   Here, the “circuit board” may be a circuit board as a product on which the electronic component 2 is to be mounted, or may be a circuit board as an inspection jig manufactured using it as a model.

異方導電性フィルム1を電子部品2と回路基板3との間に挟むに際しては、上記電子部品2の電極2aと異方導電性フィルムの導通路11とが接触するように挟めばよいが、検査対象の電子部品2の電極2aごとに、1個〜3個程度の導通路11が接触する程度に導通路11が密に配置されているのが好ましい。   When the anisotropic conductive film 1 is sandwiched between the electronic component 2 and the circuit board 3, the electrode 2a of the electronic component 2 and the conductive path 11 of the anisotropic conductive film may be sandwiched, It is preferable that the conductive paths 11 are densely arranged so that one to three conductive paths 11 are in contact with each electrode 2a of the electronic component 2 to be inspected.

上記のように異方導電性フィルム1を電子部品2と回路基板3との間に挟んだまま、異方導電性フィルム1と電子部品2とを押し付ける方向に、荷重を加える。そのような方向への荷重は、例えば、図1に記載するように、回路基板3をベース(テーブル)に固定して、電子部品2側から押し付けることにより実現される。このときの接触荷重は、電子部品の1つの電極あたり好ましくは50g/mm〜5000g/mmであり、検査対象となる回路基板3がフラットな場合には100g/mm〜3000g/mmが特に好ましい。この接触荷重は、電子部品2の電極2aに対しては変形ダメージを与えにくく、かつ、接触抵抗が低くなるような範囲である。すなわち、接触荷重が50g/mm未満の場合、電極への追従が困難で確実な接続がとりにくくなり(導通率が100%にならない)、5000g/mmを越えると、検査時に電子部品2の電極2aが変形して実装時に接続不良となり易い。特に、電子部品が半田バンプ、半田ボールのような突起高さ20μm〜200μm程度の突起状電極を有する場合に、接触荷重を上記範囲としたことの有用性が最も顕著となる。 While the anisotropic conductive film 1 is sandwiched between the electronic component 2 and the circuit board 3 as described above, a load is applied in a direction in which the anisotropic conductive film 1 and the electronic component 2 are pressed. For example, as shown in FIG. 1, the load in such a direction is realized by fixing the circuit board 3 to a base (table) and pressing it from the electronic component 2 side. Contact load at this time is preferably per one electrode of the electronic component is 50g / mm 2 ~5000g / mm 2 , when the circuit board 3 to be inspected flat is 100g / mm 2 ~3000g / mm 2 Is particularly preferred. This contact load is in a range in which the electrode 2a of the electronic component 2 is hardly deformed and the contact resistance is low. That is, when the contact load is less than 50 g / mm 2, is difficult to follow on the electrode reliable connection is less likely to take (conduction ratio is not 100%), exceeds 5000 g / mm 2, the electronic components during inspection 2 The electrode 2a is deformed, and connection failure is likely to occur during mounting. In particular, when the electronic component has a protruding electrode having a protrusion height of about 20 μm to 200 μm, such as a solder bump or a solder ball, the utility of setting the contact load in the above range is most remarkable.

「一つの電極あたりの接触荷重」とは、電子部品2にかけた全荷重を、接触した電極2aの数で割ることによって求められる値である。ここで、電極2aは検査対象の電子部品2が備える電極である。電子部品2にかけた全荷重は、例えばフリップチップボンダーの設定により制御可能である。   The “contact load per electrode” is a value obtained by dividing the total load applied to the electronic component 2 by the number of electrodes 2a in contact. Here, the electrode 2a is an electrode provided in the electronic component 2 to be inspected. The total load applied to the electronic component 2 can be controlled, for example, by setting a flip chip bonder.

上記のように異方導電性フィルム1を電子部品2と回路基板3との間に挟んで荷重をかける際の荷重は、異方導電性フィルム1の厚みが5μm〜150μm減少する程度に圧縮する荷重であることが好ましい。そのように圧縮された状態で電子部品2の機能検査を行うことで、電子部品2や回路基板3の反りやうねりをより効率よく吸収し得る。
検査中の異方導電性フィルムの変位量(厚みの減少量)は、微小圧縮試験機(島津製作所製、MCT−W)で、直接的に計測できる。
As described above, the load applied when the anisotropic conductive film 1 is sandwiched between the electronic component 2 and the circuit board 3 is compressed so that the thickness of the anisotropic conductive film 1 is reduced by 5 μm to 150 μm. A load is preferred. By performing the function inspection of the electronic component 2 in such a compressed state, warping and undulation of the electronic component 2 and the circuit board 3 can be absorbed more efficiently.
The displacement amount (thickness reduction amount) of the anisotropic conductive film under inspection can be directly measured by a micro compression tester (manufactured by Shimadzu Corporation, MCT-W).

このように荷重をかけながら、検査対象の電子部品2に通電して電子部品2を検査する。ここで、検査とは、電子部品2への通電を要する検査であれば特に限定されず、例えば、通電しているか否かの確認であっても、電極2aにおける接触抵抗の測定であってもよい。   In this way, the electronic component 2 is inspected by energizing the electronic component 2 to be inspected while applying a load. Here, the inspection is not particularly limited as long as it is an inspection that requires energization of the electronic component 2, for example, whether it is confirmation whether or not energization is performed, or measurement of contact resistance at the electrode 2 a. Good.

上述の(1)〜(7)の工程によって、異方導電性フィルム(実施例1、比較例1、2)を製造した。各異方導電性フィルムのフィルム基板の材料は以下のとおりである。
(実施例1)
下記の樹脂の混合物を用いた。
ナフタレン型エポキシ樹脂(エポキシ当量270) ・・・100(重量部)
クレゾールノボラック型エポキシ樹脂(水酸基当量174)・・65(重量部)
アクリルゴム(エポキシモノマー共重合架橋タイプ) ・・・170(重量部)
(比較例1)
ポリエーテル型ポリウレタンゴム(日清紡(株) MF−50T−MX)
(比較例2)
シリコーンゴム(シロキサンを主成分とするコンパウンドに加硫剤を添加した市販品)
An anisotropic conductive film (Example 1, Comparative Examples 1 and 2) was manufactured by the above-described steps (1) to (7). The material of the film substrate of each anisotropic conductive film is as follows.
(Example 1)
The following resin mixture was used.
Naphthalene type epoxy resin (epoxy equivalent 270) ... 100 (parts by weight)
Cresol novolac type epoxy resin (hydroxyl equivalent 174) ·· 65 (parts by weight)
Acrylic rubber (epoxy monomer copolymer crosslinking type) ... 170 (parts by weight)
(Comparative Example 1)
Polyether type polyurethane rubber (Nisshinbo Co., Ltd. MF-50T-MX)
(Comparative Example 2)
Silicone rubber (commercially available product with siloxane as the main component and vulcanizing agent added)

上記材料のフィルム基板を用いて、以下のような異方導電性フィルムを製造した。
・フィルム基板厚み: 200μm
・フィルム基板の表裏各面からの導通路の突出長さ:20μm
・導通路の両端部に施した金メッキの厚さ: 0.2μm
・異方導電性フィルムの全体の厚み: 240μm
・導通路の直径: 25μm
・隣りあう導通路の中心軸間距離(ピッチ): 100μm
The following anisotropic conductive film was manufactured using the film substrate of the said material.
-Film substrate thickness: 200 μm
・ Projection length of the conductive path from the front and back surfaces of the film substrate: 20 μm
-Thickness of gold plating applied to both ends of the conduction path: 0.2 μm
・ Total thickness of anisotropic conductive film: 240 μm
-Diameter of conduction path: 25 μm
-Distance between central axes of adjacent conductive paths (pitch): 100 μm

検査対象の電子部品(半導体素子)は以下のとおりである。
・チップサイズ: 10mm×10mm(厚さ:500μm)
・電極のタイプ: Auスタッドバンプ
・電極のバンプ径: 70μm
・バンプ高さ: 70μm
・電極数: 156個
・電極の中心間ピッチ:200μm
The electronic components (semiconductor elements) to be inspected are as follows.
・ Chip size: 10mm × 10mm (thickness: 500μm)
・ Electrode type: Au stud bump ・ Electrode bump diameter: 70 μm
・ Bump height: 70μm
・ Number of electrodes: 156 ・ Pitch between centers of electrodes: 200 μm

評価用の回路基板の仕様は、次のとおりである。
・ガラスエポキシ基板: FR−4
・回路パターンの厚みを含む厚み: 1mm
・回路パターンの回路幅と間隙部分の幅との比:100μm/100μm
The specifications of the circuit board for evaluation are as follows.
・ Glass epoxy board: FR-4
・ Thickness including circuit pattern thickness: 1 mm
The ratio of the circuit width of the circuit pattern to the width of the gap portion: 100 μm / 100 μm

上記電子部品と回路基板との間に異方導電性フィルムを挟んで、電極一つあたり200g/mの荷重を加えながら通電して、その際の変位量、バンプの変形、基板との接着などについて測定および観察を行った。測定・検査は、各フィルムにつき、20℃および150℃にて行った。結果を表1に記載する。 An anisotropic conductive film is sandwiched between the electronic component and the circuit board, and an electric current is applied while applying a load of 200 g / m 2 per electrode. The amount of displacement, deformation of the bump, and adhesion to the board Measurements and observations were made. Measurement and inspection were performed at 20 ° C. and 150 ° C. for each film. The results are listed in Table 1.

Figure 2005093298
Figure 2005093298

表中、「検査対象物へのシリコーン成分付着量」は、異方導電性フィルムを銅箔に押し当てた後、接触面に残存するシリコーン成分をSEM−EPMA法により定量化した値である。
「コンタクト性」は、圧縮試験機を用いて導通が確認できた場合に「OK」とし、さもなくば「NG」とした。
「回路基板との接着」は、検査後、異方導電性フィルムの取り外しがスムーズに行えない場合、または取り外せても基板上にフィルムの断片等の付着物がある場合に「あり」とし、さもなくば「なし」とした。
In the table, the “silicone component adhesion amount to the test object” is a value obtained by quantifying the silicone component remaining on the contact surface after pressing the anisotropic conductive film against the copper foil by the SEM-EPMA method.
“Contact” was “OK” when continuity was confirmed using a compression tester, and “NG” otherwise.
“Adhesion with circuit board” is “Yes” if the anisotropic conductive film cannot be removed smoothly after inspection, or if there is an adherent such as a film fragment on the board even if it can be removed. If there was none, it was set to “none”

比較例1(ポリウレタンゴム使用)は、室温下(20℃)では使用し得るが、150℃において回路基板への接着が認められる点で優れた異方導電性フィルムとはいえない。
比較例2(シリコーンゴム使用)は、シリコーンの低分子量成分が検査対象物に付着してしまう(転写してしまう)ので、検査用の異方導電性フィルムとしては劣っている。
これらに対し、実施例の異方導電性フィルムは、耐熱性が高く、高温下での融着もなく、低分子量成分による検査対象物の汚染もないので、広範な温度領域で使用可能な優れた異方導電性フィルムである。
Although Comparative Example 1 (using polyurethane rubber) can be used at room temperature (20 ° C.), it cannot be said to be an excellent anisotropic conductive film in that adhesion to a circuit board is observed at 150 ° C.
Comparative Example 2 (using silicone rubber) is inferior as an anisotropic conductive film for inspection because a low molecular weight component of silicone adheres (transfers) to the object to be inspected.
On the other hand, the anisotropic conductive films of the examples have high heat resistance, no fusion at high temperatures, and no contamination of the test object due to low molecular weight components, so they can be used in a wide temperature range. An anisotropic conductive film.

本発明の検査方法を模式的に表す。各部の寸法は説明のために誇張して描いている。The inspection method of the present invention is typically expressed. The dimensions of each part are exaggerated for explanation. 本発明に用いられる異方導電性フィルムの模式図である。図2(a)はフィルム基板の一面にあらわれる導通路の配列パターンを示していて、そのX−X断面図が同図(b)である。It is a schematic diagram of the anisotropic conductive film used for this invention. FIG. 2A shows an arrangement pattern of conduction paths appearing on one surface of the film substrate, and an XX sectional view thereof is FIG. 本発明の異方導電性フィルムの模式図である。It is a schematic diagram of the anisotropic conductive film of this invention. 本発明に用いられる異方導電性フィルムの模式図であって、フィルム基板の一面にあらわれる導通路の配列パターンを示している。なお、この図は図2(a)と同様、フィルム基板の一面の一部を拡大したものであって、フィルム基板の外周形状全体を示すものではない。It is a schematic diagram of the anisotropic conductive film used for this invention, Comprising: The arrangement pattern of the conduction path which appears on the one surface of a film substrate is shown. In addition, this figure expands a part of one surface of a film substrate similarly to Fig.2 (a), Comprising: It does not show the outer peripheral shape whole of a film substrate.

符号の説明Explanation of symbols

1 異方導電性フィルム
10 フィルム基板
11 導通路
2 電子部品
3 回路基板
F 接触荷重
DESCRIPTION OF SYMBOLS 1 Anisotropic conductive film 10 Film board 11 Conduction path 2 Electronic component 3 Circuit board F Contact load

Claims (5)

フェノール樹脂で架橋されたナフタレン骨格エポキシ樹脂と、アクリルゴムとを含むフィルム基板中に、導電性材料からなる複数の導通路が、互いに絶縁された状態で、かつ該フィルム基板を厚み方向に貫通した状態で配置され、各導通路は上記フィルム基板の表裏面に両端部が露出した構造を有する、電子部品検査用の異方導電性フィルム。   In a film substrate containing a naphthalene skeleton epoxy resin cross-linked with a phenol resin and acrylic rubber, a plurality of conductive paths made of a conductive material are insulated from each other and penetrate the film substrate in the thickness direction. An anisotropic conductive film for inspection of electronic parts, wherein the conductive paths are arranged in a state, and each conductive path has a structure in which both ends are exposed on the front and back surfaces of the film substrate. 上記異方導電性フィルムの構造全体の弾性率が20℃〜150℃において1MPa〜100MPaであり、当該異方導電性フィルムの厚みが30μm〜500μmである、請求項1記載の異方導電性フィルム。   2. The anisotropic conductive film according to claim 1, wherein an elastic modulus of the entire structure of the anisotropic conductive film is 1 MPa to 100 MPa at 20 ° C. to 150 ° C., and a thickness of the anisotropic conductive film is 30 μm to 500 μm. . 上記導通路の両端がフィルム基板の表裏面から突出しており、
上記導通路のうちフィルム基板を貫通する部分は、直径5μm〜30μmの金属導線からなり、
上記導通路のフィルム基板からの突出部分は、フィルム基板外に延長している上記金属導線自体からなるか、あるいは、上記金属導線の端部にめっきにより形成された金属凸部からなる、
請求項1または2記載の異方導電性フィルム。
Both ends of the conduction path protrude from the front and back surfaces of the film substrate,
The portion of the conduction path that penetrates the film substrate is made of a metal conductor having a diameter of 5 μm to 30 μm,
The projecting portion of the conductive path from the film substrate consists of the metal conductor itself extending outside the film substrate, or a metal convex portion formed by plating at the end of the metal conductor,
The anisotropic conductive film according to claim 1 or 2.
請求項1〜3のいずれかに記載の異方導電性フィルムを、少なくとも1つの電極を備える電子部品と回路基板との間に、上記電子部品の電極と異方導電性フィルムの導通路とが接触するように配置して、
電子部品の1つの電極あたり50g/mm〜5000g/mmの接触荷重で、異方導電性フィルムと電子部品とを押し付ける方向に荷重をかけながら、電子部品に通電する、電子部品の検査方法。
The anisotropic conductive film according to any one of claims 1 to 3, wherein an electrode of the electronic component and a conductive path of the anisotropic conductive film are provided between an electronic component including at least one electrode and a circuit board. Place it in contact,
In one electrode per 50g / mm 2 ~5000g / mm 2 of the contact load of the electronic component, while applying a load in a direction to press the anisotropic conductive film and the electronic component, energizing the electronic component inspecting method of the electronic component .
上記荷重をかけることにより、異方導電性フィルムが圧縮されて、当該フィルムの厚みが5μm〜150μm減少する、請求項4記載の検査方法。   The inspection method according to claim 4, wherein by applying the load, the anisotropic conductive film is compressed and the thickness of the film is reduced by 5 μm to 150 μm.
JP2003326810A 2003-09-09 2003-09-18 Anisotropic conductive film for electronic component inspection and electronic component inspection method using the same Expired - Fee Related JP4256237B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003326810A JP4256237B2 (en) 2003-09-18 2003-09-18 Anisotropic conductive film for electronic component inspection and electronic component inspection method using the same
DE602004018720T DE602004018720D1 (en) 2003-09-09 2004-09-08 Anisotropic conductive film, manufacturing and use process
EP04021330A EP1515399B1 (en) 2003-09-09 2004-09-08 Anisotropic conductive film, production method thereof and method of use thereof
AT04021330T ATE419661T1 (en) 2003-09-09 2004-09-08 ANISOTROPIC CONDUCTING FILM, PROCESS OF PRODUCTION AND USE
KR1020040072303A KR20050026683A (en) 2003-09-09 2004-09-09 Anisotropic conductive film, production method thereof and method of use thereof
SG200405710A SG110194A1 (en) 2003-09-09 2004-09-09 Anisotropic conductive film, production method thereof and method of use thereof
TW093127253A TW200515644A (en) 2003-09-09 2004-09-09 Anisotropic conductive film, production method thereof and method of use thereof
US10/936,946 US7156669B2 (en) 2003-09-09 2004-09-09 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003326810A JP4256237B2 (en) 2003-09-18 2003-09-18 Anisotropic conductive film for electronic component inspection and electronic component inspection method using the same

Publications (2)

Publication Number Publication Date
JP2005093298A true JP2005093298A (en) 2005-04-07
JP4256237B2 JP4256237B2 (en) 2009-04-22

Family

ID=34456882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326810A Expired - Fee Related JP4256237B2 (en) 2003-09-09 2003-09-18 Anisotropic conductive film for electronic component inspection and electronic component inspection method using the same

Country Status (1)

Country Link
JP (1) JP4256237B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029501A (en) * 2009-07-28 2011-02-10 Akira Technology Co Ltd Method of modifying conductive colloid structure and finished product thereof
CN102981094A (en) * 2012-11-23 2013-03-20 深圳莱宝高科技股份有限公司 Panel testing device
JP2018067483A (en) * 2016-10-20 2018-04-26 ヤマハ株式会社 Anisotropic conductive sheet, electric inspection head, electric inspection device, and method for manufacturing anisotropic conductive sheet
JP6454811B1 (en) * 2018-03-02 2019-01-16 東京特殊電線株式会社 Anisotropic conductive sheet
JP2020091981A (en) * 2018-12-04 2020-06-11 東京特殊電線株式会社 Anisotropic conductive sheet
JP2020091982A (en) * 2018-12-04 2020-06-11 東京特殊電線株式会社 Anisotropic conductive sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199208A (en) * 1996-01-23 1997-07-31 Shin Etsu Polymer Co Ltd Electric connector
JP2000243147A (en) * 1999-02-16 2000-09-08 Nec Corp Anisotropic conductive film, semiconductor device using it, and manufacture thereof
JP2002124319A (en) * 2000-10-18 2002-04-26 Nitto Denko Corp Anisotropic conductive film and inspection method of semiconductor element or electronic component using same
JP2002141121A (en) * 2000-11-06 2002-05-17 Hitachi Ltd Anisotropic conductive film, semiconductor device using the film, and its manufacturing method
JP2002279830A (en) * 2001-03-19 2002-09-27 Nitto Denko Corp Anisotropic conductive film
JP2002327162A (en) * 2001-03-01 2002-11-15 Hitachi Chem Co Ltd Anisotropically conductive adhesive composition, method for connecting circuit terminal and connection structure of the circuit terminal
JP2003197033A (en) * 2001-12-27 2003-07-11 Hitachi Chem Co Ltd Anisotropic conductive adhesive and circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199208A (en) * 1996-01-23 1997-07-31 Shin Etsu Polymer Co Ltd Electric connector
JP2000243147A (en) * 1999-02-16 2000-09-08 Nec Corp Anisotropic conductive film, semiconductor device using it, and manufacture thereof
JP2002124319A (en) * 2000-10-18 2002-04-26 Nitto Denko Corp Anisotropic conductive film and inspection method of semiconductor element or electronic component using same
JP2002141121A (en) * 2000-11-06 2002-05-17 Hitachi Ltd Anisotropic conductive film, semiconductor device using the film, and its manufacturing method
JP2002327162A (en) * 2001-03-01 2002-11-15 Hitachi Chem Co Ltd Anisotropically conductive adhesive composition, method for connecting circuit terminal and connection structure of the circuit terminal
JP2002279830A (en) * 2001-03-19 2002-09-27 Nitto Denko Corp Anisotropic conductive film
JP2003197033A (en) * 2001-12-27 2003-07-11 Hitachi Chem Co Ltd Anisotropic conductive adhesive and circuit board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029501A (en) * 2009-07-28 2011-02-10 Akira Technology Co Ltd Method of modifying conductive colloid structure and finished product thereof
CN102981094A (en) * 2012-11-23 2013-03-20 深圳莱宝高科技股份有限公司 Panel testing device
CN102981094B (en) * 2012-11-23 2016-04-13 深圳莱宝高科技股份有限公司 A kind of panel tester
JP2018067483A (en) * 2016-10-20 2018-04-26 ヤマハ株式会社 Anisotropic conductive sheet, electric inspection head, electric inspection device, and method for manufacturing anisotropic conductive sheet
JP6454811B1 (en) * 2018-03-02 2019-01-16 東京特殊電線株式会社 Anisotropic conductive sheet
WO2019168147A1 (en) * 2018-03-02 2019-09-06 東京特殊電線株式会社 Anisotropic conductive sheet
JP2019153571A (en) * 2018-03-02 2019-09-12 東京特殊電線株式会社 Anisotropic conductive sheet
JP2020091981A (en) * 2018-12-04 2020-06-11 東京特殊電線株式会社 Anisotropic conductive sheet
JP2020091982A (en) * 2018-12-04 2020-06-11 東京特殊電線株式会社 Anisotropic conductive sheet
JP7296716B2 (en) 2018-12-04 2023-06-23 株式会社Totoku anisotropic conductive sheet

Also Published As

Publication number Publication date
JP4256237B2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
JP3179503B2 (en) Anisotropic conductive film and method for producing the same
JP4920769B2 (en) Conductive contact holder
KR20050026683A (en) Anisotropic conductive film, production method thereof and method of use thereof
US11402408B2 (en) Electrical characteristics inspection tool
US20090273357A1 (en) Contact for electrical test of electronic devices, method for manufacturing the same, and probe assembly
JP3737899B2 (en) Semiconductor element inspection method and anisotropic conductive film therefor
JP5408602B2 (en) Multilayer wiring board
JP4256237B2 (en) Anisotropic conductive film for electronic component inspection and electronic component inspection method using the same
JP2002124319A (en) Anisotropic conductive film and inspection method of semiconductor element or electronic component using same
JP7336894B2 (en) Framed anisotropically conductive sheet, method for producing same, and method for using same
JP2000294043A (en) Anisotropic conductive connector
KR20220071981A (en) Seat Connectors, Seat Sets, Electrical Inspection Apparatus and Electrical Inspection Methods
KR20090082370A (en) Method of connecting circuit boards and connected structure
JP2001036245A (en) Manufacture of wiring board
JP2001052780A (en) Electric connector and its manufacture
JP2001004700A (en) Interposer board
JP2009222680A (en) Probe card and method for manufacturing probe card
JP2002031646A (en) Conductive sheet for electric inspection and its manufacturing method
JP2002151549A (en) Anisotropic conductive film
JP2010010142A (en) Thermosetting circuit connection member and connection structure of electrode using it and connecting method of electrode
JP2000002746A (en) Probe structure
JP2003084040A (en) Manufacturing method for semiconductor inspecting device and semiconductor inspecting device
KR980013552A (en) A connection sheet for mutually connecting the electrodes facing each other, and an electrode connection structure and a connection method using the connection sheet
JP2021182520A (en) Anisotropic conductive sheet
JP2006162605A (en) Sheet-like probe, probe card, and wafer inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150206

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees