JP2005054258A - Fine-grained cemented carbide - Google Patents

Fine-grained cemented carbide Download PDF

Info

Publication number
JP2005054258A
JP2005054258A JP2003288391A JP2003288391A JP2005054258A JP 2005054258 A JP2005054258 A JP 2005054258A JP 2003288391 A JP2003288391 A JP 2003288391A JP 2003288391 A JP2003288391 A JP 2003288391A JP 2005054258 A JP2005054258 A JP 2005054258A
Authority
JP
Japan
Prior art keywords
dispersed phase
cemented carbide
fine
hard dispersed
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003288391A
Other languages
Japanese (ja)
Inventor
Toshio Ishii
敏夫 石井
Yutaka Kubo
裕 久保
Atsushi Yukimura
淳 幸村
Tsunehiro Kawada
常宏 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2003288391A priority Critical patent/JP2005054258A/en
Publication of JP2005054258A publication Critical patent/JP2005054258A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine-grained cemented carbide material which is used for a small-diameter tool, has a sufficient inhibitory effect against grain growth, a sufficiently high hardness by inhibiting grain growth in a WC hard dispersed phase and a high strength at a grain boundary and is excellent in heat resistance, defect resistance and chipping resistance. <P>SOLUTION: The fine-grained cemented carbide has a metallic composition comprising, by mass, 2-13% Co and/or Ni, 0.1-3% at least one selected from Cr, V, Ta, Nb, Zr, Hf and Mo, provided that at least 0.1-1.8% Cr is contained, and the balance being W and unavoidable impurities. The hard dispersed phase essentially comprises WC and has an average particle size of ≤0.8 μm, and Cr oxide with a size of ≤100 nm is present in the hard dispersed phase. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本願発明は、刃径が0.3mm以下の小径工具、特に小径ドリルに用いる、平均粒径が0.8μm以下の主に炭化タングステンからなる粒子を有する、いわゆる微粒超硬合金に関するものである。   The present invention relates to a so-called fine cemented carbide comprising particles mainly composed of tungsten carbide having an average particle diameter of 0.8 μm or less, which is used for a small diameter tool having a blade diameter of 0.3 mm or less, particularly a small diameter drill.

平均粒径が1μm以下のWC硬質分散相を含有する微粒超硬合金は、硬さとともに靭性も高いため小径エンドミル、小径ドリル、各種剪断刃などに広範囲に用いられている。近年、微細加工品の増加とともに、エンドミルやドリルの小径化が急速に進み、微粒合金の平均粒径がますます小さくなり、しかも硬度と靭性の高いものが要求されてきている。そのため、焼結中におけるWC硬質分散相の粒成長を抑制するため、V、Cr、Taなどの金属もしくはそれらの化合物(炭化物、窒化物、炭窒化物など)をWCに対する粒成長抑制材として用いることが提案されている。これらの具体的な例として、特許文献1〜6が開示されている。
特許文献1は、VとCrとを複合添加することにより、合金の靭性低下の原因となる第3相が生じる程多量のVやCrを添加せず、真空焼結後に100MPaのAr雰囲気中でHIP処理することにより、VやCrが結合相中に固溶しており本質的にWC相と結合相の2相からなり、しかもWCの平均粒径が0.7μm以下である超硬合金が開示されている。
特許文献2は、VとCrの2種を添加し、真空雰囲気焼結後に5.9MPaで加圧焼結し、急冷することにより、WCをVとWとCrの析出複合炭化物の薄層で被覆し、結合相中に(V、W、Cr)Cの析出を無くすことにより、一段と強度の高い超硬合金が開示されている。
特許文献3は、真空雰囲気焼結後に4.9〜14.7MPaで加圧焼結し、50〜100℃/分で急冷することにより、Coを主体とする結合相中にVとWとCrの析出複合炭化物からなる硬質分散相を微細に分散分布させるとともに、WCをVとWとCrの析出複合炭化物の薄層で被覆することにより、一段と高い強度をもつ超硬合金が開示されている。
特許文献4は、VとCrとTaC又は(Ta、Nb)Cの3種を添加し、真空焼結後にAr雰囲気中、100MPaでHIP処理して、一定量以下の(Ta、W)C又は(Ta、Nb、W)Cと思われる固溶体を合金中に析出させることにより、WCの平均粒径が0.6μm以下で、しかも耐溶着性が向上した超硬合金が開示されている。
特許文献5は、V、Cr、Taを添加し、真空雰囲気焼結後に5.9MPaで加圧焼結して、平均粒度が0.6μm以下のWC硬質分散相が分散しているWC基超硬合金の素地中にV、Cr、Ta等の炭化物もしくは炭窒化物の固溶体粒子を分散させるとともに、その最大粒径を3μm以下にすることにより合金の靭性低下を防止した超硬合金が開示されている。
特許文献6は、分散相構成成分であるWとCを含有し、更にV、Crを含有するCo基合金で結合相を構成し、残りの分散相が素地中に粒径100nmのCo基合金超微粒粒子が分散分布する超硬合金が開示されている。
特許文献1〜6に開示されている従来技術では、VやCr、Taが添加されているが、いずれもWC相と結合相の2相から成っている、あるいは、WCが炭化物から成る薄層で被覆されている、あるいは析出相や硬質分散相が含まれているのみであり、酸化物を含有させたときの効果は検討されていない。一方、先述のように、プリント基板等の回路の急激な高密度化と低価格化にともない、小径ドリルによる穴あけ作業はますます高速・高効率化がなされ、ドリルと被削材間の摩擦熱によりドリル自体にかかる温度が高くなり、高温において更に高硬度で靭性の高い小径工具用の微粒合金が要望されている。このため、耐熱性と高硬度、高靭性に優れた小径工具用微粒合金の実現が要望されている。
A fine cemented carbide containing a WC hard dispersed phase having an average particle diameter of 1 μm or less is widely used in small diameter end mills, small diameter drills, various shearing blades and the like because of its high hardness and toughness. In recent years, as the number of finely processed products has increased, the diameter of end mills and drills has been rapidly reduced, and the average particle size of fine-grained alloys has become smaller and higher in hardness and toughness. Therefore, in order to suppress grain growth of the WC hard dispersed phase during sintering, metals such as V, Cr, Ta or their compounds (carbides, nitrides, carbonitrides, etc.) are used as grain growth inhibitors for WC. It has been proposed. As specific examples of these, Patent Documents 1 to 6 are disclosed.
In Patent Document 1, by adding V and Cr in combination, a large amount of V or Cr is not added so that a third phase that causes a reduction in the toughness of the alloy is generated, and in a 100 MPa Ar atmosphere after vacuum sintering. By performing the HIP treatment, a cemented carbide having V and Cr dissolved in the binder phase and essentially consisting of two phases, ie, a WC phase and a binder phase, and having an average WC grain size of 0.7 μm or less is obtained. It is disclosed.
In Patent Document 2, two types of V and Cr are added, pressure sintering is performed at 5.9 MPa after vacuum atmosphere sintering, and quenching is performed, whereby WC is a thin layer of precipitated composite carbide of V, W, and Cr. A cemented carbide with higher strength is disclosed by coating and eliminating the precipitation of (V, W, Cr) C in the binder phase.
In Patent Document 3, pressure sintering is performed at 4.9 to 14.7 MPa after vacuum atmosphere sintering, and rapid cooling is performed at 50 to 100 ° C./min, whereby V, W, and Cr are contained in a binder phase mainly composed of Co. A cemented carbide having a much higher strength is disclosed by finely dispersing and dispersing a hard dispersed phase composed of the precipitated composite carbide of WC and coating WC with a thin layer of the precipitated composite carbide of V, W and Cr. .
In Patent Document 4, three types of V, Cr, and TaC or (Ta, Nb) C are added, and after vacuum sintering, HIP treatment is performed at 100 MPa in an Ar atmosphere to obtain (Ta, W) C or a certain amount or less. A cemented carbide having an average particle diameter of WC of 0.6 μm or less and improved welding resistance is disclosed by precipitating a solid solution (Ta, Nb, W) C in the alloy.
Patent Document 5 describes the addition of V, Cr, Ta, pressure sintering at 5.9 MPa after vacuum atmosphere sintering, and a WC hard dispersion phase having an average particle size of 0.6 μm or less is dispersed. Disclosed is a cemented carbide that disperses solid solution particles of carbides or carbonitrides such as V, Cr, Ta, etc. in the base of the hard alloy, and prevents the decrease in the toughness of the alloy by making the maximum particle size 3 μm or less. ing.
Patent Document 6 describes a Co-based alloy containing W and C, which are constituents of a dispersed phase, further comprising a binder phase with a Co-based alloy containing V and Cr, and the remaining dispersed phase having a particle size of 100 nm in the substrate. A cemented carbide in which ultrafine particles are dispersed and distributed is disclosed.
In the prior arts disclosed in Patent Documents 1 to 6, V, Cr, and Ta are added, all of which consist of two phases, a WC phase and a binder phase, or a thin layer in which WC is made of carbide. Or a precipitate phase or a hard dispersed phase is included, and the effect when an oxide is contained has not been studied. On the other hand, as mentioned earlier, drilling work with small diameter drills has become faster and more efficient with the rapid increase in density and cost of printed circuit boards and other circuits, and frictional heat between the drill and the work material has been increased. As a result, the temperature applied to the drill itself increases, and there is a demand for a fine grain alloy for small diameter tools having higher hardness and toughness at high temperatures. For this reason, the realization of the fine grain alloy for small diameter tools excellent in heat resistance, high hardness, and high toughness is desired.

特許第1539991号公報Japanese Patent No. 1539991 特開平11−350061号公報JP-A-11-350061 特許第3291562号公報Japanese Patent No. 3291562 特許第1487479号公報Japanese Patent No. 1487479 特開平6−81072号公報JP-A-6-81072 特許第3214385号公報Japanese Patent No. 3214385

本願発明が解決しようとする課題は十分な粒抑制効果を有しWC硬質分散相の粒成長を十分に抑えることができるために硬度が高く、しかも、粒界の強度が高く、耐熱性と耐欠損及び耐チッピング性に優れた小径工具用の微粒超硬合金材を提供することである。   The problem to be solved by the present invention is that it has a sufficient grain suppression effect and can sufficiently suppress the grain growth of the WC hard dispersion phase, so that the hardness is high, and the strength of the grain boundary is high. The object is to provide a fine cemented carbide material for small diameter tools having excellent chipping and chipping resistance.

本発明は、質量%で、Co及び/又はNiが2〜13%、少なくともCrを0.1〜1.8%を含むCr、V、Ta、Nb、Zr、Hf及びMoの1種又は2種以上が0.1〜3%、残りがW及び不可避不純物、からなる金属組成を有し、主にWCからなる硬質分散相の平均粒径が0.8μm以下であり、該硬質分散相中に大きさが100nm以下のCr酸化物が存在していることを特徴とする微粒超硬合金である。本構成を採用することにより、合金中に含まれる元素が十分な粒抑制効果を有することから、WC硬質分散相の粒成長を十分に抑え、硬度が高く、しかも、粒界の強度が高く、耐熱性と耐欠損及び耐チッピング性に優れた小径工具用の微粒超硬合金材を提供することができる。   The present invention is one or two of Cr, V, Ta, Nb, Zr, Hf and Mo containing 2 to 13% by mass and Co and / or Ni and containing at least 0.1 to 1.8% of Cr. The hard dispersed phase mainly composed of WC has a metal composition consisting of 0.1 to 3% of the seed or more, the remainder being W and inevitable impurities, and the hard dispersed phase is mainly 0.8 μm or less. Is a fine cemented carbide characterized in that Cr oxide having a size of 100 nm or less is present. By adopting this configuration, since the elements contained in the alloy have a sufficient grain suppression effect, the grain growth of the WC hard dispersed phase is sufficiently suppressed, the hardness is high, and the strength of the grain boundary is high, It is possible to provide a fine cemented carbide material for small diameter tools having excellent heat resistance, chipping resistance and chipping resistance.

Cr等を添加することによりWC硬質分散相の粒成長を十分に抑え、平均粒径が0.8μm以下で高硬度の微粒超硬合金材が実現出来、しかも、WCを主とする硬質相中に、大きさが100nm以下のCr酸化物を析出させることにより粒界の強度が高まり、高靭性が実現できる。その結果、高速・高効率に切削加工し刃先温度が高まったときにも、優れた耐摩耗性と耐欠損性、耐チッピング性に優れた小径工具用の微粒超硬合金材を提供することができる。本発明の微粒超硬合金材を用いて、例えばプリント基板穴あけ用の小径ドリルを作製すると、高速・高効率かつ高精度に穴あけ作業が可能な小径ドリルが実現できる。   By adding Cr and the like, the grain growth of the WC hard dispersed phase can be sufficiently suppressed, and a high-hardness fine cemented carbide alloy material having an average particle size of 0.8 μm or less can be realized. Moreover, in the hard phase mainly composed of WC. Furthermore, the strength of the grain boundary is increased by precipitating a Cr oxide having a size of 100 nm or less, and high toughness can be realized. As a result, it is possible to provide a fine cemented carbide material for small diameter tools with excellent wear resistance, chipping resistance, and chipping resistance even when cutting speed is increased at high speed and high efficiency. it can. For example, when a small-diameter drill for drilling a printed circuit board is produced using the fine cemented carbide material of the present invention, a small-diameter drill capable of drilling with high speed, high efficiency and high accuracy can be realized.

本発明は、粉末の製造段階でCrやCrC、Cr等のCrを固溶及び/または拡散させて作製したCr入りWC粉末を用い、Cr、V、Ta、Nb、Zr、Hf及びMoのうちの1種又は2種以上を所定量添加して微粒超硬合金材を作製し、平均粒径を0.8μm以下するとともに、焼結条件を工夫し、1.3〜13.2Paの真空雰囲気中、1330〜1480度の範囲内の所定温度に0.5〜2時間保持後、雰囲気を圧力:4.9〜14.7MPaの加圧雰囲気に変え、この加圧雰囲気に15〜60分間保持する、所謂シンターHIP処理後、1200℃までを50〜100度/minの冷却速度で急冷する等により、大きさが100nm以下のCr酸化物を硬質相中に析出させることが出来るようになり、Cr等の添加によりWC硬質分散相の粒成長を十分に抑えながら、同時に高い靭性と耐欠損性とを有し、耐チッピング性に優れた微粒超硬合金材を実現できる。硬質分散相中に大きさが100nm以下のCr酸化物を析出させることによってWC硬質分散相と結合相との間や、WC硬質分散相の界面の強度が高まり、靭性が高くしかも、高温切削においても優れた硬度と靭性とを有する小径工具用の微粒超硬合金材を実現できる。これは、微小なCrの酸化物がWC硬質分散相と結合相との間や、WC硬質分散相相間の界面に析出することにより、酸素濃度が適度に制御され界面の強度が高まり、その結果、靭性と耐熱性とが高まるものと考えられる。硬質分散相中に大きさが100nm以下のCr酸化物を存在させるには、原料粉末製造段階でCrを添加したWC粉末を原料に用い、シンターHIP後に急冷することが有効であるが、製造方法そのものに関わらず、該硬質分散相中に大きさが100nm以下のCr酸化物を存在させることが、WC硬質分散相と結合相との間やWC硬質分散相相の界面の強度を高めるためには重要である。WC硬質分散相中に大きさが100nm以下のCr酸化物が存在していることは、透過電子顕微鏡(以下、TEMと言う。)により125k倍で微粒超硬合金を観察するとともに、TEM装置に付属したエネルギー分散型X線分析装置(以下、EDXと言う。)によりその組成を分析することによって確認できる。本発明の微粒超硬合金は、その組織をTEMにより125k倍で観察したとき、硬質分散相中に大きさが100nm以下のCr酸化物が存在している割合が、50視野中1〜5視野であることによって、更に優れた靭性が得られる。 The present invention uses Cr 3 C 2 -containing WC powder prepared by solid solution and / or diffusion of Cr such as Cr, CrC, Cr 2 O 3 in the powder production stage, and Cr, V, Ta, Nb, Zr In addition, a predetermined amount of one or more of Hf and Mo is added to prepare a fine cemented carbide material, the average particle size is 0.8 μm or less, and the sintering conditions are devised, and 1.3 to After holding at a predetermined temperature within a range of 1330 to 1480 degrees for 0.5 to 2 hours in a vacuum atmosphere of 13.2 Pa, the atmosphere is changed to a pressurized atmosphere of pressure: 4.9 to 14.7 MPa, and this pressurized atmosphere For 15 to 60 minutes, after so-called sinter HIP treatment, Cr oxide having a size of 100 nm or less is precipitated in the hard phase by rapidly cooling to 1200 ° C. at a cooling rate of 50 to 100 degrees / min. It is possible to add Cr, etc. WC while suppressing sufficiently the grain growth of the hard dispersed phase, and a simultaneously high toughness and fracture resistance can be realized an excellent fine cemented carbide chipping resistance by. By precipitating a Cr oxide having a size of 100 nm or less in the hard dispersed phase, the strength of the interface between the WC hard dispersed phase and the binder phase or the interface of the WC hard dispersed phase is increased, and the toughness is high. In addition, it is possible to realize a fine cemented carbide material for small diameter tools having excellent hardness and toughness. This is because fine Cr oxide is precipitated between the WC hard dispersed phase and the binder phase, or at the interface between the WC hard dispersed phase, so that the oxygen concentration is moderately controlled and the strength of the interface is increased. It is considered that toughness and heat resistance are increased. In order to allow Cr oxide having a size of 100 nm or less to exist in the hard dispersed phase, it is effective to use WC powder to which Cr is added in the raw material powder production stage as a raw material and to rapidly cool after sintering HIP. Regardless of the fact, the presence of a Cr oxide having a size of 100 nm or less in the hard dispersed phase increases the strength of the interface between the WC hard dispersed phase and the binder phase or the interface of the WC hard dispersed phase. Is important. The presence of Cr oxide having a size of 100 nm or less in the WC hard dispersed phase means that a fine cemented carbide alloy is observed at 125 k times with a transmission electron microscope (hereinafter referred to as TEM), and a TEM apparatus is used. This can be confirmed by analyzing the composition with an attached energy dispersive X-ray analyzer (hereinafter referred to as EDX). When the microstructure of the fine cemented carbide of the present invention is observed at a magnification of 125 k by TEM, the proportion of Cr oxide having a size of 100 nm or less in the hard dispersed phase is 1 to 5 in 50 views. Therefore, further excellent toughness can be obtained.

次に、数値限定理由について述べる。合金全体のCrの含有量が0.1%未満の時は焼結時にWC硬質分散相の成長が進み平均粒径が0.8μmを越え、耐摩耗性と靭性が低下する欠点が現れる。一方、1.8%を超えて大きいと結合相中のCr含有量が多くなり過ぎ、靭性が低下する欠点が現れる。そこで、Crの含有量は0.1〜1.8%とする。また、Cr、V、Ta、Nb、Zr、Hf、及びMoのうちの1種又は2種以上が0.1%未満の時は、焼結時にWC硬質分散相の成長が進み耐摩耗性と靭性とが低下するとともに耐熱性が低下する欠点が現れ、3%を超えて大きいと添加物化合物の析出が多くなり靭性が低下する欠点が現れる。そこで、Crを必須とし、更にCr、V、Ta、Nb、Zr、Hf、及びMoのうちの1種又は2種以上の含有量は、0.1〜3%とする。また、主にWCからなる硬質分散相の平均粒径が0.8μmを越えると、微粒超硬合金の硬度と靭性とが大きく低下し、耐摩耗性と耐欠損性とが不十分になる欠点が現れるため、WCからなる硬質分散相の平均粒径は0.8μm以下とする。   Next, the reason for the numerical limitation will be described. When the Cr content of the entire alloy is less than 0.1%, the growth of the WC hard dispersion phase proceeds during sintering, and the average particle size exceeds 0.8 μm, resulting in the disadvantage that wear resistance and toughness are reduced. On the other hand, if it exceeds 1.8%, the Cr content in the binder phase is excessively increased, resulting in a drawback that the toughness is lowered. Therefore, the Cr content is 0.1 to 1.8%. In addition, when one or more of Cr, V, Ta, Nb, Zr, Hf, and Mo is less than 0.1%, the growth of the WC hard dispersed phase proceeds during sintering and wear resistance is increased. When the toughness is lowered and the heat resistance is lowered, the disadvantage is that if it exceeds 3%, the precipitation of the additive compound is increased and the toughness is lowered. Therefore, Cr is essential, and the content of one or more of Cr, V, Ta, Nb, Zr, Hf, and Mo is 0.1 to 3%. In addition, when the average particle size of the hard dispersed phase mainly composed of WC exceeds 0.8 μm, the hardness and toughness of the fine-grain cemented carbide are greatly reduced, and the wear resistance and fracture resistance are insufficient. Therefore, the average particle size of the hard dispersed phase made of WC is set to 0.8 μm or less.

原料粉末として、粉末の製造段階でCrを固溶及び/または拡散させて作製したCr入りの平均粒径が0.8μmのWC粉末を用いた。WC粉末に含まれるCr量は、0.1、0.3、0.5、0.7、0.9、1.1%の6種類である。また、平均粒径が1.5μmのCr粉末、同0.9μmのVC粉末、同1.2μmのTaC粉末、同2μmのNbC粉末、同2.3μmのZrC粉末、同1.5μmのHfC粉末、同1.5μmのMoC粉末及びCo粉末を用意し、これら原料粉末を所定の組成に配合し、アトライターで12時間混合し、減圧乾燥し、更にワックスと溶剤を加えて1時間混和した後、押出し成形機により直径2.5mmの長尺状成形体を作製し、これらの長尺状成形体を、脱ワックスした後、1.3〜13.2Paの真空雰囲気中、1330〜1480℃の範囲内の所定温度に0.5〜2時間保持後、雰囲気を圧力:4.9〜14.7MPaの加圧雰囲気に変え、この加圧雰囲気に15〜60分間保持後、1200℃までを50〜100℃/minの冷却速度で急冷することにより、微粒超硬合金からなる直径2mmの長尺状焼結素材を製造した。平均粒径が1.5μmのCr粉末は、Cr入りWC粉末だけではCr量が不十分な時に用いた。この長尺状焼結素材の組成は蛍光X線装置により定量分析し、W、Co、Cr、V、Ta、Nb、Zr、Hf及びMoの含有量を測定した。平均結晶粒径は、焼結素材の断面を鏡面研磨した後、村上試薬で0.5分間、王水で0.5分間エッチング処理することにより結晶粒界を明確にした後、走査型電子顕微鏡(以下、SEMと言う。)により倍率10k倍で撮影した画像を拡大コピーし、これを画像解析装置により解析することにより算出した。また、微粒超硬合金材が、主にCoからなる結合相と硬質分散相とからなり、硬質分散相中に大きさが100nm以下のCr酸化物が存在しているか否かは、TEMにより125k倍で50視野観察し、EDXにより各領域の組成を測定することにより評価した。本発明材の組成とWCを主とする硬質相の平均粒径及び50視野中で、硬質分散相中に大きさが100nm以下のCr酸化物が観察された視野数を表1にまとめて示した。Cr酸化物の観察例として、図1に本発明例10で観察されたCr酸化物のTEM像を示す。本微粒子のEDX分析結果は質量%で、Cr:71.8%、O:4.2%、W:20.1%、Co:3.9%であった。また、比較の目的で、焼結条件を6.6Paの真空雰囲気中、1350〜1480℃の範囲内の所定温度に1.5時間保持後、冷却速度が約10℃/分で炉冷することにより比較例を作製した。本発明例と同一の条件で評価した比較例の諸特性を表1にあわせて示した。比較例はいずれも、主にCoからなる結合相と硬質分散相とからなるものの、125k倍でTEM観察したとき、Co成分が約50%である微粒子は見いだされたが、100nm以下のCr酸化物は見いだされなかった。 As the raw material powder, a WC powder containing Cr 3 C 2 and having an average particle diameter of 0.8 μm prepared by dissolving and / or diffusing Cr in the powder production stage was used. The amount of Cr 3 C 2 contained in the WC powder is six types of 0.1, 0.3, 0.5, 0.7, 0.9, and 1.1%. Also, Cr 3 C 2 powder with an average particle size of 1.5 μm, VC powder with 0.9 μm, TaC powder with 1.2 μm, NbC powder with 2 μm, ZrC powder with 2.3 μm, 1.5 μm HfC powder, 1.5 μm Mo 2 C powder and Co powder were prepared, these raw material powders were blended into a predetermined composition, mixed for 12 hours with an attritor, dried under reduced pressure, and then added with wax and solvent. After mixing for 1 hour, long shaped bodies having a diameter of 2.5 mm were prepared by an extrusion molding machine, and after dewaxing these long shaped bodies, in a vacuum atmosphere of 1.3 to 13.2 Pa, After holding at a predetermined temperature within a range of 1330 to 1480 ° C. for 0.5 to 2 hours, the atmosphere is changed to a pressurized atmosphere of pressure: 4.9 to 14.7 MPa, and after holding in this pressurized atmosphere for 15 to 60 minutes, Up to 1200 ° C, 50-100 ° C / min By cooling rapidly at a cooling rate, a long sintered material having a diameter of 2 mm made of a fine cemented carbide was produced. The Cr 3 C 2 powder having an average particle size of 1.5 μm was used when the Cr 3 C 2 amount was insufficient with the Cr-containing WC powder alone. The composition of the long sintered material was quantitatively analyzed with a fluorescent X-ray apparatus, and the contents of W, Co, Cr, V, Ta, Nb, Zr, Hf and Mo were measured. The average crystal grain size was determined by mirror-polishing the cross section of the sintered material, then clarifying the grain boundaries by etching with Murakami's reagent for 0.5 minutes and aqua regia for 0.5 minutes, and then using a scanning electron microscope (Hereinafter referred to as SEM), an image taken at a magnification of 10 k was enlarged and copied, and this was calculated by analyzing it with an image analyzer. Further, whether or not the fine cemented carbide material is mainly composed of a binder phase composed of Co and a hard dispersed phase, and Cr oxide having a size of 100 nm or less exists in the hard dispersed phase, is determined by TEM. The field of view was observed 50 times, and evaluation was performed by measuring the composition of each region by EDX. Table 1 summarizes the composition of the present invention material and the average particle diameter of the hard phase mainly composed of WC and the number of fields of view in which Cr oxide having a size of 100 nm or less was observed in the hard dispersed phase. It was. As an example of observation of Cr oxide, FIG. 1 shows a TEM image of Cr oxide observed in Example 10 of the present invention. The results of EDX analysis of the fine particles were, by mass, Cr: 71.8%, O: 4.2%, W: 20.1%, Co: 3.9%. In addition, for the purpose of comparison, the furnace is cooled at a cooling rate of about 10 ° C./min after holding the sintering condition at a predetermined temperature in the range of 1350 to 1480 ° C. for 1.5 hours in a vacuum atmosphere of 6.6 Pa. Thus, a comparative example was prepared. Table 1 shows the characteristics of the comparative example evaluated under the same conditions as the examples of the present invention. Although all of the comparative examples were mainly composed of a binder phase made of Co and a hard dispersed phase, fine particles having a Co component of about 50% were found when observed with a TEM at 125k magnification, but Cr oxidation of 100 nm or less was observed. Nothing was found.

本発明例及び比較例から作製した長尺状焼結素材を用いて、シャンク径2.0mm、刃先径0.1mmの2枚刃小径ドリルを各3本作製した。これを用いて、高Tg(Tgはガラス転移温度)の0.2mm厚さ両面Cu付きガラスエポキシ板を2枚重ねにしたものを、回転数250000/分、送り0.01mm/revの条件で穴開け加工試験を行なった。この条件は、より高速で刃先温度がより高温になりやすい切削条件である。外周刃外径寸法に5%の摩耗が生じる迄の穴開け加工数又は折損するまでの加工穴数の小さい方を測定し、各3本の平均を穴あけ平均寿命とした。本発明例及び比較例から作製した各小径ドリルの穴開け平均寿命測定結果を表1に併せて示した。   Three long blades each having a shank diameter of 2.0 mm and a cutting edge diameter of 0.1 mm were produced using the long sintered material produced from the inventive examples and comparative examples. Using this, two glass epoxy plates with high-Tg (Tg is the glass transition temperature) 0.2mm-thick double-sided Cu were stacked on the condition of a rotational speed of 250,000 / min and a feed of 0.01mm / rev. A drilling test was conducted. This condition is a cutting condition where the cutting edge temperature tends to be higher at a higher speed. The smaller of the number of holes drilled until 5% wear occurred on the outer diameter of the outer peripheral blade or the number of holes drilled until breakage was measured, and the average of the three holes was defined as the average drilling life. Table 1 also shows the results of measuring the average drilling life of each small-diameter drill produced from the inventive examples and the comparative examples.

表1に示した結果から、本発明例1〜18はいずれも、50視野中少なくとも1視野以上で、硬質分散相中に大きさが100nm以下のCr酸化物が観察されたのに対して、比較例19〜36では1視野にも観察されなかった。本発明例1〜18、比較例19〜36の夫々を用いて作製した小径ドリルの穴開け寿命を比較すると、ほぼ同一な組成とWC硬質分散相の粒度とを有するにもかかわらず、本発明例を用いて作製した小径ドリルは比較例に比べて1.5倍以上優れている。例えば、比較例33の穴開け寿命は1080穴であるのに対し、本発明例15は1650穴であり、比較例に比べて1.53倍優れている。また、本発明例においても、同じCo量とWC硬質分散相の粒度であるにもかかわらず、硬質分散相中に大きさが100nm以下のCr酸化物が50視野中6視野で観察された本発明例13の穴開け寿命が1700穴であるのに対して、50視野中5視野でのみ観察された本発明例12の穴開け寿命は2580穴であり、1.5倍以上優れていることが分かった。   From the results shown in Table 1, each of Inventive Examples 1 to 18 had at least one visual field in 50 visual fields and a Cr oxide having a size of 100 nm or smaller in the hard dispersed phase, whereas In Comparative Examples 19 to 36, no visual field was observed. Comparing the drilling life of the small diameter drills produced using the inventive examples 1 to 18 and the comparative examples 19 to 36, the present invention was found to have almost the same composition and the particle size of the WC hard dispersed phase. The small diameter drill produced using the example is 1.5 times or more superior to the comparative example. For example, the drilling life of Comparative Example 33 is 1080 holes, while Inventive Example 15 is 1650 holes, 1.53 times better than the Comparative Example. Further, in the present invention example, a Cr oxide having a size of 100 nm or less was observed in 6 out of 50 views in the hard dispersed phase, despite the same Co amount and WC hard dispersed phase particle size. The drilling life of Invention Example 13 is 1700 holes, whereas the drilling life of Invention Example 12 observed only in 5 out of 50 fields is 2580 holes, which is 1.5 times better. I understood.

図1は、本発明例の合金組織を500k倍でTEM観察した写真を示す。FIG. 1 shows a photograph obtained by TEM observation of the alloy structure of the example of the present invention at a magnification of 500 k.

符号の説明Explanation of symbols

1:Cr酸化物   1: Cr oxide

Claims (1)

質量%で、Co及び/又はNiが2〜13%、少なくともCrを0.1〜1.8%を含むCr、V、Ta、Nb、Zr、Hf及びMoの1種又は2種以上が0.1〜3%、残りがW及び不可避不純物、からなる金属組成を有し、主にWCからなる硬質分散相の平均粒径が0.8μm以下であり、該硬質分散相中に大きさが100nm以下のCr酸化物が存在していることを特徴とする微粒超硬合金。
One or more of Cr, V, Ta, Nb, Zr, Hf, and Mo containing Co and / or Ni in an amount of 2 to 13% and at least Cr in an amount of 0.1 to 1.8% are 0% by mass. 0.1 to 3%, the balance is W and inevitable impurities, and the hard dispersed phase mainly composed of WC has an average particle size of 0.8 μm or less, and the hard dispersed phase has a size of A fine-grain cemented carbide comprising Cr oxide of 100 nm or less.
JP2003288391A 2003-08-07 2003-08-07 Fine-grained cemented carbide Pending JP2005054258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288391A JP2005054258A (en) 2003-08-07 2003-08-07 Fine-grained cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288391A JP2005054258A (en) 2003-08-07 2003-08-07 Fine-grained cemented carbide

Publications (1)

Publication Number Publication Date
JP2005054258A true JP2005054258A (en) 2005-03-03

Family

ID=34367056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288391A Pending JP2005054258A (en) 2003-08-07 2003-08-07 Fine-grained cemented carbide

Country Status (1)

Country Link
JP (1) JP2005054258A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060122787A (en) * 2005-05-27 2006-11-30 산드빅 인터렉츄얼 프로퍼티 에이비 Tool for coldforming operations with improved performance
JP2012162753A (en) * 2011-02-03 2012-08-30 Sumitomo Electric Hardmetal Corp Cemented carbide and method of manufacturing the same, and micro drill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060122787A (en) * 2005-05-27 2006-11-30 산드빅 인터렉츄얼 프로퍼티 에이비 Tool for coldforming operations with improved performance
JP2012162753A (en) * 2011-02-03 2012-08-30 Sumitomo Electric Hardmetal Corp Cemented carbide and method of manufacturing the same, and micro drill

Similar Documents

Publication Publication Date Title
TWI479027B (en) Hard alloy
JP3952209B2 (en) WC-base cemented carbide member
JP2007044807A (en) Extremely small diameter end mill made of cemented carbide
JP2006328477A (en) Wc based cemented carbide member, and coated wc based cemented carbide member
JP2004059946A (en) Ultra-fine grain hard metal
JP2004076049A (en) Hard metal of ultra-fine particles
JP2007162066A (en) Fine-grained cemented carbide and method for producing rare earth element-containing fine-grained cemented carbide
JP2007191741A (en) Wc-based cemented carbide and manufacturing method therefor
JP2006239792A (en) Hard film coated cemented carbide member
JP2005068515A (en) Hard metal containing fine particles
JP2005054258A (en) Fine-grained cemented carbide
JP2008202074A (en) Fine-grained cemented carbide
JP4351453B2 (en) Cemented carbide and drill using the same
JP2007284751A (en) Hard metal made of fine particle
WO2021199260A1 (en) Cemented carbide and cutting tool comprising same
JP2005068514A (en) Hard metal containing fine particles
JP2004131769A (en) Hyperfine-grained cemented carbide
JP2005068513A (en) Hard metal containing fine particles
JP2006131975A (en) Cermet for saw blade
JP4126280B2 (en) Fine cemented carbide
JP2012162753A (en) Cemented carbide and method of manufacturing the same, and micro drill
JP2005105398A (en) Particulate cemented carbide
JP2005226103A (en) Fine-grained cemented carbide
WO2022091343A1 (en) Cemented carbide and cutting tool comprising same
JP2003193172A (en) Tungsten carbide cemented carbide and production method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Written amendment

Effective date: 20071005

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080404

Free format text: JAPANESE INTERMEDIATE CODE: A02