JP2005079307A - 多孔質絶縁膜の形成方法および半導体装置の製造方法 - Google Patents
多孔質絶縁膜の形成方法および半導体装置の製造方法 Download PDFInfo
- Publication number
- JP2005079307A JP2005079307A JP2003307145A JP2003307145A JP2005079307A JP 2005079307 A JP2005079307 A JP 2005079307A JP 2003307145 A JP2003307145 A JP 2003307145A JP 2003307145 A JP2003307145 A JP 2003307145A JP 2005079307 A JP2005079307 A JP 2005079307A
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- film
- porous
- forming
- porous insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Formation Of Insulating Films (AREA)
Abstract
【課題】 比誘電率が低く機械特性の良好な絶縁膜の形成方法を提供する。また、配線層間の寄生容量の小さい半導体装置の製造方法を提供する。
【解決手段】 低分子量の絶縁膜前駆体および溶媒を含むが多孔質化剤は含まない絶縁膜組成物を支持体上に塗布して塗膜を形成する。次に、この塗膜を乾燥してから、塗膜に電子線を照射しつつ加熱処理を行う。電子線の照射量は300μC/cm2以上であることが好ましい。また、加熱処理の温度は200℃以上400℃以下であることが好ましい。
【選択図】 図2
【解決手段】 低分子量の絶縁膜前駆体および溶媒を含むが多孔質化剤は含まない絶縁膜組成物を支持体上に塗布して塗膜を形成する。次に、この塗膜を乾燥してから、塗膜に電子線を照射しつつ加熱処理を行う。電子線の照射量は300μC/cm2以上であることが好ましい。また、加熱処理の温度は200℃以上400℃以下であることが好ましい。
【選択図】 図2
Description
本発明は、多孔質絶縁膜の形成方法および半導体装置の製造方法に関し、より詳しくは、半導体装置の層間絶縁膜として用いられる多孔質絶縁膜の形成方法およびこの方法を用いた半導体装置の製造方法に関する。
近年の半導体装置の微細化・高速化に伴い、配線構造の多層化が進んでいる。しかし、このような微細化、高速化および多層化が進むにつれて、配線抵抗並びに配線間および配線層間の寄生容量の増大による信号遅延が問題となる。信号遅延Tは配線抵抗Rと寄生容量Cの積に比例することから、信号遅延Tを小さくするためには、配線層の低抵抗化とともに寄生容量を小さくすることが必要となる。
配線抵抗Rを低減するには、配線材料としてより低抵抗のものを用いればよい。具体的には、従来のアルミニウム(Al)配線から銅(Cu)配線へ移行することなどが挙げられる。
一方、配線層間の寄生容量Cは、配線層の間に設けられる層間絶縁膜の比誘電率ε、配線層の間隔dおよび配線層の側面積Sとの間にC=(ε・S)/dの関係がある。したがって、寄生容量Cを低減するには、層間絶縁膜の低誘電率化を図ることが必要となる。
従来より知られている層間絶縁膜としては、例えば、CVD(Chemical Vapor Deposition)法によって成膜したSiOF膜がある。SiOF膜の比誘電率は3.3程度であり、比誘電率が3.9程度であるSiO2膜に比較すると低い誘電率を得ることができる。しかしながら、さらなる比誘電率の低減を図る場合、SiOF膜では膜の安定性に欠けるため実用化は極めて困難である。
一方、SOG(Spin on Glass)膜や有機ポリマー膜などを層間絶縁膜に適用することも検討されている。これらの膜は、多孔質化することによって、比誘電率を2.0程度まで下げることが可能とされている。
多孔質化された絶縁膜においては、内部の空孔率が大きいほど比誘電率を低下させることができる。しかしながら、空孔率が大きくなると膜密度が小さくなるために、膜の機械的強度が低下するという問題があった。
本発明はこのような問題点に鑑みてなされたものである。即ち、本発明の目的は、比誘電率が低く機械特性の良好な絶縁膜の形成方法を提供することにある。
また、本発明の目的は、配線層間の寄生容量の小さい半導体装置の製造方法を提供することにある。
本発明の他の目的および利点は、以下の記載から明らかとなるであろう。
本発明の多孔質絶縁膜の形成方法は、低分子量の絶縁膜前駆体および溶媒を含むが多孔質化剤は含まない絶縁膜組成物を支持体上に塗布して塗膜を形成する工程と、この塗膜を乾燥する工程と、この乾燥後の塗膜に電子線を照射しながら加熱処理を行うことによって塗膜を焼成する工程とを有することを特徴とする。
本発明において、多孔質絶縁膜は多孔質の有機シリコン酸化膜とすることができる。また、この場合、絶縁膜前駆体はクラスター状の有機シリカとすることができる。
本発明において、電子線の照射量は300μC/cm2以上であることが好ましい。
また、本発明において、塗膜を焼成する工程の加熱処理は200℃以上400℃以下の温度で行うことが好ましい。
また、本発明において、塗膜を焼成する工程は酸素濃度が0.05%以下の不活性ガス雰囲気中で行うことが好ましい。さらに、この塗膜を焼成する工程は減圧下で行うことが好ましい。
また、本発明の半導体装置の製造方法は、本発明の多孔質絶縁膜の形成方法によって層間絶縁膜を形成する工程を有することを特徴とするものである。
この発明は以上説明したように、多孔質化剤を含まない絶縁膜組成物に電子線を照射しながら加熱処理を行うことによって、比誘電率が低く機械的強度に優れた多孔質絶縁膜を形成することができる。
また、この多孔質絶縁膜を半導体装置の層間絶縁膜に適用することによって、配線層間の寄生容量の小さい半導体装置を製造することができる。
絶縁膜を多孔質化する方法には、(1)適当な多孔質化剤を添加した絶縁膜組成物を支持体上に塗布した後、熱処理によって多孔質化剤を揮発させて膜内部に空孔を導入する方法と、(2)多孔質化剤を含まない絶縁膜組成物を支持体上に塗布し、熱処理による重合反応の過程で自己形成的に空孔を形成する方法とがある。
多孔質化膜の機械的強度を向上させるためには、微細かつ均質な空孔を膜中に均一に分散させることが有効である。上記(1)の手法では、例えば、多孔質化剤の分子量および揮発過程を制御することによってこのような空孔を形成することが試みられる。一方、上記(2)の手法では、例えば、原料となるモノマーの構造を制御することが試みられる。いずれの方法によってもある程度の機械的強度の向上は期待できるが、(1)の手法より(2)の手法の方がより好ましい。例えば、同じ比誘電率を有する膜を(1)の手法および(2)の手法によって形成した場合、(2)の手法による膜の方が(1)の手法による膜よりも大きな弾性率を有するとともに、膜中に形成された空孔も微細なものとなる。
さらに、本発明者は鋭意研究した結果、多孔質化剤を含まない絶縁膜組成物を電子線照射下で加熱することによって、比誘電率が低く機械的強度の良好な絶縁膜を形成できることを見出した。例えば、シロキサン材料を支持体上に塗布した後、このシロキサン材料に電子線を照射しながら加熱処理を行う。得られた膜の機械的強度は、従来の加熱処理のみを行って得られた膜の機械的強度に比較して2倍程度大きな値を示すことが確認された。
電子線照射を行うことによって、加熱処理のみでは不可能な量のエネルギーを絶縁膜組成物に与えることができる。そして、これによって、例えば、絶縁膜を構成するポリマーの架橋反応を促進したり、加熱による熱エネルギーでは切断されない分子鎖や基などを電子線エネルギーによって切断したりすることが可能となる。尚、この場合、架橋反応と切断反応とは同時に起こるが、それぞれの反応がどのような割合で起こるかは絶縁膜の種類によって異なる。
さらに、電子線照射と加熱処理とを組み合わせて行うことにより、分子鎖の切断や基の脱離が行った箇所が新たな架橋点となって、さらなる架橋反応を進めることができる。
このように、多孔質化剤を含まない絶縁膜組成物を電子線照射下で加熱することによって、従来の加熱反応のみによる方法では得られない微細な空孔を形成することができる。これによって、機械的強度が良好であるとともに、比誘電率が2.0〜2.5の範囲にある絶縁膜を得ることができる。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。尚、本実施の形態においては、支持体としての半導体基板上に多孔質絶縁膜を形成し、これを半導体装置の層間絶縁膜として用いる例について述べるが、本発明がこれに限られるものでないことはいうまでもない。比誘電率が低く機械的強度の良好な膜を必要とする用途であれば、半導体基板以外の他の支持体上に多孔質絶縁膜を形成してもよい。
図1は、本実施の形態における半導体装置の断面図の一例である。図1において、半導体基板1の上には絶縁膜2を介して層間絶縁膜3が形成されている。そして、層間絶縁膜3の所定箇所には、所望する大きさおよび形状からなる配線層4が設けられている。ここで、配線層4の内部には、バリアメタル膜5および導電層6が形成されている。本実施の形態においては、例えば、導電層6として銅を主成分とする層を用いた銅配線層を配線層4とすることができる。また、層間絶縁膜3の上には、バリア層としての絶縁膜7が形成されている。絶縁膜7は、導電層からの金属の拡散を防ぐ働きを有している。絶縁膜7としては、例えばSiC膜を用いることができる。
次に、層間絶縁膜3の形成方法について説明する。
まず、絶縁膜2が形成された半導体基板1の上に絶縁膜組成物を塗布して塗膜を形成する。ここで、絶縁膜組成物は、低分子量の絶縁膜前駆体および溶媒を含むが多孔質化剤は含まないことを特徴とする。
例えば、絶縁膜前駆体としてクラスター状の有機シリカを用い、これを適当な溶媒に溶解させたワニスを絶縁膜組成物とすることができる。絶縁膜組成物の半導体基板1への塗布方法としては、例えば回転塗布法を挙げることができる。尚、以下、半導体基板1とは絶縁膜2が形成された半導体基板をいい、層間絶縁膜3は絶縁膜2を介して半導体基板1の上に形成されるものとする。但し、半導体基板1は図1に示す構造に限られるものではなく、半導体基板1の内部に配線層が埋め込まれた構造を有していてもよい。
次に、絶縁膜組成物を塗布した半導体基板1に加熱処理を行うことによって塗膜を乾燥させる。例えば、半導体基板1を150℃に保持したホットプレートの上に1分間載置する。続いて、半導体基板1を250℃に保持したホットプレートの上に1分間載置する。さらに、半導体基板1を350℃に保持したホットプレートの上に1分間載置する。以上の3段階の加熱処理によって、絶縁膜材料から溶媒を実質的に除去し、塗膜を半導体基板1の上に固定化させることができる。
次に、半導体基板1に電子線を照射しながら加熱処理を行うことによって塗膜を焼成する。
例えば、電子線照射装置の真空チャンバ内に半導体基板1を載置する。真空チャンバ内には温度調節可能な基板支持台が設けられており、半導体基板1はこの基板支持台の上に載置される。基板支持台の温度は、例えば400℃とすることができる。次に、副反応としての酸化反応が起こるのを抑制するために、真空チャンバ内にアルゴンガスなどの希ガス、窒素ガスまたはこれらの混合ガスなどの不活性ガスを導入する。具体的には、真空チャンバ内の酸素濃度が0.05%以下に保持されることが好ましい。このようにすることによって、絶縁膜材料が酸化されるのを防ぐことができる。また、半導体基板1に銅配線層が形成されている場合には、この銅配線層が酸化されるのを防ぐこともできる。
また、電子線照射は減圧下で行うことが好ましい。これにより雰囲気中のガスによる電子線の吸収を抑制して、効率的に電子線を塗膜に照射することができる。
次に、電子線照射装置に設けられた電子線照射部から半導体基板1に向けて電子線を照射する。電子線の照射量は、例えば300μC/cm2程度とすることができる。
このように、加熱を行いながら電子線を照射することによって、多孔質の層間絶縁膜を形成することができる。例えば、クラスター状の有機シリカを適当な溶媒に溶解させたワニスを絶縁膜組成物として用いた場合には、多孔質の有機シリコン酸化膜からなる層間絶縁膜を形成することができる。
ところで、有機シリコン酸化膜は、絶縁膜組成物中に含まれる低分子量成分の脱水縮合反応によって形成される。この際に起こる膜収縮によって生じた内部応力は膜中で残留応力となる。また、上記の膜収縮は、加熱により半導体基板1が膨張した状態で起こる。したがって、重合後の膜を室温まで冷却すると、降温による半導体基板1の収縮に起因した応力が加わることによって膜中の残留応力はさらに増大する。このような残留応力の存在は、層間絶縁膜3にクラックを発生させる一因となる。したがって、残留応力をできるだけ低減させることのできる条件で層間絶縁膜3を形成することが望ましい。具体的には、電子線照射時に半導体基板1に加わる温度を400℃以下とすることが好ましい。
残留応力の低減のためには、加熱時の温度は低い方が好ましい。しかしながら、あまり低くしすぎると架橋反応が十分に起こらず、所望の機械的強度を有する膜を形成することができない。層間絶縁膜として必要な機械的強度を考えると、電子線照射時に半導体基板1に加わる温度は200℃以上とすることが好ましい。
以上より、電子線照射時に塗膜に加える温度は、上記の残留応力および機械的強度を考慮して200℃以上400℃以下であることが好ましい。
また、上記の電子線照射下での加熱に要する時間は、例えば5分間程度とすることができる。一方、従来の加熱処理のみによって多孔質絶縁膜を形成する方法では、60分間程度の加熱時間を要する。したがって、本実施の形態によれば処理時間の大幅な短縮を図ることができ、半導体装置の生産性を向上させることが可能となる。
図2は、本実施の形態による多孔質絶縁膜の弾性率および比誘電率を、加熱処理のみによって形成した従来の多孔質絶縁膜と比較した結果の一例を示したものである。弾性率の測定はナノインデンテーション法により行い、比誘電率の測定は水銀プローブ法により行った(以下、本明細書において同じ。)。尚、いずれの膜も多孔質化剤を含まない絶縁膜組成物を用いている。
図2より、本実施の形態と従来法とでは比誘電率に大きな変化は見られないが、弾性率は大きく変化することが分かる。すなわち、本実施の形態によって形成した多孔質絶縁膜の弾性率は、従来法によって形成した多孔質絶縁膜の弾性率に比較して2倍程度大きな値を有している。
本実施の形態における電子線の照射量は、形成される多孔質絶縁膜の弾性率と比誘電率とを比較考量して決定することが好ましい。図3は、本実施の形態による多孔質絶縁膜の弾性率を電子線の照射量を変えて測定した結果の一例を示す図である。また、図4は、本実施の形態による多孔質絶縁膜の比誘電率を電子線の照射量を変えて測定した結果の一例を示す図である。図3より、電子線照射量の増加とともに弾性率が増加していくことが分かる。多孔質絶縁膜に必要な機械的強度を考慮すると、電子線の照射量は300μm/cm2以上であることが好ましい。一方、比誘電率は、電子線照射量が少ない場合には殆ど変化しないが、電子線照射量が500μC/cm2を超えると急激に増加するようになる。したがって、本実施の形態における電子線の照射量は、300μC/cm2以上500μC/cm2以下であることがより好ましい。
図5は、本実施の形態による多孔質絶縁膜の空孔径分布を、加熱処理のみによって形成した従来の多孔質絶縁膜と比較した結果の一例を示したものである。尚、いずれの膜も多孔質化剤を含まない絶縁膜組成物を用いている。図5より、本実施の形態の方が全体に空孔径の小さい膜となっていることが分かる。
さらに、比較例として、多孔質化剤を含む絶縁膜組成物を用いることを除いては本実施の形態と同様の方法によって多孔質化絶縁膜を形成した。図6は、その弾性率および比誘電率を従来の多孔質絶縁膜と比較した結果の一例である。尚、ここで、従来の多孔質絶縁膜とは、多孔質化剤を含む絶縁膜組成物に加熱処理のみを行うことによって形成した膜をいう。
図6より、多孔質化剤を含む絶縁膜組成物を用いて多孔質化絶縁膜を形成した場合であっても、電子線照射下で加熱処理した方が弾性率の大きい膜が得られることが分かる。一方、これらの比誘電率は殆ど同じである。ここで、図2と図6を比較すると、電子線照射の有無にかかわらず多孔質化剤を用いずに形成した膜の方が大きな弾性率を有している。したがって、多孔質化剤を含まない絶縁膜組成物を電子線照射下で加熱する本実施の形態の方法によれば、最も機械的強度の良好な多孔質化絶縁膜を得ることができる。
以上の方法によって層間絶縁膜3を形成した後は、配線層4および絶縁膜7の形成を行う。具体的には、ハードマスクを用いて層間絶縁膜3に配線溝を形成した後、配線溝の内面にバリアメタル膜5を形成し、さらにバリアメタル膜5を介して配線溝の内部に導電層6の埋込みを行う。この工程は、例えば、次のようにして行うことができる。
まず、CVD法またはスパッタ法などによって、窒化チタン膜または窒化タンタル膜などのバリアメタル膜5を成膜した後、この上にさらに導電層6としての銅層を成膜する。続いて、化学機械研磨(Chemical Mechanical Polishing,以下、CMPという。)法によって、導電層6およびバリアメタル膜5の研磨を行う。これにより、配線溝の内部にのみ、導電層6およびバリアメタル膜5が残るようにすることができる。
バリアメタル膜5の形成および導電層6の埋め込みは、他の方法によって行ってもよい。例えば、CVD法およびCMP法によってバリアメタル膜5を配線溝の内部にのみ形成した後、硫酸銅(CuSO4)をベースとした電解液を用いるめっき法によって、配線溝の内部に銅を埋め込んでもよい。
以上の工程によって配線層4を形成した後は、絶縁膜7を形成することによって図1に示す構造が得られる。例えば、絶縁膜7としてSiC膜を用いる場合には、層間絶縁膜3および配線層4の上にCVD法などを用いてSiC膜を成膜すればよい。
尚、電子線照射下での加熱によって層間絶縁膜3を形成した後に、さらに加熱処理を行ってから上記の配線層4の形成工程に進んでもよい。加熱処理は、例えば、400℃に保持したホットプレート上に半導体基板1を30分間載置することによって行うことができる。このような加熱処理を行うことによって、吸湿性などの層間絶縁膜3の他の特性をさらに改善することが可能となる。
1 半導体基板
2,7 絶縁膜
3 層間絶縁膜
4 配線層
5 バリアメタル膜
6 導電層
2,7 絶縁膜
3 層間絶縁膜
4 配線層
5 バリアメタル膜
6 導電層
Claims (8)
- 低分子量の絶縁膜前駆体および溶媒を含むが多孔質化剤は含まない絶縁膜組成物を支持体上に塗布して塗膜を形成する工程と、
前記塗膜を乾燥する工程と、
前記乾燥後の塗膜に電子線を照射しながら加熱処理を行うことによって前記塗膜を焼成する工程とを有することを特徴とする多孔質絶縁膜の形成方法。 - 前記多孔質絶縁膜は多孔質の有機シリコン酸化膜である請求項1に記載の多孔質絶縁膜の形成方法。
- 前記絶縁膜前駆体はクラスター状の有機シリカである請求項2に記載の多孔質絶縁膜の形成方法。
- 前記電子線の照射量が300μC/cm2以上である請求項1〜3のいずれか1に記載の多孔質絶縁膜の形成方法。
- 前記加熱処理を200℃以上400℃以下の温度で行う請求項1〜4のいずれか1に記載の多孔質絶縁膜の形成方法。
- 前記塗膜を焼成する工程を酸素濃度が0.05%以下の不活性ガス雰囲気中で行う請求項1〜5のいずれか1に記載の多孔質絶縁膜の形成方法。
- 前記塗膜を焼成する工程を減圧下で行う請求項1〜6のいずれか1に記載の多孔質絶縁膜の形成方法。
- 請求項1〜7のいずれか1に記載の多孔質絶縁膜の形成方法によって層間絶縁膜を形成する工程を有することを特徴とする半導体装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003307145A JP2005079307A (ja) | 2003-08-29 | 2003-08-29 | 多孔質絶縁膜の形成方法および半導体装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003307145A JP2005079307A (ja) | 2003-08-29 | 2003-08-29 | 多孔質絶縁膜の形成方法および半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005079307A true JP2005079307A (ja) | 2005-03-24 |
Family
ID=34410025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003307145A Pending JP2005079307A (ja) | 2003-08-29 | 2003-08-29 | 多孔質絶縁膜の形成方法および半導体装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005079307A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009117743A (ja) * | 2007-11-09 | 2009-05-28 | Panasonic Corp | 半導体装置及びその製造方法 |
US8039921B2 (en) | 2005-09-16 | 2011-10-18 | Nec Corporation | Wiring structure, semiconductor device and manufacturing method thereof |
-
2003
- 2003-08-29 JP JP2003307145A patent/JP2005079307A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8039921B2 (en) | 2005-09-16 | 2011-10-18 | Nec Corporation | Wiring structure, semiconductor device and manufacturing method thereof |
US8592283B2 (en) | 2005-09-16 | 2013-11-26 | Renesas Electronics Corporation | Wiring structure, semiconductor device and manufacturing method thereof |
JP2009117743A (ja) * | 2007-11-09 | 2009-05-28 | Panasonic Corp | 半導体装置及びその製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI425569B (zh) | 多孔低k值介電薄膜之紫外光輔助孔洞密封 | |
KR100581815B1 (ko) | 다공성 저-k 유전체 상호접속 구조물 | |
US7407879B2 (en) | Chemical planarization performance for copper/low-k interconnect structures | |
WO2006058009A2 (en) | Using zeolites to improve the mechanical strenght of low-k interlayer dielectrics | |
JP2005243903A (ja) | 半導体装置の製造方法 | |
JP5007511B2 (ja) | 露光光遮蔽膜形成用材料、多層配線及びその製造方法、並びに半導体装置 | |
JP2005229075A (ja) | 積層膜の改質方法及び積層膜 | |
JP4223012B2 (ja) | 絶縁膜の形成方法、多層構造の形成方法および半導体装置の製造方法 | |
US6998325B2 (en) | Method for manufacturing semiconductor device | |
JP2004200203A (ja) | 半導体装置及びその製造方法 | |
JP2005079307A (ja) | 多孔質絶縁膜の形成方法および半導体装置の製造方法 | |
JP2004296476A (ja) | 半導体装置の製造方法 | |
WO2015184573A1 (zh) | 一种超低介电常数绝缘薄膜及其制备方法 | |
JP4493278B2 (ja) | 多孔性樹脂絶縁膜、電子装置及びそれらの製造方法 | |
KR101150267B1 (ko) | 낮은 유전 상수 k를 가진 제올라이트-탄소 도핑된옥사이드 복합체 유전체 | |
JP3588603B2 (ja) | 絶縁膜の形成方法および半導体装置の製造方法 | |
JP4437922B2 (ja) | 基板上の電気的相互接続構造およびその形成方法 | |
JP2003031566A (ja) | 低誘電率絶縁膜形成用組成物、これを用いる絶縁膜形成方法、及びそれにより得られた絶縁膜を有する電子部品 | |
KR101060559B1 (ko) | 반도체 소자의 절연막 및 그 형성 방법 | |
JP2004165658A (ja) | 表面の細孔形成剤の部分燃焼によって生成される接着性を改善したポーラス低誘電率誘電体の相互接続 | |
JP2005019977A (ja) | 半導体装置の製造方法 | |
JP2003007695A (ja) | 低誘電性の多孔性誘電膜の製造方法 | |
JP2004018778A (ja) | 絶縁膜形成用塗布液とそれを用いた半導体装置 | |
JP2004238470A (ja) | 多孔性被膜形成用塗布液、絶縁膜及びその製造方法ならびに半導体装置 | |
JP2011086824A (ja) | 低誘電率膜の形成方法及び半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Effective date: 20050131 Free format text: JAPANESE INTERMEDIATE CODE: A711 |