JP2006328477A - Wc based cemented carbide member, and coated wc based cemented carbide member - Google Patents

Wc based cemented carbide member, and coated wc based cemented carbide member Download PDF

Info

Publication number
JP2006328477A
JP2006328477A JP2005153631A JP2005153631A JP2006328477A JP 2006328477 A JP2006328477 A JP 2006328477A JP 2005153631 A JP2005153631 A JP 2005153631A JP 2005153631 A JP2005153631 A JP 2005153631A JP 2006328477 A JP2006328477 A JP 2006328477A
Authority
JP
Japan
Prior art keywords
cemented carbide
phase
based cemented
carbide member
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005153631A
Other languages
Japanese (ja)
Inventor
Yutaka Kubo
裕 久保
Atsushi Yukimura
淳 幸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2005153631A priority Critical patent/JP2006328477A/en
Publication of JP2006328477A publication Critical patent/JP2006328477A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a WC based cemented carbide and a hard film-coated WC based cemented carbide member in which wear, chipping or the like caused by melt-stuck or the like are reduced by improving the melt-stuck resistance of a microparticulate cemented carbide member to a work. <P>SOLUTION: In the WC based cemented carbide member, the WC based cemented carbide comprises a bonding phase essentially consisting of Co, a hard phase essentially consisting of WC, and a plural carbide phase 1 (V<SB>x</SB>W<SB>y</SB>Cr<SB>z</SB>Ta<SB>α</SB>Nb<SB>β</SB>)C comprising V, W, Cr, Ta and/or Nb with the average particle diameter of ≤0.8 μm. Here, 1≤S≤50 is satisfied regarding the metallic components of the plural carbide phase, provided that, by weight%, X+Y+Z+α+β=100, 20≤X≤70, 20≤Y≤70, 1≤Z≤30 and α+β=S. The plural carbide phase is present adjacently to the hard phase or adjacently to the bonding phase 3 and the hard phase, and the area ratio M(%) of the plural carbide phase satisfies 0<M<0.5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、平均粒径が0.8μm以下のWC粒子を有する微粒超硬合金及び、微粒超硬合金に硬質皮膜を被覆した硬質皮膜被覆WC基超硬合金部材に関する。   The present invention relates to a fine cemented carbide having WC particles having an average particle diameter of 0.8 μm or less, and a hard coating-coated WC-based cemented carbide member obtained by coating a fine cemented carbide with a hard coating.

WCの平均粒径が0.8μm以下である微粒超硬合金の具体的例は、以下の特許文献1〜7に開示されている。   Specific examples of the fine-grain cemented carbide having an average WC grain size of 0.8 μm or less are disclosed in Patent Documents 1 to 7 below.

特許3451940号公報Japanese Patent No. 3451940 特許3451949号公報Japanese Patent No. 3451949 特許3291562号公報Japanese Patent No. 3291562 特許3451950号公報Japanese Patent No. 3451950 特開2004−162080号公報JP 2004-162080 A 特開平9−184042号公報Japanese Patent Laid-Open No. 9-184042 特開2005−054258号公報JP-A-2005-054258

特許文献1、2は何れもWCをVとWとCrの析出複合炭化物の薄層で全面被覆及び/又は部分被覆してなる硬質分散相についての記載はあるが、他の硬質分散相についての記載はない。特許文献3、4、5は何れも第1硬質分散相及び第2硬質分散相に関わる記載があるが、第2硬質分散相は結合相中に微細に分散したVとWとCrの析出複合炭化物からなると記載され、それらの成分についての記載はない。特許文献6にはVNを添加した超硬合金が開示されているが、Nの1部がCo中に固溶するとの記載はあるが、析出物についての記載はない。特許文献7にはTa及び/又はNbを添加した微粒超硬合金が開示されている。結合相の硬度と耐熱性が高まるとの記載はあるが、金属、合金との親和性については記載されていない。従って、特許文献1〜7には耐溶着性を改善する技術の開示はない。
本願発明が解決しようとする課題は、微粒超硬合金部材の被加工物に対する耐溶着性を改善することによって、溶着等による摩耗、チッピング等を低減することである。更に本来微粒超硬合金部材が有する高靭性、高硬度を維持し、該耐溶着性の改善との相乗効果によって長寿命化を可能としたWC基超硬合金及び硬質皮膜被覆WC基超硬合金部材を提供することである。例えば、部材としてはエンドミル、ドリルなどに適用し、小径化を可能とすることである。
Patent Documents 1 and 2 both describe a hard dispersed phase in which WC is entirely coated and / or partially coated with a thin layer of precipitated composite carbides of V, W, and Cr, but other hard dispersed phases are described. There is no description. Patent Documents 3, 4 and 5 all describe the first hard dispersed phase and the second hard dispersed phase, but the second hard dispersed phase is a precipitation composite of V, W and Cr finely dispersed in the binder phase. It is described that it consists of carbides, and there is no description about those components. Patent Document 6 discloses a cemented carbide to which VN is added, but there is a description that 1 part of N is dissolved in Co, but there is no description of precipitates. Patent Document 7 discloses a fine-grain cemented carbide added with Ta and / or Nb. Although there is a description that the hardness and heat resistance of the binder phase are increased, there is no description about the affinity with metals and alloys. Therefore, Patent Documents 1 to 7 do not disclose a technique for improving the welding resistance.
The problem to be solved by the present invention is to reduce wear, chipping and the like due to welding or the like by improving the welding resistance of the fine cemented carbide member to the workpiece. Furthermore, the WC-based cemented carbide and the hard coating-coated WC-based cemented carbide that maintain the high toughness and hardness inherently possessed by the fine-grained cemented carbide member and can extend the service life through a synergistic effect with the improvement of the welding resistance. It is to provide a member. For example, as a member, it is applied to an end mill, a drill, etc., and it is enabling diameter reduction.

本願発明のWC基超硬合金は、WCの平均粒径は0.8μm以下であり、重量%で、Co含有量は、3≦Co≦13%、Cr含有量は、0.3≦Cr≦1.0、V含有量は、0.2≦V≦0.5、Ta及び/又はNbの含有量は、0<(Ta及び/又はNb)≦1.5、残部がWC及び不可避不純物からなるWC基超硬合金であって、該WC基超硬合金は、Coを主体とした結合相と、WCを主体とした硬質相と、平均粒径0.8μm以下のVとWとCrとTa及び/又はNbを含む複炭化物相(VCrTaαNbβ)Cとを有し、但し、該複炭化物相の金属成分は重量%で、X+Y+Z+α+β=100、20≦X≦70、20≦Y≦70、1≦Z≦30、α+β=Sとしたとき、1≦S≦50、からなり、該複炭化物相は該硬質相と隣接するか或いは該結合相及び該硬質相と隣接して存在し、該複炭化物相の面積率M(%)は、0<M<0.5であることを特徴とするWC基超硬合金部材である。本構成を採用することによって、微粒超硬合金部材の被加工物に対する耐溶着性を改善することができる。その結果、溶着等による摩耗、チッピング等を低減することが可能となる。更に本来微粒超硬合金部材が有する高靭性、高硬度を維持し、該耐溶着性の改善との相乗効果によって長寿命化を可能としたWC基超硬合金及び硬質皮膜被覆WC基超硬合金部材を提供することができる。例えば、部材としてはエンドミル、ドリルなどに適用すれば、小径化が可能となる。 The WC-based cemented carbide of the present invention has an average particle diameter of WC of 0.8 μm or less, wt%, Co content of 3 ≦ Co ≦ 13%, and Cr content of 0.3 ≦ Cr ≦ 1.0, V content is 0.2 ≦ V ≦ 0.5, Ta and / or Nb content is 0 <(Ta and / or Nb) ≦ 1.5, balance is from WC and inevitable impurities The WC-based cemented carbide comprises a binder phase mainly composed of Co, a hard phase mainly composed of WC, V, W, and Cr having an average particle size of 0.8 μm or less. And a double carbide phase (V x W y Cr z Ta α Nb β ) C containing Ta and / or Nb, provided that the metal component of the double carbide phase is by weight, X + Y + Z + α + β = 100, 20 ≦ X ≦ 70, 20 ≦ Y ≦ 70, 1 ≦ Z ≦ 30, α + β = S, 1 ≦ S ≦ 50. More than WC group, characterized in that the area ratio M (%) of the double carbide phase is adjacent to the phase or adjacent to the binder phase and the hard phase, and 0 <M <0.5 It is a hard alloy member. By adopting this configuration, it is possible to improve the welding resistance of the fine cemented carbide member to the workpiece. As a result, it is possible to reduce wear and chipping due to welding and the like. Furthermore, the WC-based cemented carbide and the hard coating-coated WC-based cemented carbide that maintain the high toughness and hardness inherently possessed by the fine-grained cemented carbide member and can extend the service life through a synergistic effect with the improvement of the welding resistance. A member can be provided. For example, if the member is applied to an end mill, a drill or the like, the diameter can be reduced.

本願発明のWC基超硬合金部材のロックウェルAスケール(以下、HRAと記す。)での硬さは、93以上、95以下であることが好ましい。該WC基超硬合金部材は、ドリル、小径ドリル、エンドミル、エンドミル加工用刃先交換型チップ、フライス加工用刃先交換型チップ、旋削用刃先交換型チップ、メタルソー、歯切り工具、ガンドリル、リーマ、ブローチ及びタップからなる群より選択される1種に好適である。特に直径2mm以下の金属加工用エンドミル、直径0.2mm以下のプリント基板用ドリル、直径1.5mm以下のプリント基板用ルーターエンドミルであることが、より好適である。
本願発明のWC基超硬合金部材に硬質皮膜を被覆し、該硬質皮膜は、金属成分に周期律表4a、5a、6a族元素、Al、Siから選択される1種以上の元素を有し、非金属成分にC、N、O、Bから選択される1種以上の元素を有することが好ましい。
The hardness of the WC-based cemented carbide member of the present invention on the Rockwell A scale (hereinafter referred to as HRA) is preferably 93 or more and 95 or less. The WC-based cemented carbide member includes drills, small-diameter drills, end mills, tip milling inserts for end milling, tip replacements for milling, tip replacements for turning, metal saws, gear cutting tools, gun drills, reamers, broaches And one selected from the group consisting of taps. In particular, a metal processing end mill having a diameter of 2 mm or less, a printed circuit board drill having a diameter of 0.2 mm or less, and a router end mill for a printed circuit board having a diameter of 1.5 mm or less are more preferable.
The WC-based cemented carbide member of the present invention is coated with a hard film, and the hard film has one or more elements selected from periodic table 4a, 5a, 6a group elements, Al, and Si as metal components. It is preferable that the nonmetallic component has one or more elements selected from C, N, O, and B.

本願発明によって、微粒超硬合金部材の被加工物に対する耐溶着性を改善することができた。その結果、溶着等による摩耗、チッピング等を低減することが可能となった。更に本来微粒超硬合金部材が有する高靭性、高硬度を維持し、該耐溶着性の改善との相乗効果によって長寿命化を可能としたWC基超硬合金及び硬質皮膜被覆WC基超硬合金部材を提供することができた。特にエンドミル、ドリルなどの小径化を可能とし、これらの工具寿命が大幅に改善され、産業上の利用について効果が得られた。   By this invention, the welding resistance with respect to the workpiece of a fine-grain cemented carbide member was able to be improved. As a result, it has become possible to reduce wear and chipping due to welding and the like. Further, the WC-based cemented carbide and the hard coating-coated WC-based cemented carbide that maintain the high toughness and hardness inherently possessed by the fine-grain cemented carbide member and can extend the service life by synergistic effects with the improvement of the welding resistance. A member could be provided. In particular, the diameters of end mills, drills, etc. can be reduced, the tool life has been greatly improved, and an effect has been obtained for industrial use.

本願発明のWC基超硬合金は、本来有する高靭性、高硬度に加え、耐溶着性の改善を可能とする。例えば工具等の部材の特性向上を可能にする。以下に本願発明の数値限定の理由を述べる。
WCの平均粒径を0.8μm以下にした理由は、超硬合金の硬さを硬くするために有効であるからである。一方、0.8μmを超えて大きい場合、Co量を少なくして硬さを上げようとしても、耐摩耗性を確保するための硬さを確保することができないためである。WC基超硬合金部材の耐摩耗性を向上させるためには、硬さを一定以上に硬くしておく必要があり、WC平均粒径を0.8μm以下とすることが必要である。
Coは焼結性向上に寄与し、結合相を形成して靭性を改善させ、耐欠損、耐折損性を向上する作用をもつ。しかしCo含有量が3%未満では十分な靭性、耐折損性を得ることが出来ず、またCo含有量が13%を超えると、硬さの低下が顕著となり、耐摩耗性が著しく低下する。従ってCo含有量を3〜13%とした。好ましくは5〜10%である。
CrはWCの粒成長を抑制する効果をもつほか、結合相Co中に固溶し、その強度を向上させ、耐食性の向上にも寄与する。Cr含有量が0.3%未満では目的の改善効果を得ることが出来ず、またCrの含有量が1%を超えると、結合相中の一部を置換する形態で存在するVとWとCrとTa及び/又はNbを含む複炭化物相の粒径が粗大化し、靭性を著しく低下させる。従ってCr含有量を0.3〜1%とした。
VはWCの粒成長抑制に最も効果の大きい元素であり、V添加によりWCの粒径を0.8μm以下とすることが可能となる。また本願発明の結合相の一部を置換した形態をしたVとWとCrとTa及び/又はNbを含む複炭化物相の構成元素であり、これらを構成することにより、硬さ、耐摩耗性の改善に寄与するものである。V含有量が0.2%未満では粒成長抑制作用を十分に発揮させることが困難となる。原料のWC粉末の粒径を0.8μmとしても、焼結時に粒成長することにより、焼結体中のWC粒径が0.8μmを超えてしまう。またV含有量が0.5%を超えると、結合相の一部を置換した形態をしたVとWとCrとTa及び/又はNbを含む複炭化物相の粒径が粗大化し、その量も増加するため靭性を著しく低下させる。よってV含有量は0.2〜0.5%とした。
Ta、NbはWCの粒成長を抑制するほか、結合相中に固溶して結合相を強化すると共に、WC基超硬合金部材を使用する場合に、該部材が被削材、被加工物等と接触する部分のうち特に金属、合金との親和性を低下させる作用がある。これにより、付着、溶着等が起こりにくくなり、溶着等による摩耗、チッピング等を低減することが可能になり部材の長寿命化が可能となる。そこで、Ta及び/又はNb量が0%のとき、目的の改善効果をえることが出来ない。またTa及び/又はNb量が1.5%を超えると結合相の一部を置換した形態をしたVとWとCrとTa及び/又はNbを含む複炭化物相の粒径が粗大化し、その量も増加するため靭性を著しく低下させる。よってTa及び/又はNb含有量は0を超え1.5%以下とした。より好ましくは0.2〜1.2%である。
本願発明のWC基超硬合金部材は、VとWとCrと、Ta及び/又はNbを含む複炭化物相(VCrTaαNbβ)Cを有し、但し該複炭化物相の金属成分は重量%で、X+Y+Z+α+β=100、20≦X≦70、20≦Y≦70、1≦Z≦30、α+β=Sとしたとき、1≦S≦50、からなる。Xが20%未満では、複炭化物相の硬さが低くなり耐摩耗性向上の効果が少なくなる。一方、70%を超えて大きい場合は、炭化物相が脆化し不都合である。従って、Xは20≦X≦70に規定する。Yが20%未満では、複炭化物相の硬さが低くなり耐摩耗性向上の効果が少なくなる。一方、70%を超えて大きい場合は、炭化物が脆化し不都合である。従って、Yは20≦Y≦70に規定する。Zが1%未満では、複炭化物相の硬さが低くなり耐摩耗性向上の効果が少なくなる。一方、30%を超えて大きい場合は、炭化物相が脆化し不都合である。Sが1%未満では、複炭化物相の硬さが低くなり耐摩耗性向上の効果が少なくなる。一方、50%を超えて大きい場合は、複炭化物相が脆化し不都合である。従って、Sは1≦S≦50に規定する。即ち複炭化物相の金属成分の重量%が本願発明範囲にあるときに、耐摩耗性向上の効果が顕著に現れるものである。
本願発明のWC基超硬合金部材は、電子顕微鏡による組織観察により、複炭化物相がWC粒子と隣接して存在する。或いは複炭化物相が結合相及び該WC粒子と隣接して存在する。この存在形態を図1の模式図に示す。図1では複炭化物相1がWC粒子2と結合相3に隣接して存在する。VとWとCrとTa及び/又はNbを含む複炭化物相1が、結合相3の一部を置換した形態で存在しているものと推定される。そこで以降は、複炭化物相1の存在形態を置換形態と記す。本願発明の置換形態は、複炭化物相1がWC粒子とWC粒子との間の領域にあり、通常Co相が存在する領域の一部に存在し、WC粒子とWC粒子の間を埋めるような形態をいう。複炭化物相1が置換形態で存在することにより、硬さ、耐摩耗性の改善に寄与する。ここで言う複炭化物相1の置換形態は、図2の模式図に示す様に、微細分散複炭化物相4が結合相3に分散分布した形態でも、或いはWC粒子2の表面の少なくとも1部を被覆した表面被覆炭化物相5の様な形態でもない。図2の様に、微細分散複炭化物相4が結合相3に微細に分散分布した状態は、WC粒子とWC粒子の間の領域に存在するCo相の中に、微細分散複炭化物相4がCo相に囲まれた状態で存在する形態である。また表面被覆複炭化物相5がWC粒子の表面の少なくとも一部を被覆した形態とは、数原子レベル程度の極めて薄い被覆である。これより本願発明の炭化物相1の置換形態と、従来例の微細分散複炭化物相4が分散分布した形態、或いは表面被覆複炭化物相5が被覆した形態とは全く異なるものである。但し、本願発明の複炭化物相が結合相の一部を置換した形態に加え、VとWとCrとTa及び/又はNbを含む複炭化物相がWC粒子の表面の少なくとも一部を被覆した形態として存在してもかまわない。
複炭化物相の粒径は0.8μm以下とする。0.8μmを超えるとWCの粒径と同等又は大きくなるため、靭性が低下する。複炭化物相の面積率M(%)は、0<M<0.5とする。M値が0の場合はその効果がなく、また0.5%以上となると複炭化物相の量が多くなるため靭性が低下する。
The WC-based cemented carbide of the present invention can improve the welding resistance in addition to the inherently high toughness and high hardness. For example, characteristics of members such as tools can be improved. The reason for the numerical limitation of the present invention will be described below.
The reason why the average particle size of WC is 0.8 μm or less is that it is effective for increasing the hardness of the cemented carbide. On the other hand, if the thickness is larger than 0.8 μm, the hardness for securing the wear resistance cannot be secured even if the amount of Co is decreased to increase the hardness. In order to improve the wear resistance of the WC-based cemented carbide member, it is necessary to make the hardness harder than a certain level, and it is necessary to set the WC average particle size to 0.8 μm or less.
Co contributes to improving the sinterability, forms a binder phase, improves toughness, and has an effect of improving fracture resistance and fracture resistance. However, if the Co content is less than 3%, sufficient toughness and breakage resistance cannot be obtained, and if the Co content exceeds 13%, the hardness is remarkably reduced and the wear resistance is remarkably reduced. Therefore, the Co content is 3 to 13%. Preferably it is 5 to 10%.
In addition to the effect of suppressing grain growth of WC, Cr dissolves in the binder phase Co, improves its strength, and contributes to the improvement of corrosion resistance. If the Cr content is less than 0.3%, the intended improvement effect cannot be obtained, and if the Cr content exceeds 1%, V and W exist in a form that partially substitutes in the binder phase. The particle size of the double carbide phase containing Cr and Ta and / or Nb becomes coarse, and the toughness is remarkably lowered. Therefore, the Cr content is set to 0.3 to 1%.
V is an element that is most effective in suppressing grain growth of WC, and by adding V, the grain size of WC can be reduced to 0.8 μm or less. Further, it is a constituent element of a double carbide phase containing V, W, Cr, Ta and / or Nb in a form in which a part of the binder phase of the present invention is substituted, and by constituting these, hardness, wear resistance It contributes to the improvement. If the V content is less than 0.2%, it is difficult to sufficiently exert the grain growth suppressing action. Even if the particle size of the raw material WC powder is 0.8 μm, the WC particle size in the sintered body exceeds 0.8 μm due to grain growth during sintering. Further, when the V content exceeds 0.5%, the particle size of the double carbide phase containing V, W, Cr, Ta and / or Nb in a form in which a part of the binder phase is substituted becomes coarse, and the amount is also As it increases, the toughness is significantly reduced. Therefore, the V content is set to 0.2 to 0.5%.
Ta, Nb suppresses grain growth of WC, strengthens the binder phase by solid solution in the binder phase, and when using a WC-based cemented carbide member, the member is a work material or workpiece. Among the parts that come into contact with, etc., there is an effect of reducing the affinity with metals and alloys. As a result, adhesion, welding and the like are less likely to occur, wear and chipping due to welding and the like can be reduced, and the life of the member can be extended. Therefore, when the amount of Ta and / or Nb is 0%, the intended improvement effect cannot be obtained. Further, when the amount of Ta and / or Nb exceeds 1.5%, the particle size of the double carbide phase containing V, W, Cr, Ta and / or Nb in a form in which a part of the binder phase is replaced becomes coarse. As the amount increases, the toughness is significantly reduced. Therefore, the Ta and / or Nb content is more than 0 and 1.5% or less. More preferably, it is 0.2 to 1.2%.
The WC-based cemented carbide member of the present invention has a double carbide phase (V x W y Cr z Ta α Nb β ) C containing V, W, Cr, Ta and / or Nb, provided that the double carbide phase The metal component is expressed as% by weight, and X + Y + Z + α + β = 100, 20 ≦ X ≦ 70, 20 ≦ Y ≦ 70, 1 ≦ Z ≦ 30, α + β = S, and 1 ≦ S ≦ 50. When X is less than 20%, the hardness of the double carbide phase is lowered and the effect of improving the wear resistance is reduced. On the other hand, if it exceeds 70%, the carbide phase becomes brittle and disadvantageous. Therefore, X is defined as 20 ≦ X ≦ 70. If Y is less than 20%, the hardness of the double carbide phase is lowered and the effect of improving the wear resistance is reduced. On the other hand, if it exceeds 70%, the carbide becomes brittle and disadvantageous. Therefore, Y is defined as 20 ≦ Y ≦ 70. If Z is less than 1%, the hardness of the double carbide phase is lowered, and the effect of improving the wear resistance is reduced. On the other hand, if it exceeds 30%, the carbide phase becomes brittle and disadvantageous. When S is less than 1%, the hardness of the double carbide phase is lowered, and the effect of improving the wear resistance is reduced. On the other hand, when it exceeds 50%, the double carbide phase becomes brittle and is inconvenient. Therefore, S is defined as 1 ≦ S ≦ 50. That is, when the weight percent of the metal component of the double carbide phase is within the scope of the present invention, the effect of improving the wear resistance is remarkably exhibited.
In the WC-based cemented carbide member of the present invention, a double carbide phase is present adjacent to the WC particles by structural observation with an electron microscope. Alternatively, a double carbide phase is present adjacent to the binder phase and the WC particles. This existence form is shown in the schematic diagram of FIG. In FIG. 1, the double carbide phase 1 exists adjacent to the WC particles 2 and the binder phase 3. It is presumed that the double carbide phase 1 containing V, W, Cr, Ta and / or Nb exists in a form in which a part of the binder phase 3 is replaced. Therefore, hereinafter, the existence form of the double carbide phase 1 is referred to as a substitution form. The substitution form of the present invention is such that the double carbide phase 1 is in the region between the WC particles and the WC particles, usually exists in a part of the region where the Co phase is present, and fills between the WC particles and the WC particles. Refers to the form. The presence of the double carbide phase 1 in a substituted form contributes to improvement in hardness and wear resistance. The substitution form of the double carbide phase 1 mentioned here may be a form in which the finely dispersed double carbide phase 4 is dispersed and distributed in the binder phase 3 as shown in the schematic diagram of FIG. 2 or at least a part of the surface of the WC particles 2. It is not a form like the coated surface coated carbide phase 5. As shown in FIG. 2, the finely dispersed double carbide phase 4 is finely dispersed and distributed in the binder phase 3 when the finely dispersed double carbide phase 4 is present in the Co phase existing in the region between the WC particles and the WC particles. It is a form that exists in a state surrounded by a Co phase. The form in which the surface-coated double carbide phase 5 covers at least a part of the surface of the WC particles is an extremely thin coating of about several atomic levels. Thus, the substitution form of the carbide phase 1 of the present invention is completely different from the form in which the finely dispersed double carbide phase 4 of the conventional example is dispersed and distributed, or the form coated with the surface-coated double carbide phase 5. However, in addition to the form in which the double carbide phase of the present invention replaces part of the binder phase, the form in which the double carbide phase containing V, W, Cr, Ta, and / or Nb covers at least part of the surface of the WC particles. It does not matter if it exists.
The particle size of the double carbide phase is 0.8 μm or less. If it exceeds 0.8 μm, it becomes equal to or larger than the particle size of WC, so that the toughness decreases. The area ratio M (%) of the double carbide phase is 0 <M <0.5. When the M value is 0, the effect is not obtained. When the M value is 0.5% or more, the amount of the double carbide phase increases, so that the toughness decreases.

本願発明のWC基超硬合金部材におけるV、Cr、Ta、Nbの添加は、V、Cr、Ta、Nbの窒化物及び/又は炭窒化物等窒素を含む化合物を原料として用いることが好ましい。その理由は以下の通りである。VとWとCrとTa及び/又はNbを含む炭化物相が結合相の一部を置換した形態となり、平均粒径を0.8μm以下とすることができるからである。窒素を含む化合物を用いた場合、焼結時にこれらの化合物の解離により生じた窒素の一部がCoを主体とする液相中に溶解する。その結果、窒化物の標準生成自由エネルギーが正であり安定な窒化物を形成し得ない。即ち窒素との親和性がないWは、Co中に固溶し難くなる。WはVと並び複炭化物の主成分であり、Co中へのNの溶解により、冷却過程における液相存在下の複炭化物の晶出、析出が早められる結果になる。結合相中にNが存在しない場合に比べ、早期に晶出、析出することになる。そのため、これら化合物の液相存在下での溶解析出による成長が、窒素が存在しない場合に比べ、長時間にわたり可能となるため、窒素を含まない場合の複炭化物の存在形態である結合相中に微細に分散分布した形態ではなく、それよりも成長した形態である結合相を置換した形態となる。この場合、VとWとCrとTa及び/又はNbを含む炭化物相が、液相状態の結合相中に存在する窒素の一部を取込み、窒素を含む炭窒化物相であっても良い。更に、V、W、Cr、Ta、Nbの金属成分以外に、V、W、Cr、Ta、Nbを除く周期律表4a、5a、6a族より選択される1種以上の他の金属成分が微量に含有されていても良い。   The addition of V, Cr, Ta, and Nb in the WC-based cemented carbide member of the present invention preferably uses a nitrogen-containing compound such as a nitride of V, Cr, Ta, or Nb and / or carbonitride. The reason is as follows. This is because the carbide phase containing V, W, Cr, Ta and / or Nb is in a form in which a part of the binder phase is substituted, and the average particle size can be 0.8 μm or less. When a compound containing nitrogen is used, a part of nitrogen generated by dissociation of these compounds during sintering is dissolved in a liquid phase mainly composed of Co. As a result, the standard free energy of formation of nitride is positive, and a stable nitride cannot be formed. That is, W that does not have an affinity for nitrogen is difficult to dissolve in Co. W is the main component of double carbide along with V, and the dissolution of N in Co results in faster crystallization and precipitation of the double carbide in the presence of the liquid phase in the cooling process. Crystallization and precipitation occur earlier than when N is not present in the binder phase. Therefore, growth by dissolution and precipitation of these compounds in the presence of a liquid phase is possible over a long period of time compared to the case where nitrogen is not present. It is not a finely distributed form, but a form in which the binder phase, which is a grown form, is substituted. In this case, the carbide phase containing V, W, Cr, Ta, and / or Nb may be a carbonitride phase containing nitrogen by taking in part of the nitrogen present in the liquid phase binder phase. Furthermore, in addition to the metal components of V, W, Cr, Ta, and Nb, one or more other metal components selected from the groups 4a, 5a, and 6a of the periodic table excluding V, W, Cr, Ta, and Nb are included. It may be contained in a trace amount.

本願発明のWC基超硬合金部材は、ドリル、小径ドリル、エンドミル、エンドミル加工用刃先交換型チップ、フライス加工用刃先交換型チップ、旋削用刃先交換型チップ、メタルソー、歯切り工具、ガンドリル、リーマ、ブローチ及びタップ等に好適であり、工具の長寿命化が計られる。より好ましくは、直径0.2mm以下のプリント基板用ドリル又は、直径1.5mm以下のプリント基板用ルーターエンドミル、直径2mm以下の金属加工用エンドミルに適用されることである。この理由は、これらの用途においてはWC基超硬合金部材の本来有する高靭性、高硬度に加え、耐溶着性の改善に対応し、工具寿命向上に有効だからである。   The WC-based cemented carbide member of the present invention includes drills, small-diameter drills, end mills, blade tip replaceable tips for end milling, blade tip replaceable tips for milling, blade tip replaceable tips for turning, metal saws, gear cutting tools, gun drills, reamers It is suitable for broaches, taps, etc., and the tool life is extended. More preferably, it is applied to a drill for printed circuit boards having a diameter of 0.2 mm or less, a router end mill for printed circuit boards having a diameter of 1.5 mm or less, or an end mill for metal processing having a diameter of 2 mm or less. This is because in these applications, in addition to the high toughness and high hardness inherent in the WC-based cemented carbide member, it corresponds to the improvement of the welding resistance and is effective in improving the tool life.

本願発明のWC基超硬合金部材は硬質皮膜が被覆されることが好ましい。該硬質皮膜は、金属成分に周期律表4a、5a、6a族元素、Al、Siから選択される1種以上の元素を有し、非金属成分にC、N、O、Bから選択される1種以上の元素を有する。高硬度な硬質皮膜によって部材の耐摩耗性は更に向上し、高靭性、耐折損性を備えた硬質皮膜被覆WC基超硬合金部材が得られる。より好ましくは、(AlCr)(NO)系皮膜、(AlCrSi)(NO)系皮膜、(TiSi)(NO)系皮膜、(CrSi)(NB)系皮膜、Ti(NBO)系皮膜から選択される1種以上の単層、積層膜を採用することによって、耐摩耗性の向上に加えて耐酸化性や潤滑性能の更なる向上が得られる。   The WC-based cemented carbide member of the present invention is preferably coated with a hard coating. The hard coating has one or more elements selected from periodic table 4a, 5a, 6a group elements, Al, Si as metal components, and is selected from C, N, O, B as nonmetal components. Contains one or more elements. The wear resistance of the member is further improved by the hard film having a high hardness, and a hard film-coated WC-based cemented carbide member having high toughness and breakage resistance can be obtained. More preferably, it is selected from (AlCr) (NO) -based film, (AlCrSi) (NO) -based film, (TiSi) (NO) -based film, (CrSi) (NB) -based film, and Ti (NBO) -based film. By adopting one or more kinds of monolayers and laminated films, oxidation resistance and lubrication performance can be further improved in addition to improvement of wear resistance.

WC基超硬合金に存在するVとWとCrとTa及び/又はNbを含む炭化物相の面積率の測定は、下記に示す方法によって行うことができる。面積率測定方法は、WC基超硬合金を研摩し、その研摩面を撮像し、その画像からWC基超硬合金に存在するVとWとCrとTa及び/又はNbを含む炭化物相の面積率を測定する方法であって、(1)〜(4)の手順による。
(1)波長分散型X線プローブマイクロアナライザー(以下、EPMAと記す。)の元素マッピング機能によりV元素の濃化部を特定し、該V濃化部のラインプロファイルを採取する。この時の観察倍率は2000〜3000倍が好ましい。
(2)該V濃化部の形態を透過電子顕微鏡(以下、TEMと記す。)観察により観察し、その寸法値を測定する。この時の観察試料は、EPMAで特定したV濃化部を、電界放射型走査顕微鏡(以下、FE−SEMと記す。)にて場所を確認後、試料中から集束イオンビーム(以下、FIBと記す。)加工により切り出して作成する。
(3)(1)のV濃化部のEPMAラインプロファイルと(2)のTEMによるV濃化部の測定寸法とを照合し、V濃化部に相当するラインプロファイルのカウント数である閾値を設定する。更に別のV濃化相にて(1)〜(3)を繰り返し、閾値にばらつきのないことを確認し、それらの平均値として閾値を設定することが好ましい。EPMAマッピングを無作為に多数視野実施する。例えば2000倍の場合30μm×30μmを1視野としてマッピングし、130μm横へ移動後次のマッピングをするという方法により無作為に100μm離れた視野をマッピングする。これを4回繰り返し、合計5視野のマッピングを行い、続いて最初の視野に戻り、そこから下へ130μm移動し、上記と同じ方法にて5視野のマッピングを行う。これらを連続しておこなうことにより無作為に選んだ複数視野のマッピング像を得る。視野数は20視野以上実施することが好ましい。
(4)前記画像手段により得られた複数の画像を(3)で設定した閾値により2値化し、画像処理することによりV濃化相の面積率を演算することによって求める。面積率は複数の画像から求め、平均値を用いることが好ましい。
更に、他の炭化物相等の面積率も測定が出来る。例えば(V、Cr)C相、TaC相、(Ta、V)C相その他の炭化物、炭窒化物などの微量含まれる相の面積率の測定、TiC基サーメットの微量炭化物相、炭窒化物相の面積率の測定にも適用できる。以下、本願発明を実施例により更に詳細に説明する。実施例では本願発明の一部の例を示すものであり、本願発明は実施例により制約されるものではない。
The area ratio of the carbide phase containing V, W, Cr, Ta and / or Nb present in the WC-based cemented carbide can be measured by the following method. In the area ratio measurement method, the WC-base cemented carbide is polished, the polished surface is imaged, and the area of the carbide phase containing V, W, Cr, Ta and / or Nb existing in the WC-base cemented carbide is determined from the image. It is a method for measuring the rate, and is based on the procedures (1) to (4).
(1) The element V mapping element is specified by the element mapping function of the wavelength dispersion X-ray probe microanalyzer (hereinafter referred to as EPMA), and the line profile of the V element is collected. The observation magnification at this time is preferably 2000 to 3000 times.
(2) The form of the V-enriched portion is observed by observation with a transmission electron microscope (hereinafter referred to as TEM), and its dimensional value is measured. The observation sample at this time is a focused ion beam (hereinafter referred to as FIB) from the sample after confirming the location of the V-enriched part specified by EPMA with a field emission scanning microscope (hereinafter referred to as FE-SEM). Note: Create by cutting out by processing.
(3) The EPMA line profile of the V-enriched part in (1) is compared with the measurement size of the V-enriched part by TEM in (2), and a threshold value that is the count number of the line profile corresponding to the V-enriched part is set Set. Furthermore, it is preferable to repeat (1) to (3) in another V-concentrated phase, confirm that there is no variation in the threshold value, and set the threshold value as an average value thereof. Perform random EPMA mapping for multiple fields of view. For example, in the case of 2000 times, 30 μm × 30 μm is mapped as one visual field, and a visual field 100 μm apart is mapped at random by moving to the side of 130 μm and then performing the next mapping. This is repeated four times, mapping a total of 5 fields of view, then returning to the first field of view, moving down 130 μm from there, and mapping 5 fields of view in the same manner as above. By continuously performing these operations, a randomly selected multi-field mapping image is obtained. It is preferable to carry out 20 or more visual fields.
(4) A plurality of images obtained by the image means are binarized by the threshold value set in (3), and image processing is performed to calculate the area ratio of the V concentrated phase. The area ratio is obtained from a plurality of images, and an average value is preferably used.
Furthermore, the area ratios of other carbide phases can also be measured. For example, (V, Cr) C phase, TaC phase, (Ta, V) C phase and other carbides, measurement of the area ratio of a phase containing a trace amount of carbonitride, etc., TiC-based cermet trace amount carbide phase, carbonitride phase It can be applied to the measurement of the area ratio. Hereinafter, the present invention will be described in more detail with reference to examples. The embodiments show some examples of the present invention, and the present invention is not limited by the embodiments.

(実施例1)
原料粉末として、平均粒径約0.4μmのWC粉末、同約1〜2μmのCo、VC、VN、Cr、CrN、TaC、TaN、NbC、NbN各原料粉末を用いて所定の組成に配合した。粉末は成形バインダーを含んだアルコール中アトライターで12時間混合し、スプレードライヤーで造粒乾燥した。得られた造粒粉末を押出し成形して圧粉体とした。この圧粉体を10Paの真空雰囲気中において1400〜1450℃で焼結し、焼結体を作製した。得られた焼結体を研摩し、研摩面にてロックウェルAスケールにて硬さを測定した。更に、本願発明で示した方法にてVとWとCrとTa及び/又はNbを含む炭化物の組成、形態、寸法及び面積率を求めた。それらの測定結果を、配合組成と併せて表1に示す。
Example 1
WC powder having an average particle size of about 0.4 μm, Co, VC, VN, Cr 3 C 2 , Cr 2 N, TaC, TaN, NbC, and NbN raw material powders having a mean particle diameter of about 0.4 μm are used as raw material powders. It mix | blended with the composition of. The powder was mixed with an attritor in alcohol containing a molding binder for 12 hours and granulated and dried with a spray dryer. The obtained granulated powder was extruded and formed into a green compact. This green compact was sintered at 1400 to 1450 ° C. in a vacuum atmosphere of 10 Pa to produce a sintered body. The obtained sintered body was polished, and the hardness was measured with a Rockwell A scale on the polished surface. Furthermore, the composition, form, size, and area ratio of the carbide containing V, W, Cr, Ta, and / or Nb were determined by the method shown in the present invention. The measurement results are shown in Table 1 together with the composition.

Figure 2006328477
Figure 2006328477

Figure 2006328477
Figure 2006328477

焼結体のWCの平均粒径は、焼結素材の断面を鏡面研磨した後、村上試薬で0.5分、王水で0.5分間エッチングすることにより結晶粒界を明確にした後、走査電子顕微鏡(日立製作所製、S−4200、以下、SEMと記す。)によって倍率10k倍で撮影した画像を拡大コピーし、これを画像解析ソフトにより解析することにより算出した。上記方法により測定したWC平均粒径はいずれも0.3〜0.4μmであった。次にこれらの焼結体を加工して、φ4.0×45mmの丸棒からφ1.0mm(R0.5mm)の高硬度材加工用ボールエンドミルを作製した。得られたエンドミルにアークイオンプレーティングにて(TiAl)N皮膜を3.0μm、(TiSi)N皮膜を1.0μmとして成膜した。これらのエンドミルを用いて下記の条件にて底面切削加工を行い、刃先逃げ面摩耗量が0.015mmになるまでの切削距離で評価した。結果を併せて表1に示す。
(切削諸元1)
被削材:SKD11(熱処理材硬さHRC62)
回転数:12000回転/分
送り量:560mm/min
切込量:径方向0.07mm、深さ方向0.21mm
The average grain size of the WC of the sintered body is obtained by clarifying the grain boundaries by mirror-polishing the cross section of the sintered material, and then etching 0.5 minutes with Murakami reagent and 0.5 minutes with aqua regia. The image was calculated by enlarging an image taken at a magnification of 10 k using a scanning electron microscope (manufactured by Hitachi, S-4200, hereinafter referred to as SEM), and analyzing the image with an image analysis software. The WC average particle diameter measured by the above method was 0.3 to 0.4 μm. Next, these sintered bodies were processed to produce a ball end mill for machining a high hardness material of φ1.0 mm (R0.5 mm) from a round bar of φ4.0 × 45 mm. The obtained end mill was formed by arc ion plating with a (TiAl) N film of 3.0 μm and a (TiSi) N film of 1.0 μm. Using these end mills, bottom surface cutting was performed under the following conditions, and evaluation was performed based on the cutting distance until the blade flank wear amount was 0.015 mm. The results are also shown in Table 1.
(Cutting specifications 1)
Work material: SKD11 (Heat treatment material hardness HRC62)
Number of revolutions: 12,000 revolutions / minute
Cutting depth: 0.07mm in the radial direction, 0.21mm in the depth direction

本発明例1から9のエンドミルはいずれも上記寿命基準における切削寿命が25m以上であった。一方、Co量が本願発明規定の範囲外の比較例10、11について比較例10は、Co量が少なすぎるため焼結性が劣り、また比較例11はCo量が多すぎるため硬さが93.0より低くなり、エンドミル切削時の上記寿命基準における切削距離が10m以下と短くなった。Cr量が本願発明規定の範囲外の比較例12、13については、比較例12はCr量が少なくその結果硬さが低くなり切削可能距離も短くなった。また比較例13はVとWとCrとTa及び/又はNbを含む炭化物の粒径及び面積率が大きくなるため、靭性が低下し、チッピングにより切削距離が短くなった。V量が本願発明規定の範囲外となる比較例14、15、16についてV量が少ない比較例14は、Vが少ないためWC粒子が粒成長し、硬さが低くなり切削距離も短くなった。またV量が多い比較例15、16はVとWとCrとTa及び/又はNbを含む炭化物の粒径及び面積率が大きくなるため、靭性が低下し、チッピングにより切削距離が短くなった。Ta及び/又はNb量が本願発明規定の範囲外となる比較例17、18についてTa、Nbを含有しない比較例17は、硬さが低くなると共に刃先への被削材の溶着が発生し摩耗の進行が早くなるため切削距離が短くなった。一方、Ta及び/又はNb量が多い実施例18は複炭化物相の粒径及び面積率が大きくなるため、靭性が低下しチッピングにより切削距離が短くなった。V、Cr、Ta、Nbの添加方法として窒素を含まない化合物を使用した比較例19は、VとWとCrとTa及び/又はNbを含む炭化物が結合相を一部置換するのではなく、結合相中に分散するため、添加量は同じで窒素を含む化合物を添加した本発明例7に比べ硬さが低くなり、切削距離も短くなった。またVとWとCrとTa及び/又はNbを含む炭化物相の組成も比較例10から17においては、本願発明規定の範囲から外れたものとなった。これらより高硬度被削材のエンドミル切削において本発明例のエンドミルの優位性が明らかである。   Any of the end mills of Invention Examples 1 to 9 had a cutting life of 25 m or more based on the above-mentioned life criteria. On the other hand, in Comparative Examples 10 and 11 in which the Co amount is outside the range defined by the present invention, Comparative Example 10 is inferior in sinterability because the Co amount is too small, and Comparative Example 11 has a hardness of 93 because the Co amount is too large. It became lower than 0.0, and the cutting distance on the above-mentioned life standard at the time of end mill cutting was shortened to 10 m or less. As for Comparative Examples 12 and 13 in which the Cr amount was outside the range defined by the present invention, Comparative Example 12 had a small Cr amount, resulting in a low hardness and a shortenable cutting distance. In Comparative Example 13, the particle size and area ratio of the carbide containing V, W, Cr, Ta, and / or Nb were increased, so that the toughness was lowered and the cutting distance was shortened by chipping. In Comparative Examples 14, 15, and 16 in which the V amount is outside the range defined by the present invention, in Comparative Example 14, where the V amount is small, WC particles grow, the hardness decreases, and the cutting distance also decreases because V is small. . In Comparative Examples 15 and 16 having a large amount of V, the particle size and area ratio of carbide containing V, W, Cr, Ta, and / or Nb were increased, so that the toughness was lowered and the cutting distance was shortened by chipping. In Comparative Examples 17 and 18 in which the amount of Ta and / or Nb is outside the range specified in the present invention, Comparative Example 17 not containing Ta or Nb is low in hardness and wear of the work material on the cutting edge is caused. The cutting distance was shortened because of the rapid progress of. On the other hand, in Example 18 with a large amount of Ta and / or Nb, the particle size and area ratio of the double carbide phase were increased, so that the toughness was reduced and the cutting distance was shortened by chipping. The comparative example 19 using the compound which does not contain nitrogen as an addition method of V, Cr, Ta, Nb does not partially replace the binder phase with the carbide containing V, W, Cr, Ta and / or Nb, Since it was dispersed in the binder phase, the amount of addition was the same and the hardness was lower and the cutting distance was shorter than in Example 7 of the present invention in which the compound containing nitrogen was added. Further, the composition of the carbide phase containing V, W, Cr, Ta, and / or Nb was also out of the scope of the present invention in Comparative Examples 10 to 17. From these, the superiority of the end mill of the present invention example in the end mill cutting of a hard work material is clear.

(実施例2)
原料粉末として、平均粒径約0.6μmのWC粉末、及び実施例1と同様の原料粉末を用い表2に示す組成に配合し、成形バインダーを含んだアルコール中アトライターで12時間混合後、スプレードライヤーで造粒乾燥した。得られた造粒粉末を押出しプレス成形して圧粉体とした。これらの圧粉体を10Paの真空雰囲気中において1400〜1450℃で焼結したのち、同一温度に保持したまま4.9MPaでガス加圧し焼結体を作製した。得られた焼結体につき実施例1と同様の方法にて各種の測定を実施した。それらの測定結果を配合組成と併せて表2に示す。
(Example 2)
As the raw material powder, WC powder having an average particle size of about 0.6 μm and the same raw material powder as in Example 1 were blended in the composition shown in Table 2, and after mixing for 12 hours in an attritor in alcohol containing a molding binder, Granulated and dried with a spray dryer. The obtained granulated powder was extruded and press-molded to obtain a green compact. These green compacts were sintered at 1400 to 1450 ° C. in a vacuum atmosphere of 10 Pa, and then pressurized with gas at 4.9 MPa while maintaining the same temperature to produce sintered bodies. Various measurements were performed on the obtained sintered body in the same manner as in Example 1. The measurement results are shown in Table 2 together with the composition.

Figure 2006328477
Figure 2006328477

Figure 2006328477
Figure 2006328477

焼結体のWC平均粒径はいずれも0.3〜0.6μmであった。次にこれらの焼結体を加工して、φ2.0×31.8mmの丸棒からφ0.1mmのプリント基板用ドリルを作製した。これらのドリルを用いて下記の条件にて穴明を実施し、2000穴加工時点での刃先から0.1mmの位置の径減量を評価した。結果を表2に示す。
(切削諸元2)
基板:0.1mmt、両面板、銅厚さ5μm×6枚重ね
回転数:250、000回転/分
送り量:5μm/回転
All the WC average particle diameters of the sintered compact were 0.3-0.6 micrometer. Next, these sintered bodies were processed to prepare a drill for a printed circuit board having a diameter of 0.1 mm from a round bar having a diameter of 2.0 mm × 31.8 mm. Using these drills, drilling was carried out under the following conditions, and the reduction in diameter at a position of 0.1 mm from the cutting edge at the time of drilling 2000 holes was evaluated. The results are shown in Table 2.
(Cutting specifications 2)
Substrate: 0.1 mmt, double-sided plate, copper thickness 5 μm × 6 sheets stacked Rotation speed: 250,000 rotations / min

本発明例20から25に示す様に、本願発明ドリルの径減量はいずれも10μm以下と摩耗量が少なくなった。一方、Cr量が本願発明規定の範囲外の比較例26、27について比較例26は、Cr量が少ないため粒成長を生じたため硬さが低く、径減量も20μmと大きくなった。また比較例27はCrが多すぎるためVとWとCrとTa及び/又はNbを含む炭化物の粒径及び面積率が大きくなり、靭性が低下したためにチッピングにより径減量が大きくなった。V量が本願発明規定の範囲外となる比較例28、29についてV量が少ない比較例28は、Vが少ないためWC粒子が粒成長し、硬さが低くなり摩耗量が大きく径減量も大きくなった。またV量が多い比較例29はVとWとCrとTa及び/又はNbを含む炭化物の粒径及び面積率が大きくなるため、靭性の低下のためチッピングが大きくなり径減量が大きくなった。Ta及び/又はNb量が本願発明規定の範囲外となる比較例30、31についてTa、Nbを含有しない比較例30は、硬さが低くなるとともに刃先への被削材の溶着が発生し摩耗の進行が早くなるため切削距離が短くなった。一方、Ta及び/又はNb量が多い実施例31は、複炭化物相の粒径および面積率が大きくなるため、靭性が低下しチッピングにより切削距離が短くなった。V、Cr、Ta、Nbの添加方法として窒素を含まない化合物を使用した比較例32は、VとWとCrとTa及び/又はNbを含む炭化物が本願発明の形態ではなく、結合相中に分散するため、添加量が同じで窒素を含む化合物を添加した実施例24に比べ硬さが低くなり、摩耗量が大きく径減量が大きくなった。またVとWとCrとTa及び/又はNbを含む炭化物相の組成も比較例26から32においては、本願発明規定の範囲から外れたものとなった。これらよりプリント基板用の小径ドリルによる穴明加工において本願発明ドリルの優位性が明らかである。   As shown in Examples 20 to 25 of the present invention, the diameter reduction of the drill of the present invention was 10 μm or less, and the wear amount was small. On the other hand, in Comparative Examples 26 and 27 in which the Cr amount was outside the range specified in the present invention, Comparative Example 26 had low hardness because grain growth occurred because the Cr amount was small, and the diameter reduction amount was as large as 20 μm. In Comparative Example 27, since the amount of Cr was too large, the particle size and area ratio of the carbide containing V, W, Cr, Ta, and / or Nb were increased, and the toughness was decreased, so that the diameter loss was increased by chipping. In Comparative Examples 28 and 29 in which the V amount is outside the range defined by the present invention, in Comparative Example 28 where the V amount is small, WC particles grow because the V is small, the hardness becomes low, the wear amount is large, and the diameter loss is large. became. In Comparative Example 29 with a large amount of V, the particle size and area ratio of carbides containing V, W, Cr, Ta, and / or Nb were increased, so that chipping was increased due to a decrease in toughness, and the diameter reduction was increased. In Comparative Examples 30 and 31 in which the amount of Ta and / or Nb is outside the range specified in the present invention, Comparative Example 30 not containing Ta and Nb is low in hardness and wear of the work material on the cutting edge is caused by wear. The cutting distance was shortened because of the rapid progress of. On the other hand, in Example 31 with a large amount of Ta and / or Nb, the particle size and area ratio of the double carbide phase were increased, so that the toughness was reduced and the cutting distance was shortened by chipping. In Comparative Example 32 using a compound containing no nitrogen as a method for adding V, Cr, Ta, and Nb, the carbide containing V, W, Cr, Ta, and / or Nb is not in the form of the present invention, but in the binder phase. Because of the dispersion, the hardness was lower than that of Example 24 in which the same amount was added and the compound containing nitrogen was added. Further, the composition of the carbide phase containing V, W, Cr, Ta and / or Nb was also out of the scope of the present invention in Comparative Examples 26 to 32. From these, the superiority of the drill of the present invention is clear in drilling with a small diameter drill for printed circuit boards.

(実施例3)
原料粉末として、平均粒径約0.4μmのWC粉末、及び実施例1と同様の原料粉末を用い表3に示す組成に配合し、成形バインダーを含んだアルコール中アトライターで12時間混合後、スプレードライヤーで造粒乾燥した。得られた造粒粉末を押出しプレス成形して圧粉体とした。これらの圧粉体を10Paの真空雰囲気中において1400〜1450℃で焼結したのち、同一温度に保持したまま4.9MPaでガス加圧し焼結体を作製した。得られた焼結体につき実施例1と同様の方法にて各種の測定を実施した。それらの測定結果を配合組成と併せて表3に示す。
(Example 3)
As raw material powder, WC powder having an average particle size of about 0.4 μm and the same raw material powder as in Example 1 were mixed in the composition shown in Table 3, and mixed for 12 hours with an attritor in alcohol containing a molding binder. Granulated and dried with a spray dryer. The obtained granulated powder was extruded and press-molded to obtain a green compact. These green compacts were sintered at 1400 to 1450 ° C. in a vacuum atmosphere of 10 Pa, and then pressurized with gas at 4.9 MPa while maintaining the same temperature to produce sintered bodies. Various measurements were performed on the obtained sintered body in the same manner as in Example 1. The measurement results are shown in Table 3 together with the composition.

Figure 2006328477
Figure 2006328477

Figure 2006328477
Figure 2006328477

これら焼結体のWC平均粒径はいずれも0.3〜0.4μmであった。これらの焼結体を加工して、φ3.175×38mmの丸棒からφ1.5mmのプリント基板用ルーターエンドミルを作製した。これらルーターエンドミルを用いて溝加工を行い、20m切削後の径減量を評価した。結果を併せて表3に示す。
(切削諸元3)
基板:1.6mmt、銅なし、FR4×2枚重ね
回転数:35、000回転/分
送り量:1000mm/min、
Z軸切込速度:200mm/min
These sintered bodies had a WC average particle diameter of 0.3 to 0.4 μm. These sintered bodies were processed to produce a router end mill for a printed circuit board having a diameter of 1.5 mm from a round bar having a diameter of 3.175 × 38 mm. Grooving was performed using these router end mills, and the diameter loss after cutting 20 m was evaluated. The results are also shown in Table 3.
(Cutting specifications 3)
Substrate: 1.6 mmt, no copper, FR4 × 2 sheets stacked Rotation speed: 35,000 rev / min Feed amount: 1000 mm / min,
Z-axis cutting speed: 200 mm / min

本発明例33から35のルーターエンドミルはいずれも径減量が10μm以下の良好な耐摩耗特性を示した。一方、比較例36のルーターエンドミルはV、Cr、Ta、Nbの添加化合物に窒素を含まなかった。そのため、VとWとCrとTa及び/又はNbを含む炭化物が結合相を一部置換するのではなく、結合相中に分散することから、V、Crの添加量が等しく窒素を含む化合物を添加した本発明例33から35に比べ硬さが低くなり、摩耗量が大きくなり径減量が23μmと大きくなった。これらよりプリント基板用の小径ルーターエンドミルによる溝入れ加工において本願発明のルーターエンドミルの優位性が明らかである。   The router end mills of Invention Examples 33 to 35 all showed good wear resistance properties with a diameter loss of 10 μm or less. On the other hand, the router end mill of Comparative Example 36 did not contain nitrogen in the additive compounds of V, Cr, Ta, and Nb. Therefore, the carbide containing V, W, Cr, Ta and / or Nb does not partially substitute the binder phase but disperses in the binder phase. Compared with the inventive examples 33 to 35, the hardness was lowered, the wear amount was increased, and the diameter loss was increased to 23 μm. From these, the superiority of the router end mill of the present invention in the grooving by a small diameter router end mill for printed circuit boards is clear.

図1は、本発明のVとWとCrとTa及び/又はNbを含む複炭化物の形態の模式図を示す。FIG. 1 shows a schematic view of the form of a double carbide containing V, W, Cr, Ta and / or Nb of the present invention. 図2は、従来例のVとWとCrとTa及び/又はNbを含む複炭化物の形態の模式図を示す。FIG. 2 shows a schematic diagram of a form of a double carbide containing V, W, Cr, Ta and / or Nb in the conventional example.

符号の説明Explanation of symbols

1:VとWとCrとTa及び/又はNbとを含む複炭化物相
2:WC粒子
3:結合相
4:微細分散複炭化物相
5:表面被覆複炭化物相
1: Double carbide phase containing V, W, Cr, Ta and / or Nb 2: WC particles 3: Bonded phase 4: Finely dispersed double carbide phase 5: Surface-coated double carbide phase

Claims (7)

WCの平均粒径は0.8μm以下であり、重量%で、Co含有量は、3≦Co≦13%、Cr含有量は、0.3≦Cr≦1.0、V含有量は、0.2≦V≦0.5、Ta及び/又はNbの含有量は、0<(Ta及び/又はNb)≦1.5、残部がWC及び不可避不純物からなるWC基超硬合金であって、該WC基超硬合金は、Coを主体とした結合相と、WCを主体とした硬質相と、平均粒径0.8μm以下のVとWとCrとTa及び/又はNbを含む複炭化物相(VCrTaαNbβ)Cとを有し、但し、該複炭化物相の金属成分は重量%で、X+Y+Z+α+β=100、20≦X≦70、20≦Y≦70、1≦Z≦30、α+β=Sとしたとき、1≦S≦50、からなり、該複炭化物相は該硬質相と隣接するか或いは該結合相及び該硬質相と隣接して存在し、該複炭化物相の面積率M(%)は、0<M<0.5であることを特徴とするWC基超硬合金部材。 The average particle diameter of WC is 0.8 μm or less, and by weight%, the Co content is 3 ≦ Co ≦ 13%, the Cr content is 0.3 ≦ Cr ≦ 1.0, and the V content is 0. .2 ≦ V ≦ 0.5, Ta and / or Nb content is 0 <(Ta and / or Nb) ≦ 1.5, the balance is WC-based cemented carbide composed of WC and inevitable impurities, The WC-based cemented carbide includes a binder phase mainly composed of Co, a hard phase mainly composed of WC, and a double carbide phase containing V, W, Cr, Ta and / or Nb having an average particle size of 0.8 μm or less. (V x W y Cr z Ta α Nb β) has and C, and provided that the metal component of said plurality carbide phases in wt%, X + Y + Z + α + β = 100,20 ≦ X ≦ 70,20 ≦ Y ≦ 70,1 ≦ When Z ≦ 30 and α + β = S, 1 ≦ S ≦ 50, and the double carbide phase is adjacent to the hard phase or the bond And present adjacent the rigid phase, the area ratio M (%) of said plurality carbide phase, 0 <WC based cemented carbide member which is a M <0.5. 請求項1記載のWC基超硬合金部材において、該WC基超硬合金部材のロックウェルAスケールでの硬さが93以上、95以下であることを特徴とするWC基超硬合金部材。 The WC-based cemented carbide member according to claim 1, wherein the hardness of the WC-based cemented carbide member on the Rockwell A scale is 93 or more and 95 or less. 請求項1又は2記載のWC基超硬合金部材において、該WC基超硬合金部材をドリル、小径ドリル、エンドミル、エンドミル加工用刃先交換型チップ、フライス加工用刃先交換型チップ、旋削用刃先交換型チップ、メタルソー、歯切り工具、ガンドリル、リーマ、ブローチ及びタップからなる群より選択される1種であることを特徴とするWC基超硬合金部材。 The WC-base cemented carbide member according to claim 1 or 2, wherein the WC-base cemented carbide member is a drill, a small diameter drill, an end mill, an end mill cutting edge replacement tip, a milling cutting edge replacement tip, a turning cutting edge replacement. A WC-based cemented carbide member, which is one type selected from the group consisting of a die tip, a metal saw, a gear cutting tool, a gun drill, a reamer, a broach and a tap. 請求項3記載のWC基超硬合金部材において、該エンドミルの直径が2mm以下の金属加工用エンドミルであることを特徴とするWC基超硬合金部材。 4. The WC-based cemented carbide member according to claim 3, wherein the end mill is a metal working end mill having a diameter of 2 mm or less. 請求項3記載のWC基超硬合金部材において、該ドリルの直径が0.2mm以下のプリント基板用ドリルであることを特徴とするWC基超硬合金部材。 4. The WC-based cemented carbide member according to claim 3, wherein the drill is a printed circuit board drill having a diameter of 0.2 mm or less. 請求項4記載のWC基超硬合金部材において、該エンドミルの直径が1.5mm以下のプリント基板用ルーターエンドミルであることを特徴とするWC基超硬合金部材。 5. The WC-based cemented carbide member according to claim 4, wherein the end mill is a router end mill for a printed circuit board having a diameter of 1.5 mm or less. 請求項1乃至6何れかに記載のWC基超硬合金部材において、該WC基超硬合金部材は硬質皮膜が被覆され、該硬質皮膜は、金属成分に周期律表4a、5a、6a族元素、Al、Siから選択される1種以上の元素を有し、非金属成分にC、N、O、Bから選択される1種以上の元素を有することを特徴とする被覆WC基超硬合金部材。
The WC-based cemented carbide member according to any one of claims 1 to 6, wherein the WC-based cemented carbide member is coated with a hard coating, and the hard coating is composed of a metal component and a periodic table 4a, 5a, 6a group element. Coated WC-base cemented carbide having one or more elements selected from Al, Si, and one or more elements selected from C, N, O, and B as non-metallic components Element.
JP2005153631A 2005-05-26 2005-05-26 Wc based cemented carbide member, and coated wc based cemented carbide member Pending JP2006328477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005153631A JP2006328477A (en) 2005-05-26 2005-05-26 Wc based cemented carbide member, and coated wc based cemented carbide member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005153631A JP2006328477A (en) 2005-05-26 2005-05-26 Wc based cemented carbide member, and coated wc based cemented carbide member

Publications (1)

Publication Number Publication Date
JP2006328477A true JP2006328477A (en) 2006-12-07

Family

ID=37550475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005153631A Pending JP2006328477A (en) 2005-05-26 2005-05-26 Wc based cemented carbide member, and coated wc based cemented carbide member

Country Status (1)

Country Link
JP (1) JP2006328477A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521324A (en) * 2007-03-16 2010-06-24 ティーディーワイ・インダストリーズ・インコーポレーテッド Composite materials
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US8697258B2 (en) 2006-10-25 2014-04-15 Kennametal Inc. Articles having improved resistance to thermal cracking
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
KR101802161B1 (en) 2017-08-08 2017-11-28 주식회사 영진텍 Ball endmill and method for manufacturing the same
JP2020132972A (en) * 2019-02-22 2020-08-31 三菱マテリアル株式会社 Cemented carbide and cutting tool
JP2020132971A (en) * 2019-02-22 2020-08-31 三菱マテリアル株式会社 Cemented carbide and cutting tool
JP7473871B2 (en) 2020-03-26 2024-04-24 三菱マテリアル株式会社 WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
US8808591B2 (en) 2005-06-27 2014-08-19 Kennametal Inc. Coextrusion fabrication method
US8697258B2 (en) 2006-10-25 2014-04-15 Kennametal Inc. Articles having improved resistance to thermal cracking
US8841005B2 (en) 2006-10-25 2014-09-23 Kennametal Inc. Articles having improved resistance to thermal cracking
JP2010521324A (en) * 2007-03-16 2010-06-24 ティーディーワイ・インダストリーズ・インコーポレーテッド Composite materials
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
KR101802161B1 (en) 2017-08-08 2017-11-28 주식회사 영진텍 Ball endmill and method for manufacturing the same
JP2020132972A (en) * 2019-02-22 2020-08-31 三菱マテリアル株式会社 Cemented carbide and cutting tool
JP2020132971A (en) * 2019-02-22 2020-08-31 三菱マテリアル株式会社 Cemented carbide and cutting tool
JP7235199B2 (en) 2019-02-22 2023-03-08 三菱マテリアル株式会社 Cemented carbide and cutting tools
JP7235200B2 (en) 2019-02-22 2023-03-08 三菱マテリアル株式会社 Cemented carbide and cutting tools
JP7473871B2 (en) 2020-03-26 2024-04-24 三菱マテリアル株式会社 WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool

Similar Documents

Publication Publication Date Title
KR101233474B1 (en) Cemented carbides
JP2006328477A (en) Wc based cemented carbide member, and coated wc based cemented carbide member
JP6953674B2 (en) Cemented Carbide and Cutting Tools
JP3952209B2 (en) WC-base cemented carbide member
KR101714095B1 (en) Cemented carbide tools
CN110168121B (en) Cemented carbide and cutting tool
JP2017088917A (en) Hard metal alloy and cutting tool
JP2007044807A (en) Extremely small diameter end mill made of cemented carbide
JP6607470B2 (en) Sintered body and cutting tool including the same
JP2004315904A (en) Fine-grained cemented carbide
JP2006239792A (en) Hard film coated cemented carbide member
JP2006218589A (en) Amorphous carbon film coated member
JP2007284751A (en) Hard metal made of fine particle
JP2008202074A (en) Fine-grained cemented carbide
JP4761556B2 (en) Nitride-containing target material
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP2006255825A (en) Wc-based cemented carbide member
KR102278436B1 (en) Surface-coated cutting tool with excellent chipping and abrasion resistance
JP2005068515A (en) Hard metal containing fine particles
JP7251691B1 (en) Cemented carbide and tools containing it
JP7517483B2 (en) Cemented carbide and cutting tools containing it as a substrate
JP6459106B1 (en) Cemented carbide and cutting tools
JP2008307622A (en) Cutting tool made of titanium carbonitride base cermet having excellent chipping resistance
JP2023044197A (en) Coated ultrafine grain cemented carbide, and cutting tool or abrasion-resistant member using the same
JP2005054258A (en) Fine-grained cemented carbide