JP2012162753A - Cemented carbide and method of manufacturing the same, and micro drill - Google Patents

Cemented carbide and method of manufacturing the same, and micro drill Download PDF

Info

Publication number
JP2012162753A
JP2012162753A JP2011022109A JP2011022109A JP2012162753A JP 2012162753 A JP2012162753 A JP 2012162753A JP 2011022109 A JP2011022109 A JP 2011022109A JP 2011022109 A JP2011022109 A JP 2011022109A JP 2012162753 A JP2012162753 A JP 2012162753A
Authority
JP
Japan
Prior art keywords
atoms
particles
cemented carbide
powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011022109A
Other languages
Japanese (ja)
Inventor
Tomoko Hayakawa
智子 早川
Eiji Yamamoto
英司 山本
Katsuya Uchino
克哉 内野
Junji Iihara
順次 飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2011022109A priority Critical patent/JP2012162753A/en
Publication of JP2012162753A publication Critical patent/JP2012162753A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cemented carbide having high toughness and strength and having excellent chipping resistance and breaking resistance, to provide a method of manufacturing the same, and to provide a micro drill.SOLUTION: The cemented carbide has a hard phase mainly composed of WC particles and a bonded phase mainly composed of Co. Then, the hard phase is formed by a solid solution of Cr in the WC particles, and the average particle diameter of the WC particles is 0.5 μm or smaller. Furthermore, in the local structure of a Cr atom by an X-ray absorption spectrum method, the Cr atom is bonded to a W atom, and the ratio of (number of the W atoms/{number of the Cr atoms+number of Co atoms}) obtained by dividing the number of the W atoms present within 300 pm from the Cr atom by the sum of the number of the Cr atoms and the number of the Co atoms present within 300 pm from the Cr atom is 0.3 or larger.

Description

本発明は、超硬合金およびその製造方法、並びにマイクロドリルに関する。特に、靭性および強度が高く、耐欠損性(耐チッピング性)および耐折損性に優れる超硬合金に関する。   The present invention relates to a cemented carbide, a manufacturing method thereof, and a micro drill. In particular, the present invention relates to a cemented carbide having high toughness and strength and excellent fracture resistance (chipping resistance) and fracture resistance.

例えばプリント基板の穴あけ加工用のマイクロドリルやエンドミルなどに代表される切削工具の材料として、WC(炭化タングステン)粉末(硬質相)とCo(コバルト)粉末(結合相)とを含む原料粉末を混合した後、焼結した超硬合金が利用されている(例えば、特許文献1〜7参照)。   For example, raw material powders containing WC (tungsten carbide) powder (hard phase) and Co (cobalt) powder (binding phase) are mixed as materials for cutting tools such as micro drills and end mills for drilling printed circuit boards. Then, sintered cemented carbide is used (for example, see Patent Documents 1 to 7).

上記したマイクロドリルなどの切削工具用の超硬合金において、長寿命化を図るため、例えばWC粒子を微細化することが提案されている。WC粒子を微細化するには、特許文献1〜3に記載されるように、WC粒子の粒成長を抑制する粒成長抑制剤として、VC(炭化バナジウム)、Cr3C2(炭化クロム)などの金属炭化物を添加することが挙げられる。 In the above-mentioned cemented carbide for cutting tools such as a micro drill, for example, it has been proposed to refine WC particles in order to extend the life. In order to refine the WC particles, as described in Patent Documents 1 to 3, VC (vanadium carbide), Cr 3 C 2 (chromium carbide), etc., as grain growth inhibitors that suppress the grain growth of WC particles. Addition of metal carbide of

また一方で、特許文献4〜7には、WC粒子にCrを固溶するWC粉末を原料粉末に用いることで、WC粒子を微細化し、超硬合金の硬さ、強度、靱性などを向上させることが記載されている。   On the other hand, Patent Documents 4 to 7 use WC powder in which Cr is dissolved in WC particles as a raw material powder to refine the WC particles and improve the hardness, strength, toughness, etc. of the cemented carbide. It is described.

特開2004‐52110号公報JP 2004-52110 A 特公昭62‐56224号公報Japanese Examined Patent Publication No. 62-56224 特公平4‐50374号公報Japanese Patent Publication No. 4-50374 特開2001‐269809号公報Japanese Patent Laid-Open No. 2001-269809 特開平9‐302437号公報JP-A-9-302437 特開平7‐252555号公報JP-A-7-252555 特開2004‐238660号公報JP 2004-238660 A

例えばプリント基板の穴あけ加工用のマイクロドリルでは、小径化、基板の難加工化、加工の高能率化(高速回転高送り加工)に対応するため、材料となる超硬合金の硬さ、強度、靱性の更なる向上が求められている。しかし、従来の超硬合金は、強度および靱性の点で要求に十分応えることができず、耐欠損性(耐チッピング性)および耐折損性を十分に備えているとはいえない。   For example, in micro drills for drilling printed circuit boards, the hardness, strength, and strength of the cemented carbide alloy used as the material are met to reduce the diameter, make the board difficult to process, and increase the processing efficiency (high-speed rotation and high-feed processing). There is a need for further improvement in toughness. However, conventional cemented carbides cannot sufficiently meet the requirements in terms of strength and toughness, and cannot be said to have sufficient fracture resistance (chipping resistance) and fracture resistance.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、靭性および強度が高く、耐欠損性(耐チッピング性)および耐折損性に優れる超硬合金およびその製造方法を提供することにある。また、本発明の別の目的は、この超硬合金からなるマイクロドリルを提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a cemented carbide having high toughness and strength, excellent fracture resistance (chipping resistance) and fracture resistance, and a method for producing the same. It is to provide. Another object of the present invention is to provide a micro drill made of this cemented carbide.

本発明者らは、WC粒子にCrを固溶するWC粉末を原料粉末に用いると共に、製造方法(特に、焼結工程の焼結・冷却条件)を工夫することで、靭性および強度が高く、耐欠損性(耐チッピング性)および耐折損性に優れる超硬合金が得られる、との知見を得た。本発明は、上記知見に基づくものである。   The present inventors use WC powder in which Cr is dissolved in WC particles as raw material powder, and by devising a manufacturing method (especially sintering and cooling conditions in the sintering process), the toughness and strength are high, It was found that a cemented carbide excellent in fracture resistance (chipping resistance) and fracture resistance can be obtained. The present invention is based on the above findings.

本発明の超硬合金は、WC粒子を主体とする硬質相とCoを主体とする結合相とを備える。そして、硬質相は、WC粒子にCrを固溶し、WC粒子の平均粒径が0.5μm以下である。また、X線吸収分光法によるCr原子の局所構造において、Cr原子がW原子と結合し、かつ、Cr原子から300pm以内に存在するW原子の数を、Cr原子から300pm以内に存在するCr原子の数とCo原子の数との和で除した比(W原子数/{Cr原子数+Co原子数})が0.3以上であることを特徴とする。   The cemented carbide of the present invention includes a hard phase mainly composed of WC particles and a binder phase mainly composed of Co. The hard phase is a solid solution of Cr in the WC particles, and the average particle size of the WC particles is 0.5 μm or less. In addition, in the local structure of Cr atoms by X-ray absorption spectroscopy, the number of W atoms present within 300 pm from Cr atoms and Cr atoms bonded to W atoms is defined as Cr atoms present within 300 pm from Cr atoms. The ratio (number of W atoms / {number of Cr atoms + number of Co atoms}) divided by the sum of the number of and the number of Co atoms is 0.3 or more.

本発明の超硬合金は、硬質相のWC粒子にCrが固溶することによりWC粒子に対する固溶強化作用が得られることから、WC粒子の劈開による超硬合金の靱性および強度の低下を抑制することができ、超硬合金の靱性および強度を確保することができる。また、X線吸収分光法によるCr原子の局所構造において、Cr原子がW原子と結合していることから、W原子のサイトにCr原子が置換しており、WC粒子にCrが固溶していることが分かる。Cr原子から300pm以内に存在するW原子の数を、Cr原子から300pm以内に存在するCr原子の数とCo原子の数との和で除した比(W原子数/{Cr原子数+Co原子数})が0.3以上であることから、Co(結合相)中に存在するCrに対して、WC粒子(硬質相)中に存在するCrの割合(存在確率)が高く、靱性および強度の向上効果が得られる。このW原子数/{Cr原子数+Co原子数}が0.3未満である場合、硬質相中に存在するCrの割合が低くなることから、靱性および強度の向上効果が小さく、十分な効果が得られない。さらに、WC粒子の平均粒径が0.5μm以下の超微粒であることから、高硬度を維持しながら、超硬合金の靱性および強度を高めることができる。   The cemented carbide of the present invention suppresses the decrease in toughness and strength of cemented carbide due to cleavage of WC particles because Cr dissolves in the WC particles of the hard phase to obtain a solid solution strengthening action on the WC particles. The toughness and strength of the cemented carbide can be ensured. In the local structure of Cr atoms by X-ray absorption spectroscopy, since Cr atoms are bonded to W atoms, Cr atoms are substituted at the W atom sites, and Cr is dissolved in WC particles. I understand that. The ratio of the number of W atoms existing within 300 pm from the Cr atom divided by the sum of the number of Cr atoms existing within 300 pm from the Cr atom and the number of Co atoms (number of W atoms / {number of Cr atoms + number of Co atoms }) Is 0.3 or more, the ratio of Cr present in WC particles (hard phase) (existence probability) is higher than Cr present in Co (binding phase), and the effect of improving toughness and strength Is obtained. When this number of W atoms / {number of Cr atoms + number of Co atoms} is less than 0.3, the ratio of Cr present in the hard phase is low, so the effect of improving toughness and strength is small, and a sufficient effect is obtained. Absent. Furthermore, since the average particle diameter of the WC particles is 0.5 μm or less, the toughness and strength of the cemented carbide can be increased while maintaining high hardness.

上記したX線吸収分光法によるCr原子の局所構造において、Cr原子から300pm以内に存在するW原子の数を、Cr原子から300pm以内に存在するCr原子の数とCo原子の数との和で除した比(W原子数/{Cr原子数+Co原子数})が0.5以上であることが好ましい。   In the local structure of Cr atoms by the X-ray absorption spectroscopy described above, the number of W atoms existing within 300 pm from the Cr atom is the sum of the number of Cr atoms existing within 300 pm from the Cr atom and the number of Co atoms. The divided ratio (number of W atoms / {number of Cr atoms + number of Co atoms}) is preferably 0.5 or more.

W原子数/{Cr原子数+Co原子数}が0.5以上であることで、Co(結合相)中にCrがほとんど存在しておらず、WC粒子(硬質相)中にCrの大部分が存在している。つまり、Co(結合相)中にCrが殆ど溶出しておらず、WC粒子(硬質相)中にCrの大部分が固溶している。これにより、硬質相中に存在するCrの割合がより高くなることから、靱性および強度の向上効果がより大きい。   The number of W atoms / {number of Cr atoms + number of Co atoms} is 0.5 or more, so there is almost no Cr in Co (bonded phase) and most of Cr is present in WC particles (hard phase). is doing. That is, almost no Cr is eluted in Co (binding phase), and most of Cr is dissolved in WC particles (hard phase). Thereby, since the ratio of Cr existing in the hard phase becomes higher, the effect of improving toughness and strength is greater.

本発明の超硬合金の一形態として、硬質相におけるWC粒子に対するCrの含有量が0.5質量%以上3.0質量%以下である形態が挙げられる。   As one form of the cemented carbide of the present invention, a form in which the content of Cr with respect to the WC particles in the hard phase is 0.5% by mass or more and 3.0% by mass or less.

WC粒子に対するCrの含有量が0.5質量%未満では、WC粒子(硬質相)全体に対するCrの固溶量が少なく、WC粒子に対する固溶強化作用が得られ難い。一方、Crの含有量が3.0質量%超では、WC粒子(硬質相)全体に対するCrの固溶量が多く、却ってWC粒子の強度が低下することから、超硬合金の靱性および強度の低下を招く虞がある。   When the content of Cr with respect to the WC particles is less than 0.5% by mass, the solid solution amount of Cr with respect to the entire WC particles (hard phase) is small, and it is difficult to obtain a solid solution strengthening action with respect to the WC particles. On the other hand, if the Cr content exceeds 3.0% by mass, the solid solution amount of Cr in the entire WC particles (hard phase) is large, and the strength of the WC particles decreases. There is a risk of inviting.

本発明の超硬合金の一形態として、超硬合金中の結合相の含有量が5質量%以上20質量%以下である形態が挙げられる。   One form of the cemented carbide of the present invention is a form in which the content of the binder phase in the cemented carbide is 5% by mass or more and 20% by mass or less.

超硬合金中の結合相の含有量が5質量%未満では、合金全体に対する結合相の割合が少なく、超硬合金の靱性および強度の低下を招き、また焼結性が低下する虞がある。一方、結合相の含有量が20質量%超では、相対的に硬質相の割合が少なくなって、超硬合金の硬度の低下を招く虞がある。超硬合金中の硬質相の含有量は、80質量%以上95質量%以下であることが挙げられる。   When the content of the binder phase in the cemented carbide is less than 5% by mass, the ratio of the binder phase to the whole alloy is small, which may lead to a decrease in the toughness and strength of the cemented carbide, and the sinterability may decrease. On the other hand, when the content of the binder phase is more than 20% by mass, the proportion of the hard phase is relatively decreased, and the hardness of the cemented carbide may be lowered. The content of the hard phase in the cemented carbide may be 80% by mass or more and 95% by mass or less.

本発明の超硬合金の一形態として、VCを1.0質量%以下含有する形態が挙げられる。   One form of the cemented carbide of the present invention is a form containing 1.0% by mass or less of VC.

VCを含有することで、WC粒子の粒成長を抑制することができる。しかし、VCなどの金属炭化物を多く(1質量%超)含有すると、金属炭化物の析出による超硬合金の靱性および強度の低下を招く虞があることから、VCの含有量は1.0質量%以下であることが好ましい。本発明の超硬合金は、VCを含有しない場合、例えばCo、Crを含有し、残部がWCと不可避的不純物からなる。VCを含有する場合、例えばCo、VC、Crを含有し、残部がWCと不可避的不純物からなる。   By containing VC, grain growth of WC particles can be suppressed. However, if a large amount of metal carbide such as VC (more than 1% by mass) is contained, the toughness and strength of the cemented carbide may decrease due to the precipitation of metal carbide, so the VC content is 1.0% by mass or less. Preferably there is. When the cemented carbide of the present invention does not contain VC, it contains, for example, Co and Cr, and the balance consists of WC and inevitable impurities. In the case of containing VC, for example, Co, VC, and Cr are contained, and the balance is composed of WC and inevitable impurities.

本発明の超硬合金の製造方法は、次の工程を備えることを特徴とする。
WC粒子にCrを固溶するWC粉末とCo粉末とを含む原料粉末を混合粉砕して混合粉末を作製する混合工程。
混合粉末を1300℃以上1370℃以下の焼結温度に60分間未満保持して焼結した後、1000℃まで50℃/min以上の冷却速度で冷却して焼結体を作製する焼結工程。
The method for manufacturing a cemented carbide according to the present invention includes the following steps.
A mixing step in which a mixed powder is prepared by mixing and pulverizing raw material powder containing WC powder and Co powder in which Cr is dissolved in WC particles.
A sintering process in which the mixed powder is held at a sintering temperature of 1300 ° C. or more and 1370 ° C. or less for less than 60 minutes to be sintered, and then cooled to 1000 ° C. at a cooling rate of 50 ° C./min or more to produce a sintered body.

本発明の製造方法の特徴とするところは、WC粒子にCrを固溶するWC粉末を原料粉末に用いると共に、焼結工程の焼結・冷却条件にある。焼結温度を1300℃以上1370℃以下の低温域とすることで、焼結を十分に進行させながら、WC粒子(硬質相)中に固溶するCrの活性化を抑え、CrがCo(結合相)中に溶出することを抑制することができる。上記した焼結温度に保持する時間(保持時間)を60分間未満の短時間とすることで、Co(結合相)の液相出現時間を短くし、WC粒子(硬質相)中に固溶するCrがCo(結合相)中に溶出することを抑制することができる。また、WC粒子の粒成長を抑制することができる。冷却速度を1000℃まで50℃/min以上の急冷とすることで、Co(結合相)が凝固するまでの時間を短くし、WC粒子(硬質相)中に固溶するCrがCo(結合相)中に溶出することを抑制することができる。焼結温度が1300℃未満では、焼結を十分に進行させることが難しい。一方、焼結温度が1370℃超、又は保持時間が60分間以上では、WC粒子に固溶するCrがCo中に溶出したり、WC粒子が粒成長したりし易い。また、冷却速度が50℃/min未満では、WC粒子に固溶するCrがCo中に溶出し易い。   A feature of the production method of the present invention is that WC powder in which Cr is dissolved in WC particles is used as a raw material powder, and there are sintering and cooling conditions in the sintering step. By setting the sintering temperature to a low temperature range of 1300 ° C or higher and 1370 ° C or lower, the activation of Cr dissolved in the WC particles (hard phase) is suppressed while the sintering proceeds sufficiently, and Cr is bound to Co (bonded) Elution in the phase) can be suppressed. By keeping the above-mentioned sintering temperature (holding time) shorter than 60 minutes, the liquid phase appearance time of Co (binding phase) is shortened and dissolved in WC particles (hard phase). Elution of Cr into Co (binding phase) can be suppressed. Moreover, grain growth of WC particles can be suppressed. The rapid cooling of the cooling rate to 1000 ° C at 50 ° C / min or more shortens the time until the Co (bonded phase) solidifies, and Cr dissolved in the WC particles (hard phase) becomes Co (bonded phase). Elution). When the sintering temperature is less than 1300 ° C., it is difficult to sufficiently advance the sintering. On the other hand, when the sintering temperature is higher than 1370 ° C. or the holding time is 60 minutes or more, Cr dissolved in the WC particles is easily eluted into Co or the WC particles are likely to grow. In addition, when the cooling rate is less than 50 ° C./min, Cr that is solid-solved in the WC particles tends to elute into Co.

従来の製造方法では、焼結温度が高温域(1370℃超)、保持時間が長時間(60分間以上)、或いは冷却速度が徐冷(50℃/min未満。例えば炉冷)であったため、WC粒子にCrを固溶するWC粉末を原料粉末に用いることで、WC粒子の微細化を達成できても、WC粒子に固溶するCrがCo中に溶出することから、WC粒子に対する固溶強化作用が十分に得られなかった。   In the conventional manufacturing method, the sintering temperature was high temperature (above 1370 ° C.), the holding time was long (60 minutes or more), or the cooling rate was slow cooling (less than 50 ° C./min. For example, furnace cooling) By using WC powder, which dissolves Cr in WC particles, as raw material powder, Cr that dissolves in WC particles elutes into Co even though the WC particles can be refined. A sufficient reinforcing effect was not obtained.

上記した焼結温度は、1320℃以上1360℃以下とすることが好ましい。また、上記した保持時間は、10分間以上30分間以下とすることが好ましい。保持時間を10分間以上とすることで、焼結を十分に進行させながら、保持時間を30分間以下とすることで、WC粒子に固溶するCrがCo中に溶出することをより抑制し易い。さらに、上記した冷却速度は、1000℃まで70℃/min以上とすることが好ましい。   The above sintering temperature is preferably 1320 ° C. or higher and 1360 ° C. or lower. The holding time is preferably 10 minutes or longer and 30 minutes or shorter. Setting the holding time to 10 minutes or more makes it easier to suppress the dissolution of Cr, which dissolves in the WC particles, into the Co by setting the holding time to 30 minutes or less while allowing the sintering to proceed sufficiently. . Furthermore, the above cooling rate is preferably 70 ° C./min or higher up to 1000 ° C.

焼結は、例えば、焼結炉内を真空雰囲気、又は不活性ガス(例、Ar、CO、N2など)雰囲気とし、焼結後の冷却は、例えば、冷却用の不活性ガス(例、Ar、CO、N2など)を焼結炉内に導入することで実現できる。冷却速度は、冷却用ガスの温度や流量を調整することで制御することができる。 Sintering is performed, for example, in a sintering furnace in a vacuum atmosphere or an inert gas (eg, Ar, CO, N 2 etc.) atmosphere, and cooling after sintering is performed by, for example, an inert gas for cooling (eg, This can be achieved by introducing Ar, CO, N 2 etc.) into the sintering furnace. The cooling rate can be controlled by adjusting the temperature and flow rate of the cooling gas.

本発明の製造方法において、上記焼結体をHIP処理するHIP工程を備えることが好ましい。   In the production method of the present invention, it is preferable to include a HIP process for HIP processing the sintered body.

HIP(熱間等方圧加圧)処理により、焼結体(焼結後の超硬合金)内部の欠陥(例えば巣(ポア))を除去することができ、緻密な超硬合金とすることができる。HIP条件は、例えば、Ar、N2などの不活性ガスを圧力媒体とし、温度:1370℃以下、圧力:10MPa〜100MPaとすることが好ましい。 Defects (for example, pores) inside the sintered body (sintered cemented carbide) can be removed by HIP (hot isostatic pressing) processing, and a dense cemented carbide is obtained. Can do. The HIP conditions are preferably, for example, using an inert gas such as Ar or N 2 as a pressure medium, temperature: 1370 ° C. or less, and pressure: 10 MPa to 100 MPa.

本発明の製造方法の一形態として、WC粒子の平均粒径が0.2μm以上0.8μm以下である形態が挙げられる。   As one form of the manufacturing method of this invention, the form whose average particle diameter of WC particle is 0.2 micrometer or more and 0.8 micrometer or less is mentioned.

最終的に得られる超硬合金の硬質相におけるWC粒子の粒径は、原料粉末に用いるWC粉末を構成するWC粒子の粒径や、混合工程の混合粉砕条件によって変化する。本発明の製造方法では、硬質相におけるWC粒子の粒径が微細(平均粒径:0.5μm以下)な超硬合金が安定して得られるように、WC粉末のWC粒子も微細であることが好ましい。具体的には、WC粒子の平均粒径が0.2μm以上0.8μm以下のWC粉末を利用することが好ましい。WC粒子の平均粒径が0.2μm未満の場合、混合工程において混合した際に凝集し易く、WC粒子の粗大化・不均一化を招く虞がある。また、WC粒子の平均粒径が0.8μm超の場合も、混合工程において十分に粉砕されず、WC粒子の粗大化・不均一化を招く虞がある。   The particle size of the WC particles in the hard phase of the cemented carbide finally obtained varies depending on the particle size of the WC particles constituting the WC powder used for the raw material powder and the mixing and pulverizing conditions in the mixing step. In the production method of the present invention, the WC particles of the WC powder may be fine so that a cemented carbide with a fine WC particle in the hard phase (average particle size: 0.5 μm or less) can be stably obtained. preferable. Specifically, it is preferable to use WC powder having an average particle diameter of WC particles of 0.2 μm or more and 0.8 μm or less. When the average particle diameter of the WC particles is less than 0.2 μm, the WC particles are likely to aggregate when mixed in the mixing step, which may cause the WC particles to become coarse and non-uniform. Further, when the average particle diameter of the WC particles is more than 0.8 μm, the WC particles are not sufficiently pulverized in the mixing step, and there is a possibility that the WC particles become coarse and non-uniform.

一方、原料粉末に用いるCo粉末には、微細なWC粉末と均一的に混合され易いように、例えば、平均粒径が0.5μm以上3.0μm以下のものを利用することが好ましい。Co粉末の平均粒径が0.5μm未満の場合、混合工程において混合した際に凝集し易く、Co粉末が均一的に分散されず、焼結性の低下を招く虞がある。一方、Co粉末の平均粒径が3.0μm超の場合、微細なWC粉末と均一的に混合され難くなり、焼結性の低下を招く虞がある。低温域・短時間での焼結性を向上させるため、Co粉末の平均粒径は2.0μm以下とすることが好ましい。   On the other hand, as the Co powder used as the raw material powder, it is preferable to use, for example, one having an average particle size of 0.5 μm or more and 3.0 μm or less so as to be easily mixed with fine WC powder. When the average particle size of the Co powder is less than 0.5 μm, the Co powder tends to aggregate when mixed in the mixing step, and the Co powder is not uniformly dispersed, which may cause a decrease in sinterability. On the other hand, when the average particle size of the Co powder is more than 3.0 μm, it is difficult to uniformly mix with the fine WC powder, which may cause a decrease in sinterability. In order to improve the sinterability in a low temperature region and in a short time, the average particle size of the Co powder is preferably 2.0 μm or less.

上記した混合工程において、原料粉末の混合粉砕は、アトライター、ボールミル、ビーズミルといった回転翼を有する粉砕分散機を用いることで実現できる。混合粉砕の時間は、10時間以上20時間以下とすることが好ましい。特に、混合粉砕の開始から5時間までの混合粉砕(以下、前工程と呼ぶ)を高速回転で行い、それより後の混合粉砕(以下、後工程と呼ぶ)を低速回転で行うことが好ましい。前工程で概ねの混合粉砕を完了し、後工程では主として分散を促進する。このように混合粉砕条件を多段に変化させることで、均一的な混合、粉砕、分散を実現し易い。ここで、混合粉砕を全般に亘って高速回転で行った場合、原料粉末の凝集が生じ、混合粉末の分散状態の不均一化を招く虞がある。一方、混合粉砕を全般に亘って低速回転で行った場合、原料粉末の混合や粉砕が不十分で、混合粉末の混合状態や粉砕状態の不均一化を招く虞がある。   In the mixing step described above, the mixing and pulverization of the raw material powder can be realized by using a pulverizing and dispersing machine having a rotating blade such as an attritor, a ball mill, and a bead mill. The mixing and grinding time is preferably 10 hours or more and 20 hours or less. In particular, it is preferable to perform mixing and pulverization (hereinafter referred to as a pre-process) for 5 hours from the start of mixing and pulverization at a high speed, and to perform subsequent mixing and pulverization (hereinafter referred to as a post-process) at a low speed. In the previous step, the rough mixing and grinding are completed, and in the subsequent step, dispersion is mainly promoted. Thus, it is easy to realize uniform mixing, pulverization and dispersion by changing the mixing and pulverization conditions in multiple stages. Here, when the mixing and pulverization is performed at a high speed over the whole, the raw material powder is agglomerated, and there is a possibility that the dispersed state of the mixed powder becomes non-uniform. On the other hand, when the mixing and pulverization is performed at a low speed over the whole, mixing and pulverization of the raw material powder is insufficient, and there is a possibility that the mixed state and the pulverized state of the mixed powder are not uniform.

本発明の製造方法の一形態として、WC粒子に対するCrの含有量が0.5質量%以上3.0質量%以下である形態が挙げられる。   As one form of the manufacturing method of this invention, the form whose content of Cr with respect to WC particle is 0.5 mass% or more and 3.0 mass% or less is mentioned.

本発明の製造方法では、WC粒子にCrを固溶するWC粉末を原料粉末に用いると共に、製造方法を工夫し、製造中にWC粒子に固溶するCrがCo中に溶出することを抑制することで、最終的に得られる超硬合金において、硬質相のWC粒子にCrが固溶することによるWC粒子に対する固溶強化作用を得ることが狙いの一つである。WC粒子に対するCrの含有量が0.5質量%未満では、WC粒子中のCrの固溶量が少なく、WC粒子に対する固溶強化作用が得られ難い。一方、Crの含有量が3.0質量%超では、WC粒子中のCrの固溶量が多く、却ってWC粒子の強度が低下することから、超硬合金の靱性および強度の低下を招く虞がある。ここで、WC粒子に固溶するCrがCo中に溶出していない場合、WC粉末のWC粒子に対するCrの含有量は、最終的に得られる超硬合金の硬質相におけるWC粒子に対するCrの含有量と実質的に等しくなる。   In the production method of the present invention, a WC powder that dissolves Cr in WC particles is used as a raw material powder, and the production method is devised to suppress the dissolution of Cr dissolved in WC particles into Co during production. Thus, in the cemented carbide finally obtained, one of the aims is to obtain a solid solution strengthening action on the WC particles by the solid solution of Cr in the hard phase WC particles. If the Cr content in the WC particles is less than 0.5% by mass, the solid solution amount of Cr in the WC particles is small, and it is difficult to obtain a solid solution strengthening action on the WC particles. On the other hand, if the Cr content is more than 3.0% by mass, the solid solution amount of Cr in the WC particles is large, and the strength of the WC particles is decreased, which may cause a decrease in the toughness and strength of the cemented carbide. . Here, when Cr that dissolves in WC particles is not eluted in Co, the Cr content in the WC particles of the WC powder is the Cr content in the WC particles in the hard phase of the cemented carbide finally obtained. Is substantially equal to the quantity.

本発明のマイクロドリルは、上記した本発明の超硬合金からなることを特徴とする。   The micro drill of the present invention is characterized by comprising the above-described cemented carbide of the present invention.

本発明のマイクロドリルは、靭性および強度の高い上記した本発明の超硬合金からなることから、耐欠損性(耐チッピング性)および耐折損性に優れる。本発明の超硬合金は、例えばマイクロドリルに加工する際、研削加工やその他の加工(例、ワイヤ加工、放電加工など)が施されてもWC粒子の劈開が生じ難く、これら加工に伴うチッピングや亀裂、折損が生じ難い。そして、本発明のマイクロドリルは、切削(穴あけ)加工に用いた場合、切削中にWC粒子の劈開が生じ難く、切削中のチッピングおよび折損を低減することができる。また、本発明のマイクロドリルは、超硬合金中のWC粒子の強度向上により、ドリル加工時の研削による残留応力が大きくなり、折損し難く、HIT数の増加(長寿命化)を図ることができる。さらに、本発明のマイクロドリルは、超硬合金中のWC粒子の平均粒径が0.5μm以下であり、精度の高い安定した切削(穴あけ)加工を実現できる。本発明のマイクロドリルは、例えば直径(ドリル径)φ0.5mm以下である。   Since the microdrill of the present invention is made of the above-described cemented carbide of the present invention having high toughness and strength, it is excellent in fracture resistance (chipping resistance) and fracture resistance. When the cemented carbide of the present invention is processed into, for example, a microdrill, cleaving of WC particles hardly occurs even if grinding processing or other processing (eg, wire processing, electric discharge processing, etc.) is performed. , Cracks, and breakage are unlikely to occur. When the microdrill of the present invention is used for cutting (drilling), cleaving of WC particles hardly occurs during cutting, and chipping and breakage during cutting can be reduced. In addition, the micro drill of the present invention can increase the residual stress due to grinding during drilling due to improved strength of the WC particles in the cemented carbide, making it difficult to break, and increasing the number of HITs (longer life). it can. Furthermore, the micro drill of the present invention has an average particle diameter of WC particles in the cemented carbide of 0.5 μm or less, and can realize highly accurate and stable cutting (drilling). The micro drill of the present invention has a diameter (drill diameter) of φ0.5 mm or less, for example.

本発明の超硬合金は、WC粒子にCrを固溶し、特定の組織(WC粒子の平均粒径、X線吸収分光法によるCr原子の局所構造)を有することで、靭性および強度が高く、耐欠損性(耐チッピング性)および耐折損性に優れる。また、本発明の超硬合金の製造方法は、上記した本発明の超硬合金を製造することができる。さらに、本発明のマイクロドリルは、上記した本発明の超硬合金からなり、チッピングおよび折損が起こり難く、耐チッピング性および耐折損性に優れる。   The cemented carbide of the present invention has high toughness and strength by dissolving Cr in WC particles and having a specific structure (average particle diameter of WC particles, local structure of Cr atoms by X-ray absorption spectroscopy). , Excellent in chipping resistance (chipping resistance) and breakage resistance. Moreover, the manufacturing method of the cemented carbide alloy of this invention can manufacture the above-mentioned cemented carbide alloy of this invention. Furthermore, the microdrill of the present invention is made of the above-mentioned cemented carbide of the present invention, is less likely to cause chipping and breakage, and is excellent in chipping resistance and breakage resistance.

試料No.1-1,1-4,1-36の超硬合金のそれぞれのEXAFS振動をフーリエ変換したスペクトルである。It is the spectrum which carried out the Fourier transform of each EXAFS vibration of the cemented carbide of sample No.1-1, 1-4, 1-36.

[実施例1]
WC粒子にCrを固溶するWC粉末を用意し、これを原料粉末に用いて超硬合金を製造し、得られた超硬合金を分析した。また、この超硬合金からプリント基板の穴あけ加工用のマイクロドリルを作製し、ドリルの切削性能を評価した。
[Example 1]
A WC powder in which Cr was dissolved in WC particles was prepared, and this was used as a raw material powder to produce a cemented carbide. The resulting cemented carbide was analyzed. Moreover, a micro drill for drilling a printed circuit board was produced from the cemented carbide and the drill cutting performance was evaluated.

<超硬合金>
(試料No.1-1〜1-27)
WC粒子にCrを固溶するWC粉末(平均粒径:0.5μm)、Co粉末(平均粒径:0.7μm)およびVC粉末(平均粒径:1.0μm)を用意し、これら粉末を配合した原料粉末を用意した。ここでは、WC粒子に対するCrの含有量が1.0質量%のWC粉末を用意した。また、原料粉末は、Co粉末:7質量%、VC粉末:0.3質量%、残部:WC粉末となるように配合した。各種粉末は、いずれも市販のものを利用することができる
<Cemented carbide>
(Sample Nos. 1-1 to 1-27)
Prepare WC powder (average particle size: 0.5μm), Co powder (average particle size: 0.7μm) and VC powder (average particle size: 1.0μm) in which Cr is dissolved in WC particles. Powder was prepared. Here, a WC powder having a Cr content of 1.0% by mass with respect to the WC particles was prepared. The raw material powder was blended so that the Co powder was 7% by mass, the VC powder was 0.3% by mass, and the balance was WC powder. Any of various powders can use commercially available powders.

(試料No.1-28〜1-33)
用意するWC粉末のWC粒子の平均粒径を1.0μmとした以外は、上記した試料No.1-1〜1-27と同様にして、WC粉末、Co粉末およびVC粉末を同じ割合で配合した原料粉末を用意した。
(Sample Nos. 1-28 to 1-33)
WC powder, Co powder and VC powder were blended in the same proportions as in Sample Nos. 1-1 to 1-27 described above except that the average particle diameter of WC particles of the prepared WC powder was 1.0 μm. Raw material powder was prepared.

(試料No.1-34〜1-39)
WC粒子にCrを固溶しないWC粉末(純WC粉末。平均粒径:0.5μm)、Co粉末(平均粒径:0.7μm)、VC粉末(平均粒径:1.0μm)およびCr3C2粉末(平均粒径:1.0μm)を用意し、これら粉末を配合した原料粉末を用意した。ここでは、原料粉末は、Co粉末:7質量%、VC粉末:0.3質量%、Cr3C2粉末:0.9質量%、残部:WC粉末となるように配合した。
(Sample Nos. 1-34 to 1-39)
WC powder (pure WC powder, average particle size: 0.5 μm), Co powder (average particle size: 0.7 μm), VC powder (average particle size: 1.0 μm) and Cr 3 C 2 powder that do not dissolve Cr in WC particles (Average particle size: 1.0 μm) was prepared, and a raw material powder containing these powders was prepared. Here, the raw material powder was blended so as to be Co powder: 7% by mass, VC powder: 0.3% by mass, Cr 3 C 2 powder: 0.9% by mass, and the balance: WC powder.

各試料の原料粉末をそれぞれ混合粉砕して、混合粉末を作製した。ここでは、粉末状のパラフィンを原料粉末に対して2質量%添加し、ビーズミルを用いて湿式混合粉砕した。ビーズミルのメディアには、直径φ2mmの超硬合金製ボールを用いた。また、混合粉砕は、計10時間行い、開始から5時間までを高速回転(1000r.p.m.)で行い、残りの時間を低速回転(500r.p.m.)で行った。   The raw material powder of each sample was mixed and pulverized to prepare a mixed powder. Here, 2% by mass of powdered paraffin was added to the raw material powder, and wet mixed and pulverized using a bead mill. For the media of the bead mill, balls made of cemented carbide with a diameter of 2 mm were used. Further, the mixing and pulverization was performed for a total of 10 hours, from the start to 5 hours by high speed rotation (1000 r.p.m.), and for the remaining time by low speed rotation (500 r.p.m.).

各試料の混合粉末をそれぞれスプレードライにより乾燥した後、成形装置を用いて成形した。そして、各試料の混合粉末の成形体を焼結炉内に配置し、焼結温度:1320℃〜1400℃、保持時間:10分間〜60分間の条件にて真空雰囲気でそれぞれ焼結した後、焼結炉内に冷却用ガスを導入し、冷却速度:70℃/min〜30℃/minの条件でそれぞれ冷却して、各試料の焼結体(超硬合金)を作製した。表1,2に、各試料における焼結条件(焼結温度、保持時間)および冷却条件(冷却速度)をそれぞれ示す。なお、冷却速度は少なくとも1000℃までの冷却速度であり、ここでは、冷却用ガスにはArを用い、焼結炉内に導入する冷却用ガスの流量を調整することで冷却速度を制御した。   The mixed powder of each sample was dried by spray drying and then molded using a molding apparatus. And after arrange | positioning the molded object of the mixed powder of each sample in a sintering furnace, and sintering each in a vacuum atmosphere on the conditions of sintering temperature: 1320 degreeC-1400 degreeC and holding time: 10 minutes-60 minutes, A cooling gas was introduced into the sintering furnace, and each was cooled at a cooling rate of 70 ° C./min to 30 ° C./min to produce sintered bodies (hard metal) of each sample. Tables 1 and 2 show the sintering conditions (sintering temperature and holding time) and cooling conditions (cooling rate) for each sample, respectively. The cooling rate is a cooling rate up to at least 1000 ° C. Here, Ar was used as the cooling gas, and the cooling rate was controlled by adjusting the flow rate of the cooling gas introduced into the sintering furnace.

最後に、各試料の焼結体をそれぞれ、圧力媒体:Ar、温度:1370℃、圧力:10MPaの条件でHIP処理して、各試料の超硬合金を製造した。   Finally, the sintered body of each sample was subjected to HIP treatment under the conditions of pressure medium: Ar, temperature: 1370 ° C., and pressure: 10 MPa to produce a cemented carbide of each sample.

各試料の超硬合金について、それぞれ組織観察を行い、超硬合金中のWC粒子の平均粒径を求めた。その結果を表1,2に示す。組織観察は、次のようにして行った。各試料の超硬合金を任意の位置で切断し、この断面を研削した後、更にバフ研磨(#3000)した。研磨した断面を約10000倍の倍率で、FE-SEM(Field Emission Scanning Electron Microscope)を用いてEBSD(Electron Back-Scatter Diffraction)法による組織観察を行った。組織観察は、研磨した断面に対して任意の複数の視野(ここでは、1視野:100μm2で計3視野)を選択して、視野ごとに行った。各視野に対し、視野内に存在する全てのWC粒子について、結晶方位別に色別(マッピング)を行い、結晶粒界を視覚的に把握できるようにした。得られた各視野のマッピング像について画像解析を行い、各視野において視野内に存在する全てのWC粒子のそれぞれの面積から該面積に等しい円の直径を求め、その平均値を平均粒径とした。平均粒径の測定は、市販のFE-SEM/EBSD装置を利用することができる。 The microstructure of each sample of the cemented carbide was observed, and the average particle size of the WC particles in the cemented carbide was determined. The results are shown in Tables 1 and 2. Tissue observation was performed as follows. The cemented carbide of each sample was cut at an arbitrary position, this cross section was ground, and then further buffed (# 3000). The polished cross section was observed at a magnification of about 10000 times by FE-SEM (Field Emission Scanning Electron Microscope) using an EBSD (Electron Back-Scatter Diffraction) method. Tissue observation was performed for each field by selecting an arbitrary plurality of fields (here, one field: 100 μm 2 for a total of three fields) with respect to the polished cross section. For each field of view, all the WC particles existing in the field of view were classified by color (mapping) according to crystal orientation so that the grain boundaries could be visually grasped. Image analysis was performed on the obtained mapping image of each visual field, and the diameter of a circle equal to the area was determined from each area of all WC particles present in the visual field in each visual field, and the average value was defined as the average particle diameter. . A commercially available FE-SEM / EBSD apparatus can be used for the measurement of the average particle diameter.

各試料の超硬合金について、それぞれX線吸収分光法によるX線吸収微細構造(XAFS:X-ray Absorption Fine Structure)解析を行い、超硬合金中のCr原子の局所構造を調べた。具体的には、主として広域線吸収微細構造(EXAFS:Extend X-ray Absorption Fine Structure)解析を行い、得られたEXAFS振動をフーリエ変換することで、Cr原子の周りの局所構造(近接原子種、原子間距離)の情報を得た。   X-ray absorption fine structure (XAFS) analysis was performed on the cemented carbide of each sample by X-ray absorption spectroscopy, and the local structure of Cr atoms in the cemented carbide was investigated. Specifically, the XAFS (Extend X-ray Absorption Fine Structure) analysis is mainly performed, and the resulting EXAFS vibration is Fourier transformed to obtain local structures around Cr atoms (proximity atomic species, Information on distance between atoms was obtained.

ここでは例として、試料No.1-1,1-4,1-36の超硬合金のそれぞれのEXAFS振動をフーリエ変換したスペクトルを図1に示す。図1に示すスペクトルの縦軸は任意単位(a.u.:arbitrary unit)、横軸はCr原子からの距離(pm)である。図1では、試料No.1-1のスペクトルを太実線、試料No.1-4のスペクトルを細実線、試料No.1-36のスペクトルを破線で示し、各試料のスペクトルをまとめて示した。また、各試料の超硬合金について、得られた情報からCr原子の周りの原子種を同定した。その結果もスペクトルと併せて図1に示す。   Here, as an example, FIG. 1 shows a spectrum obtained by Fourier transforming each EXAFS vibration of the cemented carbides of Sample Nos. 1-1, 1-4, and 1-36. The vertical axis of the spectrum shown in FIG. 1 is an arbitrary unit (a.u .: arbitrary unit), and the horizontal axis is the distance (pm) from the Cr atom. In FIG. 1, the spectrum of sample No. 1-1 is indicated by a thick solid line, the spectrum of sample No. 1-4 is indicated by a thin solid line, the spectrum of sample No. 1-36 is indicated by a broken line, and the spectrum of each sample is shown together. . For the cemented carbide of each sample, the atomic species around the Cr atoms were identified from the obtained information. The result is also shown in FIG. 1 together with the spectrum.

例えば図1に示す試料No.1-1のスペクトルでは、最近接原子としてO,Cが存在している。ここでは、焼結体の断面を解析対象としていることから、WC粒子内のWサイト置換によるCr‐C結合と酸化によるCr‐O結合とが検出されている。第2近接原子としてはCr,Coが存在しCr‐Cr結合、Cr‐Co結合が、第3近接原子としてはWが存在しCr‐W結合がそれぞれ検出されている。Cr‐Cr結合、Cr‐Co結合は、Crが結合相に存在する場合、或いは、WC粒子内であってWC粒子と結合相との界面に存在する場合に出現する。   For example, in the spectrum of sample No. 1-1 shown in FIG. 1, O and C exist as the nearest atoms. Here, since the cross section of the sintered body is the object of analysis, Cr—C bonds due to W site substitution in the WC particles and Cr—O bonds due to oxidation have been detected. Cr and Co are present as the second neighboring atoms, Cr—Cr bond and Cr—Co bond are present, and W is present as the third neighboring atom and the Cr—W bond is detected. The Cr—Cr bond and the Cr—Co bond appear when Cr is present in the bonded phase or when it is present in the WC particle and at the interface between the WC particle and the bonded phase.

そして、各試料の超硬合金について、得られたスペクトルにおけるピークを解析し、W原子、Cr原子およびCo原子の各原子の配位数を算出して、W原子数/{Cr原子数+Co原子数}を求めた。その結果を表1,2(表中の項目「W/{Cr+Co}」)に示す。なお、ここでは、X線吸収分光法によるCr原子の局所構造において、解析対象範囲の全てのCr原子から300pm以内に存在するW原子、Cr原子およびCo原子の各原子の数を調べ、それを平均化して、W原子数/{Cr原子数+Co原子数}を求めた。つまり、表1,2に示すW原子数/{Cr原子数+Co原子数}は、ある特定の1つのCr原子との関係で求めたものではない。   Then, for the cemented carbide of each sample, the peak in the obtained spectrum is analyzed, the coordination number of each atom of W atom, Cr atom and Co atom is calculated, W atom number / {Cr atom number + Co atom Number}. The results are shown in Tables 1 and 2 (item “W / {Cr + Co}” in the table). Here, in the local structure of Cr atoms by X-ray absorption spectroscopy, the number of W atoms, Cr atoms, and Co atoms existing within 300 pm from all Cr atoms in the analysis target range is examined. By averaging, the number of W atoms / {number of Cr atoms + number of Co atoms} was obtained. In other words, the number of W atoms / {number of Cr atoms + number of Co atoms} shown in Tables 1 and 2 is not obtained in relation to a specific one Cr atom.

Figure 2012162753
Figure 2012162753

Figure 2012162753
Figure 2012162753

表1,2の結果から、試料No.1-1,1-2,1-4,1-5,1-10,1-11,1-13,1-14の超硬合金は、超硬合金中のWC粒子の平均粒径が0.5μm以下の超微粒で、かつ、X線吸収分光法によるCr原子の局所構造において、Cr原子から300pm以内のW原子数/{Cr原子数+Co原子数}が0.3以上であった。また、これら試料の超硬合金は、得られたCr原子の局所構造の情報から、W原子のサイトにCr原子が置換しており、Cr原子がW原子と結合していることが分かった。以上のことから、試料No.1-1,1-2,1-4,1-5,1-10,1-11,1-13,1-14の超硬合金は、本発明の要件を満たす本発明品である。そして、これら試料の超硬合金は、W原子数/{Cr原子数+Co原子数}が0.3以上であることから、Co(結合相)中に存在するCrに対して、WC粒子(硬質相)中に存在するCrの割合が高い。これは、原料粉末に用いたWC粉末のWC粒子に固溶するCrが結合相のCo中に溶出することが抑制され、硬質相のWC粒子にCrが固溶しているものと推測される。これら試料のうち、試料No.1-1,1-2,1-4,1-5,1-10,1-11の超硬合金は、W原子数/{Cr原子数+Co原子数}が0.5以上であり、原料粉末に用いたWC粉末のWC粒子に固溶するCrが結合相のCo中に殆ど溶出しておらず、硬質相のWC粒子にCrの大部分が固溶しているものと推測される。特に、試料No.1-1,1-2,1-4,1-5の超硬合金は、W原子数/{Cr原子数+Co原子数}が0.8以上であり、原料粉末に用いたWC粉末のWC粒子に固溶するCrが結合相のCo中に実質的に溶出していないと考えられ、WC粉末のWC粒子に固溶するCrの含有量と硬質相のWC粒子に固溶するCrの含有量とが実質的に等しいと考えられる。   From the results in Tables 1 and 2, the cemented carbides of Sample Nos. 1-1, 1-2, 1-4, 1-5, 1-10, 1-11, 1-13, and 1-14 In the local structure of Cr atoms by X-ray absorption spectroscopy, the number of W atoms within 300pm / {Cr atoms + Co atoms } Was 0.3 or more. Moreover, in the cemented carbides of these samples, it was found from the information on the local structure of Cr atoms that Cr atoms were substituted at the W atom sites and the Cr atoms were bonded to the W atoms. From the above, the cemented carbides of Sample Nos. 1-1, 1-2, 1-4, 1-5, 1-10, 1-11, 1-13, 1-14 satisfy the requirements of the present invention. It is the product of the present invention that satisfies. The cemented carbides of these samples have a number of W atoms / {number of Cr atoms + number of Co atoms} of 0.3 or more, so WC particles (hard phase) with respect to Cr present in Co (binding phase) The ratio of Cr present in the inside is high. This is presumed that Cr dissolved in the WC particles of the WC powder used as the raw material powder was prevented from eluting into the Co of the binder phase, and Cr was dissolved in the WC particles of the hard phase. . Among these samples, the cemented carbides of Sample Nos. 1-1, 1-2, 1-4, 1-5, 1-10, 1-11 have the number of W atoms / {number of Cr atoms + number of Co atoms}. It is 0.5 or more, and Cr dissolved in the WC particles of the WC powder used as the raw material powder is hardly eluted in the binder phase Co, and most of the Cr is dissolved in the hard phase WC particles. Presumed to be. In particular, the cemented carbides of Sample Nos. 1-1, 1-2, 1-4, and 1-5 have a number of W atoms / {number of Cr atoms + number of Co atoms} of 0.8 or more, and the WC used for the raw material powder It is considered that Cr dissolved in the WC particles of the powder is not substantially eluted in the Co of the binder phase, and the Cr content dissolved in the WC particles of the WC powder and dissolved in the WC particles of the hard phase It is considered that the Cr content is substantially equal.

これに対し、試料No.1-1〜1-27のうち、焼結・冷却条件において、焼結温度を1400℃、保持時間を60分間、冷却速度を30℃/minのいずれかとした試料の超硬合金は、W原子数/{Cr原子数+Co原子数}が0.3未満であり、Co(結合相)中に存在するCrに対して、WC粒子(硬質相)中に存在するCrの割合が低い。これは、原料粉末に用いたWC粉末のWC粒子に固溶するCrが結合相のCo中に溶出したことが原因と考えられ、そのため硬質相におけるWC粒子に対するCrの含有量も低下しているものと推測される。   On the other hand, among sample Nos. 1-1 to 1-27, in the sintering and cooling conditions, the sintering temperature was 1400 ° C., the holding time was 60 minutes, and the cooling rate was 30 ° C./min. Cemented carbide has a W atom count / {Cr atom count + Co atom count} of less than 0.3, and the ratio of Cr present in WC particles (hard phase) to Cr present in Co (binding phase) Is low. This is considered to be caused by the dissolution of Cr, which is solid-solved in the WC particles of the WC powder used as the raw material powder, into the binder phase Co. Therefore, the Cr content in the WC particles in the hard phase is also reduced. Presumed to be.

また、原料粉末に用いたWC粉末のWC粒子の平均粒径を1μmとした試料No.1-28〜1-33の超硬合金は、硬質相におけるWC粒子の平均粒径が0.5μm超であった。   In addition, the cemented carbides of Sample Nos. 1-28 to 1-33 in which the average particle size of the WC powder of the WC powder used as the raw material powder is 1 μm, the average particle size of the WC particles in the hard phase is more than 0.5 μm. there were.

さらに、WC粒子にCrを固溶しないWC粉末を原料粉末に用いた試料No.1-34〜1-39の超硬合金は、W原子数/{Cr原子数+Co原子数}がゼロであり、Co(結合相)中にのみCrが存在し、WC粒子(硬質相)中にCrが存在していないものと推測される。   Furthermore, the cemented carbide of Sample Nos. 1-34 to 1-39 using WC powder that does not dissolve Cr in WC particles as the raw material powder has zero W atoms / {Cr atoms + Co atoms}. It is presumed that Cr exists only in Co (binding phase) and Cr does not exist in WC particles (hard phase).

<マイクロドリル>
試料No.1-1〜1-39の超硬合金にそれぞれ研削加工を施し、ドリル径φ0.1mmのマイクロドリルを複数本作製した。そして、各試料のマイクロドリルについて、各種切削試験(以下の試験A〜C)を行い、切削性能を評価した。各試験の条件および評価方法を以下に示す。また、各試験の結果を表3,4に示す。
<Micro drill>
Each of the cemented carbides of Sample Nos. 1-1 to 1-39 was ground to produce a plurality of micro drills having a drill diameter of 0.1 mm. And about the micro drill of each sample, various cutting tests (following tests AC) were done, and cutting performance was evaluated. The conditions and evaluation methods for each test are shown below. The results of each test are shown in Tables 3 and 4.

各試験の条件はいずれも、被削材に厚さ0.4mmのフレシキブルプリント基板用銅張積層板(CCL:Copper Clad Laminate)を5枚重ねたものを用い、回転速度を30000r.p.m.、送り速度を10μm/rev.とした。   The conditions of each test were as follows. The work material was made by stacking five copper clad laminates (CCL: Copper Clad Laminate) with a thickness of 0.4 mm, the rotation speed was 30000 rpm, the feed speed Was 10 μm / rev.

各試験の評価方法は、以下のとおりとした。
試験A:5000HITの穴あけ加工を行ったときのチッピングの有無。
試験B:10本のマイクロドリルについて15000HITの穴あけ加工を行ったときの10本中の折損本数。
試験C:5本のマイクロドリルについて穴あけ加工を行ったときの折損するまでの平均HIT数(穴あけ加工数)。
The evaluation method for each test was as follows.
Test A: Presence / absence of chipping when drilling 5000HIT.
Test B: Number of breaks in 10 when drilling 15000 HIT was performed on 10 micro drills.
Test C: Average number of HITs (number of drilling operations) before breaking when drilling 5 micro drills.

Figure 2012162753
Figure 2012162753

Figure 2012162753
Figure 2012162753

表3,4の結果から、試料No.1-1,1-2,1-4,1-5,1-10,1-11,1-13,1-14のマイクロドリルは、試験Aのチッピングがなく、試験Bの折損本数が10本中3本以下、試験Cの平均HIT数が18000HIT以上であった。このことから、これら試料のマイクロドリルは、靭性および強度が高く、耐欠損性(耐チッピング性)および耐折損性に優れる。特に、試料No.1-1,1-2,1-4,1-5,1-10,1-11のマイクロドリルは、試験Bの折損本数が10本中2本以下、試験Cの平均HIT数が19000HIT以上であり、チッピングおよび折損が起こり難く、優れた耐欠損性(耐チッピング性)および耐折損性を有している。これに対し、残りの試料のマイクロドリルは、耐欠損性(耐チッピング性)又は耐折損性の点で劣る結果であった。   From the results in Tables 3 and 4, the micro drills of Sample Nos. 1-1, 1-2, 1-4, 1-5, 1-10, 1-11, 1-13, 1-14 There was no chipping, the number of breaks in test B was 3 or less out of 10, and the average number of HITs in test C was 18000 HIT or more. For this reason, the micro drills of these samples have high toughness and strength, and are excellent in fracture resistance (chipping resistance) and breakage resistance. In particular, the micro drills of sample Nos. 1-1, 1-2, 1-4, 1-5, 1-10, and 1-11 have less than 2 of 10 breaks in test B, and the average of test C The number of HITs is 19000 HIT or more, chipping and breakage hardly occur, and excellent chipping resistance (chipping resistance) and breakage resistance. On the other hand, the micro-drills of the remaining samples were inferior in terms of fracture resistance (chipping resistance) or breakage resistance.

なお、上述した実施の形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、超硬合金の組成や、原料粉末の平均粒径などを適宜変更することができる。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the composition of the cemented carbide, the average particle diameter of the raw material powder, and the like can be changed as appropriate.

本発明の超硬合金は、例えばマイクロドリルやエンドミルなどに代表される切削工具の材料に好適に利用することができる。また、本発明の超硬合金の製造方法は、高靭性かつ高強度の超微粒超硬合金の製造に利用することができる。さらに、本発明のマイクロドリルは、例えばプリント基板の穴あけ加工に利用することができる。   The cemented carbide of the present invention can be suitably used as a material for a cutting tool represented by, for example, a micro drill or an end mill. Moreover, the manufacturing method of the cemented carbide of this invention can be utilized for manufacture of the toughness and high intensity | strength super-fine-grain cemented carbide alloy. Furthermore, the micro drill of the present invention can be used, for example, for drilling a printed circuit board.

Claims (10)

WC粒子を主体とする硬質相とCoを主体とする結合相とを備える超硬合金であって、
前記硬質相は、前記WC粒子にCrを固溶し、前記WC粒子の平均粒径が0.5μm以下であり、
X線吸収分光法によるCr原子の局所構造において、Cr原子がW原子と結合し、かつ、Cr原子から300pm以内に存在するW原子の数を、Cr原子から300pm以内に存在するCr原子の数とCo原子の数との和で除した比(W原子数/{Cr原子数+Co原子数})が0.3以上であることを特徴とする超硬合金。
A cemented carbide comprising a hard phase mainly composed of WC particles and a binder phase mainly composed of Co,
The hard phase is a solid solution of Cr in the WC particles, the average particle size of the WC particles is 0.5 μm or less,
In the local structure of Cr atoms by X-ray absorption spectroscopy, the number of W atoms present within 300 pm from Cr atoms, and the number of W atoms existing within 300 pm from Cr atoms is the number of W atoms present within 300 pm from Cr atoms. A cemented carbide characterized in that the ratio (number of W atoms / {number of Cr atoms + number of Co atoms}) divided by the sum of the number of atoms and the number of Co atoms is 0.3 or more.
Cr原子から300pm以内に存在するW原子の数を、Cr原子から300pm以内に存在するCr原子の数とCo原子の数との和で除した比(W原子数/{Cr原子数+Co原子数})が0.5以上であることを特徴とする請求項1に記載の超硬合金。   The ratio of the number of W atoms existing within 300 pm from the Cr atom divided by the sum of the number of Cr atoms existing within 300 pm from the Cr atom and the number of Co atoms (number of W atoms / {number of Cr atoms + number of Co atoms }) Is 0.5 or more, The cemented carbide according to claim 1. 前記硬質相における前記WC粒子に対する前記Crの含有量が0.5質量%以上3.0質量%以下であることを特徴とする請求項1又は2に記載の超硬合金。   The cemented carbide according to claim 1 or 2, wherein a content of the Cr with respect to the WC particles in the hard phase is 0.5 mass% or more and 3.0 mass% or less. 超硬合金中の前記結合相の含有量が5質量%以上20質量%以下であることを特徴とする請求項1〜3のいずれか一項に記載の超硬合金。   The cemented carbide according to any one of claims 1 to 3, wherein a content of the binder phase in the cemented carbide is 5 mass% or more and 20 mass% or less. VCを1.0質量%以下含有することを特徴とする請求項1〜4のいずれか一項に記載の超硬合金。   The cemented carbide according to any one of claims 1 to 4, further comprising 1.0% by mass or less of VC. WC粒子にCrを固溶するWC粉末とCo粉末とを含む原料粉末を混合粉砕して混合粉末を作製する混合工程と、
前記混合粉末を1300℃以上1370℃以下の焼結温度に60分間未満保持して焼結した後、1000℃まで50℃/min以上の冷却速度で冷却して焼結体を作製する焼結工程と、
を備えることを特徴とする超硬合金の製造方法。
A mixing step of mixing and pulverizing a raw material powder containing WC powder and Co powder in which Cr is dissolved in WC particles to produce a mixed powder;
A sintering process in which the mixed powder is sintered at a sintering temperature of 1300 ° C. or more and 1370 ° C. or less for less than 60 minutes and then cooled to 1000 ° C. at a cooling rate of 50 ° C./min or more to produce a sintered body. When,
A method for producing a cemented carbide comprising:
前記焼結体をHIP処理するHIP工程を備えることを特徴とする請求項6に記載の超硬合金の製造方法。   The method for producing a cemented carbide according to claim 6, further comprising a HIP step of performing a HIP treatment on the sintered body. 前記WC粒子の平均粒径が0.2μm以上0.8μm以下であることを特徴とする請求項6又は7に記載の超硬合金の製造方法。   The method for producing a cemented carbide according to claim 6 or 7, wherein an average particle size of the WC particles is 0.2 µm or more and 0.8 µm or less. 前記WC粒子に対する前記Crの含有量が0.5質量%以上3.0質量%以下であることを特徴とする請求項6〜8のいずれか一項に記載の超硬合金の製造方法。   The method for producing a cemented carbide according to any one of claims 6 to 8, wherein a content of the Cr with respect to the WC particles is 0.5 mass% or more and 3.0 mass% or less. 請求項1〜5のいずれか一項に記載の超硬合金からなることを特徴とするマイクロドリル。   A microdrill comprising the cemented carbide according to any one of claims 1 to 5.
JP2011022109A 2011-02-03 2011-02-03 Cemented carbide and method of manufacturing the same, and micro drill Pending JP2012162753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011022109A JP2012162753A (en) 2011-02-03 2011-02-03 Cemented carbide and method of manufacturing the same, and micro drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011022109A JP2012162753A (en) 2011-02-03 2011-02-03 Cemented carbide and method of manufacturing the same, and micro drill

Publications (1)

Publication Number Publication Date
JP2012162753A true JP2012162753A (en) 2012-08-30

Family

ID=46842422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011022109A Pending JP2012162753A (en) 2011-02-03 2011-02-03 Cemented carbide and method of manufacturing the same, and micro drill

Country Status (1)

Country Link
JP (1) JP2012162753A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526102A (en) * 2013-05-31 2016-09-01 サンドビック インテレクチュアル プロパティー アクティエボラーグ New manufacturing method of cemented carbide and product obtained thereby
JP2016526101A (en) * 2013-05-31 2016-09-01 サンドビック インテレクチュアル プロパティー アクティエボラーグ New manufacturing method of cemented carbide and product obtained thereby
JP7501798B1 (en) 2023-02-07 2024-06-18 住友電気工業株式会社 Carbide alloy and cutting tool using same
JP7501800B1 (en) 2023-02-07 2024-06-18 住友電気工業株式会社 Carbide alloy and cutting tool using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239411A (en) * 2000-02-28 2001-09-04 Mitsubishi Materials Corp Miniature drill made of micro powder organization pressurized/sintered body giving good breakage resistance and abrasion resistance in rapid drilling
JP2005054258A (en) * 2003-08-07 2005-03-03 Hitachi Tool Engineering Ltd Fine-grained cemented carbide
JP2005068514A (en) * 2003-08-26 2005-03-17 Hitachi Tool Engineering Ltd Hard metal containing fine particles
JP2005226103A (en) * 2004-02-12 2005-08-25 Hitachi Tool Engineering Ltd Fine-grained cemented carbide
JP2006068844A (en) * 2004-09-01 2006-03-16 Hitachi Tool Engineering Ltd Hard film coated small-diameter member
JP2009191336A (en) * 2008-02-18 2009-08-27 Hitachi Tool Engineering Ltd Wc based fine grained cemented carbide member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239411A (en) * 2000-02-28 2001-09-04 Mitsubishi Materials Corp Miniature drill made of micro powder organization pressurized/sintered body giving good breakage resistance and abrasion resistance in rapid drilling
JP2005054258A (en) * 2003-08-07 2005-03-03 Hitachi Tool Engineering Ltd Fine-grained cemented carbide
JP2005068514A (en) * 2003-08-26 2005-03-17 Hitachi Tool Engineering Ltd Hard metal containing fine particles
JP2005226103A (en) * 2004-02-12 2005-08-25 Hitachi Tool Engineering Ltd Fine-grained cemented carbide
JP2006068844A (en) * 2004-09-01 2006-03-16 Hitachi Tool Engineering Ltd Hard film coated small-diameter member
JP2009191336A (en) * 2008-02-18 2009-08-27 Hitachi Tool Engineering Ltd Wc based fine grained cemented carbide member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526102A (en) * 2013-05-31 2016-09-01 サンドビック インテレクチュアル プロパティー アクティエボラーグ New manufacturing method of cemented carbide and product obtained thereby
JP2016526101A (en) * 2013-05-31 2016-09-01 サンドビック インテレクチュアル プロパティー アクティエボラーグ New manufacturing method of cemented carbide and product obtained thereby
US10308558B2 (en) 2013-05-31 2019-06-04 Sandvik Intellectual Property Ab Process of manufacturing cemented carbide and a product obtained thereof
JP7501798B1 (en) 2023-02-07 2024-06-18 住友電気工業株式会社 Carbide alloy and cutting tool using same
JP7501800B1 (en) 2023-02-07 2024-06-18 住友電気工業株式会社 Carbide alloy and cutting tool using same

Similar Documents

Publication Publication Date Title
JP6796266B2 (en) Cemented carbide and cutting tools
JP5810469B2 (en) Cemented carbide and method for producing cemented carbide
JP6953674B2 (en) Cemented Carbide and Cutting Tools
JP5732663B2 (en) Cubic boron nitride sintered tool
JP2006117974A (en) Cemented carbide
JP2017088917A (en) Hard metal alloy and cutting tool
JP2012162753A (en) Cemented carbide and method of manufacturing the same, and micro drill
JP6740862B2 (en) Tools for hard materials and friction stir welding
JP2004076049A (en) Hard metal of ultra-fine particles
JP2017024165A (en) Wc-based hard metal cutting tool and manufacturing method thereof
Fan et al. Microstructure and mechanical properties of WC–(Ti, M)(C, N)–Co cemented carbides with different nitrogen contents
JP2019172477A (en) Cubic boron nitride base sintered compact and cutting tool having cubic boron nitride base sintered compact as base body
WO2021199260A1 (en) Cemented carbide and cutting tool comprising same
JP4351453B2 (en) Cemented carbide and drill using the same
JPH08199283A (en) Titanium carbonitride-base alloy
JP2004131769A (en) Hyperfine-grained cemented carbide
JP2017148895A (en) Wc-based cemented carbide drill excellent in breakage resistance
JPH10324943A (en) Ultra-fine cemented carbide, and its manufacture
JP2005068515A (en) Hard metal containing fine particles
JP6957828B1 (en) Cemented carbide and cutting tools equipped with it
JP2004232000A (en) Cemented carbide and manufacturing method, and rotary tool using the cemented carbide
JP7143844B2 (en) Cutting tools
JP2011208268A (en) Ultrafine particle cemented carbide
JP2023134938A (en) Cemented carbide alloy for cutting tools, and cutting tool substrate including the alloy
JP2005054258A (en) Fine-grained cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141219