JP2005068514A - Hard metal containing fine particles - Google Patents

Hard metal containing fine particles Download PDF

Info

Publication number
JP2005068514A
JP2005068514A JP2003301599A JP2003301599A JP2005068514A JP 2005068514 A JP2005068514 A JP 2005068514A JP 2003301599 A JP2003301599 A JP 2003301599A JP 2003301599 A JP2003301599 A JP 2003301599A JP 2005068514 A JP2005068514 A JP 2005068514A
Authority
JP
Japan
Prior art keywords
hard
phase
less
dispersed phase
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003301599A
Other languages
Japanese (ja)
Inventor
Toshio Ishii
敏夫 石井
Yutaka Kubo
裕 久保
Atsushi Yukimura
淳 幸村
Tsunehiro Kawada
常宏 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2003301599A priority Critical patent/JP2005068514A/en
Publication of JP2005068514A publication Critical patent/JP2005068514A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard metal containing fine particles for a small diameter tool, which has a grain-controlling effect enough to inhibit the grain growth of a hard WC-dispersed phase, and as a result, has high hardness, high toughness, superior fracture resistance and superior chipping resistance. <P>SOLUTION: The hard metal containing fine particles has a metal composition comprising, by mass%, 2-13% Co and/or Ni, 0.1-1.8% Cr, 0.01-0.6% Ta and the balance W with unavoidable impurities; contains the particles of a hard dispersion phase mainly formed of WC with an average diameter of 0.8 μm or smaller; and has Cr oxides with sizes of 100 nm or smaller existing in the hard dispersion phase. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本願発明は、刃径が0.6mm以下の小径工具、特に小径ドリルに用いる、平均粒径が0.8μm以下の主に炭化タングステンからなる粒子を有する、いわゆる微粒超硬合金に関する。   The present invention relates to a so-called fine cemented carbide alloy having particles mainly composed of tungsten carbide having an average particle diameter of 0.8 μm or less, which is used for a small diameter tool having a blade diameter of 0.6 mm or less, particularly a small diameter drill.

平均粒径が1μm以下のWC硬質分散相を含有する微粒超硬合金は、硬さとともに靭性も高いため小径エンドミル、小径ドリル、各種剪断刃などに広範囲に用いられている。近年、微細加工品の増加とともに、エンドミルやドリルの小径化が急速に進み、微粒合金の平均粒径がますます小さくなり、しかも硬度と靭性の高いものが要求されてきている。そのため、焼結中におけるWC硬質分散相の粒成長を抑制するため、V、Cr、Taなどの金属もしくはそれらの化合物(炭化物、窒化物、炭窒化物など)をWCに対する粒成長抑制材として用いることが提案されている。これらの具体的な例として、特許文献1〜6が開示されている。
特許文献1は、VとCrとを複合添加することにより、合金の靭性低下の原因となる第3相が生じる程多量のVやCrを添加せず、真空焼結後に100MPaのAr雰囲気中でHIP処理することにより、VやCrが結合相中に固溶しており本質的にWC相と結合相の2相からなり、しかもWCの平均粒径が0.7μm以下である超硬合金が開示されている。
特許文献2は、VとCrの2種を添加し、真空雰囲気焼結後に5.9MPaで加圧焼結し、急冷することにより、WCをVとWとCrの析出複合炭化物の薄層で被覆し、結合相中に(V、W、Cr)Cの析出を無くすことにより、一段と強度の高い超硬合金が開示されている。
特許文献3は、真空雰囲気焼結後に4.9〜14.7MPaで加圧焼結し、50〜100度/分で急冷することにより、Coを主体とする結合相中にVとWとCrの析出複合炭化物からなる硬質分散相を微細に分散分布させるとともに、WCをVとWとCrの析出複合炭化物の薄層で被覆することにより、一段と高い強度をもつ超硬合金が開示されている。
特許文献4は、VとCrとTaC又は(Ta、Nb)Cの3種を添加し、真空焼結後にAr雰囲気中、100MPaでHIP処理して、一定量以下の(Ta、W)C又は(Ta、Nb、W)Cと思われる固溶体を合金中に析出させることにより、WCの平均粒径が0.6μm以下で、しかも耐溶着性が向上した超硬合金が開示されている。
特許文献5は、V、Cr、Taを添加し、真空雰囲気焼結後に5.9MPaで加圧焼結して、平均粒度が0.6μm以下のWC硬質分散相が分散しているWC基超硬合金の素地中にV、Cr、Ta等の炭化物もしくは炭窒化物の固溶体粒子を分散させるとともに、その最大粒径を3μm以下にすることにより合金の靭性低下を防止した超硬合金が開示されている。
特許文献6は、WとC成分、更にV成分を含有してなるCo基合金で結合相を構成し、残りの分散相が素地中に粒径100nmのCo基合金超微粒粒子が分散分布した組織を有する超硬合金が開示されている。
しかしながら、特許文献1〜3および6に開示されている従来技術では、VやCrが添加されているが、Taが添加されておらずWC粒間の結合が弱く靭性が劣るおよび高温特性が劣る欠点がある。即ち、例えば、プリント基板等の回路の高密度化と低価格化が進展するにつれて、小径ドリルによる穴あけ作業はますます高速・高効率化がなされ、ドリルと被削材間の摩擦熱によりドリル自体にかかる温度が高くなっていく傾向にあるにもかかわらず、高温において硬度と靭性とが低下し、摩耗や折損のためにより早い段階で寿命に達してしまう欠点がある。一方、特許文献4、5ではV、Cr、Taのいずれもが添加されているものの、Ta無添加品に比べて靭性が劣る欠点がある。このため、例えば、プリント基板穴開け用の小径ドリル等に用いた場合、微小チッピングや折損のためにより早い段階で寿命に達してしまう欠点がある。
A fine cemented carbide containing a WC hard dispersed phase having an average particle diameter of 1 μm or less is widely used in small diameter end mills, small diameter drills, various shearing blades and the like because of its high hardness and toughness. In recent years, as the number of finely processed products has increased, the diameter of end mills and drills has been rapidly reduced, and the average particle size of fine-grained alloys has become smaller and higher in hardness and toughness. Therefore, in order to suppress grain growth of the WC hard dispersed phase during sintering, metals such as V, Cr, Ta or their compounds (carbides, nitrides, carbonitrides, etc.) are used as grain growth inhibitors for WC. It has been proposed. As specific examples of these, Patent Documents 1 to 6 are disclosed.
In Patent Document 1, by adding V and Cr in combination, a large amount of V or Cr is not added so that a third phase that causes a reduction in the toughness of the alloy is generated, and in a 100 MPa Ar atmosphere after vacuum sintering. By performing the HIP treatment, a cemented carbide having V and Cr dissolved in the binder phase and essentially consisting of two phases, ie, a WC phase and a binder phase, and having an average WC grain size of 0.7 μm or less is obtained. It is disclosed.
In Patent Document 2, two types of V and Cr are added, pressure sintering is performed at 5.9 MPa after vacuum atmosphere sintering, and quenching is performed, whereby WC is a thin layer of precipitated composite carbide of V, W, and Cr. A cemented carbide with higher strength is disclosed by coating and eliminating the precipitation of (V, W, Cr) C in the binder phase.
In Patent Document 3, pressure sintering is performed at 4.9 to 14.7 MPa after vacuum atmosphere sintering, and quenching is performed at 50 to 100 degrees / minute, so that V, W, and Cr are contained in a binder phase mainly composed of Co. A cemented carbide with higher strength is disclosed by finely dispersing and dispersing a hard dispersed phase composed of the precipitated composite carbide of WC and coating WC with a thin layer of the precipitated composite carbide of V, W and Cr. .
In Patent Document 4, three types of V, Cr, and TaC or (Ta, Nb) C are added, and after vacuum sintering, HIP treatment is performed at 100 MPa in an Ar atmosphere to obtain (Ta, W) C or a certain amount or less. A cemented carbide having an average particle diameter of WC of 0.6 μm or less and improved welding resistance is disclosed by precipitating a solid solution (Ta, Nb, W) C in the alloy.
Patent Document 5 describes the addition of V, Cr, Ta, pressure sintering at 5.9 MPa after vacuum atmosphere sintering, and a WC hard dispersion phase having an average particle size of 0.6 μm or less is dispersed. Disclosed is a cemented carbide that disperses solid solution particles of carbides or carbonitrides such as V, Cr, Ta, etc. in the base of the hard alloy, and prevents the decrease in the toughness of the alloy by making the maximum particle size 3 μm or less. ing.
In Patent Document 6, a Co-phase alloy is formed of a Co-based alloy containing a W and C component, and further a V component, and the remaining dispersed phase is dispersed and distributed in a substrate with Co-based alloy ultrafine particles having a particle size of 100 nm. A cemented carbide having a structure is disclosed.
However, in the prior arts disclosed in Patent Documents 1 to 3 and 6, V and Cr are added, but Ta is not added, the bond between WC grains is weak, the toughness is inferior, and the high temperature characteristics are inferior. There are drawbacks. That is, for example, as the circuit density of printed circuit boards and the like increases, drilling work with small-diameter drills becomes faster and more efficient, and the drill itself due to frictional heat between the drill and the work material. In spite of the tendency for the temperature to increase, the hardness and toughness decrease at high temperatures, and there is a drawback that the life is reached at an earlier stage due to wear and breakage. On the other hand, in Patent Documents 4 and 5, although all of V, Cr, and Ta are added, there is a defect that the toughness is inferior to that of a Ta-free product. For this reason, for example, when it is used for a small-diameter drill for drilling a printed circuit board, there is a drawback that the life is reached at an earlier stage due to minute chipping or breakage.

特許第1539991号公報Japanese Patent No. 1539991 特開平11−350061号公報JP-A-11-350061 特許第3291562号公報Japanese Patent No. 3291562 特許第1487479号公報Japanese Patent No. 1487479 特開平6−81072号公報JP-A-6-81072 特許第3214385号公報Japanese Patent No. 3214385

本願発明が解決しようとする課題は十分な粒抑制効果を有しWC硬質分散相の粒成長を十分に抑えることができるために硬度が高く、しかも、高い靭性を有し、耐欠損、耐チッピング性に優れた小径工具用の微粒超硬合金材を提供することである。   The problem to be solved by the present invention is that it has a sufficient grain suppression effect and can sufficiently suppress grain growth of the WC hard dispersed phase, so that it has high hardness, high toughness, chip resistance and chipping resistance. It is to provide a fine cemented carbide material for a small diameter tool having excellent properties.

本発明は、質量%で、Co及び/又はNiが2〜13%、Crを0.1〜1.8%、Taを0.01〜0.6%、残りがW及び不可避不純物、からなる金属成分を有し、主にWCからなる硬質分散相の平均粒径が0.8μm以下であり、該硬質分散相中に大きさが100nm以下のCr酸化物が存在していることを特徴とする微粒超硬合金である。本構成を採用することにより、合金中に含まれる元素が十分な粒抑制効果を有することから、WC硬質分散相の粒成長を十分に抑え、硬度が高く、しかも、高い靭性を有し、耐欠損、耐チッピング性に優れた小径工具用の微粒超硬合金材を提供することができる。   The present invention comprises, in mass%, 2 to 13% of Co and / or Ni, 0.1 to 1.8% of Cr, 0.01 to 0.6% of Ta, and the balance of W and inevitable impurities. The hard dispersed phase mainly composed of WC having a metal component has an average particle size of 0.8 μm or less, and Cr oxide having a size of 100 nm or less exists in the hard dispersed phase. It is a fine cemented carbide. By adopting this configuration, since the elements contained in the alloy have a sufficient grain suppression effect, the grain growth of the WC hard dispersed phase is sufficiently suppressed, the hardness is high, and the toughness is high. It is possible to provide a fine cemented carbide material for small diameter tools having excellent chipping and chipping resistance.

CrとTaとを組み合わせて添加することによりWC硬質分散相の粒成長を十分に抑え、平均粒径が0.8μm以下で高硬度の微粒超硬合金材が実現出来、しかも、WCを主とする硬質相中に、大きさが100nm以下のCr酸化物を析出させることにより粒界の強度が高まり、高靭性が実現できる。これは、微小なCrの酸化物がWC硬質分散相中に析出することにより、WC硬質分散相と結合相間やWC硬質分散相間の界面の酸素濃度が適度に制御されることにより界面の強度が高まり、その結果、靭性が高まることによるものである。また、CrとTaとを組み合わせて添加することにより、超硬合金材の耐熱性が高まり、小径ドリル等の刃先温度が高まったときにも優れた耐摩耗性と耐欠損性とを有する小径工具用の微粒超硬合金材を提供することができる。本発明の微粒超硬合金材を用いて、例えばプリント基板穴あけ用の小径ドリルを作製すると、高速・高効率かつ高精度に穴あけ作業が可能な小径ドリルが実現できる。   By adding Cr and Ta in combination, the grain growth of the WC hard dispersed phase can be sufficiently suppressed, and a high-hardness cemented carbide material with an average particle diameter of 0.8 μm or less can be realized, and WC is mainly used. By precipitating a Cr oxide having a size of 100 nm or less in the hard phase, the strength of the grain boundary is increased and high toughness can be realized. This is because the finer oxide of Cr precipitates in the WC hard dispersion phase, and the oxygen concentration at the interface between the WC hard dispersion phase and the binder phase or between the WC hard dispersion phase is controlled appropriately, thereby reducing the interface strength. This is due to an increase in toughness as a result. Also, by adding Cr and Ta in combination, the heat resistance of the cemented carbide material is increased, and a small diameter tool having excellent wear resistance and fracture resistance even when the cutting edge temperature of a small diameter drill or the like is increased. A fine cemented carbide material can be provided. For example, when a small-diameter drill for drilling a printed circuit board is produced using the fine cemented carbide material of the present invention, a small-diameter drill capable of drilling with high speed, high efficiency and high accuracy can be realized.

本発明は、CrとTaとを所定量添加して微粒超硬合金材を作製し、平均粒径を0.8μm以下するとともに、焼結条件を工夫し、1.3〜13.2Paの真空雰囲気中、1330〜1480度の範囲内の所定温度に0.5〜2時間保持後、雰囲気を圧力:4.9〜14.7MPaの加圧雰囲気に変え、この加圧雰囲気に15〜60分間保持する、所謂シンターHIP処理後、1200度までを50〜100度/分の冷却速度で急冷する等により、大きさが100nm以下のCr酸化物を硬質相中に析出させることが出来るようになり、CrとTaとの添加によりWC硬質分散相の粒成長を十分に抑えながら、同時に高い靭性と耐欠損性とを有し、耐チッピング性に優れた微粒超硬合金材を実現できる。硬質分散相中に大きさが100nm以下のCr酸化物を析出させることによってWC硬質分散相と結合相との間や、WC硬質分散相の界面の強度が高まり、靭性が高くしかも、高温切削においても優れた硬度と靭性とを有する小径工具用の微粒超硬合金材を実現できる。これは、微小なCrの酸化物がWC硬質分散相中に析出することにより、WC硬質分散相中と結合相との間や、WC硬質分散相相間の界面の酸素濃度が適度に制御されることにより界面の強度が高まり、その結果、靭性と耐熱性とが高まるものと考えられる。CrとTaとを組み合わせて添加することにより平均粒径が0.8μm以下で高硬度の微粒超硬合金材が実現出来るとともに、大きさが100nm以下のCr酸化物を、WCを主とする硬質相中に析出させ、高靭性が実現できる。また、CrとTaとを組み合わせて添加することにより、超硬合金材の耐熱性が高まり、小径ドリル等の刃先温度が高まったときにも優れた耐摩耗性と耐欠損性とを有する小径工具用の微粒超硬合金材を提供することができる。本発明の微粒超硬合金材を用いて、例えばプリント基板穴あけ用の小径ドリルを作製すると、高速・高効率かつ高精度に穴あけ作業が可能な小径ドリルが実現できる。硬質分散相中に大きさが100nm以下のCr酸化物を存在させるには、原料粉末製造段階でCrを添加したWC粉末を原料に用い、シンターHIP後に急冷することが有効であるが、製造方法そのものに関わらず、該硬質分散相中に大きさが100nm以下のCr酸化物を存在させることが、WC硬質分散相と結合相との間やWC硬質分散相相の界面の強度を高めるためには重要である。WC硬質分散相中に大きさが100nm以下のCr酸化物が存在していることは、透過電子顕微鏡(以下、TEMと言う。)により125k倍で微粒超硬合金を観察するとともに、TEM装置に付属したエネルギー分散型X線分析装置(以下、EDXと言う。)によりその組成を分析することによって確認できる。本発明の微粒超硬合金は、その組織をTEMにより125k倍で観察したとき、硬質分散相中に大きさが100nm以下のCr酸化物が存在している割合が、50視野中1〜5視野であることによって、更に優れた靭性が得られる。   In the present invention, a predetermined amount of Cr and Ta is added to produce a fine cemented carbide material, the average particle size is made 0.8 μm or less, the sintering conditions are devised, and a vacuum of 1.3 to 13.2 Pa. After holding at a predetermined temperature in the range of 1330 to 1480 degrees for 0.5 to 2 hours in the atmosphere, the atmosphere is changed to a pressurized atmosphere of pressure: 4.9 to 14.7 MPa, and the pressurized atmosphere is changed to 15 to 60 minutes. After holding the so-called Sinter HIP process, Cr oxide with a size of 100 nm or less can be precipitated in the hard phase by rapidly cooling up to 1200 degrees at a cooling rate of 50 to 100 degrees / minute. By adding Cr and Ta, it is possible to realize a fine cemented carbide material having high toughness and fracture resistance and excellent chipping resistance while sufficiently suppressing grain growth of the WC hard dispersed phase. By precipitating a Cr oxide having a size of 100 nm or less in the hard dispersed phase, the strength of the interface between the WC hard dispersed phase and the binder phase or the interface of the WC hard dispersed phase is increased, and the toughness is high. In addition, it is possible to realize a fine cemented carbide material for small diameter tools having excellent hardness and toughness. This is because fine Cr oxide precipitates in the WC hard dispersion phase, so that the oxygen concentration at the interface between the WC hard dispersion phase and the binder phase or between the WC hard dispersion phase is moderately controlled. This increases the strength of the interface, and as a result, the toughness and heat resistance are considered to increase. By adding Cr and Ta in combination, it is possible to realize a fine cemented carbide material having an average particle size of 0.8 μm or less and a high hardness, and a Cr oxide having a size of 100 nm or less and a hard material mainly composed of WC. High toughness can be achieved by precipitation in the phase. Also, by adding Cr and Ta in combination, the heat resistance of the cemented carbide material is increased, and a small diameter tool having excellent wear resistance and fracture resistance even when the cutting edge temperature of a small diameter drill or the like is increased. A fine cemented carbide material can be provided. For example, when a small-diameter drill for drilling a printed circuit board is produced using the fine cemented carbide material of the present invention, a small-diameter drill capable of drilling with high speed, high efficiency and high accuracy can be realized. In order to allow Cr oxide having a size of 100 nm or less to exist in the hard dispersed phase, it is effective to use WC powder to which Cr is added in the raw material powder production stage as a raw material and to rapidly cool after sintering HIP. Regardless of the fact, the presence of a Cr oxide having a size of 100 nm or less in the hard dispersed phase increases the strength of the interface between the WC hard dispersed phase and the binder phase or the interface of the WC hard dispersed phase. Is important. The presence of Cr oxide having a size of 100 nm or less in the WC hard dispersed phase means that a fine cemented carbide alloy is observed at 125 k times with a transmission electron microscope (hereinafter referred to as TEM), and a TEM apparatus is used. This can be confirmed by analyzing the composition with an attached energy dispersive X-ray analyzer (hereinafter referred to as EDX). When the microstructure of the fine cemented carbide of the present invention is observed at a magnification of 125 k by TEM, the proportion of Cr oxide having a size of 100 nm or less in the hard dispersed phase is 1 to 5 in 50 views. Therefore, further excellent toughness can be obtained.

次に、数値限定理由について述べる。Co及び/又はNiが2%未満の時は細径化時に十分な耐欠損性が得られず、13%を超えて大きいと耐摩耗性が低下しドリル径が著しく摩耗する等の欠点が現れる。そこで、Co及び/又はNiの含有量は2〜13%とする。合金全体のCrの含有量が0.1%未満の時は焼結時にWC硬質分散相の成長が進み平均粒径が0.8μmを越え、耐摩耗性と靭性が低下する欠点が現れる。一方、1.8%を超えて大きいと結合相中のCr含有量が多くなり過ぎ、靭性が低下する欠点が現れる。そこで、Crの含有量は0.1〜1.8%とする。また、Taの含有量が0.01%未満の時は、焼結時にWC硬質分散相の成長が進み耐摩耗性と靭性とが低下するとともに耐熱性が低下する欠点が現れ、0.6%を超えて大きいとTa化合物の析出が多くなり靭性が低下する欠点が現れる。そこで、Taの含有量は、0.01〜0.6%とする。また、主にWCからなる硬質分散相の平均粒径が0.8μmを越えると、微粒超硬合金の硬度と靭性とが大きく低下し、耐摩耗性と耐欠損性とが不十分になる欠点が現れるため、WCからなる硬質分散相の平均粒径は0.8μm以下とする。Cr、Taの1部を、微量のVやZrで置換しても同様の効果が得られるが、0.5%を越えて置換すると靭性が低下し、耐欠損性と耐チッピング性とが著しく低下する欠点が現れる。   Next, the reason for the numerical limitation will be described. When Co and / or Ni is less than 2%, sufficient fracture resistance cannot be obtained when the diameter is reduced, and when it exceeds 13%, wear resistance is reduced and the drill diameter is significantly worn. . Therefore, the content of Co and / or Ni is set to 2 to 13%. When the Cr content of the entire alloy is less than 0.1%, the growth of the WC hard dispersion phase proceeds during sintering, and the average particle size exceeds 0.8 μm, resulting in the disadvantage that wear resistance and toughness are reduced. On the other hand, if it exceeds 1.8%, the Cr content in the binder phase is excessively increased, resulting in a drawback that the toughness is lowered. Therefore, the Cr content is 0.1 to 1.8%. Further, when the content of Ta is less than 0.01%, the growth of the WC hard dispersion phase progresses during sintering, and the wear resistance and toughness are lowered and the heat resistance is lowered. On the other hand, if it exceeds V, precipitation of Ta compound increases and the toughness decreases. Therefore, the content of Ta is set to 0.01 to 0.6%. In addition, when the average particle size of the hard dispersed phase mainly composed of WC exceeds 0.8 μm, the hardness and toughness of the fine-grain cemented carbide are greatly reduced, and the wear resistance and fracture resistance are insufficient. Therefore, the average particle size of the hard dispersed phase made of WC is set to 0.8 μm or less. The same effect can be obtained by replacing 1 part of Cr and Ta with a small amount of V or Zr. However, if it exceeds 0.5%, the toughness is lowered, and the fracture resistance and chipping resistance are remarkably increased. Deteriorating defects appear.

原料粉末として、粉末の製造段階でCrを固溶及び/または拡散させて作製したCr3C2入りの平均粒径が0.8μmのWC粉末を用いた。WC粉末に含まれるCr3C2量は、0.1、0.3、0.5、0.7、0.9、1.1%の6種類である。また、平均粒径が1.5μmのCr3C2粉末、同1.2μmのTaC粉末、及びCo粉末を用意し、これら原料粉末を所定の組成に配合し、アトライターで12時間混合し、減圧乾燥し、更にワックスと溶剤を加えて1時間混和した後、押出し成形機により直径2.5mmの長尺状成形体を作製し、これらの長尺状成形体を、脱ワックスした後、1.3〜13.2Paの真空雰囲気中、1330〜1480度の範囲内の所定温度に0.5〜2時間保持後、雰囲気を圧力:4.9〜14.7MPaの加圧雰囲気に変え、この加圧雰囲気に15〜60分間保持後、1200度までを50〜100度/分の冷却速度で急冷することにより、微粒超硬合金からなる直径2mmの長尺状焼結素材を製造した。平均粒径が1.5μmのCr3C2粉末は、Cr入りWC粉末だけではCr3C2量が不十分な時に用いた。この長尺状焼結素材の組成は蛍光X線装置により定量分析し、W、Co、Cr及びTaの含有量を測定した。平均結晶粒径は、焼結素材の断面を鏡面研磨した後、村上試薬で0.5分間、王水で0.5分間エッチング処理することにより結晶粒界を明確にした後、走査型電子顕微鏡(以下、SEMと言う。)により倍率10k倍で撮影した画像を拡大コピーし、これを画像解析装置により解析することにより算出した。また、微粒超硬合金材が、主にCoからなる結合相と硬質分散相とからなり、硬質分散相中に大きさが100nm以下のCr酸化物が存在しているか否かは、TEMにより125k倍で50視野観察し、EDXにより各領域の組成を測定することにより評価した。本発明材の組成とWCを主とする硬質相の平均粒径及び50視野中で、硬質分散相中に大きさが100nm以下のCr酸化物が観察された視野数を表1にまとめて示した。Cr酸化物の観察例として、図1に本発明例10で観察されたCr酸化物のTEM像を示す。本微粒子のEDX分析結果は質量%で、Cr:72.4%、O:4.7%、W:19.8%、Co:3.1%であった。また、比較の目的で、焼結条件を6.6Paの真空雰囲気中、1350〜1480度の範囲内の所定温度に1.5時間保持後、冷却速度が約10度/分で炉冷することにより比較例を作製した。原料粉末には、平均粒径が0.8μmのWC粉末、平均粒径が1.5μmのCr3C2粉末、同1.2μmのTaC粉末、及びCo粉末を用いた。本発明例と同一の条件で評価した比較例の諸特性を表1にあわせて示した。125k倍でTEM観察したとき、比較例はいずれも、主にCoからなる結合相と硬質分散相とからなるものの、Co成分が約50%である微粒子は見いだされたが、100nm以下のCr酸化物は見いだされなかった。   As the raw material powder, a WC powder containing Cr3C2 and having an average particle diameter of 0.8 μm prepared by dissolving and / or diffusing Cr in the powder production stage was used. The amount of Cr3C2 contained in the WC powder is six types of 0.1, 0.3, 0.5, 0.7, 0.9, and 1.1%. In addition, Cr3C2 powder having an average particle size of 1.5 μm, TaC powder of 1.2 μm, and Co powder are prepared. These raw material powders are blended into a predetermined composition, mixed for 12 hours with an attritor, and dried under reduced pressure. Further, after adding a wax and a solvent and mixing for 1 hour, long shaped bodies having a diameter of 2.5 mm were prepared by an extrusion molding machine, and after dewaxing these long shaped bodies, 1.3 to After holding at a predetermined temperature within a range of 1330 to 1480 degrees for 0.5 to 2 hours in a vacuum atmosphere of 13.2 Pa, the atmosphere is changed to a pressurized atmosphere of pressure: 4.9 to 14.7 MPa, and this pressurized atmosphere After being held for 15 to 60 minutes, a long sintered material having a diameter of 2 mm made of a fine cemented carbide was manufactured by rapidly cooling up to 1200 degrees at a cooling rate of 50 to 100 degrees / minute. The Cr3C2 powder having an average particle size of 1.5 μm was used when the Cr3C2 content was insufficient with only the WC powder containing Cr. The composition of the long sintered material was quantitatively analyzed with a fluorescent X-ray apparatus, and the contents of W, Co, Cr and Ta were measured. The average crystal grain size was determined by mirror-polishing the cross section of the sintered material, then clarifying the grain boundaries by etching with Murakami's reagent for 0.5 minutes and aqua regia for 0.5 minutes, and then using a scanning electron microscope (Hereinafter referred to as SEM), an image taken at a magnification of 10 k was enlarged and copied, and this was calculated by analyzing it with an image analyzer. Further, whether or not the fine cemented carbide material is mainly composed of a binder phase composed of Co and a hard dispersed phase, and Cr oxide having a size of 100 nm or less exists in the hard dispersed phase, is determined by TEM. It was evaluated by observing 50 visual fields at a magnification and measuring the composition of each region by EDX. Table 1 summarizes the composition of the present invention material and the average particle diameter of the hard phase mainly composed of WC and the number of fields of view in which Cr oxide having a size of 100 nm or less was observed in the hard dispersed phase. It was. As an observation example of Cr oxide, FIG. 1 shows a TEM image of Cr oxide observed in Example 10 of the present invention. The results of EDX analysis of the fine particles were, by mass, Cr: 72.4%, O: 4.7%, W: 19.8%, Co: 3.1%. Also, for the purpose of comparison, the furnace is cooled in a furnace at a cooling rate of about 10 degrees / minute after holding the sintering conditions at a predetermined temperature in the range of 1350 to 1480 degrees in a vacuum atmosphere of 6.6 Pa for 1.5 hours. Thus, a comparative example was prepared. As the raw material powder, WC powder having an average particle diameter of 0.8 μm, Cr3C2 powder having an average particle diameter of 1.5 μm, TaC powder of 1.2 μm, and Co powder were used. Table 1 shows the characteristics of the comparative example evaluated under the same conditions as the examples of the present invention. When the TEM was observed at a magnification of 125 k, all of the comparative examples were mainly composed of a binder phase composed of Co and a hard dispersed phase, but fine particles having a Co component of about 50% were found, but Cr oxidation of 100 nm or less was observed. Nothing was found.

本発明例及び比較例から作製した長尺状焼結素材を用いて、シャンク径2.0mm、刃先径0.1mmの2枚刃小径ドリルを各3本作製した。これを用いて、高Tg(Tgはガラス転移温度)の0.2mm厚さ両面Cu付きガラスエポキシ板を2枚重ねにしたものを、回転数240000/分、送り0.01mm/revの条件で穴開け加工試験を行なった。この条件は、より高速で刃先温度がより高温になりやすい切削条件である。外周刃外径寸法に5%の摩耗が生じる迄の穴開け加工数又は折損するまでの加工穴数の小さい方を測定し、各3本の平均を穴あけ平均寿命とした。本発明例及び比較例から作製した各小径ドリルの穴開け平均寿命測定結果を表1に併せて示した。   Three long blades each having a shank diameter of 2.0 mm and a cutting edge diameter of 0.1 mm were produced using the long sintered material produced from the inventive examples and comparative examples. Using this, two glass epoxy plates with high-Tg (Tg is the glass transition temperature) 0.2mm-thick double-sided Cu are stacked on top of each other under the conditions of a rotational speed of 240000 / min and a feed of 0.01mm / rev. A drilling test was conducted. This condition is a cutting condition where the cutting edge temperature tends to be higher at a higher speed. The smaller of the number of holes drilled until 5% wear occurred on the outer diameter of the outer peripheral blade or the number of holes drilled until breakage was measured, and the average of the three holes was defined as the average drilling life. Table 1 also shows the results of measuring the average drilling life of each small-diameter drill produced from the inventive examples and the comparative examples.

表1に示した結果から、本発明例1〜18はいずれも、50視野中少なくとも1視野以上で、硬質分散相中に大きさが100nm以下のCr酸化物が観察されたのに対して、比較例19〜36では1視野にも観察されなかった。本発明例1〜18、比較例19〜36の夫々を用いて作製した小径ドリルの穴開け寿命を比較すると、ほぼ同一な組成とWC硬質分散相の粒度とを有するにもかかわらず、本発明例を用いて作製した小径ドリルは比較例に比べて1.5倍以上優れている。例えば、比較例33の穴開け寿命は1290穴であるのに対し、本発明例15は1940穴であり、比較例に比べて1.5倍優れている。また、本発明例においても、同じCo量とWC硬質分散相の粒度であるにもかかわらず、硬質分散相中に大きさが100nm以下のCr酸化物が50視野中6視野で観察された本発明例13の穴開け寿命が1850穴であるのに対して、50視野中5視野で観察された本発明例12の穴開け寿命は2910穴であり、1.5倍以上優れていることが分かった。   From the results shown in Table 1, each of Inventive Examples 1 to 18 had at least one visual field in 50 visual fields and a Cr oxide having a size of 100 nm or smaller in the hard dispersed phase, whereas In Comparative Examples 19 to 36, no visual field was observed. Comparing the drilling life of the small diameter drills produced using the inventive examples 1 to 18 and the comparative examples 19 to 36, the present invention was found to have almost the same composition and the particle size of the WC hard dispersed phase. The small diameter drill produced using the example is 1.5 times or more superior to the comparative example. For example, the drilling life of Comparative Example 33 is 1290 holes, while Inventive Example 15 is 1940 holes, 1.5 times better than the Comparative Example. Also, in the present invention example, a Cr oxide having a size of 100 nm or less was observed in 6 fields out of 50 fields in the hard dispersion phase, despite the same Co amount and the particle size of the WC hard dispersion phase. The drilling life of Invention Example 13 is 1850 holes, whereas the drilling life of Invention Example 12 observed in 5 fields out of 50 is 2910 holes, which is 1.5 times or more better. I understood.

図1は、本発明例の合金組織を500k倍でTEM観察した写真を示す。FIG. 1 shows a photograph obtained by TEM observation of the alloy structure of the example of the present invention at a magnification of 500 k.

符号の説明Explanation of symbols

1:Cr酸化物   1: Cr oxide

Claims (1)

質量%で、Co及び/又はNiが2〜13%、Crを0.1〜1.8%、Taを0.01〜0.6%、残りがW及び不可避不純物、からなる金属成分を有し、主にWCからなる硬質分散相の平均粒径が0.8μm以下であり、該硬質分散相中に大きさが100nm以下のCr酸化物が存在していることを特徴とする微粒超硬合金。
It has a metal component consisting of 2 to 13% of Co and / or Ni, 0.1 to 1.8% of Cr, 0.01 to 0.6% of Ta, and the balance of W and inevitable impurities. The hard dispersed phase mainly composed of WC has an average particle size of 0.8 μm or less, and a Cr oxide having a size of 100 nm or less is present in the hard dispersed phase. alloy.
JP2003301599A 2003-08-26 2003-08-26 Hard metal containing fine particles Withdrawn JP2005068514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301599A JP2005068514A (en) 2003-08-26 2003-08-26 Hard metal containing fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301599A JP2005068514A (en) 2003-08-26 2003-08-26 Hard metal containing fine particles

Publications (1)

Publication Number Publication Date
JP2005068514A true JP2005068514A (en) 2005-03-17

Family

ID=34406172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301599A Withdrawn JP2005068514A (en) 2003-08-26 2003-08-26 Hard metal containing fine particles

Country Status (1)

Country Link
JP (1) JP2005068514A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162753A (en) * 2011-02-03 2012-08-30 Sumitomo Electric Hardmetal Corp Cemented carbide and method of manufacturing the same, and micro drill

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162753A (en) * 2011-02-03 2012-08-30 Sumitomo Electric Hardmetal Corp Cemented carbide and method of manufacturing the same, and micro drill

Similar Documents

Publication Publication Date Title
TWI479027B (en) Hard alloy
JP2007044807A (en) Extremely small diameter end mill made of cemented carbide
JP2006328477A (en) Wc based cemented carbide member, and coated wc based cemented carbide member
JP3952209B2 (en) WC-base cemented carbide member
JP2004076049A (en) Hard metal of ultra-fine particles
JP2004059946A (en) Ultra-fine grain hard metal
JP2009275237A (en) Cemented carbide
JP2007162066A (en) Fine-grained cemented carbide and method for producing rare earth element-containing fine-grained cemented carbide
JP4975308B2 (en) Manufacturing method of fine cemented carbide for micro tool
JP2012162753A (en) Cemented carbide and method of manufacturing the same, and micro drill
JP2007191741A (en) Wc-based cemented carbide and manufacturing method therefor
TW202346614A (en) Cemented carbide and cutting tool using same
JP2005068515A (en) Hard metal containing fine particles
JP2006239792A (en) Hard film coated cemented carbide member
JP2008202074A (en) Fine-grained cemented carbide
JP4351453B2 (en) Cemented carbide and drill using the same
WO2021199260A1 (en) Cemented carbide and cutting tool comprising same
JP2005054258A (en) Fine-grained cemented carbide
JP2005068514A (en) Hard metal containing fine particles
JP2007284751A (en) Hard metal made of fine particle
JP2006131975A (en) Cermet for saw blade
JP2005068513A (en) Hard metal containing fine particles
JP2004131769A (en) Hyperfine-grained cemented carbide
JP2008196041A (en) Cemented carbide
JP4126280B2 (en) Fine cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060627

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090416

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090527