JP4975308B2 - Manufacturing method of fine cemented carbide for micro tool - Google Patents

Manufacturing method of fine cemented carbide for micro tool Download PDF

Info

Publication number
JP4975308B2
JP4975308B2 JP2005359415A JP2005359415A JP4975308B2 JP 4975308 B2 JP4975308 B2 JP 4975308B2 JP 2005359415 A JP2005359415 A JP 2005359415A JP 2005359415 A JP2005359415 A JP 2005359415A JP 4975308 B2 JP4975308 B2 JP 4975308B2
Authority
JP
Japan
Prior art keywords
carbide
cemented carbide
powder
fine
carbide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005359415A
Other languages
Japanese (ja)
Other versions
JP2007162067A (en
Inventor
淳 幸村
裕 久保
剛志 岡田
敏夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2005359415A priority Critical patent/JP4975308B2/en
Publication of JP2007162067A publication Critical patent/JP2007162067A/en
Application granted granted Critical
Publication of JP4975308B2 publication Critical patent/JP4975308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling Tools (AREA)
  • Powder Metallurgy (AREA)

Description

本願発明は、WC等の炭化物粒子の平均粒径が0.8μm以下、Co量が2〜15質量%である微小工具用微粒超硬合金とその製造方法に関するものである。   The present invention relates to a fine cemented carbide for fine tools in which the average particle size of carbide particles such as WC is 0.8 μm or less and the Co content is 2 to 15% by mass, and a method for producing the same.

電子部品や自動車部品等の小型、高密度、高精密化にともない、部品加工用工具、同冶具、及び、同部品自体の小型、高精細化が急速に進んでいる。このため、これらの工具、冶具、部品には、例えば、細径長尺でありながら折り曲げに強く、高硬度で耐摩耗性が優れ、高靭性で耐チッピング性が優れる、信頼性の高い部材が強く要望されている。
このような要望に対して、平均粒径が小さいWC粒子をCo等により結合した微粒超硬合金は、耐摩耗性と強度の両者が高く優れているため、小径エンドミル、小径ドリル、ルーター、各種剪断刃、摺動材などに広範囲に用いられている。耐摩耗性は主に微粒超硬合金の硬度(JISZ2245)に依存し、強度は主に抗折力(JIS026)に依存している。
微粒超硬合金の硬度は、Co量が少なく、WC粒子の結晶粒径が小さい程高くなる傾向を示し、抗折力は、Co量が多く、WC粒子の結晶粒径が小さい程、一般に高くなる。このため、焼結中にWC粒子が粒成長することを抑制するため、WCの粒成長抑制材としてV、Cr、Taなどの金属、もしくはそれらの炭化物、窒化物、炭窒化物などの化合物を添加することが行われている。その具体例として、特許文献1がある。特許文献1は、合金の強度低下の原因となる第3相が生じない範囲量のVやCrを添加し、真空焼結後に100MPaのAr雰囲気中でHIP処理することにより、VやCrの全量を結合相中に固溶させ、本質的にWC粒子と結合相の2相からなり、しかもWCの平均粒径が0.7μm以下である超硬合金を開示している。しかし、後述のように、抗折力を高めるにはWC粒子の平均粒径を小さくするだけでは不十分であり、むしろ、超硬合金中に存在する粗大なWC等の炭化物粒子が抗折力の最低値を決定しており、粗大炭化物粒子により抗折力が大きく低下する原因になっているにも係わらず、特許文献1は平均粒径のみを検討し、小数含まれる粗大炭化物粒子に関しては全く検討していない。
また、特許文献2は、超硬合金材の飽和磁化と保磁力をある一定範囲内に保持し、最大径が2μm以上のWC粒子が1mm2当り0個以上5個以下存在する強靱性微粒超硬合金が、強靱で突発的な破壊現象を回避でき、工業上有意義であることを開示している。しかし、特許文献4は、巨大なWC粒子が突発的な破壊現象を誘引することを記載しているものの、直角角部を有し且つ差し渡しが4μmを越える粗大な炭化物粒子が1個でもあると、微粒超硬合金材の抗折力が大きく低下し、その信頼性が大幅に低下することは全く検討もしていない。
また、特許文献3には、WC基超硬合金の製造過程で、原料粉末中に粗粒のWC粉が混入することを避けるために、「WCの平均粒径:0.7μm以下、且つWCの最大粒径:2.0μm以下であるWC基超硬合金よりなる」混合粉砕用ボールを用いて混合粉砕することが開示されている。しかし、この「WC基超硬合金」は、特許文献3の段落番号0020や0024に「平均粒径:0.7μm、且つ最大粒径:2.0μmのWC粉末及びCo粉末からなる混合粉末を球形状にプレス成形した後、焼結する方法により作製された混合粉砕用ボール、即ち、WCの平均粒径:0.7μm、且つWCの最大粒径:2.0μmであるWC基超硬合金よりなる混合粉砕用ボール(本発明の実施例に係る混合粉砕用ボール)」と記されているように、あくまでも「WCの平均粒径:0.7μm以下、且つWCの最大粒径:2.0μm以下である」WC粉末を用いて作製した超硬合金を略記したものであり、焼結後のWCの平均粒径と最大粒径を示したものではない。また、焼結後のWC粒径が原料粉末の粒径より大きくなることは、特許文献1の139頁右段に「WC粒子は焼結中に溶解・析出反応によって粒成長を起こす」と記されているように、当時から周知であり、特許文献1は、焼結後のWC粒径を具体的に検討していないことは明らかであり、後述のように、焼結の段階でWC等の炭化物粒子がCo凝集部を中心にして異常成長し、粒径が4μmを超える粗大なWC等の炭化物粒子が形成されることを全く考慮していないことが明らかである。即ち、特許文献3で用いている混合粉砕方法は、従来から用いられているアトライターやボールミル、ビーズミル法等であり、少なくとも数ミリ〜数cmと大きい粉砕用媒体(メディア)の衝突や押しつぶし、せん断力を利用してWC粉末とCo粉末等を粉砕、混合するものである。しかし、CoはHv250と柔らかく、延性が極めて大きいため、上記の混合、粉砕中に、Coが片状に潰され、WC粉末中に均一に分散せず、一部の領域にCoが凝集してしまう大きな欠点がある。この結果、WC等の炭化物粒子とCoの混合粉を成形、焼結すると、焼結段階でCo中に固溶したWが、焼結後の冷却過程でCo凝集部に再析出し、粗大なWC粒子やW2C結晶粒を形成してしまい、抗折力を大きく低下してしまう大きな欠点がある。このように、特許文献3は、例え、微粒のWC粉末やCo粉末を用いても、Co凝集部等でWC等の炭化物粒子が異常成長し、粒径が4μmを超える粗大な炭化物粒子が形成されてしまうことを考慮していない。ましてや、粗大炭化物粒子の中でも、特に、少なくとも一箇所の角部の交差角度が90±5度の範囲内である炭化物粒子が、微粒超硬合金の抗折力を大きく低下させることは全く考慮していない。
また、特許文献4は、WC粉末とCo粉等を湿式混練する条件により、(i)炭化タングステンの最終粒径を決定すること、(ii)いずれの部分においても粒成長を避けるために、粒成長抑制剤の均一な分布を得ること、(iii)焼結材料中に多孔質のコバルト溜まりを回避するために、均一に分布するコバルトを得ること、が必要であり、これらの要因により、混練時間が決定されることを開示し、これを改善するために、丸い形状と最終(焼結した)粒径を有する充分に規定された狭い粒径分布のWC粉末、及び、Cr、Ta等の粒成長抑制剤とCoとの合金からなり、丸い形状の十分に解凝集されたまたは容易に解凝集されるCo合金粉末を用いるWC−Co基超硬合金製造方法を開示している。また、この製造方法を用いて、WCの平均粒径が0.6〜1.4μmであるWC−Co基超硬合金の焼結体を製造する方法を開示している。しかし、特許文献4は、実施例において、混練する時間が従来方法に比べて約10分の1に短くなっているとは云え、あくまでも、ボールミル法を用いてWC粉末とCo合金粉とを混練しているため、上述のように、メディアやケースからのコンタミ(汚染)、原料粉末がメディア間の隙間をすり抜けること、メディア間の衝突やすりつぶし作用により延性の高いCo粒子が片状に潰され、凝集してしまう欠点が解決されていない。因みに、超硬合金で使用されるCr、Ta等の粒成長抑制剤の量は、高々、Coの10質量%以下であり、Co粒の延性を大幅に改善する程の量ではない。また、特許文献4は焼結されたWCの平均粒径が0.6〜1.4μmであることは開示しているが、Coの凝集等に起因して超硬合金中に発生する粗大なWC等の炭化物粒子のことは全く検討していない。
With the downsizing, high density, and high precision of electronic parts, automobile parts, etc., parts processing tools, jigs, and the parts themselves are rapidly becoming smaller and more precise. For this reason, these tools, jigs, and parts include, for example, highly reliable members that are long and thin but have high bending resistance, high hardness and wear resistance, high toughness and excellent chipping resistance. There is a strong demand.
In response to such demands, fine cemented carbides in which WC particles with a small average particle size are bonded with Co or the like are excellent in both wear resistance and strength, and therefore, small diameter end mills, small diameter drills, routers, various types Widely used in shear blades and sliding materials. The wear resistance mainly depends on the hardness (JISZ2245) of the fine-grained cemented carbide, and the strength mainly depends on the bending strength (JIS026).
The hardness of the fine cemented carbide shows a tendency to increase as the Co amount is small and the crystal grain size of the WC particles is small, and the bending strength is generally high as the Co amount is large and the crystal grain size of the WC particles is small. Become. For this reason, in order to suppress the grain growth of WC particles during sintering, a metal such as V, Cr, Ta or a compound such as a carbide, nitride, carbonitride, or the like is used as a grain growth inhibitor for WC. It is done to add. There exists patent document 1 as the specific example. In Patent Document 1, the total amount of V and Cr is obtained by adding V and Cr in a range in which a third phase that causes a reduction in the strength of the alloy does not occur, and performing HIP treatment in a 100 MPa Ar atmosphere after vacuum sintering. Is disclosed as a cemented carbide having essentially two WC particles and a binder phase, and having an average WC particle size of 0.7 μm or less. However, as will be described later, it is not sufficient to reduce the average particle diameter of WC particles to increase the bending strength. Rather, coarse carbide particles such as WC existing in the cemented carbide have a bending strength. Although the minimum value is determined and the bending strength is greatly reduced by the coarse carbide particles, Patent Document 1 examines only the average particle diameter, and regarding the coarse carbide particles contained in a small number, Not considering at all.
Patent Document 2 describes a toughness fine grain carbide in which the saturation magnetization and the coercive force of a cemented carbide material are maintained within a certain range, and there are 0 or more and 5 or less WC particles having a maximum diameter of 2 μm or more per 1 mm 2. It discloses that the alloy is tough and can avoid sudden fracture phenomena and is industrially significant. However, although Patent Document 4 describes that a huge WC particle induces a sudden destruction phenomenon, it is assumed that there is even one coarse carbide particle having a right angle portion and a span exceeding 4 μm. However, it has not been studied at all that the bending strength of the fine cemented carbide material is greatly reduced and its reliability is greatly reduced.
In addition, in Patent Document 3, in order to avoid mixing coarse WC powder in the raw material powder in the manufacturing process of the WC-based cemented carbide, “average particle diameter of WC: 0.7 μm or less and WC It is disclosed that mixed pulverization is performed using a ball for mixing and pulverizing made of a WC-based cemented carbide having a maximum particle size of 2.0 μm or less. However, this “WC-based cemented carbide” is a mixed powder composed of WC powder and Co powder having an average particle size of 0.7 μm and a maximum particle size of 2.0 μm. A ball for mixing and pulverization produced by a method of sintering after pressing into a spherical shape, that is, a WC-based cemented carbide having an average particle diameter of WC: 0.7 μm and a maximum particle diameter of WC: 2.0 μm As described above, a “mixing and pulverizing ball (mixing and pulverizing ball according to an embodiment of the present invention)” is merely “an average particle diameter of WC: 0.7 μm or less and a maximum particle diameter of WC: 2. It is an abbreviation of a cemented carbide produced using WC powder of “0 μm or less”, and does not indicate the average particle size and maximum particle size of WC after sintering. In addition, the fact that the WC grain size after sintering becomes larger than the grain size of the raw material powder is described on the right side of page 139 of Patent Document 1 as “WC particles cause grain growth by dissolution / precipitation reaction during sintering”. As is described, it is well known from that time, and it is clear that Patent Document 1 does not specifically examine the WC grain size after sintering. It is apparent that no consideration is given to the fact that the carbide particles of this type grow abnormally around the Co agglomerated part and coarse carbide particles such as WC having a particle size exceeding 4 μm are formed. That is, the mixing and pulverization method used in Patent Document 3 is a conventionally used attritor, ball mill, bead mill method, and the like, and at least several millimeters to several centimeters of a large pulverization medium (media) is collided or crushed. A WC powder and a Co powder are pulverized and mixed using a shearing force. However, since Co is soft as Hv250 and has extremely high ductility, Co is crushed into pieces during the mixing and pulverization described above, and is not uniformly dispersed in the WC powder. There is a big drawback. As a result, when the mixed powder of carbide particles such as WC and Co is molded and sintered, W solid-dissolved in Co at the sintering stage is reprecipitated in the Co agglomerated portion in the cooling process after sintering, and is coarse. There is a major drawback that WC particles and W2C crystal grains are formed and the bending strength is greatly reduced. As described above, Patent Document 3 discloses that even when fine WC powder or Co powder is used, carbide particles such as WC grow abnormally in Co agglomerated parts and the like, and coarse carbide particles having a particle diameter exceeding 4 μm are formed. Does not take into account. Furthermore, among the coarse carbide particles, in particular, it is completely considered that the carbide particles having an intersection angle of at least one corner within the range of 90 ± 5 degrees greatly reduce the bending strength of the fine cemented carbide. Not.
Patent Document 4 discloses that (i) the final particle size of tungsten carbide is determined under conditions for wet-kneading WC powder and Co powder, and (ii) in order to avoid grain growth in any part. It is necessary to obtain a uniform distribution of the growth inhibitor, and (iii) to obtain a uniformly distributed cobalt in order to avoid porous cobalt accumulation in the sintered material. In order to disclose that time is determined and to improve this, WC powder with well-defined narrow particle size distribution with round shape and final (sintered) particle size, and Cr, Ta, etc. A method for producing a WC-Co based cemented carbide using a Co alloy powder that is made of an alloy of a grain growth inhibitor and Co and that is sufficiently deagglomerated or easily deagglomerated in a round shape is disclosed. Moreover, the method of manufacturing the sintered compact of the WC-Co base cemented carbide whose average particle diameter of WC is 0.6-1.4 micrometers is disclosed using this manufacturing method. However, in Patent Document 4, it can be said that the kneading time is shortened to about one-tenth of the conventional method in Examples, but the WC powder and Co alloy powder are kneaded using the ball mill method. Therefore, as described above, contamination from the media and the case, contamination of the raw material powder through the gaps between the media, and collision and crushing between the media, the highly ductile Co particles are crushed in a single piece The problem of agglomeration has not been solved. Incidentally, the amount of the grain growth inhibitor such as Cr or Ta used in the cemented carbide is at most 10% by mass or less of Co, and is not so large as to significantly improve the ductility of Co grains. Patent Document 4 discloses that the average particle diameter of the sintered WC is 0.6 to 1.4 μm, but the coarse particles generated in the cemented carbide due to Co agglomeration and the like are disclosed. No consideration has been given to carbide particles such as WC.

特公昭62―56224公報Japanese Examined Patent Publication No. 62-56224 特開2001−115229号公報JP 2001-115229 A 特開平8−38925号公報JP-A-8-38925 特開2000−336437号公報JP 2000-336437 A

本願発明者らは、上記従来技術の欠点を詳細に検討し、原料粉末であるWC等の炭化物粒子粉末とCo等の結合相形成粒子粉末の分散が不十分であり、略20μm以上のCoの凝集があると、焼結時に、Co凝集部を中心にしてWC等の炭化物粒子が異常成長し粗大化し易いこと、そして、このような異常成長はWC粒子径の小さい微粒超硬合金において特に顕著であり、特に、直角角部を有する粗大な炭化物粒子が形成されると、抗折力が大きく低下し、その信頼性が大幅に低下することを見出し、本発明に想到した。   The inventors of the present application have examined the above-mentioned drawbacks of the prior art in detail, and the dispersion of the carbide particle powder such as WC and the binder phase forming particle powder such as Co, which is the raw material powder, is insufficient, When there is agglomeration, carbide particles such as WC grow abnormally and tend to be coarsened around the Co agglomerated part during sintering, and such abnormal growth is particularly noticeable in a fine cemented carbide having a small WC particle diameter. In particular, when coarse carbide particles having a right angle portion are formed, the bending strength is greatly reduced, and the reliability thereof is greatly reduced, and the present invention has been conceived.

本願発明が解決しようとする課題は、高硬度、高靭性で、抗折力が大きく、信頼性の高い微小工具用微粒超硬合金の製造方法を提供することである。上記のように、混合、粉砕中に生成されてしまったCoの固まりや扁平片を避けるために、WC等の炭化物粒子とCo等の結合相形成成分とを混合粉砕したスラリーを、目開き45μm(330メッシュ)の篩いに通して、Coの固まりや扁平片を除去することが一般に行われている。しかし、目開き45μmの篩いを通しても、大きさが略40μm以上であるCoしか除去できず、40μm未満のCo凝集粉や扁平粉は素通りしてしまう。一方、メッシュを更に細かくすると、Coの固まりや扁平片が多量に篩い上に残り、篩が目詰まりしてしまうとともに、WC等の炭化物とCoとの組成比が所定値から大きくずれてしまう致命的な欠点が現れる。このため、篩を通しても40μm未満のCo凝集粉や扁平粉が通過してしまい、これらが、炭化物粒子とCo粉等の配合粉を粉砕・混合後した後の超硬合金製造用混合粉中に残ることは黙認されているのが現状である。 The problem to be solved by the present invention is to provide a method for producing a fine cemented carbide for a micro tool that has high hardness, high toughness, high bending strength, and high reliability. As described above, a slurry obtained by mixing and pulverizing carbide particles such as WC and a binder phase forming component such as Co in order to avoid Co clumps and flat pieces generated during mixing and pulverization has an opening of 45 μm. It is a common practice to remove Co clumps and flat pieces through a (330 mesh) sieve. However, even when passing through a sieve having an opening of 45 μm, only Co having a size of approximately 40 μm or more can be removed, and Co agglomerated powder and flat powder having a size of less than 40 μm pass through. On the other hand, if the mesh is made finer, a large amount of Co solids and flat pieces remain on the sieve, the sieve is clogged, and the composition ratio of carbides such as WC and Co greatly deviates from the predetermined value. Disadvantages appear. For this reason, Co agglomerated powder and flat powder of less than 40 μm pass through the sieve, and these are mixed into the cemented carbide manufacturing powder after pulverizing and mixing the compounded powder such as carbide particles and Co powder. It is the current situation that it is tolerated to remain.

本願発明の微小工具用微粒超硬合金の製造方法は、WC粉末Co粉末及び粒成長抑制材としてV、Cr、Taなどの金属、もしくはそれらの炭化物、窒化物、炭窒化物粉末の2種又は3種を含有する微小工具用微粒超硬合金製造用混合粉と溶媒とからなるスラリーに加圧エネルギーを加えて流路によって搬送する時、該流路の上流側で少なくとも2以上に分岐する第1の工程と、該2以上に分岐した流路が下流側において内径を小さくした開口部を有し、該開口部から噴出したスラリーが互いに対抗する様に配置され、噴出したスラリーが互いに略一点で交差するように衝突させ、混合、粉砕する第2の工程と、該衝突後のスラリーを回収、乾燥する第3の工程とにより作製した微小工具用微粒超硬合金製造用混合粉を成形、焼結することを特徴とする微小工具用微粒超硬合金の製造方法である。本製造法を採用することによって、WC等の硬質粒子とCo等の結合相形成成分とがより均一に分散し、Co等の結合相形成成分が凝集している粗大な領域が無く、しかも、扁平形状のCoが実質的に無い微小工具用微粒超硬合金製造用混合粉が実現でき、これを用いることにより、直角角部を有する粗大な炭化物粒子が無く、高硬度、高靭性で、抗折力の大きい、信頼性の高い微小工具用微粒超硬合金を製造することができる。 There are two methods for producing a fine cemented carbide for a micro tool of the present invention: WC powder , Co powder, and a metal such as V, Cr, Ta as a grain growth inhibitor, or their carbide, nitride, carbonitride powder. Alternatively , when pressurized energy is applied to a slurry composed of a mixed powder for producing a fine cemented carbide for a micro tool and a solvent containing three kinds and then conveyed through a flow path, the flow branches to at least two or more upstream of the flow path The first and second flow paths have an opening with a smaller inner diameter on the downstream side, and the slurry ejected from the opening is arranged to oppose each other, and the ejected slurry is mutually It collides so as to intersect at substantially one point, mixing, and a second step of pulverizing, recovered slurry after the collision, the third step, the micro tool fine cemented carbide for producing mixed powder prepared by drying Molding and sintering It is the manufacturing method of the fine-grain cemented carbide for micro tools characterized by the above-mentioned. By adopting this production method, hard particles such as WC and a binder phase forming component such as Co are more uniformly dispersed, there is no coarse region where a binder phase forming component such as Co is aggregated, and A mixed powder for manufacturing a fine cemented carbide for a micro tool substantially free of flat Co can be realized, and by using this, there is no coarse carbide particles having a right angle portion, high hardness, high toughness, A highly reliable fine cemented carbide for a micro tool having a high bending force can be produced.

本願発明により、粗大で破断し易い炭化物粒子が無く、高硬度、高靭性、高抗折力で、信頼性の高い微小工具用微粒超硬合金の製造方法を実現できる。   According to the present invention, it is possible to realize a highly reliable method for producing a fine cemented carbide for a micro tool which is free of coarse and easily broken carbide particles, has high hardness, high toughness, and high bending strength.

本願発明の微小工具用微粒超硬合金は、炭化物粒子の平均粒径が0.2〜0.8μm、Co量が2〜15質量%の微小工具用微粒超硬合金であって、外部荷重により折断したとき、その破面にある炭化物粒子のうちに、該破面にある炭化物粒子の輪郭の一部を構成する少なくとも一つの角部が、互いに90±5度の角度の範囲内で交差する2辺からなり、且つ、該2辺の少なくとも1辺の長さが該角部の属する炭化物粒子の差し渡しの0.1倍以上である直角角部である炭化物粒子が存在し、該直角角部を有する炭化物粒子の差し渡しの最大値が0.6〜4μmであることを特徴とする微小工具用微粒超硬合金である。こうすることにより高硬度、高靭性、高抗折力で、信頼性の高い微小工具用微粒超硬合金を実現できる。このような微小工具用微粒超硬合金は、例えば、後述の噴流衝合法によりWC等の炭化物原料粉とCo等の混合粉を粉砕、混合し、20μm以上のCo凝集を無くした微小工具用微粒超硬合金粉末を用い、成形〜焼結までを精密に制御することにより得られる。他の分散方法やCo凝集粉の除去方法を用いた場合は、本発明の微小工具用微粒超硬合金が作製されるように、それぞれの超硬合金の組成や製造工程にあわせて、Co粉の分散を高め、Coの凝集粉の大きさを最適化することにより、本発明の微小工具用微粒超硬合金が実現できる。
炭化物粒子の平均粒径が0.8μmを超えて大きくなると、微粒超硬合金の硬度が大幅に低下し、耐摩耗性が不十分になる。また、例えば刃径が0.3mm以下の小径工具を作ると、粒径が大きいために工具先端を加工したときの面粗さが悪くなるとともに、工具先端部にチッピングが発生し易くなる欠点が現れる。一方、炭化物粒子の平均粒径が0.2μm未満になると、炭化物粒子の成長が不十分であるため、焼結体中に一旦クラックが発生するとその進展が抑えられず、しかも、ポアが残る、あるいは、炭化物粒子やCo間に十分な密着強度が得られない等の理由により、微粒超硬合金に十分な靭性が得られなくなる欠点が現れる。そこで、本発明の炭化物粒子の平均粒径を0.2〜0.8μm以下とする。
また、Co量が全組成の15質量%を超えて多いと、微粒超硬合金の硬度が大きく低下するとともに、微粒超硬合金用原料を混合・粉砕する過程で、原料であるCo粉末を十分に粉砕し、WC等の炭化物粒子粉末中に均一に分散し難くなり、この混合粉の成形体を焼結すると、焼結の過程で結合相中に固溶した炭化物微細粉が、焼結後の冷却過程で再析出し、WC等の炭化物粗大粒子が形成される欠点が現れる。また、Co量が2質量%未満であると、Coの絶対量が少なく、CoがWC等の炭化物粒子粉末中に均一に分散し難くなる欠点が現れる。その結果、作製した微粒超硬合金の靭性が大幅に低下し、抗折力が著しく低下する欠点が現れる。そこで、Co含有量を全組成の2〜15質量%とする。
そして、外部荷重により折断したとき、その破面にある炭化物粒子のうちに、該破面にある炭化物粒子の輪郭の一部を構成する少なくとも一つの角部が、互いに90±5度の角度の範囲内で交差する2辺からなり、且つ、該2辺の少なくとも1辺の長さが該角部の属する炭化物粒子の差し渡しの0.1倍以上である直角角部である炭化物粒子が存在し、該直角角部を有する炭化物粒子の差し渡しの最大値が0.6〜4μmであることを特徴とする微小工具用微粒超硬合金である。該直角角部を有する炭化物粒子の差し渡しの最大値を0.6〜4μmにすることにより、高硬度、高靭性、高抗折力で、信頼性の高い微小工具用微粒超硬合金を実現できる。角部を構成する2辺の交差角度が90±5度の範囲外である角部しか有しない炭化物粒子は、直角角部を有する炭化物粒子程にはクラックが結晶粒子内を貫通し難く、超硬合金の抗折力低下への影響が小さい。また、直角角部を構成する2辺の長さがともに、該直角角部の属する炭化物粒子の差し渡しの0.1倍未満であると、該角部は独立して形成されておらず劈開性が強くなく、超硬合金の抗折力を大きくは低下させない。これは、微粒超硬合金の抗折力が、互いに90±5度の角度の範囲内で交差する2辺からなり、且つ、該2辺の少なくとも1辺の長さが該角部の属する炭化物粒子の差し渡しの0.1倍以上である直角角部を有する炭化物粒子(以下、直角炭化物粒子と呼ぶ)によって主に決定されるためである。このため、角部を構成する2辺の交差する角度が85〜95度の範囲外である角部、または、2辺の交差する角度が85〜95度の範囲内であっても、該2辺の両者が共に該角部の属する炭化物粒子の差し渡しの0.1倍未満である場合は直角角部と判定しないことにした。
これに対して、外部荷重により折断したとき、その破面にある炭化物粒子のうちに、該破面にある炭化物粒子の輪郭の一部を構成する少なくとも一つの角部が、互いに90±5度の角度の範囲内で交差する2辺からなり、且つ、該2辺の少なくとも1辺の長さが該角部の属する炭化物粒子の差し渡しの0.1倍以上である直角炭化物粒子が存在するものの、該直角炭化物粒子の差し渡しの最大値が4μmを超えて大きくなると、該直角角部を有する面内で劈開し易くなり、しかも、該直角炭化物粒子の差し渡しの最大値が4μmを超えて大きいため、クラックが結晶粒子内を貫通して破断が進み易くなり、著しく抗折力が低下する。一方、該直角炭化物粒子の差し渡しの最大値が0.6μm未満であると、焼成による炭化物粒子の成長が十分でなく、微粒超硬合金が十分に緻密になっておらず、しかも、局部的にクラックが発生すると、炭化物粒子によってその進展を阻止することも出来ないため、微粒超硬合金に十分な抗折力が得られなく欠点が現れる。
上記の効果は、直角炭化物粒子の結晶構造が六方晶系であり、特に、WC粒子である場合に、特に顕著に現れる。これは、WC等の六方晶系からなる炭化物粒子は、[0001]軸を含む面内で破断し易いためと考えられる。
炭化物粒子の角部の交差角度は、破面を走査型電子顕微鏡(以下SEMと呼ぶ)により倍率5kで撮影し、各炭化物粒子に於いて、少なくとも隣の1角部(凹型の角部も含む)迄の距離が該角部の属する炭化物粒子の差し渡しの0.1倍以上あるのみ測定した。交差角度は、測定する角部を形成する各辺に平行に直線を引き、これを1.75倍に拡大コピーし、先述の直線が各辺に接するように平行移動した後に、平行移動した2本の直線が交差する角度を交差角度とした。そして、測定した少なくとも1角部の交差角度が90±5度の範囲内にあるもののみを直角炭化物粒子とした。また、破面に観察される炭化物粒子は複数の炭化物粒子の複合体からなっていても良く、その場合は、複合体を構成する少なくとも1個の炭化物粒子の少なくとも一箇所の角部の交差角度が90±5度の範囲内であれば直角炭化物粒子であり、結晶粒の大きさは複合体全体を観察し、複合体全体の差し渡しを測定する。また、炭化物粒子が複数の炭化物粒子の一複合体からなっているか否かは、他の結晶粒界と同等の幅を有する粒界によって囲まれ、閉じているか否かによって判定する。複合体内に複数のクラックや粒界らしきものが存在している場合、一箇所でも、他の粒界に比べて格段に狭い幅からなるクラックや粒界らしきものしかなく、劈開面が連なっている箇所が存在する場合は、一複合体内と判断する。また、外部荷重により折断した破面とは、例えば、抗折力を評価した時に破断した破面のことを云う。折断する試料が長手方向(折断する面と略垂直な方向)に均一な形状でないときや、表面粗さが異なるときは、断面が円形または直方体となるようにセンタレスや平面研削により加工し、長手方向に均一な形状で、しかも、表面粗さも略同じであるように試料を加工した後、3点曲げ法により抗折力を評価し、折断した破面の炭化物粒子の最大粒径を測定する。折断する試料の形状は、例えば、断面形状が2mmΦで、スパンが20mmであることが好ましいが、断面が2mmΦ以下やスパンが20mm以下であってもよい。
本願発明の微小工具用微粒超硬合金は、直角角部を有する炭化物粒子の差し渡しの最大値が0.6〜2μmの範囲内にあることが、より、抗折力が高く、信頼性の高い微小工具用微粒超硬合金が得られ好ましい。
また、本願発明の製造方法は、WC粉末とCo粉末及び粒成長抑制材としてV、Cr、Taなどの金属、もしくはそれらの炭化物、窒化物、炭窒化物粉末の2種又は3種を含有する微小工具用微粒超硬合金製造用混合粉と溶媒とからなるスラリーに加圧エネルギーを加えて流路によって搬送する時、該流路の上流側で少なくとも2以上に分岐する第1の工程と、該2以上に分岐した流路が下流側において内径を小さくした開口部を有し、該開口部から噴出したスラリーが互いに対抗する様に配置され、噴出したスラリーが互いに略一点で交差するように衝突させ、混合、粉砕する第2の工程(以下、上記の第1の工程と第2の工程をあわせて噴流衝合と呼ぶ)と、該衝突後のスラリーを回収、乾燥する第3の工程とにより作製した微小工具用微粒超硬合金製造用混合粉を成形、焼結することを特徴とする微小工具用微粒超硬合金の製造方法である。本製造法を採用することによって、WC等の硬質粒子とCo等の結合相形成成分とがより均一に分散し、Co等の結合相形成成分が凝集している粗大な領域が無く、しかも、扁平形状のCoが実質的に無い微小工具用微粒超硬合金製造用混合粉が実現でき、これを用いることにより、高硬度、高靭性で、抗折力が大きく、信頼性の高い微小工具用微粒超硬合金を製造することができる。これは、噴流衝合により微小工具用微粒超硬合金製造用混合粉を作製することにより、少なくともWC等の炭化物粒子粉末とCo粉末とがより良く混合され、Co粉末がより均一に分散するとともに、扁平なCoも形成されず、この混合粉を用いることにより、成形体中に大きなCo溜まりが無いため、焼結時にWC等の炭化物粒子の異常成長が抑えられ、高硬度、高靭性で、抗折力が大きく、信頼性の高い微小工具用微粒超硬合金が製造できるためである。また、上記の噴流衝合法でスラリーを混合、粉砕した後、目開き20μm以下の篩を通した方が、よりCoの凝集が除去でき、好ましい。
The fine cemented carbide for fine tools of the present invention is a fine cemented carbide for fine tools with an average particle size of carbide particles of 0.2 to 0.8 μm and an amount of Co of 2 to 15% by mass. When broken, at least one corner constituting a part of the contour of the carbide particles on the fracture surface intersects with each other within an angle range of 90 ± 5 degrees among the carbide particles on the fracture surface. There are carbide particles that are two-sided and have a right-angled corner that has a length of at least one of the two sides of 0.1 times or more of the carbide particles to which the corner belongs, and the right-angled corner It is a fine cemented carbide for fine tools, characterized in that the maximum value of the carbide particles having a particle size of 0.6 to 4 μm. By doing so, it is possible to realize a highly reliable fine cemented carbide for a micro tool having high hardness, high toughness, and high bending strength. Such a fine cemented carbide for fine tools is, for example, a fine tool fine particle in which a carbide raw material powder such as WC and a mixed powder of Co or the like are pulverized and mixed by a jet collision method described later to eliminate Co agglomeration of 20 μm or more. It is obtained by using cemented carbide powder and precisely controlling from molding to sintering. When other dispersion methods or Co agglomerated powder removal methods are used, the Co powders are made in accordance with the composition and manufacturing process of each cemented carbide so that the fine cemented carbide for micro tools of the present invention is produced. By increasing the dispersion of Co and optimizing the size of the Co agglomerated powder, the fine cemented carbide for micro tool of the present invention can be realized.
If the average particle size of the carbide particles is larger than 0.8 μm, the hardness of the fine cemented carbide is significantly lowered, and the wear resistance becomes insufficient. In addition, for example, when a small diameter tool having a blade diameter of 0.3 mm or less is made, there are disadvantages that the surface roughness when the tool tip is machined is deteriorated due to the large particle size and chipping is likely to occur at the tool tip. appear. On the other hand, when the average particle size of the carbide particles is less than 0.2 μm, the growth of the carbide particles is insufficient, so that once the cracks are generated in the sintered body, the progress is not suppressed, and the pores remain. Alternatively, there is a defect that sufficient toughness cannot be obtained in the fine cemented carbide because the sufficient adhesion strength between the carbide particles and Co cannot be obtained. Therefore, the average particle size of the carbide particles of the present invention is set to 0.2 to 0.8 μm or less.
Further, if the amount of Co exceeds 15% by mass of the total composition, the hardness of the fine cemented carbide is greatly reduced, and the raw Co powder is sufficient in the process of mixing and pulverizing the raw material for the fine cemented carbide. When it is difficult to disperse uniformly in the carbide particle powder such as WC and the compact of the mixed powder is sintered, the fine carbide powder dissolved in the binder phase in the sintering process is Re-precipitation occurs during the cooling process, and a defect that coarse carbide particles such as WC are formed appears. In addition, when the amount of Co is less than 2% by mass, there is a disadvantage that the absolute amount of Co is small and Co is difficult to be uniformly dispersed in a carbide particle powder such as WC. As a result, the toughness of the produced fine cemented carbide is greatly reduced, and the drawback that the bending strength is significantly reduced appears. Therefore, the Co content is set to 2 to 15% by mass of the total composition.
And, when broken by an external load, among the carbide particles on the fracture surface, at least one corner portion constituting a part of the contour of the carbide particle on the fracture surface has an angle of 90 ± 5 degrees with each other. There are carbide particles that are two-sided crossing within a range, and the length of at least one side of the two sides is a right-angled corner that is 0.1 times or more of the carbide particles to which the corner belongs. The fine cemented carbide for a micro tool is characterized in that the maximum value of the carbide particles having a right angle portion is 0.6 to 4 μm. By setting the maximum value of the carbide particles having a right-angled corner to 0.6 to 4 μm, it is possible to realize a highly reliable fine cemented carbide for a micro tool with high hardness, high toughness and high bending strength. . Carbide particles having only corners whose crossing angle between the two sides constituting the corners is outside the range of 90 ± 5 degrees are less likely to penetrate the crystal grains than carbide particles having right angle corners. The effect of hard alloy on bending resistance is small. Further, if the lengths of the two sides constituting the right angle portion are both less than 0.1 times the passing of the carbide particles to which the right angle portion belongs, the corner portions are not independently formed and are cleaved. Is not strong and does not significantly reduce the bending strength of the cemented carbide. This is because the carbide strength of the fine cemented carbide consists of two sides intersecting each other within an angle range of 90 ± 5 degrees, and the length of at least one of the two sides is a carbide to which the corner belongs. This is because it is mainly determined by carbide particles having a right angle portion that is 0.1 times or more of the particle passing (hereinafter referred to as right angle carbide particles). For this reason, even if the angle at which the two sides constituting the corner intersect is outside the range of 85 to 95 degrees, or the angle at which the two sides intersect is within the range of 85 to 95 degrees, the 2 When both of the sides are less than 0.1 times the passing of the carbide particles to which the corner belongs, it is not determined as a right angle corner.
On the other hand, when broken by an external load, among the carbide particles on the fracture surface, at least one corner portion constituting a part of the contour of the carbide particle on the fracture surface is 90 ± 5 degrees relative to each other. Although there are right-angle carbide particles that have two sides intersecting within the range of the angle and the length of at least one of the two sides is 0.1 times or more of the carbide particles to which the corner belongs, If the maximum value of the right-angle carbide particles exceeds 4 μm, it becomes easier to cleave in the plane having the right-angled corners, and the maximum value of the right-angle carbide particles exceeds 4 μm. , Cracks penetrate through the crystal grains and breakage easily proceeds, and the bending strength is remarkably reduced. On the other hand, when the maximum value of the right-angle carbide particles is less than 0.6 μm, the carbide particles are not sufficiently grown by firing, the fine cemented carbide is not sufficiently dense, and locally If cracks occur, the progress cannot be prevented by the carbide particles, so that a sufficient bending force cannot be obtained in the fine cemented carbide and a defect appears.
The above effect is particularly prominent when the right-angle carbide particles have a hexagonal crystal structure, and are particularly WC particles. This is presumably because the hexagonal carbide particles such as WC are easily broken in the plane including the [0001] axis.
The intersection angle of the corners of the carbide particles is obtained by photographing the fractured surface with a scanning electron microscope (hereinafter referred to as SEM) at a magnification of 5 k, and in each carbide particle, at least one corner (including a concave corner) is included. )) Was measured only when the distance to the carbide particles belonging to the corner portion was 0.1 times or more. The crossing angle is calculated by drawing a straight line in parallel to each side forming the corner to be measured, enlarging and copying this 1.75 times, translating so that the above-mentioned straight line touches each side, and then translating 2 The angle at which the straight lines intersect was defined as the intersection angle. Then, only those having a measured crossing angle of at least one corner within a range of 90 ± 5 degrees were defined as right-angle carbide particles. Further, the carbide particles observed on the fracture surface may be composed of a composite of a plurality of carbide particles. In that case, the intersection angle of at least one corner of at least one carbide particle constituting the composite Is a right-angle carbide particle if the angle is within the range of 90 ± 5 degrees, and the size of the crystal grains is measured by observing the entire complex and measuring the passing of the complex. Whether or not the carbide particles are composed of a composite of a plurality of carbide particles is determined by whether or not they are surrounded by a grain boundary having the same width as the other crystal grain boundaries. When there are multiple cracks or grain boundaries that appear in the composite, even at one location, there are only cracks or grain boundaries that are much narrower than other grain boundaries, and the cleavage planes are continuous. If the location is present, it is determined as one complex. In addition, the fracture surface that is broken by an external load refers to, for example, a fracture surface that is broken when the bending strength is evaluated. When the specimen to be cut is not uniform in the longitudinal direction (direction substantially perpendicular to the face to be cut) or the surface roughness is different, the sample is processed by centerless or surface grinding so that the cross section becomes a circle or a rectangular parallelepiped. After processing the sample so that it has a uniform shape in the direction and substantially the same surface roughness, the bending strength is evaluated by a three-point bending method, and the maximum particle size of the carbide particles on the fractured surface is measured. . As for the shape of the sample to be cut, for example, the cross-sectional shape is preferably 2 mmΦ and the span is preferably 20 mm, but the cross-section may be 2 mmΦ or less and the span may be 20 mm or less.
The fine cemented carbide for a micro tool of the present invention has a higher bending strength and a higher reliability that the maximum value of the carbide particles having a right angle corner is in the range of 0.6 to 2 μm. A fine cemented carbide for a micro tool is preferably obtained.
In addition, the production method of the present invention contains WC powder, Co powder, and a metal such as V, Cr, Ta as a grain growth inhibitor, or two or three kinds of carbide, nitride, carbonitride powder thereof. A first step of branching at least two or more upstream on the upstream side of the flow path when a pressurized energy is applied to a slurry composed of a mixed powder for producing a fine cemented carbide for a micro tool and a solvent and conveyed by the flow path; The flow path branched into two or more has an opening with a reduced inner diameter on the downstream side, and the slurry ejected from the opening is arranged so as to oppose each other, so that the ejected slurry intersects with each other at substantially one point. A second step of colliding, mixing, and crushing (hereinafter, the first step and the second step are collectively referred to as jet collision), and a third step of collecting and drying the slurry after the collision For micro tools made by Forming a particle cemented carbide for producing mixed powder, a method for producing a fine cemented carbide for small tools, characterized by sintering. By adopting this production method, hard particles such as WC and a binder phase forming component such as Co are more uniformly dispersed, there is no coarse region where a binder phase forming component such as Co is aggregated, and It is possible to realize a mixed powder for manufacturing fine cemented carbide for micro tools that is substantially free of flat Co. By using this, it is possible to achieve high hardness, high toughness, high bending strength, and high reliability for micro tools. A fine cemented carbide can be produced. This is because, by producing a mixed powder for producing a fine cemented carbide for a micro tool by jet collision, at least a carbide particle powder such as WC and a Co powder are mixed better, and the Co powder is more uniformly dispersed. , Flat Co is not formed, and by using this mixed powder, since there is no large Co accumulation in the molded body, abnormal growth of carbide particles such as WC during sintering is suppressed, high hardness, high toughness, This is because a fine cemented carbide for a micro tool with high bending strength and high reliability can be manufactured. In addition, it is preferable to mix and pulverize the slurry by the above jet collision method and then pass it through a sieve having an opening of 20 μm or less because Co agglomeration can be further removed.

本願発明の微小工具用微粒超硬合金は、結合相を主に形成しているCo中にCrがCoの1〜10質量%、Taが1〜5質量%、Vが1〜4質量%含有されていることにより、結合相の耐熱性と耐塑性変形及び耐摩耗性が高まり、優れた耐久特性を有する微小工具用微粒超硬合金材が得られ、好ましい。Co中のCr、Ta、Vの含有量が、それぞれ1質量%未満の時はCr、Ta、Vを含有する効果が小さい。Co中のCr含有量が10質量%を超えて多くなると、Crの一部が析出し部材全体の抗折力が低下する傾向が現れる。また、Co中のTa含有量が5質量%を超えて多くなると、Taの一部が析出し斑状晶を作り、部材全体の抗折力が低下する傾向が現れる。また、Co中のV含有量が4質量%を超えて多くなると、Vの一部がWCの廻りに析出し、部材全体の抗折力が低下する傾向が現れる。Co中に固溶しているCr、Ta、V量は、微粒超硬合金材を微細に粉砕し、5%クエン酸アンモニウムと0.5%塩化ナトリウムの混合液からなる電解液で電解した後、高周波誘導結合プラズマ発光分析(以下、ICP−AESと呼ぶ)することにより求める。   The fine cemented carbide for a micro tool of the present invention contains 1 to 10% by mass of Cr, 1 to 5% by mass of Ta, and 1 to 4% by mass of V in Co which mainly forms a binder phase. Thus, the heat resistance, plastic deformation and wear resistance of the binder phase are increased, and a fine cemented carbide material for fine tools having excellent durability characteristics is obtained, which is preferable. When the contents of Cr, Ta and V in Co are less than 1% by mass, the effect of containing Cr, Ta and V is small. When the Cr content in Co exceeds 10% by mass, a part of Cr precipitates and the bending strength of the entire member tends to decrease. Further, when the Ta content in Co exceeds 5% by mass, a part of Ta is precipitated to form spotted crystals, and the bending strength of the entire member tends to decrease. Further, when the V content in Co exceeds 4% by mass, a part of V is precipitated around the WC, and the bending strength of the entire member tends to be lowered. The amount of Cr, Ta, and V dissolved in Co is determined by finely pulverizing a fine cemented carbide material and electrolyzing it with an electrolytic solution composed of a mixture of 5% ammonium citrate and 0.5% sodium chloride. It is determined by high frequency inductively coupled plasma emission analysis (hereinafter referred to as ICP-AES).

本願発明の微小工具用微粒超硬合金は、実用部が細長く最大径が3.2mm以下である小径工具に用いることにより、耐摩耗性と耐欠損・耐チッピング性と言う元来相反する特性が共に優れている高硬度・高靭性の微小工具用微粒超硬合金により細長い実用部が形成されており、しかも、部材の先端に優れた面粗さや加工精度が得られるため、深い穴部や微細部を高精度に信頼性良く加工でき、好ましい。このような実用部が細長い小径部材には、例えば、小径ドリル、小径エンドミル、小径ルーター等の小径切削工具があり、特に優れた刃先と耐欠損、耐チッピング性が得られ、好ましい。また、径の小さい耐摩耗工具、押しピン、パンチ、燃料噴射ノズルの摺動棒部、等にも特に有用である。なお、実用部とは、刃部やパンチ先端、ノズル先端等であり、荷重や摩擦力、把持力等の実作用がかかる部分を云い、最大径が3.2mm以下とは断面が3.2mmΦの範囲内に入れば良く、断面形状が必ずしも円形である必要はない。
また、本願発明の微小工具用微粒超硬合金の表面に、少なくと4a、5a、6a族元素、Al、Siの一種以上からなる炭化物、窒化物、酸化物、硼化物、及び、これらの複合化合物の一種以上やダイヤモンド、DLC等の炭素皮膜からなる硬質皮膜を被覆すると、さらに優れた耐摩耗性が得られ、より好ましい。
The fine cemented carbide for micro tools of the present invention has inherently contradictory properties such as wear resistance, chipping resistance and chipping resistance when used for small diameter tools with a narrow practical part and a maximum diameter of 3.2 mm or less. The long and practical parts are made of fine cemented carbide for micro tools with high hardness and high toughness, both of which have excellent surface roughness and processing accuracy at the tip of the member. The portion can be processed with high accuracy and reliability, which is preferable. Such a small diameter member having a long and narrow practical part includes, for example, a small diameter cutting tool such as a small diameter drill, a small diameter end mill, and a small diameter router, and is particularly preferable because excellent cutting edge and chipping resistance and chipping resistance can be obtained. It is also particularly useful for wear-resistant tools having a small diameter, push pins, punches, sliding rod portions of fuel injection nozzles, and the like. The practical part refers to a blade part, a punch tip, a nozzle tip, and the like, and refers to a part to which an actual action such as a load, a frictional force, and a gripping force is applied. The maximum diameter is 3.2 mm or less and the cross section is 3.2 mmΦ. The cross-sectional shape is not necessarily circular.
Further, on the surface of the fine cemented carbide for a micro tool of the present invention, carbide, nitride, oxide, boride, and a composite thereof composed of at least one of group 4a, 5a, and 6a elements, Al, and Si. It is more preferable to coat one or more compounds and a hard film made of a carbon film such as diamond or DLC, since further excellent wear resistance can be obtained.

まず、平均粒径がそれぞれ、0.6μmのWC、1.4μmのCo、1.5μmのCr3C2、1.2μmのTaC、1.5μmのVC粉末を、所定量に配合した原料粉末15.4kgと変成アルコール13lとをアトライターで5時間混合・粉砕し、スラリー中の原料粉末の濃度(以下、スラリー濃度と呼ぶ)が60質量%であるスラリーを作製した。そして、更にCoの分散を良くすることを目的に、上記スラリーに圧力180MPaのエネルギー与え、途中で2流路に分岐した後、各流路の径よりも絞られた開口部から、該スラリーを互いに略一点で交差するように噴出、衝突させる噴流衝合を4回繰り返すことにより、スラリー中の混合粉を更に混合・粉砕した。そして、本スラリーを目開き20μmの篩いを通した後、これを減圧乾燥することにより、本発明例1〜19の微小工具用微粒超硬合金を作製するための原料粉末混合粉を作製した。また、同じ原料粉と同じ製造条件を用いるものの、噴流衝合の回数のみを1、2、3、5回に変えて本発明例20〜23の微小工具用微粒超硬合金を作製するための原料粉末混合粉を作製した。上記の、噴流衝合後のスラリーを、目開き20μmの篩いを通した後に篩上に残ったCo量は配合した全Co量の10%以下であった。こうして作製した原料粉末混合粉に、押出し成型用のワックスと溶剤を加えて1時間混練した後、押出し成形機により直径2.8mmの長尺状成形体を作製し、脱ワックスした。そして、これらの脱ワックス品を、1.3〜13.2Paの真空雰囲気中で焼成温度1400〜1450℃に1時間保持した後、圧力を4.9MPaの加圧雰囲気に変え30分間保持した後、1000℃までを冷却速度5℃/分で冷却することにより、直径2.2mm、長さ110mmの長尺形状焼結体である本発明例1〜23の微小工具用微粒超硬合金を作製した。これら本発明例1〜23の製造条件を表1にまとめて示す。また、作製した微小工具用微粒超硬合金のCo量、Co中のCr、Ta、V量のICP分析結果を表2にまとめて示す。Co量が8質量%である本発明例1〜15と20〜23は1450℃で焼結し、Co量が2、5、12、15質量%である本発明例16〜19はそれぞれ、1500、1475、1425、1400℃で焼結した。
また、比較のため、Co量が1質量%で、焼結温度が1525℃と異なっているものの、その他の組成、製造条件は本発明例16〜19と同じである比較例24、及び、Co量が16質量%で、Cr3C2、TaC、VC粉末を含んでいない成形体を、焼結温度1375℃と異なっているものの、その他の製造条件は本発明例16〜19と同じである比較例25を作製した。また、比較のため、Co量が8質量%、Co中のCr量、同Ta量、同V量がそれぞれ4、2、2質量%と本発明例20と同じ組成に配合した原料粉を、同じアトライター条件で混合・粉砕しスラリーを作製した後に、目開き45μmの篩を通すのみで、噴流混合法による混合を行わずに、これを直接、減圧乾燥することにより微小工具用微粒超硬合金作製用原料粉末混合粉を作製した。そして、この混合粉を用いて、本発明例20と同じ条件で、成形、脱ワックス、焼結することにより、本発明例20と同じ形状の微粒超硬合金である比較例26を作製した。なお、比較例26と同じ配合を同じアトライター条件で粉砕した後、このスラリーを目開き20μmの篩いを通してみたが、Coの30%以上が篩を通らなかったため、比較例26では、目開き45μmの篩のみを通した。また、比較のため、Co量が16質量%で、Cr3C2、TaC、VC粉末を含んでいない配合粉を用い、比較例26と同じアトライター条件で混合・粉砕した後、目開き45μmの篩通しのみを行い、噴流混合による混合は行わずに直接、減圧乾燥することにより微粒超硬合金作製用原料粉末混合粉を作製し、これを用いて、比較例26と同じ条件で、成形、脱ワックス、焼結することにより、本発明例1と同じ形状の微粒超硬合金である比較例27を作製した。比較例24〜28の微粒超硬合金の製造条件を表1に、Co量、Co中のCr、Ta、V量のICP分析結果を表2にあわせて示す。
First, 15.4 kg of raw material powder in which WC having an average particle size of 0.6 μm, 1.4 μm of Co, 1.5 μm of Cr3C2, 1.2 μm of TaC, and 1.5 μm of VC powder are blended in predetermined amounts. And 13 denatured alcohol were mixed and pulverized with an attritor for 5 hours to prepare a slurry in which the concentration of the raw material powder in the slurry (hereinafter referred to as the slurry concentration) was 60% by mass. Then, for the purpose of further improving the dispersion of Co, after applying energy of 180 MPa to the slurry and branching into two flow paths in the middle, the slurry is released from the openings narrower than the diameter of each flow path. The mixed powder in the slurry was further mixed and pulverized by repeating four times of jetting collisions in which the jets collide and collide with each other at substantially one point. And after passing this slurry through a sieve with an opening of 20 μm, this was dried under reduced pressure to prepare a raw material powder mixed powder for producing fine cemented carbide for fine tools of Invention Examples 1 to 19. Although the same raw material powder and the same production conditions are used, only the number of jet collisions is changed to 1, 2, 3, and 5 times to produce the fine cemented carbide for fine tools of Examples 20 to 23 of the present invention. Raw material powder mixed powder was prepared. The amount of Co remaining on the sieve after the slurry after jetting was passed through the sieve having an opening of 20 μm was 10% or less of the total amount of Co blended. The raw material powder mixed powder thus prepared was added with an extrusion molding wax and a solvent and kneaded for 1 hour, and then an elongated molded body having a diameter of 2.8 mm was prepared and dewaxed by an extrusion molding machine. After these dewaxed products were held at a firing temperature of 1400-1450 ° C. for 1 hour in a vacuum atmosphere of 1.3 to 13.2 Pa, then the pressure was changed to a pressurized atmosphere of 4.9 MPa and held for 30 minutes By cooling to 1000 ° C. at a cooling rate of 5 ° C./minute, a fine cemented carbide for micro tools of Invention Examples 1 to 23, which is a long sintered body having a diameter of 2.2 mm and a length of 110 mm, is produced. did. The production conditions of these inventive examples 1 to 23 are summarized in Table 1. In addition, Table 2 summarizes the results of ICP analysis of the Co amount of the produced fine cemented carbide for fine tools, Cr, Ta, and V amount in Co. Invention Examples 1 to 15 and 20 to 23 having a Co content of 8 mass% were sintered at 1450 ° C., and Invention Examples 16 to 19 having a Co content of 2, 5, 12, and 15 mass% were 1500 respectively. 1475, 1425, and sintered at 1400 ° C.
Further, for comparison, the Co amount is 1% by mass and the sintering temperature is different from 1525 ° C., but the other compositions and production conditions are the same as those in Comparative Examples 24 to 19 of the present invention examples 16 to 19, and Co. Comparative Example 25 in which the amount of 16% by mass and the compact containing no Cr3C2, TaC, or VC powder is different from the sintering temperature of 1375 ° C., but the other production conditions are the same as those of Invention Examples 16-19. Was made. For comparison, the raw material powder blended in the same composition as the present invention example 20 with Co amount of 8% by mass, Cr amount in Co, same Ta amount, same V amount as 4, 2, 2% by mass, respectively, After mixing and pulverizing under the same attritor conditions to prepare a slurry, it is only passed through a sieve with a mesh opening of 45 μm, and it is directly dried under reduced pressure without mixing by the jet mixing method. An alloy raw material powder mixed powder was prepared. Then, by using this mixed powder, molding, dewaxing, and sintering were performed under the same conditions as in Invention Example 20, thereby producing Comparative Example 26, which is a fine cemented carbide having the same shape as in Invention Example 20. In addition, after pulverizing the same composition as Comparative Example 26 under the same attritor conditions, this slurry was passed through a sieve having an opening of 20 μm, but 30% or more of Co did not pass through the sieve, so in Comparative Example 26, the opening was 45 μm. Only through the sieve. For comparison, a blended powder having a Co content of 16% by mass and containing no Cr3C2, TaC, or VC powder was mixed and ground under the same attritor conditions as in Comparative Example 26, and then passed through a sieve having an opening of 45 μm. The raw material powder mixed powder for producing a fine cemented carbide was prepared by directly drying under reduced pressure without performing mixing by jet mixing, and using this, molding and dewaxing were performed under the same conditions as in Comparative Example 26. The comparative example 27 which is a fine grain cemented carbide alloy of the same shape as this invention example 1 was produced by sintering. Table 1 shows the production conditions of the fine cemented carbides of Comparative Examples 24 to 28, and Table 2 shows the results of ICP analysis of Co amount, Cr, Ta, and V amount in Co.

微粒超硬合金を構成する元素の種類と量は蛍光X線分析(以下、XRFと記す。)により定量分析した。また、微粒超硬合金の炭化物粒子の平均結晶粒径は、微粒超硬合金の断面を鏡面研磨した後、村上試薬で0.5分、王水で0.5分間エッチングすることにより結晶粒界を明確にした後、走査電子顕微鏡(日立製作所製、S−4200、以下、SEMと記す。)によって、粗大な炭化物結晶粒が観察されない平均的な領域を倍率10k倍で撮影し、これを画像解析ソフト(Image−Pro Plus Version4.0 for Windows、Windowsは登録商標。)により解析することにより算出した。その結果を表2中の、炭化物粒子平均粒径(μm)欄にまとめて示す。   The types and amounts of elements constituting the fine cemented carbide were quantitatively analyzed by fluorescent X-ray analysis (hereinafter referred to as XRF). In addition, the average grain size of the carbide particles of the fine cemented carbide is obtained by mirror-polishing the cross section of the fine cemented carbide and then etching for 0.5 minutes with Murakami reagent and 0.5 minutes with aqua regia. Then, an average region where coarse carbide crystal grains are not observed is photographed with a scanning electron microscope (manufactured by Hitachi, S-4200, hereinafter referred to as SEM) at a magnification of 10 k, and this is imaged. It calculated by analyzing with analysis software (Image-Pro Plus Version4.0 for Windows, Windows is a registered trademark). The results are collectively shown in the column of carbide particle average particle diameter (μm) in Table 2.

本発明例及び比較例で作製した長尺状の微小工具用微粒超硬合金を用いて、シャンク径2.0mm、刃先径0.1mmの2枚刃小径ドリルを各3本作製した。これを用いて、高ガラス転移温度の0.2mm厚さ両面5μmCu付きガラスエポキシ板を4枚重ねにしたものを、回転数を280000回転/分、送り6μm/回転の条件で穴開け加工試験を行った。この切削条件は、より高速で切削するため、刃先温度がより高温になりやすい評価条件である。外周刃外径寸法に5%の摩耗が生じる迄の穴開け加工数又は折損するまでの加工穴数の少ない方を測定し、各3本の平均を穴あけ寿命とした。そして、上記で評価した小径ドリル各3本のシャンク部用いて、小径ドリルを構成する微粒超硬合金の抗折力を測定するとともに、同外部荷重により折断した破面で破断した破面をSEMで観察し、破断の基点部付近に観察される炭化物粒子の形態と最大粒径を求めた(例えば、日本金属学会誌33巻、1969年、頁504〜50参照)。このようにして測定した、本発明例及び比較例から作製した各小径ドリルの穴あけ寿命の測定結果、及び、微小工具用微粒超硬合金の抗折力最大値と抗折力最小値の差、及び、その破面に観察された炭化物粒子の平均粒径、直角炭化物粒子の差し渡しの最大値、非直角炭化物粒子の差し渡しの最大値の測定結果を表2にあわせて示す。   Three long-edged two-blade small-diameter drills each having a shank diameter of 2.0 mm and a cutting edge diameter of 0.1 mm were produced using the long fine-grained cemented carbide for a micro tool produced in the present invention example and the comparative example. Using this, four glass epoxy plates with a high glass transition temperature of 0.2 mm thickness on both sides with 5 μm Cu were stacked, and a drilling test was conducted at a rotational speed of 280000 rpm and a feed of 6 μm / rotation. went. This cutting condition is an evaluation condition in which the cutting edge temperature tends to be higher because cutting is performed at a higher speed. The number of holes drilled until wear of 5% on the outer diameter of the outer peripheral blade or the smaller number of holes drilled until breakage was measured, and the average of the three holes was defined as the drilling life. Then, using each of the three small-diameter drill shank parts evaluated above, the fracture strength of the fine cemented carbide constituting the small-diameter drill was measured, and the fracture surface fractured by the fracture surface fractured by the external load was measured with SEM. The shape and the maximum particle size of the carbide particles observed near the fracture base point were determined (see, for example, Journal of the Japan Institute of Metals, Vol. 33, 1969, pages 504-50). The measurement results of the drilling life of each small-diameter drill produced from the inventive examples and comparative examples, and the difference between the maximum bending strength and the minimum bending strength of the fine cemented carbide for micro tools, Table 2 also shows the measurement results of the average particle diameter of the carbide particles, the maximum value of the delivery of the right-angle carbide particles, and the maximum value of the delivery of the non-right-angle carbide particles observed on the fracture surface.

表2より、微粒超硬合金を形成するWC等の炭化物粒子の平均粒径が0.1μmと0.9μmであり、抗折力測定時に破断した破面内に観察される直角炭化物粒子の差し渡しの最大値が0.5と4.1μmである比較例24、25は、抗折力の最大値と最小値との差が2905と3009MPaであり、穴あけ寿命が1710と1620穴であるのに対して、炭化物粒子の平均粒径が0.6〜4.0μmで、破面内に観察される直角炭化物粒子の差し渡しの最大値が0.6〜4.0μmである本発明例1〜5は、抗折力差が923〜1950MPaと小さく、穴あけ寿命は3430穴以上と比較例24、25の2倍以上長く、格段に優れている。また、表2より、微粒超硬合金のCo量が1、16質量%である比較例24、25に対して、Co量が2〜15質量%で、破面内に観察される直角炭化物粒子の差し渡しの最大値が0.9〜3.1μmと、0.6〜4.0μmの範囲内である本発明例16〜19は、抗折力差が937〜1421MPaと小さく、穴あけ寿命は4620穴以上と、比較例24、25の2.8倍以上長く、格段に優れていた。
また、アトライター法を用いてスラリーを混合粉砕し、目開き45μmの篩通しのみを行い、噴流混合による混合、粉砕は行わなかった比較例26は、Co量、Cr、Ta、Vの組成と、炭化物粒子の平均粒径0.5μmも本発明例20と同じであるにもかかわらず、破面に観察された直角炭化物粒子の差し渡しの最大値が4.2μmと大きく、抗折力差が3072MPaであり、穴あけ寿命は1570穴である。これに対して、本発明例20は、抗折力差1862と小さく、穴あけ寿命は3560と比較例26の2.2倍以上長く、格段に優れている。
また、Co量が16質量%と本発明の範囲外であり、Cr3C2、TaC、VC粉末も含んでいない配合粉を用い、本発明例1〜15と同じアトライター条件で8時間混合・粉砕後、目開き45μmの篩篩通しのみを行い、噴流混合による混合、粉砕は行わずに作製した混合粉を用いて、本発明例1〜15と同じ条件で、成形、脱ワックスした後、1375℃で焼結することにより作製した比較例27は、焼結体を構成する炭化物粒子の平均粒径が0.7μmであり、破面に観察された直角炭化物粒子の差し渡しの最大値が7.1μmであった。図1、2に、比較例27の破面のSEM写真とその模式図を示す。図1、2より、粗大な炭化物粒子が(a)〜(d)の4個あり、その内、(a)、(b)の角部(イ)〜(ニ)は、各角部を形成する2辺の交差角度が90±5°の範囲内にあり、各角部を形成する2辺の少なくとも1辺が角部の属する炭化物粒子の差し渡しの0.1倍以上であるため、(a)と(b)は直角炭化物粒子である。この内、(ロ)と(ハ)の角部の一辺は該角部から少し進んだ所で外側に湾曲しているが、各角部を形成する2接線の交差角度が90±5度の範囲内にあり、直角角部である。これに対して、結晶粒子(c)の角部(ホ)は交差角度が90±5°の範囲内にあるものの、角部(ホ)を構成する2辺の、隣の角部(凹型)迄の長さが共に結晶粒子(c)の差し渡し6.7μmの0.1倍未満であるため、結晶粒子(c)は直角炭化物粒子ではない。また、結晶粒子(d)の各角部は、これらを構成する各2辺の交差角度が90±5°の範囲外にあるため、直角炭化物粒子ではない。また、各粒子の差し渡しは、図2中に示すように、(a)、(b)粒子が7.1μmと4.5μmである。よって、比較例27の破面に観察される直角炭化物粒子の差し渡しの最大値を7.1μmとした。この比較例27の抗折力差は6931MPaと大きく、穴あけ寿命は740穴と比較例25に比べても、0.46倍と大幅に小さく、劣っている。このことは、破面内に観察される直角炭化物粒子の差し渡しの最大値が如何に大きく影響しているかを示している。そこで、本発明の微小工具用微粒超硬合金を構成する炭化物粒子の平均粒径を0.2〜0.8μm、Co量を2〜15質量%とし、破面内に観察される直角炭化物粒子の差し渡しの最大値を0.6〜と4.0μmとした。この理由は、比較例24は、微小工具用微粒超硬合金を構成するCo量が2質量%未満と少なく、しかも、炭化物粒子の平均粒径が0.2μm未満であるように炭化物粒子の成長が十分でなく、微粒超硬合金が十分に緻密になっていないため微粒超硬合金全体に十分な抗折力が得られず、しかも、破面内に観察される直角炭化物粒子の差し渡しの最大値が0.6μm未満のため、微粒超硬合金中に一旦クラックが発生するとその進展が抑えられず、十分な抗折力が得られなくなったためである。一方、比較例25は、Co量が15質量%を超えて多く、炭化物粒子の平均粒径が0.8μmを超えて大きく成長しているため、微粒超硬合金の硬度が下がり耐摩耗性が不十分になるとともに、Co量が多いため、Coの凝集部が出来やすくなり、この凝集部を中心にして炭化物粒子が異常成長しやすくなり、破面内に観察される直角炭化物粒子の差し渡しの最大値も4.0μmを超えて大きくなり、これを基点にして破断し易くなったため抗折力が極端に小さいものが現れた、即ち、抗折力差が大きくなったためである。また、比較例26は、炭化物粒子の平均粒径が0.5μm、Co量が8質量%と本発明の範囲内にあるものの、破面に観察される直角炭化物粒子の差し渡しの最大値が4.2μmと、本発明の範囲内を超えて大きいため、この粗大な直角炭化物粒子を基点にして破断し易くなったため抗折力が極端に小さいものが現れ、抗折力差が大きくなるとともに、穴あけ寿命を測定時に、初期の段階でドリルが折れてしまい易くなったためである。また、比較例27は、炭化物粒子の平均粒径が0.7μmであるにも関わらず、Co量が16質量%と本発明の範囲外で大きく、破面に観察される直角炭化物粒子の差し渡しの最大値が7.1μmと、本発明の範囲内を大幅に超えて大きいため、この粗大な炭化物粒子を基点にして破断し抗折力が極端に小さいものが現れ、抗折力差が大きくなるとともに、穴あけ寿命測定時に、極初期の段階でドリルが折れてしまい易くなったためである。なお、比較例26、27において、粗大な炭化物粒子が形成された理由は、比較例26、27の作製過程で、アトライターによる混合・粉砕後に、スラリーを目開き45μmの篩を通しているものの、噴流衝合を用いていないため、スラリー中のWC等の炭化物硬質粒子粉末とCo粉末間の分散が不十分でCoの凝集部が残るとともに、扁平片が形成されてしまい、篩によっても、略40μm以下のCo凝集粉や扁平片を除去出来なかったため、本スラリーから作製した成形体を焼結する過程で、W等の炭化物硬質粒子形成元素がCoの凝集部や扁平片中に一旦固溶した後、再析出する段階でWC等の炭化物粒子として異常成長し、焼結中に4μmを超えて大きな炭化物粒子が形成されてしまったためである。この異常成長は、Co量が16質量%ある比較例27において顕著であり、Co量が多い程、顕著に現れることを示している。なお、抗折力測定時に破断した破面内に観察される粗大な炭化物粒子であっても、その形状が上記の直角炭化物粒子、即ち、少なくとも一箇所の角部の交差角度が90±5度の範囲内である炭化物粒子でなく、非直角炭化物粒子である場合は、表2の本発明例1、6、11に見られるように、その差し渡しの最大値が4μmを超えても抗折力差が2000MPaよりも小さく、穴あけ寿命も3400穴以上と長く優れている。よって、抗折力差が小さく、穴あけ寿命が長い、優れた微小工具用微粒超硬合金を得るためには、直角炭化物粒子の最大径を0.6〜4μmにすることが重要である。
以上より、本願発明の微小工具用微粒超硬合金を、炭化物粒子の平均粒径が0.2〜0.8μm、Co量が2〜15質量%の微小工具用微粒超硬合金であって、外部荷重により折断したとき、その破面にある炭化物粒子のうちに、該破面にある炭化物粒子の輪郭の一部を構成する少なくとも一つの角部が、互いに90±5度の角度の範囲内で交差する2辺からなり、且つ、該2辺の少なくとも1辺の長さが該角部の属する炭化物粒子の差し渡しの0.1倍以上である直角角部である炭化物粒子が存在し、該直角角部を有する炭化物粒子の差し渡しの最大値が0.6〜4μmであることを特徴とする微小工具用微粒超硬合金とした。また、本願発明の微小工具用微粒超硬合金の製造方法を、少なくともWC粉末とCo粉末の両者を含有する微小工具用微粒超硬合金製造用混合粉と溶媒とからなるスラリーに加圧エネルギーを加えて流路によって搬送する時、該流路の上流側で少なくとも2以上に分岐する第1の工程と、該2以上に分岐した流路が下流側において内径を小さくした開口部を有し、該開口部から噴出したスラリーが互いに対抗する様に配置され、噴出したスラリーが互いに略一点で交差するように衝突させ、混合、粉砕する第2の工程と、該衝突後のスラリーを回収、乾燥する第3の工程とにより作製した微小工具用微粒超硬合金製造用混合粉を成形、焼結することを特徴とする微小工具用微粒超硬合金の製造方法とした。
From Table 2, the average particle diameters of carbide particles such as WC forming the fine cemented carbide are 0.1 μm and 0.9 μm, and the right-angle carbide particles observed in the fracture surface fractured at the time of bending strength measurement are passed. In Comparative Examples 24 and 25 in which the maximum values of 0.5 and 4.1 μm are the difference between the maximum value and the minimum value of the bending strength are 2905 and 3009 MPa, and the drilling life is 1710 and 1620 holes On the other hand, Examples 1 to 5 of the present invention in which the average particle diameter of the carbide particles is 0.6 to 4.0 μm, and the maximum value of the right-angle carbide particles observed in the fracture surface is 0.6 to 4.0 μm. The bending strength difference is as small as 923 to 1950 MPa, the drilling life is 3430 holes or more, which is twice as long as that of Comparative Examples 24 and 25, and is extremely excellent. Further, from Table 2, with respect to Comparative Examples 24 and 25 in which the amount of Co of the fine cemented carbide is 1 to 16% by mass, the amount of Co is 2 to 15% by mass and the right-angle carbide particles observed in the fracture surface In Examples 16-19 of the present invention in which the maximum value of the handing over is in the range of 0.9-3.1 μm and 0.6-4.0 μm, the difference in bending strength is as small as 937-1421 MPa, and the drilling life is 4620 More than the hole and 2.8 times longer than those of Comparative Examples 24 and 25, which was remarkably excellent.
In addition, Comparative Example 26, in which the slurry was mixed and pulverized using the attritor method, only passed through a sieve having an opening of 45 μm, and not mixed and pulverized by jet mixing, had a composition of Co amount, Cr, Ta, and V. Although the average particle diameter of the carbide particles is 0.5 μm, which is the same as that of Example 20 of the present invention, the maximum value of the right-angle carbide particles observed on the fracture surface is as large as 4.2 μm, and the difference in bending strength is large. It is 3072 MPa and the drilling life is 1570 holes. On the other hand, Example 20 of the present invention has a small bending resistance difference 1862, and the drilling life is 3560, which is 2.2 times longer than that of Comparative Example 26, and is extremely excellent.
In addition, the amount of Co is 16% by mass, which is outside the scope of the present invention, and uses mixed powder that does not contain Cr3C2, TaC, VC powder, and after mixing and grinding for 8 hours under the same attritor conditions as in Invention Examples 1-15 1375 ° C., after molding and dewaxing under the same conditions as in Examples 1 to 15 of the present invention, using the mixed powder produced without passing through sieving with an opening of 45 μm and mixing and pulverization by jet mixing. In Comparative Example 27 produced by sintering with the above, the average particle size of the carbide particles constituting the sintered body is 0.7 μm, and the maximum value of the right-angled carbide particles observed on the fracture surface is 7.1 μm. Met. 1 and 2 show an SEM photograph of the fracture surface of Comparative Example 27 and a schematic diagram thereof. 1 and 2, there are four coarse carbide particles (a) to (d), of which (a) and (b) corner portions (a) to (d) form each corner portion. Since the crossing angle of the two sides is in the range of 90 ± 5 °, and at least one side of the two sides forming each corner is 0.1 times or more of the passing of the carbide particles to which the corner belongs, (a ) And (b) are right-angle carbide particles. Among these, one side of the corners of (B) and (C) is curved outward at a position slightly advanced from the corner, but the intersection angle of the two tangents forming each corner is 90 ± 5 degrees. It is within the range and is a right angle corner. On the other hand, the corner (e) of the crystal grain (c) has an intersecting angle in the range of 90 ± 5 °, but the two adjacent corners (concave) constituting the corner (e). Therefore, the crystal particle (c) is not a right-angle carbide particle. Further, each corner of the crystal particle (d) is not a right-angle carbide particle because the intersection angle between the two sides constituting the crystal particle (d) is outside the range of 90 ± 5 °. Further, as shown in FIG. 2, each particle is passed between 7.1 μm and 4.5 μm for the particles (a) and (b). Therefore, the maximum value of the right-angle carbide particles observed on the fracture surface of Comparative Example 27 was set to 7.1 μm. The difference in bending strength of Comparative Example 27 is as large as 6931 MPa, and the drilling life is as small as 0.46 times that of 740 holes and Comparative Example 25, which is inferior. This shows how much the maximum value of the right-angle carbide particle passing observed in the fracture surface has a great influence. Accordingly, the carbide particles constituting the fine cemented carbide for a micro tool of the present invention have an average particle size of 0.2 to 0.8 μm, a Co content of 2 to 15% by mass, and perpendicular carbide particles observed in the fracture surface. The maximum value of the handing over was set to 0.6 to 4.0 μm. The reason for this is that in Comparative Example 24, the amount of Co constituting the fine cemented carbide for a micro tool is less than 2% by mass, and the carbide particles grow so that the average particle size of the carbide particles is less than 0.2 μm. Is not sufficient and the fine cemented carbide is not sufficiently dense, so that sufficient bending strength cannot be obtained for the entire fine cemented carbide, and the maximum delivery of right-angle carbide particles observed in the fracture surface This is because, since the value is less than 0.6 μm, once a crack is generated in the fine-grained cemented carbide, its progress cannot be suppressed, and sufficient bending strength cannot be obtained. On the other hand, in Comparative Example 25, the amount of Co exceeds 15% by mass and the average particle size of the carbide particles grows greatly exceeding 0.8 μm, so the hardness of the fine cemented carbide decreases and wear resistance decreases. As the amount of Co becomes insufficient, Co agglomerates are easily formed, and carbide particles tend to grow abnormally around this agglomerated part. This is because the maximum value is larger than 4.0 μm, and since it becomes easy to break with this as a base point, a material having an extremely small bending force appears, that is, a difference in bending force is increased. In Comparative Example 26, although the average particle diameter of the carbide particles is 0.5 μm and the Co amount is 8 mass% within the scope of the present invention, the maximum value of the right-angle carbide particles observed on the fracture surface is 4 .2 μm, which is large beyond the scope of the present invention, so that it became easy to break with the coarse right-angle carbide particles as the starting point, so that the bending force is extremely small, the difference in bending force increases, This is because the drill is easily broken at the initial stage when measuring the drilling life. Further, in Comparative Example 27, although the average particle diameter of the carbide particles is 0.7 μm, the Co content is 16% by mass, which is large outside the scope of the present invention, and the right-angle carbide particles observed on the fracture surface are passed. The maximum value is 7.1 μm, which is much larger than the range of the present invention. Therefore, the fracture is caused by the coarse carbide particles as a base point, and the bending strength is extremely small, and the bending strength difference is large. This is because the drill easily breaks at the very initial stage when measuring the drilling life. In Comparative Examples 26 and 27, the reason why coarse carbide particles were formed was that the slurry was passed through a sieve having an opening of 45 μm after mixing and pulverization by an attritor in the production process of Comparative Examples 26 and 27. Since no collision is used, the dispersion between the hard carbide particles such as WC and the Co powder in the slurry is insufficient and Co agglomerates remain, and flat pieces are formed. Since the following Co agglomerated powder and flat pieces could not be removed, carbide hard particle forming elements such as W were once dissolved in the Co agglomerated parts and flat pieces in the process of sintering the compact produced from this slurry. This is because the carbide particles such as WC grew abnormally at the stage of reprecipitation, and large carbide particles exceeding 4 μm were formed during the sintering. This abnormal growth is conspicuous in Comparative Example 27 in which the Co content is 16% by mass, and it shows that it appears more remarkably as the Co content increases. In addition, even if the coarse carbide particles observed in the fracture surface fractured at the time of measuring the bending strength, the shape is the above-mentioned right-angle carbide particles, that is, the intersection angle of at least one corner is 90 ± 5 degrees. In the case of non-orthogonal carbide particles instead of the carbide particles in the range of 1, as shown in Examples 1, 6, and 11 of the present invention in Table 2, the bending strength is exceeded even when the maximum value of the passing exceeds 4 μm. The difference is smaller than 2000 MPa and the drilling life is as long as 3400 holes or longer. Therefore, in order to obtain an excellent fine cemented carbide for fine tools having a small difference in bending strength and a long drilling life, it is important to set the maximum diameter of the right-angle carbide particles to 0.6 to 4 μm.
From the above, the fine cemented carbide for fine tools of the present invention is a fine cemented carbide for fine tools having an average particle size of carbide particles of 0.2 to 0.8 μm and an amount of Co of 2 to 15% by mass, When broken by an external load, among the carbide particles on the fracture surface, at least one corner portion constituting a part of the contour of the carbide particle on the fracture surface is within an angle range of 90 ± 5 degrees from each other. And there are carbide particles having a right-angled corner that is at least 0.1 times the length of the carbide particles to which the corner belongs, and the length of at least one of the two sides is It was set as the fine cemented carbide alloy for micro tools characterized by the maximum value of the delivery of the carbide particle which has a right angle part being 0.6-4 micrometers. Further, according to the method for producing a fine cemented carbide for a micro tool of the present invention, pressure energy is applied to a slurry comprising a mixed powder for producing a fine cemented carbide for a micro tool and a solvent containing at least both WC powder and Co powder. In addition, when transported by a flow path, the first step that branches into at least two or more upstream on the flow path, and the flow path branched into two or more has an opening with a smaller inner diameter on the downstream side, The slurry ejected from the opening is arranged so as to oppose each other, and the ejected slurry collides so that they intersect each other at approximately one point, and is mixed and pulverized, and the slurry after the collision is recovered and dried. The method for producing a fine cemented carbide for a micro tool is characterized in that the mixed powder for producing a fine cemented carbide for a micro tool produced by the third step is formed and sintered.

次に、Co中に含有されるCr量が対Coの0〜11質量%と異なっている本発明例1〜5内を比較する。いずれも、Co、及び、Co中のTa、V量がそれぞれ、8、3、2質量%と同じであるものの、Co中に含有されるCr量が0質量%である本発明例1の穴あけ寿命が3430穴であるのに対して、Co中のCr含有量が1質量%である本発明例2の穴あけ寿命は5180穴と1.5倍多く、また、同Cr含有量が11質量%である本発明例5の穴あけ寿命が3460穴であるのに対して、同Cr含有量が10質量%である本発明例4の穴あけ寿命は5390穴と1.5倍多く、優れている。よって、本発明は、Co中に含有されるCr量が1〜10質量%であることが好ましい。この理由は、Co中に含有されるCr量が1質量%未満と少ないと、焼結時に炭化物粒子が異常成長し易くなり、破面内に観察される直角炭化物粒子の最大径が大きくなり易く、微粒超硬合金の抗折力が低下するためである。一方、Co中に含有されるCr量が対Coの10質量%を超えて多くなると、Co中からCrが析出し易くなり、この析出物により微粒超硬合金の抗折力が低下するためである。
次に、Co中に含有されるTa量が対Coの0〜6質量%と異なっている本発明例6〜10内を比較する。いずれも、Co、及び、Co中のCr、V量がそれぞれ、8、5、2質量%と同じであるものの、Co中に含有されるTa量が0質量%である本発明例6の穴あけ寿命が3590穴であるのに対して、Co中のTa含有量が1質量%である本発明例7の穴あけ寿命は5390穴と1.5倍多く、また、同Ta含有量が6質量%である本発明例10の穴あけ寿命が3480穴であるのに対して、同Ta含有量が5質量%である本発明例9の穴あけ寿命は5270穴と1.5倍多く、優れている。よって、本発明は、Co中に含有されるTa量が1〜5質量%であることが好ましい。この理由は、Co中に含有されるTa量が1質量%未満と少ないと、焼結時にWC等の炭化物粒子が異常成長し易くなり、破面内に観察される直角炭化物粒子結晶粒の最大径が大きくなり、微粒超硬合金の抗折力が低下するためである。一方、Co中に含有されるTa量が対Coの5質量%を超えて多くなると、Co中からTaが析出し斑状晶を作り易くなり、この斑状晶により微粒超硬合金の抗折力が低下するためである。
次に、Co中に含有されるV量が対Coの0〜5質量%と異なっている本発明例11〜15内を比較する。いずれも、Co、及び、Co中のCr、Ta量がそれぞれ、8、4、2質量%と同じであるものの、Co中に含有されるV量が0質量%である本発明例11の穴あけ寿命が3440穴であるのに対して、Co中のV含有量が1質量%である本発明例12の穴あけ寿命は5270穴と1.5倍多く、また、同V含有量が5質量%である本発明例15の穴あけ寿命が3450穴であるのに対して、同V含有量が4質量%である本発明例14の穴あけ寿命は5250穴と1.5倍多く、優れている。よって、本発明は、Co中に含有されるV量が1〜4質量%であることが好ましい。この理由は、Co中に含有されるV量が1質量%未満と少ないと、焼結時に炭化物粒子結晶粒が異常成長し易くなり、破面に観察される直角炭化物粒子の差し渡しの最大値が大きくなり、微粒超硬合金の抗折力が低下するためである。一方、Co中に含有されるV量が4質量%を超えて多くなると、Co中からVがWC等の炭化物粒子とCoとの界面近傍に析出し、炭化物粒子とCoとの間の強度が低下し、微粒超硬合金の抗折力が低下するためである。
Next, the present invention examples 1 to 5 in which the amount of Cr contained in Co is different from 0 to 11% by mass of Co will be compared. In both cases, the amount of Ta and V in Co and Co is the same as 8, 3, and 2% by mass, respectively, but the amount of Cr contained in Co is 0% by mass. While the life is 3430 holes, the drilling life of the present invention example 2 in which the Cr content in Co is 1% by mass is 1.5 times as long as 5180 holes, and the Cr content is 11% by mass. The drilling life of Invention Example 5 is 3460 holes, whereas the drilling life of Invention Example 4 having the same Cr content of 10% by mass is 5390 holes, which is 1.5 times as great. Therefore, in the present invention, the amount of Cr contained in Co is preferably 1 to 10% by mass. The reason for this is that if the amount of Cr contained in Co is less than 1% by mass, carbide particles tend to grow abnormally during sintering, and the maximum diameter of right-angle carbide particles observed in the fracture surface tends to increase. This is because the bending strength of the fine cemented carbide decreases. On the other hand, if the amount of Cr contained in Co exceeds 10% by mass with respect to Co, Cr is likely to precipitate from Co, and this precipitate reduces the bending strength of the fine cemented carbide. is there.
Next, the present invention examples 6 to 10 in which the amount of Ta contained in Co is different from 0 to 6% by mass of Co will be compared. In both cases, the amount of Ta in Co and the amount of Ta contained in Co is 0% by mass although the amount of Cr and V in Co is the same as 8, 5, and 2% by mass, respectively. While the life is 3590 holes, the drilling life of the present invention example 7 in which the Ta content in Co is 1% by mass is 1.5 times as long as 5390 holes, and the same Ta content is 6% by mass. The drilling life of Invention Example 10 is 3480 holes, whereas the drilling life of Invention Example 9 having the same Ta content of 5% by mass is 5270 holes, which is 1.5 times as great. Therefore, in the present invention, the amount of Ta contained in Co is preferably 1 to 5% by mass. The reason for this is that if the amount of Ta contained in Co is less than 1% by mass, carbide particles such as WC tend to grow abnormally during sintering, and the maximum size of the right-angle carbide particle crystal grains observed in the fracture surface This is because the diameter increases and the bending strength of the fine cemented carbide decreases. On the other hand, when the amount of Ta contained in Co exceeds 5% by mass with respect to Co, Ta precipitates out of Co and makes it easy to form spot crystals, and the spot crystals cause the bending strength of the fine cemented carbide. It is because it falls.
Next, the present invention examples 11 to 15 in which the amount of V contained in Co is different from 0 to 5% by mass of Co will be compared. In both cases, the amount of Cr and Ta in Co and Co is the same as 8, 4, and 2% by mass, respectively, but the amount of V contained in Co is 0% by mass. Whereas the life is 3440 holes, the drilling life of Example 12 of the present invention in which the V content in Co is 1% by mass is 1.5 times as large as 5270 holes, and the same V content is 5% by mass. The drilling life of Inventive Example 15 is 3450 holes, whereas the drilling life of Inventive Example 14 in which the V content is 4 mass% is 5250 holes, which is 1.5 times as great. Therefore, in the present invention, the amount of V contained in Co is preferably 1 to 4% by mass. The reason for this is that if the amount of V contained in Co is less than 1% by mass, the crystal grains of carbide particles tend to grow abnormally during sintering, and the maximum value of the right-angle carbide particles observed on the fracture surface is maximum. This is because the bending strength of the fine cemented carbide decreases. On the other hand, when the amount of V contained in Co exceeds 4% by mass, V precipitates in the vicinity of the interface between carbide particles such as WC and Co, and the strength between the carbide particles and Co increases. This is because the bending strength of the fine cemented carbide decreases.

図1は、比較例27の破面の走査電子顕微鏡写真を示す。FIG. 1 shows a scanning electron micrograph of the fracture surface of Comparative Example 27. 図2は、図1の模式図を示す。FIG. 2 shows a schematic diagram of FIG.

Claims (1)

WC粉末Co粉末及び粒成長抑制材としてV、Cr、Taなどの金属、もしくはそれらの炭化物、窒化物、炭窒化物粉末の2種又は3種を含有する微小工具用微粒超硬合金製造用混合粉と溶媒とからなるスラリーに加圧エネルギーを加えて流路によって搬送する時、該流路の上流側で少なくとも2以上に分岐する第1の工程と、該2以上に分岐した流路が下流側において内径を小さくした開口部を有し、該開口部から噴出したスラリーが互いに対抗する様に配置され、噴出したスラリーが互いに略一点で交差するように衝突させ、混合、粉砕する第2の工程と、該衝突後のスラリーを回収、乾燥する第3の工程とにより作製した微小工具用微粒超硬合金製造用混合粉を成形、焼結することを特徴とする微小工具用微粒超硬合金の製造方法。 For the production of fine cemented carbide for micro tools containing WC powder , Co powder and metals such as V, Cr, Ta, etc., or carbides, nitrides, carbonitride powders thereof, as a grain growth inhibitor . A first step of branching at least two or more on the upstream side of the flow channel when the pressurized energy is applied to the slurry composed of the mixed powder and the solvent and conveyed by the flow channel, and the flow channel branched into the two or more Has an opening having a smaller inner diameter on the downstream side, and the slurry ejected from the opening is arranged to oppose each other, and the ejected slurry collides so as to intersect at approximately one point, and is mixed and pulverized. and second step, recovering a slurry after the collision, drying the third step, forming a microloads tool fine cemented carbide for producing mixed powder prepared by the, fine for small tools, which comprises sintering How to make cemented carbide Law.
JP2005359415A 2005-12-13 2005-12-13 Manufacturing method of fine cemented carbide for micro tool Active JP4975308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359415A JP4975308B2 (en) 2005-12-13 2005-12-13 Manufacturing method of fine cemented carbide for micro tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359415A JP4975308B2 (en) 2005-12-13 2005-12-13 Manufacturing method of fine cemented carbide for micro tool

Publications (2)

Publication Number Publication Date
JP2007162067A JP2007162067A (en) 2007-06-28
JP4975308B2 true JP4975308B2 (en) 2012-07-11

Family

ID=38245319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359415A Active JP4975308B2 (en) 2005-12-13 2005-12-13 Manufacturing method of fine cemented carbide for micro tool

Country Status (1)

Country Link
JP (1) JP4975308B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT506133B1 (en) * 2007-11-16 2009-11-15 Boehlerit Gmbh & Co Kg friction stir welding tool
JP5680465B2 (en) * 2011-03-29 2015-03-04 住友電工ハードメタル株式会社 Cutting edge exchangeable cutting tip, cutting method using the same, and manufacturing method of cutting edge exchangeable cutting tip
JP6263725B2 (en) * 2013-07-26 2018-01-24 株式会社日進製作所 Suction table
JP6036795B2 (en) * 2014-12-08 2016-11-30 住友電気工業株式会社 Rotation tool
JP7307394B2 (en) * 2019-01-09 2023-07-12 三菱マテリアル株式会社 WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
GB201902272D0 (en) 2019-02-19 2019-04-03 Hyperion Materials & Tech Sweden Ab Hard metal cemented carbide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681072A (en) * 1992-09-01 1994-03-22 Mitsubishi Materials Corp Tungsten carbide base sintered hard alloy
JP2006328452A (en) * 2005-05-24 2006-12-07 Hitachi Tool Engineering Ltd Production method of powder mixture for production of particulate sintered hard alloy andparticulate sintered hard alloy obtained by the productin method

Also Published As

Publication number Publication date
JP2007162067A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP5810469B2 (en) Cemented carbide and method for producing cemented carbide
TWI479027B (en) Hard alloy
JP5902613B2 (en) Cemented carbide tool
RU2724771C2 (en) Hard alloy having a viscosity increasing structure
JP6796266B2 (en) Cemented carbide and cutting tools
JP4975308B2 (en) Manufacturing method of fine cemented carbide for micro tool
JP6953674B2 (en) Cemented Carbide and Cutting Tools
JP5289532B2 (en) Cemented carbide and rotary tool using the same
JP2009242181A (en) Tungsten carbide powder and method for producing the same
JP2007044807A (en) Extremely small diameter end mill made of cemented carbide
JP6123138B2 (en) Cemented carbide, microdrill, and method of manufacturing cemented carbide
JP2006328452A (en) Production method of powder mixture for production of particulate sintered hard alloy andparticulate sintered hard alloy obtained by the productin method
JP2004076049A (en) Hard metal of ultra-fine particles
JP2016041853A (en) Cemented carbide, micro-drill and method for producing cemented carbide
JP2012162753A (en) Cemented carbide and method of manufacturing the same, and micro drill
JP4331958B2 (en) Cemented carbide manufacturing method
JP2012117100A (en) Cemented carbide
JP4889198B2 (en) Cemented carbide, method for producing the same, and rotary tool using the same
WO2021199260A1 (en) Cemented carbide and cutting tool comprising same
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JP3428333B2 (en) Cemented carbide, its manufacturing method and carbide tool
Grearson et al. The future of finer grain hard metals
JP2005068515A (en) Hard metal containing fine particles
EP4194576A1 (en) Cemented carbide and cutting tool using same
JP2005052938A (en) Small drill made of tungsten-carbide-based cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Ref document number: 4975308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350