JP2005073394A - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP2005073394A
JP2005073394A JP2003300104A JP2003300104A JP2005073394A JP 2005073394 A JP2005073394 A JP 2005073394A JP 2003300104 A JP2003300104 A JP 2003300104A JP 2003300104 A JP2003300104 A JP 2003300104A JP 2005073394 A JP2005073394 A JP 2005073394A
Authority
JP
Japan
Prior art keywords
switch
power supply
transformer
winding
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003300104A
Other languages
English (en)
Other versions
JP4329451B2 (ja
Inventor
Mamoru Tsuruya
守 鶴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2003300104A priority Critical patent/JP4329451B2/ja
Publication of JP2005073394A publication Critical patent/JP2005073394A/ja
Application granted granted Critical
Publication of JP4329451B2 publication Critical patent/JP4329451B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】1つのコンバータで高調波規制に対応でき、小型化、低ノイズ化、高効率化を図るスイッチング電源装置を提供する。
【解決手段】交流電源Vac1の交流電圧を整流する全波整流回路B1の両端に接続され、リアクトルL2とトランスTの3次巻線5cと1次巻線5aとスイッチQ1とが直列に接続された第1直列回路と、3次巻線5cと1次巻線5aとの接続点と1次巻線5aとスイッチQ1との接続点との間に接続され、スイッチQ2とコンデンサC3とが直列に接続された第2直列回路と、3次巻線5cと1次巻線5aとの接続点と全波整流回路B1の一端との間に接続された平滑コンデンサC4と、1次巻線5aとは逆相に巻回された2次巻線5bに発生した電圧を整流平滑する整流平滑回路D11,C11と、スイッチQ1とスイッチQ2とを交互にオン/オフさせる制御回路10とを有する。
【選択図】 図1

Description

本発明は、高効率、小型、低ノイズなスイッチング電源装置に関する。
図12に従来の力率改善回路とコンバータ回路との2コンバータ方式のスイッチング電源装置の回路構成図を示す。図12に示すスイッチング電源装置は、交流電源Vac1の交流電圧を全波整流する全波整流回路B1と、この全波整流回路B1からの全波整流電圧をチョークコイルL1を介して入力し、制御回路101からの制御信号によりスイッチQ2をオン/オフさせて、ダイオードD2及びコンデンサC3により整流平滑して直流電圧を得る力率改善回路50と、この力率改善回路50からの直流電圧を別の直流電圧に変換するコンバータ回路60とを有している。
力率改善回路50内の制御回路101は、スイッチQ2を流れるピーク電流が入力電圧に比例するようにスイッチQ2のオン期間を制御するとともに、チョークコイルL1の電流がゼロになってからスイッチQ2をターンオンさせる。具体的には、制御回路101は、スイッチQ2の電流を検出する抵抗r3の両端電圧と、入力電圧(全波整流電圧)を抵抗r1と抵抗r2とで分圧した電圧とをコンパレータ(図示せず)に入力し、このコンパレータの出力信号によりRSフリップフロップ(図示せず)を動作させてスイッチQ2をターンオフさせる。これにより、スイッチQ2のピーク電流は入力電圧に比例する。また、チョークコイルL1に補助巻線103を付加し、制御回路101は、補助巻線103に生ずるフライバック電圧がゼロになるのを検出してスイッチQ2をターンオンさせる。即ち、チョークコイルL1に流れる電流がゼロから始まり、正弦波の包絡線上のピークに達し、そこからゼロまで戻る。これにより、交流電源Vac1に流れる入力電流(交流電流)も交流電源Vac1の交流電圧に追従した正弦波電流波形となり、力率が大幅に改善される。
また、制御回路101は、コンデンサC3の出力電圧と基準電圧と全波整流電圧とに基づきスイッチQ2をオン/オフ制御するので、出力電圧が一定に保たれる。
一方、コンバータ回路60において、コンデンサC3にトランスT1の1次巻線5a(巻数n1)を介してMOSFET等からなる主スイッチQ1が接続され、この主スイッチQ1の両端には、直列に接続された抵抗R2及びコンデンサC2が接続されている。主スイッチQ1は、制御回路102のPWM制御によりオン/オフするようになっている。
また、トランスT1の1次巻線5aとトランスT1の2次巻線5bとは互いに逆相電圧が発生するように巻回されており、トランスT1の2次巻線5b(巻数n2)にはダイオードD1及びコンデンサC1からなる整流平滑回路が接続されている。この整流平滑回路は、トランスT1の2次巻線5bに誘起された電圧(オン/オフ制御されたパルス電圧)を整流平滑して直流出力を負荷RLに出力する。
制御回路102は、図示しない演算増幅器及びフォトカプラを有し、演算増幅器は、負荷RLの出力電圧と基準電圧とを比較し、負荷RLの出力電圧が基準電圧以上となったときに、主スイッチQ1に印加されるパルスのオン幅を狭くするように制御する。すなわち、負荷RLの出力電圧が基準電圧以上となったときに、主スイッチQ1のパルスのオン幅を狭くすることで、出力電圧を一定電圧に制御するようになっている。
次に、コンバータ回路60の動作を図13に示すタイミングチャートを参照しながら説明する。なお、図13では、主スイッチQ1の両端間の電圧Q1v、主スイッチQ1に流れる電流Q1i、トランスT1の1次巻線5a(巻数n1)に流れる電流n1i、ダイオードD1に流れる電流D1i、主スイッチQ1をオン/オフ制御するQ1制御信号を示している。
まず、時刻t31において、Q1制御信号により主スイッチQ1がオンし、コンデンサC3からトランスT1の1次巻線5aを介して主スイッチQ1に電流Q1iが流れる。この電流は、時刻t32まで時間の経過とともに直線的に増大していく。また、1次巻線5aを流れる電流n1iも電流Q1iと同様に時刻t32まで時間の経過とともに直線的に増大していく。
なお、時刻t31から時刻t32では、1次巻線5aの主スイッチQ1側が−側になり、1次巻線5aと2次巻線5bとは逆相になっているので、ダイオードD1のアノード側が−側になるため、ダイオードD1には電流D1iは流れない。
次に、時刻t32において、主スイッチQ1は、Q1制御信号により、オン状態からオフ状態に変わる。このとき、トランスT1の1次巻線5aに誘起された励磁エネルギーと、リーケージインダクタンスLg(2次巻線5bと結合していないインダクタンス)の励磁エネルギーは、抵抗R2を介してコンデンサC2に蓄えられる。このため、トランスT1の1次巻線5aのリーケージインダクタンスLgとコンデンサC2とにより電圧共振され、その共振波形は、図14に示すように、ターンオフ時(オン状態からオフ状態に変わること)にリンギング波形RG(減衰振動波形)となる。
なお、コンデンサC2の値と抵抗R2の値とを適当な値に調整すれば、このリンギング波形を非常に小さくすることができる。そして、このリンギング波形RGは、抵抗R2により時間の経過とともに減衰して一定値となり、この一定値は時刻t33直前まで継続する。また、時刻t32〜時刻t33では、主スイッチQ1がオフであるため、電流Q1i及び電流n1iはゼロになる。
なお、時刻t32から時刻t33では、1次巻線5aの主スイッチQ1側が+側になり、且つ1次巻線5aと2次巻線5bとは逆相になっているので、ダイオードD1のアノード側が+側になるため、ダイオードD1に電流D1iが流れる。
このようなコンバータ回路60によれば、主スイッチQ1の両端に回路(C2,R2)を挿入し、主スイッチQ1の電圧の時間的な変化を緩やかにすることで、スイッチングノイズを低減できると共に、トランスT1のリーケージインダクタンスLgによる主スイッチQ1へのサージ電圧を抑制することができる。
特開2001−157450号(第1図、第3図)
しかしながら、従来のこの種のスイッチング電源装置にあっては、高調波規制に対応するため、力率改善回路50とコンバータ回路60の2コンバータ方式で対応していた。このため、制御回路が2系統(力率改善回路用、コンバータ回路用)必要であり、スイッチング回路も2系統必要であった。
このため、回路が複雑となり、スイッチング部分が2回路あるため、ノイズや損失が増大し、小型化、低ノイズ化、高効率化の妨げとなっていた。
また、従来のスイッチング電源装置にあっては、コンデンサC2に充電された電荷を抵抗R2によって消費させるため、損失が増大した。この損失は、コンデンサ容量、変換周波数に比例するため、ノイズ抑制を目的としてコンデンサ容量を増やしたり、あるいは、小型化を目的として変換周波数を上昇させた場合には、損失が増大し、効率が低下する欠点があった。
本発明の第1の課題は、1つのコンバータで高調波規制に対応でき、小型化、低ノイズ化、高効率化を図るスイッチング電源装置を提供することにある。また、本発明の第2の課題は、補助スイッチを用いて、ゼロ電圧スイッチングを可能とし、低ノイズ化、高効率化を図るスイッチング電源装置を提供することにある。
本発明は前記課題を解決するために以下の構成とした。請求項1の発明は、交流を入力し、力率を改善させるとともに直流を出力するスイッチング電源装置であって、交流電源に接続して交流電圧を整流する整流回路と、前記整流回路の両端に接続され、第1リアクトルとトランスの3次巻線と前記トランスの1次巻線と主スイッチとが直列に接続された第1直列回路と、前記トランスの3次巻線と前記1次巻線との接続点と前記トランスの1次巻線と前記主スイッチとの接続点との間に接続され、補助スイッチとスナバコンデンサとが直列に接続された第2直列回路と、前記トランスの3次巻線と前記1次巻線との接続点と前記整流回路の一端との間に接続された平滑コンデンサと、前記1次巻線とは逆相に巻回された前記トランスの2次巻線に発生した電圧を整流平滑する整流平滑回路と、前記主スイッチと前記補助スイッチとを交互にオン/オフさせる制御回路とを有することを特徴とする。
請求項2の発明において、前記主スイッチの両端に接続され、第1ダイオードと第1コンデンサとが並列に接続された第1並列回路と、前記補助スイッチの両端に接続され、第2ダイオードと第2コンデンサとが並列に接続された第2並列回路と、前記トランスの1次巻線と前記第2直列回路との間に接続された第2リアクトルとを有し、前記制御回路は、前記主スイッチの電圧がゼロ電圧になった後、前記第1ダイオードの導通期間中に前記主スイッチをオンさせ、前記補助スイッチの電圧がゼロ電圧になった後、前記第2ダイオードの導通期間中に前記補助スイッチをオンさせることを特徴とする。
請求項3の発明において、前記第1ダイオード及び前記第1コンデンサは、前記主スイッチの寄生ダイオード及び寄生容量であり、前記第2ダイオード及び前記第2コンデンサは、前記補助スイッチの寄生ダイオード及び寄生容量であることを特徴とする。
請求項4の発明において、前記第1リアクトル及び前記第2リアクトルは、前記トランスのリーケージインダクタンスであることを特徴とする。
請求項5の発明において、前記トランスは、磁気回路が形成された第1脚、第2脚及び第3脚を有するコアからなり、前記第1脚に前記1次巻線と前記2次巻線とを巻回し、前記第2脚に前記3次巻線を巻回し、前記第3脚にギャップを設けたことを特徴とする。
請求項6の発明において、前記3次巻線の巻数は、前記1次巻線の巻数以上であり、前記3次巻線は、前記1次巻線と同相に巻回されていることを特徴とする。
請求項7の発明において、前記整流回路と前記平滑コンデンサとの間に接続され、前記交流電源がオンされたときに前記平滑コンデンサの突入電流を軽減する突入電流制限抵抗を有し、前記主スイッチは、ノーマリオンタイプのスイッチからなり、前記制御回路は、前記交流電源がオンされたときに前記突入電流制限抵抗に発生した電圧により前記主スイッチをオフさせ、前記平滑コンデンサが充電された後、前記主スイッチをオン/オフさせるスイッチング動作を開始させることを特徴とする。
請求項8の発明において、前記トランスは4次巻線をさらに備え、該トランスの4次巻線に発生する電圧を前記制御回路に供給する通常動作電源部を有することを特徴とする。
請求項9の発明は、前記突入電流制限抵抗に並列に接続された半導体スイッチを有し、前記制御回路は、前記主スイッチのスイッチング動作を開始させた後、前記半導体スイッチをオンさせることを特徴とする。
本発明によれば、1つのコンバータで高調波規制に対応でき、小型化、低ノイズ化、高効率化を図るスイッチング電源装置を提供することができる。また、補助スイッチを用いて、ゼロ電圧スイッチングを可能とし、低ノイズ化、高効率化を図るスイッチング電源装置を提供することができる。
また、一つのコアでトランスを構成でき、主スイッチがオン時及びオフ時ともに直流励磁をキャンセルできるため、小型、高効率、低ノイズのスイッチング電源装置を提供することができる。
以下、本発明に係るスイッチング電源装置の実施の形態を図面を参照して詳細に説明する。
第1の実施の形態に係るスイッチング電源装置は、交流を入力して直流を出力するフライバック方式のスイッチング電源装置であって、1つのコンバータで高調波規制に対応でき、小型化、低ノイズ化、高効率化を図ることを特徴とする。
また、補助スイッチを用いて、ゼロ電圧スイッチングを可能とし、低ノイズ化、高効率化を図ることを特徴とする。即ち、主スイッチのオン時に3次巻線に接続されたリアクトルに電力を蓄え、主スイッチのオフ時に、2次巻線を介して負荷に電力を供給するとともに、平滑コンデンサを充電し、1次巻線に接続されたリアクトルに蓄えられた電力を、スナバコンデンサに蓄え、補助スイッチをオンすることにより、この電力を出力に還流するとともに、ゼロ電圧スイッチングを達成し、高効率、低ノイズ化することを特徴とする。
また、トランスの巻線に流れる電流の起磁力を常に相殺することにより、トランスの直流励磁を軽減させ、トランスの小型化を図ることを特徴とする。
図1は第1の実施の形態に係るスイッチング電源装置の回路構成図である。図1に示すスイッチング電源装置において、全波整流回路B1は、交流電源Vac1に接続され、交流電源Vac1からの交流電圧を整流して正極側出力端P1及び負極側出力端P2に出力する。
全波整流回路B1の両端には、リアクトルL2とトランスTの3次巻線5c(巻数n3)とリアクトルL3とトランスTの1次巻線5a(巻数n1)とMOSFET等からなるスイッチQ1(主スイッチ)との直列回路が接続されている。スイッチQ1の両端にはダイオードD1とコンデンサC1(共振用コンデンサ)とが並列に接続されている。
トランスTの1次巻線5aの一端とスイッチQ1の一端との接続点にはMOSFET等からなるスイッチQ2(補助スイッチ)の一端が接続され、スイッチQ2の他端はコンデンサC3(スナバコンデンサ)を介してトランスTの3次巻線5cとリアクトルL3との接続点に接続されている。
スイッチQ2の両端にはダイオードD2及びコンデンサC2が並列に接続されている。トランスTの3次巻線5cとリアクトルL3との接続点と、全波整流回路B1の負極側出力端P2との間には平滑コンデンサC4が接続されている。スイッチQ1,Q2は、共にオフとなる期間(デッドタイム)を有し、制御回路10のPWM制御により交互にオン/オフする。
なお、ダイオードD1及びコンデンサC1は、スイッチQ1の寄生ダイオード及び寄生容量であってもよく、ダイオードD2及びコンデンサC2は、スイッチQ2の寄生ダイオード及び寄生容量であってもよい。また、リアクトルL2は、トランスTの巻線間のリーケージインダクタンスであってもよく、リアクトルL3は、トランスTの巻線間のリーケージインダクタンスであってもよい。
トランスTのコアには、1次巻線5aと密結合させてトランスTの2次巻線5b(n2)が巻回されており、また、トランスTのコアには、1次巻線5aと疎結合させてトランスTの3次巻線5c(n3)が巻回されている。2次巻線5bの両端には、ダイオードD11と平滑コンデンサC11とからなる整流平滑回路が接続されている。平滑コンデンサC11は直流出力を負荷RLに出力する。
また、トランスTの3次巻線5cの巻数は、トランスT1の1次巻線5aの巻数以上となっている。トランスTの2次巻線5bは、トランスTの1次巻線5aに対して逆相に巻回され、トランスTの3次巻線5cは、トランスTの1次巻線5aと同相に巻回されている。
制御回路10は、スイッチQ1とスイッチQ2とを交互にオン/オフ制御し、負荷RLの出力電圧が基準電圧以上となったときに、スイッチQ1に印加されるパルスのオン幅を狭くし、スイッチQ2に印加されるパルスのオン幅を広くするように制御する。すなわち、負荷RLの出力電圧が基準電圧以上となったときに、スイッチQ1のパルスのオン幅を狭くすることで、出力電圧を一定電圧に制御するようになっている。
また、制御回路10は、スイッチQ1をターンオンするときに、スイッチQ1の電圧がスイッチQ1と並列に接続されたコンデンサC1とトランスTの巻線間のリーケージインダクタンスとの共振によりゼロ電圧となった時から所定期間中にスイッチQ1をオンさせる。
次にこのように構成された第1の実施の形態に係るスイッチング電源装置の動作を説明する。
図2では、交流電源Vac1の入力電圧Vi(交流電圧)、交流電源Vac1を流れる入力電流Ii(交流電流)を示している。図2に示す入力電流Iiのピーク付近(P部)の各信号の詳細を図4のタイミングチャートに示す。
最初に、図2のタイミングチャートを参照しながら、入力電圧と入力電流との動作、即ち、入力電流Iiが正弦波状電流のピーク付近にこぶ状のピーク電流を持った波形となり、高調波規制に対応できることについて説明する。
まず、スイッチQ1をオンさせると、平滑コンデンサC4に蓄えられた電荷は、トランスTの1次巻線5aを通って放電し、トランスTの励磁インダクタンスにエネルギーが蓄えられる。
また、これと同時に、交流電源Vac1からの交流電圧が、全波整流回路B1により整流されて全波整流電圧が正極側出力端P1及び負極側出力端P2から出力される。このため、全波整流回路B1により整流された全波整流電圧により、リアクトルL2及びトランスTの3次巻線5cを介して平滑コンデンサC4が充電される。
このとき、リアクトルL2に加わる電圧は、トランスTの3次巻線5cの電圧と入力電圧の整流電圧(│Vac1│)との和であり、トランスTの1次巻線5aの巻数n1と3次巻線5cの巻数n3とが同じである場合には、スイッチQ1のオン時には、│Vac1│となる。
このため、図2に示すように、入力電圧Viに比例した入力電流Iiが流れる。交流電圧のピーク付近では、リアクトルL2の電流は、連続的となり、増大する。そして、リアクトルL2に蓄えられたエネルギーは、トランスTの3次巻線5cを介して、スイッチQ1がオフ時に、2次巻線5bに伝送され、出力に放出される。このため、入力電流Iiのピーク(P部)は、抑制される。
即ち、入力電流Iiは、正弦波状電流のピーク付近にこぶ状のピーク電流を持った波形となり、入力電流Iiの高調波は低減され、高調波規制を満足する波形とすることができる。即ち、1つのコンバータで高調波規制に対応することができる。
図3は交流入力電流の半周期の波形を判定するためのクラスD判定波形を示す図である。交流入力電流の半周期の波形が、図3の太い実線W1の内側に、少なくとも半周期の95%に渡って入る特殊波形の交流入力電流を有する機器をクラスDと判定し、限度値が適用される。限度値は国際標準規格IEC61000−3−2による。実施の形態の入力電流波形も図3(b)に示すように、太い実線W1の内側に、少なくとも半周期の95%に渡って入っているので、特殊波形とみなされ、限度値が適用される。また、リアクトルL2とリアクトルL3と平滑コンデンサC4とによる低域フィルタにより、高い周波数を抑制できるので、高調波を大幅に低減することができる。
また、図4からも明らかのように、入力電流は連続的となり、高周波リップルが少なく、ノイズフィルタの小型化が図れる。
次に、図4、図5、図6、図8に示すタイミングチャートを参照しながらP部における詳細な動作を説明する。図5は第1の実施の形態に係るスイッチング電源装置のスイッチQ1のターンオン時の各部における信号の詳細を示すタイミングチャートである。図6は第1の実施の形態に係るスイッチング電源装置のスイッチQ1のターンオフ時の各部における信号の詳細を示すタイミングチャートである。
なお、図4乃至図6では、スイッチQ1の両端間の電圧Q1v、スイッチQ1に流れる電流Q1i、スイッチQ2の両端間の電圧Q2v、スイッチQ2に流れる電流Q2i、3次巻線5cに流れる入力電流Ii、ダイオードD11に流れる電流で且つ2次巻線5bに流れる電流I、スイッチQ1をオン/オフ制御するQ1制御信号(Q1g)、スイッチQ2をオン/オフ制御するQ2制御信号(Q2g)を示している。
また、図8は第1の実施の形態に係るスイッチング電源装置のトランスの各巻線に流れる電流のタイミングチャートである。図8では、3次巻線5cに流れる入力電流Iで且つ入力電流Iiとは大きさが同じで正負の符号が逆の電流(−Ii)、1次巻線5aに流れる主巻線電流I、2次巻線5bに流れる出力電流Iを示している。また、図8では、1次巻線5a、2次巻線5b、3次巻線5cの巻数を同一巻数としたときの波形である。
まず、時刻t(時刻t11〜t14に対応)において、スイッチQ1をオンさせると、C4→L3→5a→Q1→C4で電流Q1iが流れる。また、これと同時に、1次巻線5aに疎結合したトランスTの3次巻線5cにも電圧が発生し、B1→L2→5c→C4→B1で入力電流Iiが流れて増加していく。入力電流Iは減少していく。このため、平滑コンデンサC4に電力を供給するとともに、リアクトルL2に電力を蓄える。
次に、時刻t(時刻t21〜t23に対応)において、スイッチQ1をオフさせると、リアクトルL2の電流は流れ続けるため、3次巻線5cの電圧が反転し、これと同時に1次巻線5aの電圧及び2次巻線5bの電圧も反転する。このため、
リアクトルL2に蓄えられたエネルギーはトランスTの3次巻線5cを介して2次巻線5bに伝送されるため、2次巻線5bに電流Iが流れ始めて、ダイオードD11が導通し、負荷RLに電力が供給されるとともに、平滑コンデンサC4が充電される。
また、トランスTの1次巻線5aの電圧が反転するとともに、リアクトルL3に蓄えられたエネルギーにより、時刻t23において、L3→5a→D2→C3→L3と電流D2iが流れて、コンデンサC1を充電するとともに、コンデンサC2を放電させる。コンデンサC2の放電が終了した(スイッチQ2の電圧Q2vがゼロ電圧になった)後、ダイオードD2を介してコンデンサC3を充電する。ダイオードD2が導通中の時刻t23に、スイッチQ2をオンさせると、スイッチQ2のゼロ電圧スイッチングを達成することができる。
コンデンサC3の充電が完了した後、コンデンサC3に充電された電荷は、スイッチQ2、1次巻線5aを介して、出力に放出される。このとき、スイッチQ2に電流Q2iが流れ、1次巻線5aに電流Iが流れるとともに、2次巻線5bに電流Iが流れる。また、1次巻線5aの電圧は、出力電圧によりクランプされるため、電流Iは、リアクトルL3とコンデンサC3との共振動作により、正弦波状に流れる(図8に示す例えば時刻t〜tの波形)。
このため、スイッチQ1のオフ期間を半周期とする周波数より低い周波数になるように、リアクトルL3とコンデンサC3との定数を設定すると、スイッチQ2のオフ時に電流Iが正であるため、電流Iは継続して、L3→C4→C1→5a→L3と流れる。このため、コンデンサC1が放電され、コンデンサC2が充電される。
コンデンサC1の放電が終了した(スイッチQ1の電圧Q1vがゼロ電圧になった)後、ダイオードD1が導通する。このダイオードD1が導通している期間中(図5に示す例えば時刻t13)に、スイッチQ1をオンさせると、スイッチQ1のゼロ電圧スイッチングを達成することができる。
出力電圧は、リアクトルL2のエネルギーに比例するため、スイッチQ1のオン/オフのデューティを制御回路10により制御することにより、出力電圧を制御することができる。
また、図8からもわかるように、主巻線電流Iと出力電流Iと入力電流Iとの電流の総和は、全てのタイミングにおいて、略ゼロとなっている。即ち、全体のトランスTとしては直流起磁力が減少し、つまり直流励磁分が略ゼロであることがわかる。従って、トランスTのギャップは少なくなり、インダクタンスの大きなトランスを容易に製作できる。また、直流励磁分は略ゼロとなるので、磁束の動作範囲が拡大することができる。これにより、トランスを小型化できる。また、1次巻線5aの巻数n1と3次巻線5cの巻数n3とを同じにすれば、ほぼ電流は、ギャップによる励磁分を除いて、相殺できる。
このように第1の実施の形態に係るスイッチング電源装置によれば、トランスTの1次巻線5aに直列に3次巻線5cを接続し、3次巻線5cに直列にリアクトルL2を接続して、トランスTの巻線に流れる電流の起磁力を常に相殺することにより、トランスTの直流励磁を軽減させ、トランスTの小型化を図ることができる。
また、スイッチQ1をオンした時に3次巻線5cに接続されたリアクトルL2に電力を蓄え、スイッチQ1をオフした時に、2次巻線5bを介して負荷RLに電力を供給するとともに、平滑コンデンサC4を充電し、1次巻線5aに接続されたリアクトルL3に蓄えられた電力を、スナバコンデンサC3に蓄え、スイッチQ2をオンすることにより、この電力を出力に還流するとともに、ゼロ電圧スイッチングを達成でき、高効率、低ノイズ化することができる。
図7は第1の実施の形態に係るスイッチング電源装置に設けられたトランスの構造図である。図7に示すトランスは、日の字型のコア20を有し、コア20の中央脚20aには、1次巻線5aと、1次巻線5a上で1次巻線5aと密結合させた2次巻線5bとが巻回されている。即ち、1次巻線5aと2次巻線5bとを同一脚に巻回し、小さなリーケージインダクタンスを得ている。このリーケージインダクタンスをリアクトルL3の代用としている。
また、側脚20dには、3次巻線5cが巻回され、側脚20bには、ギャップ20cが形成されている。このギャップ20cにより大きなリーケージインダクタンスを3次巻線5c及び1次巻線5aに設け、このリーケージインダクタンスをリアクトルL2の代用している。
リアクトルL2,L3にリーケージインダクタンスを用いることにより、全ての巻線を1つのトランスTで構成できるので、トランスTを小型化できる。
また、トランスTのコアの中央脚20aにもギャップ20eが形成されている。ギャップ20c、20eを設けたのは、交流入力電圧の谷間でも、均一に負荷RLに電力を供給するために、平滑コンデンサC4に蓄えられた電荷を1次巻線5aのインダクタンス(リアクトルL3)に蓄え負荷RLに放出し、交流入力電圧の山の部分では、1次巻線5aと3次巻線5cとの両方のインダクタンス(リアクトルL2,L3)に蓄えたエネルギーを負荷に供給するためである。このように構成することにより、交流入力電圧の谷の部分でも負荷RLに電力を供給することができる。
次に第2の実施の形態に係るスイッチング電源装置を説明する。第1の実施の形態に係るスイッチング電源装置では、スイッチとして、ノーマリオフタイプのMOS FET等を用いた。このノーマリオフタイプのスイッチは、電源がオフ時にオフ状態となるスイッチである。
一方、SIT(static induction transistor、静電誘導トランジスタ)等のノーマリオンタイプのスイッチは、電源がオフ時にオン状態となるスイッチである。このノーマリオンタイプのスイッチは、スイッチングスピードが速く、オン抵抗も低くスイッチング電源等の電力変換装置に使用した場合、理想的な素子であり、スイッチング損失を減少させ高効率が期待できる。
しかし、ノーマリオンタイプのスイッチング素子にあっては、電源をオンすると、スイッチがオン状態であるため、スイッチが短絡する。このため、ノーマリオンタイプのスイッチを起動できず、特殊な用途以外には使用できない。
そこで、第2の実施の形態に係るスイッチング電源装置は、第1の実施の形態に係るスイッチング電源装置の構成を有すると共に、スイッチQ1nにノーマリオンタイプのスイッチを使用するために、交流電源オン時に、コンデンサの突入電流を軽減する目的で挿入されている突入電流制限抵抗の電圧降下による電圧を、ノーマリオンタイプのスイッチの逆バイアス電圧に使用し、電源オン時の問題をなくす構成を追加したことを特徴とする。
図9は第2の実施の形態に係るスイッチング電源装置を示す回路構成図である。図9に示すスイッチング電源装置は、図1に示す第1の実施の形態に係るスイッチング電源装置の構成を有すると共に、全波整流回路B1の負極側出力端P2と、スイッチQ1nと平滑コンデンサC4との接続点との間には、突入電流制限抵抗R1が接続されている。
全波整流回路B1の正極側出力端P1には、リアクトルL2、トランスTbの3次巻線5c、リアクトルL3、トランスTbの1次巻線5aを介してSIT等のノーマリオンタイプのスイッチQ1nが接続され、スイッチQ1nは、制御回路11のPWM制御によりオン/オフする。なお、スイッチQ2は、ノーマリオフタイプのスイッチである。
また、突入電流制限抵抗R1の両端にはスイッチS1が接続されている。このスイッチS1は、例えばノーマリオフタイプのMOSFET,BJT(バイポーラ接合トランジスタ)等の半導体スイッチであり、制御回路11からの短絡信号によりオン制御される。
突入電流制限抵抗R1の両端には、コンデンサC6と抵抗R2とダイオードD5とからなる起動電源部12が接続されている。この起動電源部12は、突入電流制限抵抗R1の両端に発生する電圧を取り出し、コンデンサC6の両端電圧をスイッチQ1nのゲートへの逆バイアス電圧として使用するために、制御回路11に出力する。また、平滑コンデンサC4に充電された充電電圧を制御回路11に供給する。
制御回路11は、交流電源Vac1をオンしたときに、コンデンサC6から供給された電圧により起動し、制御信号として端子bからスイッチQ1nのゲートに逆バイアス電圧を出力し、スイッチQ1nをオフさせる。この制御信号は、例えば、−15Vと0Vとのパルス信号からなり、−15Vの電圧によりスイッチQ1nがオフし、0Vの電圧によりスイッチQ1nがオンする。
制御回路11は、平滑コンデンサC4の充電が完了した後、端子bから制御信号として0Vと−15Vとのパルス信号をスイッチQ1nのゲートに出力し、スイッチQ1nをスイッチング動作させる。制御回路11は、スイッチQ1nをスイッチング動作させた後、所定時間経過後にスイッチS1のゲートに短絡信号を出力し、スイッチS1をオンさせる。
また、トランスTbに設けられた4次巻線5d(巻数n4)の一端は、スイッチQ1nの一端とコンデンサC7の一端と制御回路11とに接続され、4次巻線5dの他端は、ダイオードD7のカソードに接続され、ダイオードD7のアノードはコンデンサC7の他端及び制御回路11の端子cに接続されている。4次巻線5dとダイオードD7とコンデンサC7とは通常動作電源部13を構成し、この通常動作電源部13は、4次巻線5dで発生した電圧をダイオードD7及びコンデンサC7を介して制御回路11に供給する。
次にこのように構成された第2の実施の形態に係るスイッチング電源装置の動作を図9乃至図11を参照しながら説明する。
なお、図11において、Vac1は、交流電源Vac1の交流電圧を示し、入力電流は、交流電源Vac1に流れる電流を示し、R1電圧は、突入電流制限抵抗R1に発生する電圧を示し、C4電圧は、平滑コンデンサC4の電圧を示し、C6電圧は、コンデンサC6の電圧を示し、出力電圧は、コンデンサC11の電圧を示し、制御信号は、制御回路11の端子bからスイッチQ1nのゲートへ出力される信号を示す。
まず、時刻tにおいて、交流電源Vac1を印加(オン)すると、交流電源Vac1の交流電圧は全波整流回路B1で全波整流される。このとき、ノーマリオンタイプのスイッチQ1nは、オン状態であり、スイッチS1は、オフ状態である。このため、全波整流回路B1からの電圧は、平滑コンデンサC4を介して突入電流制限抵抗R1に印加される(図10中の(1))。
この突入電流制限抵抗R1に発生した電圧は、ダイオードD5、抵抗R2を介してコンデンサC6に蓄えられる(図10中の(2))。ここで、コンデンサC6の端子f側が例えば零電位となり、コンデンサC6の端子g側が例えば負電位となる。このため、コンデンサC6の電圧は、図11に示すように、負電圧(逆バイアス電圧)となる。このコンデンサC6の負電圧が端子aを介して制御回路11に供給される。
そして、コンデンサC6の電圧が、スイッチQ1nのスレッシホールド電圧THLになった時点(図11の時刻t)で、制御回路11は、端子bから−15Vの制御信号をスイッチQ1nのゲートに出力する(図10中の(3))。このため、スイッチQ1nは、オフ状態となる。
すると、全波整流回路B1からの電圧により、平滑コンデンサC4は、充電されて(図10中の(4))、平滑コンデンサC4の電圧が上昇していき、平滑コンデンサC4の充電が完了する。
次に、時刻tにおいて、制御回路11は、スイッチング動作を開始させる。始めに、端子bから0Vの制御信号をスイッチQ1nのゲートに出力する(図10中の(5))。このため、スイッチQ1nは、オン状態となると、C4→L3→5a→Q1→C4で電流Q1iが流れる(図10中の(6))。
また、トランスTbの1次巻線5aと電磁結合している4次巻線5dにも電圧が発生し、発生した電圧は、ダイオードD7及びコンデンサC7を介して制御回路11に供給される(図10中の(7))。このため、制御回路11が動作を継続することができるので、スイッチQ1nのスイッチング動作を継続して行うことができる。
次に、時刻tにおいて、端子bから−15Vの制御信号をスイッチQ1nのゲートに出力する。このため、時刻tにスイッチQ1nがオフすると、リアクトルL2の電流は流れ続けるため、3次巻線5cの電圧が反転し、これと同時に1次巻線5aの電圧及び2次巻線5bの電圧も反転する。このため、2次巻線5bに電流Iが流れ始めて、ダイオードD11が導通し、負荷RLに電力が供給されるとともに、平滑コンデンサC4が充電される。
また、時刻tに制御回路11から短絡信号をスイッチS1に出力すると、スイッチS1がオンして(図10中の(8))、突入電流制限抵抗R1の両端が短絡される。このため、突入電流制限抵抗R1の損失を減ずることができる。
なお、時刻tは、交流電源Vac1をオンしたとき(時刻t)からの経過時間として設定され、例えば平滑コンデンサC4と突入電流制限抵抗R1との時定数(τ=C4・R1)の約5倍以上の時間に設定される。以後、スイッチQ1nはオン/オフによるスイッチング動作を繰り返す。スイッチQ1nがスイッチング動作を開始した後には、スイッチQ1n及びスイッチQ2は、図1に示す第1の実施の形態に係るスイッチング電源装置のスイッチQ1,Q2の動作、即ち、図4、図5、図6に示すタイミングチャートに従った動作と同様に動作する。
このように第2の実施の形態に係るスイッチング電源装置によれば、制御回路11は、交流電源Vac1がオンされたときに突入電流制限抵抗R1に発生した電圧によりスイッチQ1nをオフさせ、平滑コンデンサC4が充電された後、スイッチQ1nをオン/オフさせるスイッチング動作を開始させるので、電源オン時における問題もなくなる。従って、ノーマリオンタイプの半導体スイッチが使用可能となり、損失の少ない、即ち、高効率なスイッチング電源装置を提供することができる。
本発明のスイッチング電源装置は、DC−DC変換型の電源回路やAC−DC変換型の電源回路に適用可能である。
第1の実施の形態に係るスイッチング電源装置を示す回路構成図である。 第1の実施の形態に係るスイッチング電源装置の入力電圧と入力電流の信号のタイミングチャートである。 交流入力電流の半周期の波形を判定するためのクラスD判定波形を示す図である。 第1の実施の形態に係るスイッチング電源装置のP部における信号の詳細なタイミングチャートである。 第1の実施の形態に係るスイッチング電源装置のスイッチQ1のターンオン時の各部における信号の詳細を示すタイミングチャートである。 第1の実施の形態に係るスイッチング電源装置のスイッチQ1のターンオフ時の各部における信号の詳細を示すタイミングチャートである。 第1の実施の形態に係るスイッチング電源装置に設けられたトランスの構造図である。 第1の実施の形態に係るスイッチング電源装置のトランスの各巻線に流れる電流のタイミングチャートである。 第2の実施の形態に係るスイッチング電源装置を示す回路構成図である。 第2の実施の形態に係るスイッチング電源装置の動作を説明するための図である。 第2の実施の形態に係るスイッチング電源装置の各部における信号のタイミングチャートである。 従来のスイッチング電源装置を示す回路構成図である。 従来のスイッチング電源装置の各部における信号のタイミングチャートである。 従来のスイッチング電源装置における主スイッチのターンオフ時のリンギング波形を示すタイミングチャートである。
符号の説明
Vdc1 直流電源
Vac1 交流電源
B1 全波整流回路
10,11,101,102 制御回路
Q1,Q2,Q1n スイッチ
RL 負荷
C1〜C3 コンデンサ
C4,C11 平滑コンデンサ
S1 スイッチ
T,Tb トランス
5a 1次巻線(n1)
5b 2次巻線(n2)
5c 3次巻線(n3)
5d 4次巻線(n4)
12 起動電源部
13 通常動作電源部
D1,D2,D5,D7,D11 ダイオード
L1〜L3 リアクトル

Claims (9)

  1. 交流を入力し、力率を改善させるとともに直流を出力するスイッチング電源装置であって、
    交流電源に接続して交流電圧を整流する整流回路と、
    前記整流回路の両端に接続され、第1リアクトルとトランスの3次巻線と前記トランスの1次巻線と主スイッチとが直列に接続された第1直列回路と、
    前記トランスの3次巻線と前記1次巻線との接続点と前記トランスの1次巻線と前記主スイッチとの接続点との間に接続され、補助スイッチとスナバコンデンサとが直列に接続された第2直列回路と、
    前記トランスの3次巻線と前記1次巻線との接続点と前記整流回路の一端との間に接続された平滑コンデンサと、
    前記1次巻線とは逆相に巻回された前記トランスの2次巻線に発生した電圧を整流平滑する整流平滑回路と、
    前記主スイッチと前記補助スイッチとを交互にオン/オフさせる制御回路と、
    を有することを特徴とするスイッチング電源装置。
  2. 前記主スイッチの両端に接続され、第1ダイオードと第1コンデンサとが並列に接続された第1並列回路と、
    前記補助スイッチの両端に接続され、第2ダイオードと第2コンデンサとが並列に接続された第2並列回路と、
    前記トランスの1次巻線と前記第2直列回路との間に接続された第2リアクトルと、
    を有し、
    前記制御回路は、前記主スイッチの電圧がゼロ電圧になった後、前記第1ダイオードの導通期間中に前記主スイッチをオンさせ、前記補助スイッチの電圧がゼロ電圧になった後、前記第2ダイオードの導通期間中に前記補助スイッチをオンさせることを特徴とする請求項1記載のスイッチング電源装置。
  3. 前記第1ダイオード及び前記第1コンデンサは、前記主スイッチの寄生ダイオード及び寄生容量であり、前記第2ダイオード及び前記第2コンデンサは、前記補助スイッチの寄生ダイオード及び寄生容量であることを特徴とする請求項2記載のスイッチング電源装置。
  4. 前記第1リアクトル及び前記第2リアクトルは、前記トランスのリーケージインダクタンスであることを特徴とする請求項1乃至請求項3のいずれか1項記載のスイッチング電源装置。
  5. 前記トランスは、磁気回路が形成された第1脚、第2脚及び第3脚を有するコアからなり、前記第1脚に前記1次巻線と前記2次巻線とを巻回し、前記第2脚に前記3次巻線を巻回し、前記第3脚にギャップを設けたことを特徴とする請求項4記載のスイッチング電源装置。
  6. 前記3次巻線の巻数は、前記1次巻線の巻数以上であり、前記3次巻線は、前記1次巻線と同相に巻回されていることを特徴とする請求項1乃至請求項5のいずれか1項記載のスイッチング電源装置。
  7. 前記整流回路と前記平滑コンデンサとの間に接続され、前記交流電源がオンされたときに前記平滑コンデンサの突入電流を軽減する突入電流制限抵抗を有し、
    前記主スイッチは、ノーマリオンタイプのスイッチからなり、
    前記制御回路は、前記交流電源がオンされたときに前記突入電流制限抵抗に発生した電圧により前記主スイッチをオフさせ、前記平滑コンデンサが充電された後、前記主スイッチをオン/オフさせるスイッチング動作を開始させることを特徴とする請求項1乃至請求項6のいずれか1項記載のスイッチング電源装置。
  8. 前記トランスは4次巻線をさらに備え、該トランスの4次巻線に発生する電圧を前記制御回路に供給する通常動作電源部を有することを特徴とする請求項7記載のスイッチング電源装置。
  9. 前記突入電流制限抵抗に並列に接続された半導体スイッチを有し、
    前記制御回路は、前記主スイッチのスイッチング動作を開始させた後、前記半導体スイッチをオンさせることを特徴とする請求項7又は請求項8記載のスイッチング電源装置。
JP2003300104A 2003-08-25 2003-08-25 スイッチング電源装置 Expired - Fee Related JP4329451B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003300104A JP4329451B2 (ja) 2003-08-25 2003-08-25 スイッチング電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300104A JP4329451B2 (ja) 2003-08-25 2003-08-25 スイッチング電源装置

Publications (2)

Publication Number Publication Date
JP2005073394A true JP2005073394A (ja) 2005-03-17
JP4329451B2 JP4329451B2 (ja) 2009-09-09

Family

ID=34405141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300104A Expired - Fee Related JP4329451B2 (ja) 2003-08-25 2003-08-25 スイッチング電源装置

Country Status (1)

Country Link
JP (1) JP4329451B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116707275A (zh) * 2023-08-08 2023-09-05 恩赛半导体(成都)有限公司 一种辅助电路、电源系统和电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116707275A (zh) * 2023-08-08 2023-09-05 恩赛半导体(成都)有限公司 一种辅助电路、电源系统和电子设备
CN116707275B (zh) * 2023-08-08 2023-11-17 恩赛半导体(成都)有限公司 一种辅助电路、电源系统和电子设备

Also Published As

Publication number Publication date
JP4329451B2 (ja) 2009-09-09

Similar Documents

Publication Publication Date Title
JP5088386B2 (ja) スイッチング電源装置
CN109247081B (zh) 半桥谐振转换器、使用它们的电路、以及对应的控制方法
JP3861871B2 (ja) スイッチング電源装置
US20180309372A1 (en) System and method for a switched mode converter
US20070195560A1 (en) Switching power supply circuit
JPH07177745A (ja) スイッチングレギュレータ
JP2001095247A (ja) スイッチング電源回路
JP4439979B2 (ja) 電源装置
JP4123231B2 (ja) 直流変換装置
JP3882809B2 (ja) スイッチング電源装置
JP4269588B2 (ja) スイッチング電源装置
JP4329451B2 (ja) スイッチング電源装置
JP4329450B2 (ja) 直流変換装置
JP2917857B2 (ja) 共振型コンバータ装置
JP4306234B2 (ja) スイッチング電源装置
Kulasekaran et al. A 500 kHz, 3.3 kW boost PFC with low loss coupled auxiliary ZVT circuit
JP4341285B2 (ja) Dc−dcコンバータ
JP2005192285A (ja) スイッチング電源装置
JP4265199B2 (ja) 直流変換装置
JP4305935B2 (ja) スイッチング電源
JP4396108B2 (ja) 力率改善回路
JPH06284723A (ja) 電源装置
JP4110804B2 (ja) 直流変換装置
JP2005151709A (ja) 直流変換装置
JP2000102245A (ja) 共振スイッチ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees