JP2005083918A - 形状測定装置、形状測定方法、形状解析装置、形状解析プログラムおよび記録媒体 - Google Patents

形状測定装置、形状測定方法、形状解析装置、形状解析プログラムおよび記録媒体 Download PDF

Info

Publication number
JP2005083918A
JP2005083918A JP2003316829A JP2003316829A JP2005083918A JP 2005083918 A JP2005083918 A JP 2005083918A JP 2003316829 A JP2003316829 A JP 2003316829A JP 2003316829 A JP2003316829 A JP 2003316829A JP 2005083918 A JP2005083918 A JP 2005083918A
Authority
JP
Japan
Prior art keywords
measured
straight
straight ruler
ruler
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003316829A
Other languages
English (en)
Other versions
JP4323267B2 (ja
Inventor
Masayuki Nara
正之 奈良
Makoto Abe
阿部  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003316829A priority Critical patent/JP4323267B2/ja
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to EP04255445A priority patent/EP1515115B1/en
Priority to DE602004005388T priority patent/DE602004005388T2/de
Priority to DE602004017513T priority patent/DE602004017513D1/de
Priority to EP06119993A priority patent/EP1742018B1/en
Priority to US10/936,509 priority patent/US7188046B2/en
Priority to CNB2004100785395A priority patent/CN100375884C/zh
Publication of JP2005083918A publication Critical patent/JP2005083918A/ja
Priority to US11/652,504 priority patent/US7483807B2/en
Application granted granted Critical
Publication of JP4323267B2 publication Critical patent/JP4323267B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

【課題】平面多角形について各辺の表面凹凸および各内角を簡便かつ高精度に求めることができる形状測定装置を提供する。
【解決手段】 直定規21と被測定物5の辺とを組合せてそ互いの間隔を測定した測定データを取得する測定部2と、参照直線Rから直定規21および被測定物5の辺までの距離を表す形状示数と、被測定物5の内角および直定規21が構成する角を表す角度示数θとが設定された示数設定部と、測定データに基づいて直定規21と被測定物5の辺とで構成される組についての連立式を導出する連立式導出部と、導出された連立式を解く連立式演算部とを備えている。
【選択図】 図6

Description

本発明は、形状測定装置、形状測定方法、形状解析装置、形状解析プログラムおよび記録媒体に関する。例えば、平面多角形について各辺の凹凸形状や角度のずれなどを求める形状測定装置等に関する。
平面多角形状の被測定物を測定するにあたっては、各辺の表面凹凸および角度を測定する必要があり、例えば、4直角スコヤについては各辺の真直度と四つの角の直角度とを測定する必要がある。
各辺の真直度は、例えば、直定規に沿って移動する検出器(電気マイクロメータ等)によって測定対象辺を走査して、真直基準となる直定規からのずれに基づいて真直度を測定していた。一方、直角度は、互いに直角に配置された基準定規の内側に4直角スコヤを配置して基準定規と4直角スコヤの各辺との距離を測定して直角度を測定していた(特許文献1)。
しかしながら、上記のようにある基準からのずれに基づいた測定によると、測定時において基準と被測定物との配置姿勢がずれていたり、基準に加工誤差があったりすると、このようなずれが測定結果に含まれることになるので高精度な測定を期待できないという問題が生じる。
真直度の校正にあっては、基準定規や測定時の配置姿勢に影響を受けない測定方法として三面合わせ法が提案されている(例えば、特許文献2、特許文献3)。
三面合わせ法は、三つの棒状の被測定物(AとBとC)を組み合わせてできる三組(AとB、BとC、CとA)について、各組(例えばAとB)を対向させて測定面間距離を複数点にて測定する。この測定面間距離の測定を各組で行って、三組の被測定物対に成立する連立方程式を解く。すると、仮想基準線からのずれとして各被測定物の真直度が算出される。このようにすると、基準定規の加工誤差や、基準定規と被測定物との配置姿勢等に影響されずに真直度の評価が可能となる利点がある。
特開平9−243351号 特開平2−253114号 特開2003−121131号
上記の三面合わせ法によれば、真直度が未知の定規を用いても被測定物の真直度を正確に評価できるが、一次元的な計算に限られているという問題がある。つまり、4直角スコヤのように平面多角形の被測定物に関し、各辺の真直度は評価できても角の直角度を評価することまではできないという問題がある。そして、一次元的な計算方法を辺と辺との姿勢まで含めた二次元的計算に拡張することは、連立方程式を解くための未知数を増やすことになるので単純ではないという問題がある。
本発明の目的は、基準定規や測定姿勢に関係なく、平面多角形について各辺の表面凹凸および各内角を簡便かつ高精度に求めることができる平面多角形の形状測定装置、形状測定方法、形状測定プログラムおよび記録媒体を提供することにある。
請求項1に記載の形状測定装置は、二本の直定規を有するとともにこれら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを取得する測定部と、前記被測定物の各辺および前記直定規にそれぞれ設定された参照直線から前記直定規および被測定物の各辺までの距離を各サンプリング点において表す形状示数、および、前記被測定物の内角および前記直定規が構成する角を表す角度示数が設定された示数設定部と、前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、二つの前記直定規の各参照直線がなす角と被測定物の各内角とを用いて、一方の前記直定規と前記被測定物の一辺との関係は他方の前記直定規と前記被測定物の他辺との関係によって表されるとして、前記直定規と前記被測定物の各辺とで構成される組についての連立式を導出する連立式導出部と、導出された前記連立式を解く連立式演算部と、を備えていることを特徴とする。
ここで、前記参照直線は、直定規の被検面、および、被測定物の各辺の被検面をそれぞれ最小自乗回帰して得られる最小自乗直線とすることが例として挙げられる。
このような構成によれば、測定部において直定規と被測定物の辺との間隔を測定した測定データが取得される。例えば、二本の直定規の延長線が所定角度をなす状態に二本の直定規が配置され、さらに、直定規のそれぞれと被測定物の辺とが略平行に対向する状態に被測定物が配置されて、各サンプリング点おいて直定規と被測定物の辺との間隔が測定される。そして、被測定物がローテーションされて直定規と被測定物の辺との組み合わせが換えられてすべての可能な組み合わせについて直定規と被測定物の辺との距離が測定される。このようにして得られた測定データは解析部に送られる。
示数設定部で設定された形状示数および角度示数と取得された測定データとを用い、連立式導出部において連立式が導出される。このとき、直定規から被測定物の辺までの距離の関係に加えて、二本の直定規と被測定物の内角との関係も加味した連立式が立てられる。連立式演算部によってこれらの連立式が演算処理されて、被測定物の形状示数および角度示数が算出される。なお、このような連立方程式の計算は行列を利用すれば、簡便な計算で完了する。
被測定物の辺について各サンプリング点における形状示数によって、被測定物の辺と参照直線とのずれが示される。そして、例えば、辺に関する形状示数のうち、最大値と最小値との差から辺の真直度が示されるなど、形状に関する情報が得られる。また、被測定物の角度示数によって被測定物の各内角について情報を得ることができる。例えば、被測定物が4直角スコヤであれば、各内角が90°からずれている量が得られる。加えて、直定規の形状示数によって直定規の真直度をはじめとする形状に関する情報が得られる。
真直度が未知の直定規から被測定物の辺までの距離を測定した測定データを演算処理することにより被測定物の形状を求めることができ、直定規の精度に関係なく演算によって精密に被測定物の形状測定を行うことができる。
各サンプリング点での形状示数を算出することができるので、単なる真直度の評価にとどまらず被測定物の各辺の表面凹凸まで求めることができる。さらに、被測定物の内角を角度示数として算出することができるので、被測定物の各辺の真直度に加えて被測定物の内角まで求めることができる。
二本の直定規と被測定物の各辺とを対にしてその間隔を測定できれば演算処理を行うことができるので、原則として平面多面体であればどんな形状でも辺の形状や内角の大きさを測定することができる。
ここで、測定部の直定規とは、必ずしも真直加工されて真直基準となる直定規の意味ではなく、直線状の棒体であればよい。直定規の形状示数から直定規の形状も求まることから、場合によっては、この直定規も形状測定の対象としてもよい。
請求項2に記載の形状測定は、請求項1に記載の形状測定装置において、前記測定部は、前記直定規と前記被測定物の辺との間の間隔を測定する測長センサを有し、前記測長センサは、二つの前記直定規のそれぞれに辺を対向させて配置された被測定物とこれら直定規との間で前記直定規の長手方向に移動可能に設けられた本体部と、前記直定規とこの直定規に対向する被測定物の辺とを最短で結ぶ方向で前記本体部から互いに反対に向けて進退可能に設けられた第1スピンドルおよび第2スピンドルと、第1スピンドルおよび第2スピンドルの進退量を検出する検出部と、を備えていることを特徴とする。
このような構成によれば、測長センサは互いに反対方向に進退するスピンドルを有し、これらスピンドルの進退量の総和から直定規と被測定物の辺との距離を検出する。すると、測長センサを移動させる移動軸が直定規と被測定物の辺とを結ぶ方向にずれても、検出値は直定規と被測定物の辺との距離を正確に表す。したがって、被測定物の辺と直定規との間隔が正確に検出される。
請求項3に記載の形状測定方法は、二本の直定規を有するとともにこれら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを取得する測定工程と、前記被測定物の各辺および前記直定規にそれぞれ設定された参照直線から前記直定規および被測定物の各辺までの距離を各サンプリング点において表す形状示数、および、前記被測定物の内角および前記直定規が構成する角を表す角度示数が設定された示数設定工程と、前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、二つの前記直定規の各参照直線がなす角と被測定物の各内角とを用いて、一方の前記直定規と前記被測定物の一辺との関係は他方の前記直定規と前記被測定物の他辺との関係によって表されるとして、前記直定規と前記被測定物の各辺とで構成される組についての連立式を導出する連立式導出工程と、導出された連立式を解く連立式演算工程と、を備えていることを特徴とする。
このような構成によれば、請求項1に記載の発明と同様の作用効果を奏することができる。
請求項4に記載の形状測定方法は、請求項3に記載の形状測定方法において、前記測定工程は、二本の前記直定規の延長線が所定角度をなす状態に配置された前記直定規のそれぞれに被測定物の辺を略平行に対向させた状態で、一方の直定規と被測定物の一辺との間隔および他方の直定規と被測定物の他辺との間隔を測定する間隔測定工程と、二つの前記直定規の姿勢はそのままで被測定物をローテーションさせて前記直定規と前記被測定物の辺との組み合わせを換える組合せ変更工程と、を備えることを特徴とする。
このような構成によれば、二本の直定規の延長線が所定角度をなす状態に配置され、さらに、直定規のそれぞれと被測定物の辺とが略平行に対向する状態に被測定物が配置される。この状態で間隔測定工程において、直定規と被測定物の辺との間隔を測定した測定データが取得される。例えば、4直角スコヤの辺を第1辺、第2辺、第3辺および第4辺としたとき、第1の直定規に対向して第1辺が配置され、第2の直定規に対向して第2辺が配置されたとする。そして、第1の直定規と第1辺との間隔、および、第2の直定規と第2辺との間隔が所定のサンプリングピッチで測定される。
第1の直定規と第1辺との間隔および第2の直定規と第2辺との間隔が測定されたところで、組合せ変更工程において、第1の直定規および第2の直定規の姿勢はそのままの状態で被測定物がローテーションされて直定規と辺との組み合わせが変更される。例えば、第1の直定規に対しては第2辺が対向し、第2の直定規に対しては第3辺が対向して配置されたとする。そして、この組み合わせで直定規と辺との間隔が測定されて測定データが取得される。以後、被測定物がローテーションされて直定規と被測定物の辺との組み合わせが変更され、すべての可能な組み合わせについて直定規と被測定物のとの距離が測定される。
ここで、本発明の形状測定方法において、測定工程は、一方の直定規と他方の直定規とを一定の間隔をもって略平行に配置してこの間隔を前記測長センサによって測定して測定データを得る直定規間隔測定工程を有する。すると、連立式を解くための条件式がさらに加えられるので、連立式を解いて形状示数および角度示数を求めることができる。
請求項5に記載の形状解析装置は、二本の直定規を有するとともにこれら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを解析して前記被測定物形状を求める形状解析装置であって、前記被測定物の各辺および前記直定規にそれぞれ設定された参照直線から前記直定規および被測定物の各辺までの距離を各サンプリング点において表す形状示数、および、前記被測定物の内角および前記直定規が構成する角を表す角度示数が設定された示数設定部と、前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、二つの前記直定規の各参照直線がなす角と被測定物の各内角とを用いて、一方の前記直定規と前記被測定物の一辺との関係は他方の前記直定規と前記被測定物の他辺との関係によって表されるとして、前記直定規と前記被測定物の各辺とで構成されるすべての組についての連立式を導出する連立式導出部と、導出された連立式を解く連立式演算部と、を備えていることを特徴とする。
このような構成によれば、請求項1に記載の発明に同様の作用効果を奏することができる。
請求項6に記載の形状解析プログラムは、二本の直定規を有するとともにこれら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを解析して前記被測定物形状を求める形状解析装置に組み込まれたコンピュータを、前記被測定物の各辺および前記直定規にそれぞれ設定された参照直線から前記直定規および被測定物の各辺までの距離を各サンプリング点において表す形状示数、および、前記被測定物の内角および前記直定規が構成する角を表す角度示数が設定された示数設定部と、前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、二つの前記直定規の各参照直線がなす角と被測定物の各内角とを用いて、一方の前記直定規と前記被測定物の一辺との関係は他方の前記直定規と前記被測定物の他辺との関係によって表されるとして、前記直定規と前記被測定物の各辺とで構成される組についての連立式を導出する連立式導出部と、導出された連立式を解く連立式演算部と、して機能させることを特徴とする。
請求項7に記載の記録媒体は、請求項6に記載の形状解析プログラムを記録したことを特徴とする。
このような構成によれば、請求項1に記載の発明と同様の作用効果を奏することができる。さらに、CPU(中央処理装置)やメモリ(記憶装置)を有するコンピュータを組み込んでこのコンピュータに各機能を実現させるようにプログラムを構成すれば、各機能におけるパラメータを容易に変更することができる。例えば、示数設定部において設定される形状示数や角度示数などを被測定物の形状にあわせて容易に設定変更することができる。例えば、角度示数を正多角形(正n角形)の内角180×(n−2)/nからのずれとして設定する場合でも、被測定物の形状に応じて簡便に設定変更できる。また、形状示数を参照直線からのずれとして設定する場合に、参照直線を最小自乗直線など種々の近似直線に設定することができる。そして、このプログラムを記録した記録媒体をコンピュータに直接差し込んでプログラムをコンピュータにインストールしてもよく、記録媒体の情報を読み取る読取装置をコンピュータに外付けし、この読取装置からコンピュータにプログラムをインストールしてもよい。なお、プログラムは、インターネット、LANケーブル、電話回線等の通信回線や無線によってコンピュータに供給されてインストールされてもよい。
以下、本発明の実施の形態を図示するとともに図中の各要素に付した符号を参照して説明する。
図1に、本発明の形状測定装置に係る一実施形態の構成を示す。
この形状測定装置1は、二本の直定規21、22を有するとともに直定規21、22と被測定物5の辺(51〜54)との間隔mを異なる組み合わせにおいて複数点で測定した測定データを取得する測定部2と、取得した測定データを演算処理して被測定物形状を解析する解析部(形状解析装置)3と、解析結果を出力する出力部4を備えて構成されている。
測定部2は、互いの延長線が所定の角度をなす状態に配置された二本の直定規21、22と、これら直定規21、22のそれぞれに辺(51〜54)を対向させて配置された被測定物5と直定規21、22との間の間隔を所定の複数点で測定する測長センサ24と、測長センサ24を直定規21、22の長手方向に沿って移動させる移動機構(不図示)と、を備えている。
直定規21、22は二本設けられており、被測定物5をこれら二本の直定規21、22で構成される角側(180°よりも小さい角側)に受け入れられる程度に開いて配置されている。二本の直定規21、22は、被測定物5における最大の内角(55〜58)に同等程度の角度をなして配置されており、例えば、4直角スコヤを被測定物5とする場合には、二本の直定規21、22は互いの延長線が約直角をなす状態で配置されている。直定規21、22において被測定物5側に向けられる被検面は、できるかぎり真直に加工されるのが望ましいのはもちろんであるが、本測定方法は直定規21、22の加工誤差に影響されないので必ずしも高精度に真直加工される必要はない。
直定規21、22は、被測定物5の辺に対して対向配置されたときに被測定物5の辺(51〜54)上の点に向き合う対応点を有することが必要であり、少なくとも被測定物5の最長辺に同等以上の長さを有する。
ここで、一方の直定規を第1直定規21とし、他方の直定規を第2直定規22とする。
測長センサ24は、直定規21、22の長手方向に移動可能に設けられ直定規21、22と被測定物5との間隔mを所定のサンプリングピッチで測定する。
測長センサ24は、直定規21、22の長手方向に移動可能に設けられた本体筒部(本体部)25と、本体筒部25から互いに反対方向に進退可能に設けられた第1スピンドル26および第2スピンドル27と、第1スピンドル26および第2スピンドル27の進退量を検出する検出部(不図示)と、を備えている。第1スピンドル26および第2スピンドル27の先端には対象物に当接する接触子261、271が設けられている。
二本の直定規21、22に辺(51〜54)を対向させて被測定物5を配置したとき、測長センサ24は、直定規21、22と被測定物5との間で第1スピンドル26を直定規21(22)に向け、第2スピンドル27を被測定物5に向けて配置される。測長センサ24が直定規21、22に沿って移動すると、直定規21、22の表面凹凸および被測定物5の表面凹凸に応じて第1スピンドル26および第2スピンドル27が進退され、第1スピンドル26および第2スピンドルの進退量の総和から直定規21、22と被測定物5の辺(51〜54)との距離mが検出される。
移動機構は、特に図示しないが、直定規21、22に沿って配設された駆動軸と、この駆動軸上をスライド移動可能に設けられたスライダとを備えた構成が例として挙げられる。そして、測長センサ24をスライダに取り付けて一体的に移動させればよい。なお、スライダは、測長センサ24のサンプリングピッチに対応して所定の移動ピッチを設定可能であることが好ましい。
なお、特に図示しないが、直定規21、22および被測定物5を載置する略平坦に加工された載置台を備えていることが好ましく、さらに、直定規21、22および被測定物5の位置を位置決めする位置決め手段が設けられていることが好ましい。このような位置決め手段としては、載置台から突出する位置決めピンや位置決め板などであればよく、さらに、位置決めピンや位置決め板は移動可能であって任意の位置で固定可能であることが好ましい。
解析部3は、図2に示されるように、測定部2によって取得された測定データを記憶する測定データ記憶部31と、直定規21、22および被測定物5の形状を表す示数を設定する示数設定部32と、測定データと設定された示数との関係を表す連立式を立てる連立式導出部33と、導出された連立式を解く連立式演算部34と、解析部3の動作を制御する中央演算処理部(CPU)35とを備えている。これら測定データ記憶部31、示数設定部32、連立式導出部33、連立式演算部34およびCPU35はバス36を介して接続されている。
測定データ記憶部31は、測定部2で取得された測定データを記憶し、例えば、図3に示されるように各直定規21、22と被測定物5の各辺(51〜54)との組み合わせについて各サンプリング点xiでの距離m(xi)を記憶する。
示数設定部32は、例えば図4、図5に示されるように、直定規21、22の形状、被測定物5の形状、被測定物の内角、および、直定規21、22の設置姿勢を表す未知数として設定された示数を記憶している(示数設定工程)。
被測定物5の各辺(51〜54)および直定規21、22の形状を示す形状示数(L1、L2、S1、S2、S3、S4・・)の設定について説明する。
被測定物5の各辺(51〜54)の被検面および各直定規21、22の被検面は凹凸を有しているところ、図6に示されるように、このような被検面を直線回帰する参照直線(R1〜R6)を仮想的に設定する。さらに、仮想的に設定された参照直線(R1〜R6)から被検面までの残差(距離)を形状示数として設定する。参照直線R1〜R6としては最小自乗直線とすることが例示される。
第1直定規21について参照直線R1からの残差をL1で表し、サンプリング点xiにおける残差を形状示数L1(xi)で表す(図4参照)。同様に第2直定規22についてサンプリング点xiにおける残差を形状示数L2(xi)として表す。
また、被測定物5の第1辺51について参照直線R3からの残差をS1で表し、サンプリング点(xi)における残差を形状示数S1(xi)で表す。同様に、被測定物5の第2辺52、第3辺53、第4辺54・・・について参照直線(R4〜R6)からの残差を形状示数S2(xi)、S3(xi)、S4(xi)・・・として表す。
これら形状示数(L1、L2、S1、S2、S3、S4・・・)によって被測定物5の各辺(51〜54)および直定規21、22の被検面の凹凸が参照直線(R1〜R6)からの凹凸として表されることになる。
被測定物5の内角(55〜58)の大きさを表す角度示数の設定について説明する。
被測定物5である多角形(例えばn角形)の各内角(55〜58)は180×(n−2)/nからずれているところ、これらの内角(55〜58)が正多角形(正n角形)の内角からずれた角度を角度示数として設定する。例えば、被測定物5の平面多角形について内角を第1角55、第2角56、第3角57、第4角58・・とすると、それぞれの角が180×(n−2)/nからずれている角度を角度示数α、β、γ、δ・・として設定する。なお、被測定物5の内角(55〜58)の角度は各辺(51〜54)の参照直線(R3〜R6)がなす角として規定される。例として、被測定物5が4直角スコヤであった場合、角度示数は90°からのずれとして設定される。すなわち、4直角スコヤの内角は、第1角(55)が90°+α、第2角(56)が90°+β、第3角(57)が90°+γ、第4角(58)が90°+δで表される。
また、二本の直定規21、22が設置された姿勢を表す示数を被測定物5の内角にあわせて180×(n−2)/nからのずれとして表し、二本の直定規21、22の参照直線R1、R2がなす角が180×(n−2)/nからずれている角度を角度示数θとして表す。
これら角度示数(α、β、γ、δ、・・)によって被測定物5の内角(55〜58)が表される。
連立式導出部33は、測定部2で取得された測定データm(xi)と、示数設定部32で設定された形状示数L(xi)、S(xi)および角度示数α〜γとが満たす式を立てる(連立式導出工程)。連立式導出部33に設定されている式の導出過程を簡単に説明する。
直定規21、22の参照直線R1、R2と被測定物5の各辺(51〜54)の参照直線R3〜R6との距離をDで表し、例えば、第1直定規21の参照直線R1と被測定物5の第1辺(51)の参照直線R1との距離をD11で表す。すると、第1直定規21と被測定物5の第1辺51との間には次の式が成立する。
Figure 2005083918
同様に、第2直定規22と第2辺52との間の関係など、直定規21、22と被測定物5の各辺(51〜54)との組み合わせについて式を立てると、次の式が成立する。
Figure 2005083918
また、第1直定規21と第2直定規22とを略平行に配置したときの各参照直線間R1、R2の距離をD5として表すと、次の式が成立する。
Figure 2005083918
対になる参照直線において一方の参照直線が他方の参照直線に対してなす傾きをuとしサンプリング点x0における参照直線間の距離をwとするとき、参照直線間の距離Dはuとwとを用いた一次式で表現される。例えば、第1直定規21の参照直線R1と第1辺51の参照直線R3との距離D11は、傾きu11と、切片w11とを用いて次の式で表される。
Figure 2005083918
同様に、第2直定規22の参照直線R2と第2辺52の参照直線R4との距離D22は、傾きu22と切片w22とを用いて表され、以下同様である。
Figure 2005083918
ここで、第1直定規21および第2直定規22の各参照直線R1、R2がなす角(角度示数θ)と被測定物5の各内角(角度示数α、β、・・・)とを用いて、第2直定規22と被測定物5の辺(51〜54)との関係は第1直定規21と被測定物5の辺(51〜54)との関係によって表される。例えば、第1直定規21の参照直線R1が第1辺51の参照直線R3に対する傾きu11によって第2直定規22の参照直線R2が第2辺52の参照直線R4に対する傾きu22は、次の式で表される。
Figure 2005083918
同様に、被測定物5の一辺と第1直定規21とで構成される組と、被測定物5の一辺に隣接する辺と第2直定規22とで構成される組との関係は、一方組みの相対姿勢によって他方組みの相対姿勢が表される関係にある。4直角スコヤを例にすると次のように表される。
Figure 2005083918
直定規21、22と被測定物5の辺(51〜54)との距離mから導かれた式(1)から式(5)に対して、式(6)から式(10)および式(11)から式(14)を代入することにより、次の式を得ることができる。
Figure 2005083918
さらに、n角形である被測定物5の内角55〜58の和が180×(n−2)であるので、例えば、4直角スコヤであれば内角の和が360度であることから次の式が成立つ。
Figure 2005083918
ここで、参照直線R1〜R6は、被検面の最小自乗直線としたので、次の式が成立つ。ここで、これらの式は、参照直線R1〜R6を被検面の最小自乗直線としたことから未定乗数法により導出される。
Figure 2005083918
連立式導出部33は、上記の式(15)から(30)の式を記憶しており、測定データ記憶部31に記憶された測定データを上記の式に代入して連立式を立てる。
連立式演算部34は、連立式導出部33で立てられた式(15)から式(30)の連立式を演算処理することによって、図4のテーブルに示される形状示数(L1(xi)、L2(xi)、S1(xi)、S2(xi)、・・・、)および図5のテーブルに示される角度示数(α、β、γ、δ、θ)を算出する(連立式演算工程)。
算出された各示数は、出力部4に出力される。出力部4としては、演算処理結果を表示または印刷できるモニタやプリンタ等の外部出力機器が例として挙げられる。
このような構成を備える形状測定装置1を用いて平面多角形である被測定物5の形状を測定する場合について説明する。
測定部2において直定規21、22と被測定物5の辺51〜54との間隔mを測定した測定データを取得する(測定工程)。二本の直定規21、22の延長線が所定角度をなす状態に配置し、さらに、直定規21、22のそれぞれと被測定物5の辺とが略平行に対向する状態に被測定物5を配置する。例えば、4直角スコヤの辺を第1辺51、第2辺52、第3辺53および第4辺54としたとき、第1直定規21に対向して第1辺51が配置され、第2直定規22に対向して第2辺52が配置されたとする。直定規21、22と辺51、52との平行度は厳密でなくてもよく、直定規21、22と辺51、52との間隔が測長センサ24の測定レンジに収まっていればよい。
測長センサ24の移動ピッチを設定しておいて、この移動ピッチごとに直定規21、22と被測定物5の辺51、52との間隔mを測長センサ24で測定する(間隔測定工程)。すると、第1直定規21と第1辺51との間隔m11および第2直定規22と第2辺52との間隔m22が所定のサンプリングピッチで測定される。
例えば、サンプリング点の座標を直定規21、22に沿って直定規の一端から順にx0、x1、x2・・xi・・xnと規定して、第1直定規21と第1辺51との間隔の測定データをm11として表すと、第1定規21と第1辺51との間隔がm11(x0)、m11(x1)、m11(x2)・・m11(xi)・・m11(xn)として測定される(例えば、図3参照)。
第1直定規21と第1辺51との間隔m11(xi)および第2直定規22と第2辺52との間隔m22(xi)が測定されたところで、第1直定規21および第2直定規22の姿勢はそのままの状態で被測定物5をローテーションさせて直定規21、22と辺51〜54との組み合わせを変える(組合せ変更工程)。例えば、第1直定規21に対しては第2辺52が対向し、第2直定規22に対しては第3辺53が対向して配置されたとする。
そして、この組み合わせで直定規21、22と辺52、53との間隔m12、m23を測定して測定データを取得する。以後、被測定物5をローテーションさせて直定規21、22と被測定物5の辺51〜54との組み合わせ換え、すべての可能な組み合わせについて直定規21、22と被測定物5の辺51〜54との距離を測長センサ24で測定する(例えば、図3参照)。
さらに、第1直定規21と第2直定規22とを一定の間隔を持って略平行に配置して、この間隔を測長センサによって測定して測定データm5(xi)を得る(直定規間隔測定工程、図2中最下欄参照)。
ここで、直定規21、22と辺51〜54とによる総ての組み合わせにおいて直定規21、22と辺51〜54との間隔を測定するサンプリングの点は同じである。すなわち、直定規21、22に沿って一端から順にx0、x1、x2・・・xi・・xnとサンプリング点を規定するとき、サンプリング点は第1直定規21でも第2直定規22でも同じ間隔で設定される。そして、第1直定規21と第1辺51との間隔m11を測定したときにサンプリング点xiに対応する第1辺51上の点は、被測定物5をローテーションさせて第2直定規22と第1辺51との間隔m21を測定する場合でもサンプリング点xiに対応する第1辺51上の点になる。
このようにして得られた測定データは、解析部3に送られ測定データ記憶部31に記憶される(図2、3参照)。
測定データ記憶部31に記憶された測定データ(図3)と示数設定部32で設定された形状示数および角度示数(図4、5参照)とが連立式導出部33において予め設定された連立式(15)から式(23)に代入され、連立方程式(15)から式(30)が立てられる。連立式演算部34によってこれらの式(15)から式(30)が演算処理されて、被測定物の形状示数(S1、S2・・)および角度示数(α、β・・)が算出される。なお、このような連立方程式は行列を利用して計算を行えば簡便な計算で完了する。
被測定物5の形状示数S1(xi)、S2(xi)、S3(xi)、S4(xi)・・によって、各サンプリング点において被測定物5の辺(51〜54)の被検面と直線とのずれが示される。例えば、第1辺51に関する形状示数S1(xi)のうち、最大値と最小値との差から第1辺の真直度が示されるなど、形状に関する情報が得られる。
また、被測定物5の角度示数α、β、γ、δ・・によって被測定物5の各内角(55〜58)について180×(n−2)/nからのずれが求められる。例えば、被測定物が4直角スコヤであれば、各内角が90°からずれている量が得られる。
加えて、直定規21、22の形状示数L1(xi)、L2(xi)によって直定規21、22の真直度を始めとする形状に関する情報が得られる。
以上、このような構成を備える形状測定装置1によれば、次に示すような顕著な効果を奏することができる。
(1)真直度が未知の直定規21、22から被測定物5の辺51〜54までの距離を測定した測定データを演算処理することによって被測定物5の形状を求めることができる。したがって、直定規21、22の精度に関係なく演算によって精密に被測定物5の形状測定を行うことができる。
(2)各サンプリング点での形状示数(Li、Si)を算出することができるので、単なる真直度の評価にとどまらず被測定物5の各辺の表面凹凸まで求めることができる。
(3)被測定物5の内角を角度示数(α、β、・・)として算出することができるので、被測定物5の各辺(51〜54)の真直度に加えて被測定物5の内角(55〜58)まで求めることができる。
(4)直定規21、22と被測定物5の各辺(51〜54)との距離を求める場合でも直定規21、22と被測定物5との配置姿勢は演算結果に影響しないので、配置姿勢に関わらず精密な測定結果を得ることができる。そして、配置姿勢は結果に影響しないので、配置を正確にするために手間をかける必要がなく簡便かつ短時間で測定作業を行うことができる。例えば、直定規21、22同士を厳密に90°で交差させたり、直定規21、22と被測定物5の辺51〜54とを厳密に平行配置したりする必要はない。
(5)測長センサ24は互いに反対方向に進退するスピンドル26、27を有し、これらスピンドル26、27の進退量の総和から直定規21、22と被測定物5の辺51〜54との距離を検出するので、直定規21、22と被測定物5の辺51〜54との間隔を正確に検出することができる。例えば、測長センサ24を移動させる移動軸が直定規21、22と被測定物5の辺51〜54とを結ぶ方向にずれても検出値は直定規21、22と被測定物5の辺51〜54との距離を正確に表す。
(6)二本の直定規21、22と被測定物5の各辺51〜54とを対にしてその間隔を測定できれば演算処理を行うことができるので、原則として平面多面体であればどんな形状でも辺の形状や内角の大きさを測定することができる。
尚、本発明の形状測定装置(形状測定方法)は、上記実施形態にのみ限定されず、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
平面多角形の被測定物5として4直角スコヤを例に説明したが、本発明の形状測定装置(形状測定方法)は、二本の直定規21、22との間隔を測定できれば種々の平面多角形状に適用できる。つまり、二本の直定規21、22で構成される角度のうち小さい角度側に被測定物5を配置したときに、直定規21、22と被測定物5の辺(51〜54)との間隔が測長センサ24の測定レンジに入ることが必要である。このとき、直定規21、22の姿勢はそのままで被測定物5をローテーションさせたときに直定規21、22と被測定物5の辺(51〜54)との総ての組で間隔が測定レンジに収まることが必要である。よって、例えば、内角が180°以上の凹角を有する凹多面体などは被測定物5としてはあまり好ましくはないと考えられる。
また、連立方程式を立てるためには、ある組合わせで直定規21、22と被測定物5の辺51〜54との間隔を測定した測定データが、他の組で直定規21、22と被測定物5の辺51〜54との間隔を測定した測定データに対応して存在していることが必要であるので、各組で対応する測定データが存在する程度に被測定物5の各辺(51〜54)の長さが揃っていることが好ましい。
測長センサ24の構成は限定されず、間隔を測定できればよい。例えば、本体部25の底部を直定規21、22および被測定物5のいずれか一方に当接させて先端をいずれか他方に当接させてもよい。そして、接触式の測長センサ24に限られず、非接触式の測長センサであってもよい。例えば、被測定物と静電容量結合する電極を有し、この電極の電位に基づいて被測定物との距離を検出する構成であってもよい。
参照直線R1〜R6としては最小自乗直線とする場合を例示して説明したが、参照直線としては特に限定されず、任意の直線を設定することができる。例えば被検表面の任意の2点を結ぶ直線を参照直線として設定してもよい。そして、このような場合でも、例えば、参照直線が通る2点の条件を与えることで、式(25)から式(30)に相当する条件式を加えることができる。
被測定物の辺の真直度を測定する場合には複数(例えば3点以上)のサンプリング点が必要であるが、単に被測定物の内角を測定するだけであれば、複数点の測定データは必ずしも必要ではなく、直定規21、22と被測定物5の辺51〜54との各組について二つずつあればよい。
以上、説明したように本発明の形状測定装置、形状測定方法、形状解析装置、形状解析プログラムおよび記録媒体によれば、基準定規や測定姿勢に関係なく、平面多角形について各辺の表面凹凸および各内角を簡便かつ高精度に求めることができるという優れた効果を奏し得る。
本発明は、平面多角形について各辺の凹凸形状や角度のずれなどを求める形状測定装置等に利用できる。
本発明の形状測定装置の一実施形態を示す図である。 前記実施形態において、解析部の構成を示す図である。 前記実施形態において、測定データを示す図である。 前記実施形態において、形状示数を示す図である。 前記実施形態において、角度示数を示す図である。 前記実施形態において、参照直線、形状パラメータ、角度パラメータを示す図である。
符号の説明
1…形状測定装置、2…測定部、21…第1直定規、22…第2直定規、24…測長センサ、25…本体筒部、26…第1スピンドル、261…接触子、27…第2スピンドル、271…接触子、3…解析部、31…測定データ記憶部、32…示数設定部、33…連立式導出部、34…連立式演算部、36…バス4…出力部、5…被測定物、51…第1辺、52…第2辺、53…第3辺、54…第4辺、55…第1角、56…第2角、57…第3角、58…第4角、L…形状示数、m…測定データ、R1…参照直線、R2…参照直線、R3…参照直線、R4…参照直線、S…形状示数

Claims (7)

  1. 二本の直定規を有するとともに、これら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを取得する測定部と、
    前記被測定物の各辺および前記直定規にそれぞれ設定された参照直線から前記直定規および被測定物の各辺までの距離を各サンプリング点において表す形状示数、および、前記被測定物の内角および前記直定規が構成する角を表す角度示数が設定された示数設定部と、
    前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、二つの前記直定規の各参照直線がなす角と被測定物の各内角とを用いて、一方の前記直定規と前記被測定物の一辺との関係は他方の前記直定規と前記被測定物の他辺との関係によって表されるとして、前記直定規と前記被測定物の各辺とで構成される組についての連立式を導出する連立式導出部と、
    導出された前記連立式を解く連立式演算部と、を備えている
    ことを特徴とする形状測定装置。
  2. 請求項1に記載の形状測定装置において、
    前記測定部は、前記直定規と前記被測定物の辺との間の間隔を測定する測長センサを有し、
    前記測長センサは、二つの前記直定規のそれぞれに辺を対向させて配置された被測定物とこれら直定規との間で前記直定規の長手方向に移動可能に設けられた本体部と、
    前記直定規とこの直定規に対向する被測定物の辺とを最短で結ぶ方向で前記本体部から互いに反対に向けて進退可能に設けられた第1スピンドルおよび第2スピンドルと、
    第1スピンドルおよび第2スピンドルの進退量を検出する検出部と、を備えている
    ことを特徴とする形状測定装置。
  3. 二本の直定規を有するとともにこれら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを取得する測定工程と、
    前記被測定物の各辺および前記直定規にそれぞれ設定された参照直線から前記直定規および被測定物の各辺までの距離を各サンプリング点において表す形状示数、および、前記被測定物の内角および前記直定規が構成する角を表す角度示数が設定された示数設定工程と、
    前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、二つの前記直定規の各参照直線がなす角と被測定物の各内角とを用いて、一方の前記直定規と前記被測定物の一辺との関係は他方の前記直定規と前記被測定物の他辺との関係によって表されるとして、前記直定規と前記被測定物の各辺とで構成される組についての連立式を導出する連立式導出工程と、
    導出された前記連立式を解く連立式演算工程と、を備えている
    ことを特徴とする形状測定方法。
  4. 請求項3に記載の形状測定方法において、
    前記測定工程は、二本の前記直定規の延長線が所定角度をなす状態に配置された前記直定規のそれぞれに被測定物の辺を略平行に対向させた状態で、一方の直定規と被測定物の一辺との間隔および他方の直定規と被測定物の他辺との間隔を測定する間隔測定工程と、
    二つの前記直定規の姿勢はそのままで被測定物をローテーションさせて前記直定規と前記被測定物の辺との組み合わせを換える組合せ変更工程と、を備える
    ことを特徴とする形状測定方法。
  5. 二本の直定規を有するとともにこれら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを解析して前記被測定物形状を求める形状解析装置であって、
    前記被測定物の各辺および前記直定規にそれぞれ設定された参照直線から前記直定規および被測定物の各辺までの距離を各サンプリング点において表す形状示数、および、前記被測定物の内角および前記直定規が構成する角を表す角度示数が設定された示数設定部と、
    前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、二つの前記直定規の各参照直線がなす角と被測定物の各内角とを用いて、一方の前記直定規と前記被測定物の一辺との関係は他方の前記直定規と前記被測定物の他辺との関係によって表されるとして、前記直定規と前記被測定物の各辺とで構成されるすべての組についての連立式を導出する連立式導出部と、
    導出された前記連立式を解く連立式演算部と、を備えている
    ことを特徴とする形状解析装置。
  6. 二本の直定規を有するとともにこれら直定規と平面多角形である被測定物の辺とを対向する状態に組み合わせて互いの間隔を複数のサンプリング点で測定した測定データを解析して前記被測定物形状を求める形状解析装置に組み込まれたコンピュータを、
    前記被測定物の各辺および前記直定規にそれぞれ設定された参照直線から前記直定規および被測定物の各辺までの距離を各サンプリング点において表す形状示数、および、前記被測定物の内角および前記直定規が構成する角を表す角度示数が設定された示数設定部と、
    前記直定規から前記被測定物の辺までの距離がこの直定規の参照直線から被測定物の辺の参照直線までの距離に前記形状示数を加えた値に等しいとするとともに、二つの前記直定規の各参照直線がなす角と被測定物の各内角とを用いて、一方の前記直定規と前記被測定物の一辺との関係は他方の前記直定規と前記被測定物の他辺との関係によって表されるとして、前記直定規と前記被測定物の各辺とで構成される組についての連立式を導出する連立式導出部と、
    導出された前記連立式を解く連立式演算部と、して機能させる
    ことを特徴としたコンピュータ読取可能な形状解析プログラム。
  7. 請求項6に記載の形状解析プログラムを記録したことを特徴としたコンピュータ読取可能な記録媒体。






JP2003316829A 2003-09-09 2003-09-09 形状測定装置、形状測定方法、形状解析装置、形状解析プログラムおよび記録媒体 Expired - Fee Related JP4323267B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003316829A JP4323267B2 (ja) 2003-09-09 2003-09-09 形状測定装置、形状測定方法、形状解析装置、形状解析プログラムおよび記録媒体
DE602004005388T DE602004005388T2 (de) 2003-09-09 2004-09-08 Vorrichtung und Verfahren zum Messen und Analysieren der Form eines Objekts, sowie entsprechendes Programm
DE602004017513T DE602004017513D1 (de) 2003-09-09 2004-09-08 Vorrichtung und Verfahren zur Formmessung
EP06119993A EP1742018B1 (en) 2003-09-09 2004-09-08 Device and Method for Form Measurement
EP04255445A EP1515115B1 (en) 2003-09-09 2004-09-08 Form measuring device, form measuring method, form analysis device, form analysis program, and recording medium storing the program
US10/936,509 US7188046B2 (en) 2003-09-09 2004-09-09 Form measuring device, form measuring method, form analysis device, form analysis program, and recording medium storing the program
CNB2004100785395A CN100375884C (zh) 2003-09-09 2004-09-09 形状测定装置和方法、形状解析装置
US11/652,504 US7483807B2 (en) 2003-09-09 2007-01-12 Form measuring device, form measuring method, form analysis device, form analysis program, and recording medium storing the program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316829A JP4323267B2 (ja) 2003-09-09 2003-09-09 形状測定装置、形状測定方法、形状解析装置、形状解析プログラムおよび記録媒体

Publications (2)

Publication Number Publication Date
JP2005083918A true JP2005083918A (ja) 2005-03-31
JP4323267B2 JP4323267B2 (ja) 2009-09-02

Family

ID=34416607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316829A Expired - Fee Related JP4323267B2 (ja) 2003-09-09 2003-09-09 形状測定装置、形状測定方法、形状解析装置、形状解析プログラムおよび記録媒体

Country Status (1)

Country Link
JP (1) JP4323267B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2389983B1 (en) 2005-11-18 2016-05-25 Mevion Medical Systems, Inc. Charged particle radiation therapy
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
JP6367201B2 (ja) 2012-09-28 2018-08-01 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビームの強度の制御
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
TW201434508A (zh) 2012-09-28 2014-09-16 Mevion Medical Systems Inc 一粒子束之能量調整
EP2900326B1 (en) 2012-09-28 2019-05-01 Mevion Medical Systems, Inc. Controlling particle therapy
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
CN109803723B (zh) 2016-07-08 2021-05-14 迈胜医疗设备有限公司 一种粒子疗法系统
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
JP7311620B2 (ja) 2019-03-08 2023-07-19 メビオン・メディカル・システムズ・インコーポレーテッド 粒子線治療システムのためのコリメータおよびエネルギーデグレーダ

Also Published As

Publication number Publication date
JP4323267B2 (ja) 2009-09-02

Similar Documents

Publication Publication Date Title
JP4323267B2 (ja) 形状測定装置、形状測定方法、形状解析装置、形状解析プログラムおよび記録媒体
JP4828974B2 (ja) ねじ測定方法、ねじ測定用プローブ及びそれを用いたねじ測定装置
US7376261B2 (en) Surface scan measuring device and method of forming compensation table for scanning probe
US20070118329A1 (en) Form measuring instrument
US7483807B2 (en) Form measuring device, form measuring method, form analysis device, form analysis program, and recording medium storing the program
US11022419B2 (en) Thread inspection systems and methods
KR20190028527A (ko) 3차원 표면조도 평가장치, 3차원 표면조도 평가방법, 3차원 표면조도 데이터 취득장치 및 3차원 표면조도 데이터 취득방법
RU2496097C1 (ru) Способ измерения параметров паза на торце вала
CN105698739A (zh) 一种方形导轨宽度直线度检测判定装置及方法
JP2008524576A (ja) 直定規の直線度測定のための順次式マルチプローブ法
JP5246952B2 (ja) 測定方法
US20110138645A1 (en) Digital diameter gauge with rotary motion sensor and method for use
US11774227B2 (en) Inspection gauge for coordinate measuring apparatus and abnormality determination method
JP2004286457A (ja) 表面性状測定機の校正用治具、表面性状測定機の校正方法、表面性状測定機の校正プログラムおよびこの校正プログラムを記録した記録媒体
RU2471145C1 (ru) Способ контроля параметров точности торцевых поверхностей деталей типа "тело вращения"
CN101398296B (zh) 轮廓仪校准用标准量规
CN207585481U (zh) 扁钢两面宽度差检测装置
JP2005221320A (ja) 測定ヘッド及びプローブ
KR200223563Y1 (ko) 간극측정장치
CN210741381U (zh) 工件孔内线性尺寸内窥测量装置
CN212482356U (zh) 一种内沟槽检具
CN107144205A (zh) 一种壁厚测量装置及检测方法
JP2006047148A (ja) 形状測定装置、形状測定方法、形状解析装置、形状解析プログラム、記録媒体
JP6985120B2 (ja) 測定システム
JP2018072202A (ja) 形状測定装置及び形状測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060710

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090604

R150 Certificate of patent or registration of utility model

Ref document number: 4323267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150612

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees