JP2009275237A - Cemented carbide - Google Patents

Cemented carbide Download PDF

Info

Publication number
JP2009275237A
JP2009275237A JP2008124502A JP2008124502A JP2009275237A JP 2009275237 A JP2009275237 A JP 2009275237A JP 2008124502 A JP2008124502 A JP 2008124502A JP 2008124502 A JP2008124502 A JP 2008124502A JP 2009275237 A JP2009275237 A JP 2009275237A
Authority
JP
Japan
Prior art keywords
phase
range
cutting
phase component
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008124502A
Other languages
Japanese (ja)
Other versions
JP5284684B2 (en
Inventor
Kusuhiko Sakagami
楠彦 阪上
Shinichi Kono
信一 河野
Tsutomu Yamamoto
勉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dijet Industrial Co Ltd
Original Assignee
Dijet Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dijet Industrial Co Ltd filed Critical Dijet Industrial Co Ltd
Priority to JP2008124502A priority Critical patent/JP5284684B2/en
Publication of JP2009275237A publication Critical patent/JP2009275237A/en
Application granted granted Critical
Publication of JP5284684B2 publication Critical patent/JP5284684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cemented carbide which has excellent wear resistance, chipping resistance and welding resistance even in high speed cutting and high feed cutting, and in which the using amount of WC is reduced compared with the conventional cemented carbide. <P>SOLUTION: In the cemented carbide composed of a hard phase component comprising WC, Ti(C, N) and (Ta, Nb)C (including the case of Nb=0) and a binding phase component of Co and/or Ni, the ratio of the hard phase component lies in the range of 80 to 92 wt.% and the ratio of the binding phase component lies in the range of 8 to 20 wt.%, and its structure is composed of four phases of a WC phase, a (W, Ti, Ta, Nb)(C, N) phase (including the case of Nb=0), a Ti(C, N) phase and a binding phase, wherein, regarding the area ratio of each phase measured by scanning electron microscopy, that of the WC phase lies in the range of 10 to 45%, that of the (W, Ti, Ta, Nb)(C, N) phase lies in the range of 30 to 60% and that of the Ti(C, N) phase lies in the range of 5 to 25%, and the balance binding phase. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、切削工具等に用いられる超硬質合金に関し、特に、高速切削や高送り切削においても、耐摩耗性や耐欠損性に優れると共に、耐溶着性にも優れた超硬質合金に関するものである。   The present invention relates to a super-hard alloy used for cutting tools and the like, and particularly to a super-hard alloy having excellent wear resistance and fracture resistance and high welding resistance even in high-speed cutting and high-feed cutting. is there.

従来から、切削工具等に用いる切削加工用の材料に、WC、TiC、(Ta,Nb)Cの硬質相成分とCo及び/又はNiの結合相成分とからなる超硬合金が耐摩耗性や耐欠損性に優れているとして広く使用されている。   Conventionally, cemented carbides composed of a hard phase component of WC, TiC, (Ta, Nb) C and a binder phase component of Co and / or Ni have been used for cutting materials used for cutting tools and the like. Widely used for its excellent fracture resistance.

ここで、このような超硬合金の組織は、WC相と、一般にβ相と呼ばれる立方晶からなる(W,Ti,Ta,Nb)C相と、結合相との3相からなることが知られている。   Here, it is known that the structure of such a cemented carbide is composed of three phases of a WC phase, a (W, Ti, Ta, Nb) C phase generally composed of β-phase, and a binder phase. It has been.

しかし、近年においては、切削工具等により切削加工を行うにあたり、さらなる高速切削や高送り切削が行われるようになり、上記のような超硬合金を用いた場合においても、十分な耐摩耗性や耐溶着性を得ることができないという問題があり、耐摩耗性や耐溶着性をさらに改善することが要望されるようになった。   However, in recent years, when cutting with a cutting tool or the like, further high-speed cutting or high-feed cutting has been performed, and even when the above cemented carbide is used, sufficient wear resistance and There is a problem that the welding resistance cannot be obtained, and it has been desired to further improve the wear resistance and the welding resistance.

また、近年においては、WC原料の高騰と省資源の面から、WCを他の化合物で置き換えて、WCの使用量を減少させることも要望されている。   In recent years, from the viewpoint of soaring WC raw materials and resource saving, it is also desired to replace WC with other compounds to reduce the amount of WC used.

そして、特許文献1に示されるように、超硬合金にTiCN等の周期律表IVa、Va、VIa族金属の化合物を添加し、超硬合金の組織の表面領域と内部領域とで、粒径や結合相の面積率を異ならせた超硬合金を用いるようにしたものが提案されている。   And as shown in patent document 1, periodic table IVa, Va, VIa group metal compounds, such as TiCN, are added to a cemented carbide, and the particle size is divided into the surface region and the internal region of the structure of the cemented carbide. And cemented carbides with different binder phase area ratios have been proposed.

しかし、この特許文献1に示される超硬合金においても、高速切削や高送り切削時における耐磨耗性や耐溶着性を十分に向上させることはできなかった。   However, even the cemented carbide disclosed in Patent Document 1 cannot sufficiently improve the wear resistance and welding resistance at the time of high-speed cutting and high-feed cutting.

また、従来から、WCを主体とする超硬合金に比べて化学的安定性に優れ、高速切削に適した材料として、TiC,TiN,TiCNを主体とするサーメットが、仕上げ用切削工具の材料として使用されている。   Conventionally, cermets mainly composed of TiC, TiN and TiCN have been used as materials for finishing cutting tools as materials suitable for high-speed cutting, which are superior in chemical stability compared to cemented carbides mainly composed of WC. in use.

ここで、TiCNが多く含まれるサーメットの組織は、一般に、TiCNを核とし、周期律表IVa、Va、VIa族の炭化物や炭窒化物を周辺組織とする有芯組織となることが知られている。   Here, it is known that a cermet structure containing a large amount of TiCN is generally a cored structure having TiCN as a nucleus and periodic table IVa, Va, VIa group carbides and carbonitrides as surrounding structures. Yes.

しかし、TiCNが多く含まれるサーメットは、超硬合金に比べてその強度が低く、また熱伝導度も低いために、高送り切削や高速で断続切削した場合に、欠損が生じやすい等の問題があった。   However, cermets containing a large amount of TiCN have lower strength and lower thermal conductivity than cemented carbides, and therefore have problems such as being prone to chipping during high-feed cutting or high-speed intermittent cutting. there were.

このため、例えば、特許文献2に示されるように、有芯構造を有さない固溶体を主体としたサーメットや、特許文献3に示されるように、特定な有芯構造の第1、第2硬質相、及び単相構造の第3硬質相と結合相とからなるサーメットが提案されている。   For this reason, for example, as shown in Patent Document 2, a cermet mainly composed of a solid solution having no cored structure, or as shown in Patent Document 3, the first and second hard cores having a specific cored structure. A cermet composed of a phase and a third hard phase having a single-phase structure and a binder phase has been proposed.

しかし、上記の特許文献2,3に示されるサーメットにおいても、超硬合金のような高強度の合金は得られず、高送り切削時には依然として欠損が生じる等の問題があった。
特開2004−263254号公報 特開平6−330219号公報 特開2006−346776号公報
However, the cermets disclosed in Patent Documents 2 and 3 also have a problem that a high-strength alloy such as a cemented carbide cannot be obtained, and defects are still generated during high-feed cutting.
JP 2004-263254 A JP-A-6-330219 JP 2006-346776 A

本発明は、切削工具等に用いられる超硬合金やサーメットにおける上記のような様々な問題を解決することを課題とするものであり、高速切削や高送り切削においても、耐摩耗性や耐欠損性に優れると共に、耐溶着性にも優れ、さらに従来の超硬合金よりもWCの使用量を少なくすることができる超硬質合金を提供することを課題とするものである。   An object of the present invention is to solve the above-mentioned various problems in cemented carbides and cermets used for cutting tools and the like, and wear resistance and fracture resistance even in high-speed cutting and high-feed cutting. It is an object of the present invention to provide a super hard alloy that is excellent in heat resistance, excellent in welding resistance, and capable of reducing the amount of WC used compared to conventional super hard alloys.

本発明においては、上記のような課題を解決するため、WC、Ti(C,N)、(Ta,Nb)C(但し、Nb=0の場合を含む。)を含む硬質相成分と、Co及び/又はNiの結合相成分とからなる超硬質合金において、上記の硬質相成分が80重量%〜92重量%、結合相成分が8重量%〜20重量%の範囲であり、その組織が、WC相、(W,Ti,Ta,Nb)(C,N)相(但し、Nb=0の場合を含む。)、Ti(C,N)相、結合相の4相からなり、走査電子顕微鏡写真により測定した各相の占める面積比率が、WC相が10%〜45%、(W,Ti,Ta,Nb)(C,N)相が30%〜60%、Ti(C,N)相が5%〜25%の範囲であり、残部が結合相からなるようにした。   In the present invention, in order to solve the above-mentioned problems, a hard phase component containing WC, Ti (C, N), (Ta, Nb) C (including the case where Nb = 0), Co And / or in the superhard alloy composed of Ni binder phase component, the hard phase component is in the range of 80 wt% to 92 wt%, the binder phase component is in the range of 8 wt% to 20 wt%, and the structure is It consists of four phases: WC phase, (W, Ti, Ta, Nb) (C, N) phase (including Nb = 0), Ti (C, N) phase, and bonded phase. The area ratio of each phase measured by photographs is 10% to 45% for the WC phase, 30% to 60% for the (W, Ti, Ta, Nb) (C, N) phase, and the Ti (C, N) phase. Is in the range of 5% to 25%, and the balance is composed of the binder phase.

ここで、本発明の超硬質合金の組織中における各相の占める面積比率については、超硬質合金において鏡面仕上げした面を、走査型電子顕微鏡(SEM)により5000倍のCOMPO像をランダムに10視野撮影し、1視野毎に写真上の528格子点の相を、WC相と、(W,Ti,Ta,Nb)(C,N)相と、Ti(C,N)相とに分類し、残部を結合相として、各相の面積比率をそれぞれ求め、その平均値を示した。尚、1視野の大きさは18×24μmである。   Here, regarding the area ratio of each phase in the structure of the super hard alloy of the present invention, the surface of the super hard alloy that is mirror-finished is randomly viewed 10 times by a scanning electron microscope (SEM) at a 5000 times COMPO image. The phase of 528 lattice points on the photograph for each field of view is classified into WC phase, (W, Ti, Ta, Nb) (C, N) phase, and Ti (C, N) phase, With the remainder as the binder phase, the area ratio of each phase was determined, and the average value was shown. Note that the size of one field of view is 18 × 24 μm.

そして、本発明の超硬質合金において、硬質相成分が80重量%〜92重量%、結合相成分が8重量%〜20重量%の範囲になるようにしたのは、結合相成分が8重量%未満になると、超硬質合金の強度が低下して耐欠損性が低下する一方、結合相成分が20重量%を越えると、超硬質合金の硬度が低下して、十分な耐磨耗性が得られなくなるためである。   In the super hard alloy of the present invention, the hard phase component is in the range of 80 wt% to 92 wt% and the binder phase component is in the range of 8 wt% to 20 wt%. If the ratio is less than 1, the strength of the superhard alloy is reduced and the fracture resistance is lowered. On the other hand, if the binder phase component exceeds 20% by weight, the hardness of the superhard alloy is lowered and sufficient wear resistance is obtained. It is because it becomes impossible.

また、本発明の超硬質合金において、硬質相成分にTi(C,N)を添加させると、前記のβ相と呼ばれる立方晶からなる(W,Ti,Ta,Nb)C相の粒成長が抑制され、組織が細かくなって超硬質合金の耐磨耗性が向上するようになる。   Further, in the superhard alloy of the present invention, when Ti (C, N) is added to the hard phase component, the grain growth of the (W, Ti, Ta, Nb) C phase consisting of the cubic crystal called the β phase is caused. Suppressed, the structure becomes finer and the wear resistance of the superhard alloy is improved.

そして、このTi(C,N)をある程度以上添加させると、前記のβ相が上記の(W,Ti,Ta,Nb)(C,N)相に変化すると共に、組織中に、WC相と(W,Ti,Ta,Nb)(C,N)相と結合相との他に、単独のTi(C,N)相が出現して4相になり、このTi(C,N)相により、超硬質合金の高温での化学的安定性やで高速切削時の耐溶着性が著しく改善されると考えられる。但し、添加させるTi(C,N)の量が多くなりすぎると、WC相の面積比率が減少して、この超硬質合金における強度や熱伝導度が低下するため、硬質相成分におけるTi(C,N)の量を8重量%〜35重量%の範囲にすることが好ましい。   When this Ti (C, N) is added to some extent, the β phase changes to the (W, Ti, Ta, Nb) (C, N) phase, and the WC phase In addition to the (W, Ti, Ta, Nb) (C, N) phase and the binder phase, a single Ti (C, N) phase appears to form four phases, and this Ti (C, N) phase It is thought that the chemical stability of super hard alloys at high temperatures and the welding resistance during high-speed cutting are remarkably improved. However, if the amount of Ti (C, N) to be added becomes too large, the area ratio of the WC phase decreases, and the strength and thermal conductivity of this superhard alloy decrease. , N) is preferably in the range of 8% to 35% by weight.

また、本発明の超硬質合金において、その組織中におけるTi(C,N)相の面積比率が5%〜25%の範囲になるようにしたのは、その面積比率が5%未満では上記のような効果が十分に得られなくなる一方、面積比率が25%を超えると、上記のようにWC相の面積比率が減少して、この超硬質合金における強度や熱伝導度が低下するためである。   Further, in the superhard alloy of the present invention, the area ratio of the Ti (C, N) phase in the structure is in the range of 5% to 25% because the area ratio is less than 5% as described above. On the other hand, if the area ratio exceeds 25%, the WC phase area ratio decreases as described above, and the strength and thermal conductivity of the superhard alloy decrease. .

また、硬質相成分として添加させるTi(C,N)におけるC/N比については特に限定されず、例えば、C/N比が、8/2、7/3、5/5、3/7、2/8になったもの等を用いることができる。但し、Ti(C,N)におけるC/N比が高くなるほど、硬質相成分のWCや(Ta,Nb)Cと反応して、前記の(W,Ti,Ta,Nb)(C,N)相を形成しやすくなり、組織中にTi(C,N)相として残る割合が低下する。一方、C/N比が低くなるほど、前記の(W,Ti,Ta,Nb)(C,N)相を形成しにくくなり、組織中にTi(C,N)相として残る割合が高くなるが、焼結性が悪くなると共に、焼結中に脱窒が生じてポアが発生しやすくなる。但し、焼結後に不活性ガス中において約5MPaの高圧で処理するシンターピップ処理や、焼結後に約120MPaの高圧下で再度高温処理するHIP処理を行うことにより、上記のようなポアの発生を防止することができる。   Moreover, it does not specifically limit about C / N ratio in Ti (C, N) added as a hard phase component, For example, C / N ratio is 8/2, 7/3, 5/5, 3/7, What became 2/8 can be used. However, the higher the C / N ratio in Ti (C, N), the more it reacts with the hard phase components WC and (Ta, Nb) C, and the aforementioned (W, Ti, Ta, Nb) (C, N) It becomes easy to form a phase, and the ratio of remaining as a Ti (C, N) phase in the structure is lowered. On the other hand, the lower the C / N ratio, the more difficult it is to form the (W, Ti, Ta, Nb) (C, N) phase, and the higher the ratio of remaining Ti (C, N) phase in the structure. In addition, the sinterability is deteriorated, and denitrification occurs during sintering, and pores are easily generated. However, the generation of pores as described above is caused by performing a sintering pip process in which an inert gas is processed at a high pressure of about 5 MPa after sintering or a HIP process in which a high temperature process is performed again at a high pressure of about 120 MPa after sintering. Can be prevented.

また、本発明の超硬質合金において、その組織中におけるWC相の面積比率が10%〜45%の範囲になるようにしたのは、WC相の面積比率が10%未満になると、超硬質合金における強度や耐熱衝撃性が低下する一方、その面積比率が45%を超えると、超硬質合金における耐磨耗性が低下するためである。   Also, in the super hard alloy of the present invention, the area ratio of the WC phase in the structure is in the range of 10% to 45% because when the area ratio of the WC phase is less than 10%, the super hard alloy This is because the strength and thermal shock resistance of the steel are reduced, and if the area ratio exceeds 45%, the wear resistance of the superhard alloy is reduced.

また、本発明の超硬質合金において、その組織中における(W,Ti,Ta,Nb)(C,N)相の面積比率が30%〜60%の範囲になるようにしたのは、この面積比率で30%未満になると、超硬質合金における耐磨耗性や耐酸化性を十分に向上させることができなくなる一方、この面積比率60%を超えると、相対的にWC相やTi(C,N)相の割合が減少して、超硬質合金における強度が低下するためである。   In the super hard alloy of the present invention, the area ratio of the (W, Ti, Ta, Nb) (C, N) phase in the structure is in the range of 30% to 60%. When the ratio is less than 30%, the wear resistance and oxidation resistance of the superhard alloy cannot be sufficiently improved. On the other hand, when the area ratio exceeds 60%, the WC phase and Ti (C, This is because the ratio of the N) phase decreases and the strength of the superhard alloy decreases.

また、本発明の超硬質合金においては、上記の相成分中に、周期律表IVa、Va、VIa族の化合物を5重量%以下含有させることができる。   In the superhard alloy of the present invention, the phase components IVa, Va, and VIa group compounds can be contained in an amount of 5% by weight or less in the phase component.

ここで、周期律表IVa、Va、VIa族の化合物としては、これらの炭化物や窒化物や炭窒化物を用いることができる。そして、例えば、CrやVの化合物を添加した場合は、CrやVはそれぞれ結合相中に固溶されるようになると考えられる。また、Moの化合物を添加した場合には、WCやTi(C,N)と一緒に(W,Ti,Ta,Nb)(C,N)相を形成しやすくなり、焼結性が向上するが、(W,Ti,Ta,Nb)(C,N)相の粒度が粗くなって、超硬質合金の強度や耐磨耗性が劣化する傾向にある。   Here, these carbides, nitrides, and carbonitrides can be used as the compounds of the periodic table groups IVa, Va, and VIa. For example, when a Cr or V compound is added, Cr and V are considered to be dissolved in the binder phase. In addition, when a Mo compound is added, it becomes easy to form a (W, Ti, Ta, Nb) (C, N) phase together with WC and Ti (C, N), and the sinterability is improved. However, the grain size of the (W, Ti, Ta, Nb) (C, N) phase becomes coarse, and the strength and wear resistance of the superhard alloy tend to deteriorate.

本発明の超硬質合金においては、WC、Ti(C,N)、(Ta,Nb)C(但し、Nb=0の場合を含む。)を含む硬質相成分が80重量%〜92重量%、Co及び/又はNiの結合相成分が8重量%〜20重量%の範囲であり、その組織が、WC相、(W,Ti,Ta,Nb)(C,N)相(但し、Nb=0の場合を含む。)、Ti(C,N)相、結合相の4相からなり、走査電子顕微鏡により測定した各相の占める面積比率が、WC相が10%〜45%、(W,Ti,Ta,Nb)(C,N)相が30%〜60%、Ti(C,N)相が5%〜25%の範囲であり、残部が結合相からなるようにしたため、従来の超硬合金やサーメットに比べて、上記のように耐摩耗性や耐欠損性や耐溶着性が大きく向上し、鋼やステンレスの高速切削や高送り切削においても、摩耗や欠損や切屑の溶着が防止されるようになり、さらに従来の超硬合金よりもWCの使用量を少なくすることができるようになった。   In the superhard alloy of the present invention, the hard phase component containing WC, Ti (C, N), (Ta, Nb) C (including the case where Nb = 0) is 80 wt% to 92 wt%, The binder phase component of Co and / or Ni is in the range of 8 wt% to 20 wt%, and the structure is WC phase, (W, Ti, Ta, Nb) (C, N) phase (where Nb = 0 ), Ti (C, N) phase, and bonded phase, and the area ratio of each phase measured by a scanning electron microscope is 10% to 45% for the WC phase, and (W, Ti , Ta, Nb) (C, N) phase is in the range of 30% to 60%, Ti (C, N) phase is in the range of 5% to 25%, and the balance is composed of the binder phase. Compared to alloys and cermets, the wear resistance, fracture resistance, and welding resistance are greatly improved as described above. Also in feed cutting, it becomes welded wear and defects or chips can be prevented, it becomes possible to reduce the amount of WC than more traditional cemented carbide.

次に、本発明に係る超硬質合金について、実施例を挙げて具体的に説明すると共に、この実施例に係る超硬質合金を用いたチップを正面フライスに使用して切削加工を行った場合に、チップにおける摩耗や欠損や切屑の溶着が防止されることを、比較例を挙げて明らかにする。なお、本発明に係る超硬質合金は、特に下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Next, the superhard alloy according to the present invention will be specifically described with reference to examples, and when cutting is performed using a tip using the superhard alloy according to this example for a face mill. It will be clarified with a comparative example that wear, chipping and chip welding are prevented in the chip. The superhard alloy according to the present invention is not particularly limited to those shown in the following examples, and can be appropriately modified and implemented without departing from the scope of the invention.

(実施例1〜9及び比較例1〜9)
実施例1〜9及び比較例1〜9においては、硬質相成分として、平均粒径が1.1μmのWC粉と、平均粒径が1.5μmでC/Nが5/5のTi(C,N)粉と、平均粒径が1.2μmでTa/Nbが7/3の(Ta,Nb)C粉とを用い、結合相成分として、平均粒径が1.3μmのCo粉を用いるようにした。
(Examples 1-9 and Comparative Examples 1-9)
In Examples 1-9 and Comparative Examples 1-9, as the hard phase component, WC powder having an average particle diameter of 1.1 μm and Ti (C) having an average particle diameter of 1.5 μm and C / N of 5/5 , N) powder and (Ta, Nb) C powder having an average particle diameter of 1.2 μm and Ta / Nb of 7/3, and Co powder having an average particle diameter of 1.3 μm as the binder phase component. I did it.

さらに、実施例8においては、結合相成分として平均粒径が1μmのNi粉を、実施例9においては、その他の成分として、周期律表IVa、Va、VIa族の炭化物である平均粒径が1.2μmのVC粉を、比較例3においては、結合相成分として平均粒径が1μmのNi粉と、その他の成分として、周期律表IVa、Va、VIa族の炭化物である平均粒径が2.5μmのMo2C粉を用いるようにした。 Further, in Example 8, Ni powder having an average particle diameter of 1 μm as the binder phase component, and in Example 9, the average particle diameter of the periodic table IVa, Va, VIa group carbides as the other components. 1.2 μm VC powder, in Comparative Example 3, Ni powder having an average particle size of 1 μm as a binder phase component, and other components having an average particle size of carbides of periodic table IVa, Va, VIa group A 2.5 μm Mo 2 C powder was used.

そして、上記の硬質相成分と結合相成分とその他の成分とを、それぞれ下記の表1に示す重量比になるように配合し、混合溶剤にアセトンを使用し、超硬合金製ボールを用いたボールミルにより、それぞれ72時間混合させた後、各混合物に対してそれぞれ2重量%のパラフィンを添加し、スプレードライヤーにより乾燥させて各超硬質合金の粉末を得た。   And said hard phase component, a binder phase component, and another component were mix | blended so that it might become a weight ratio respectively shown in the following Table 1, acetone was used for the mixed solvent, and the cemented carbide ball was used. After mixing for 72 hours by a ball mill, 2% by weight of paraffin was added to each mixture and dried by a spray dryer to obtain a powder of each superhard alloy.

次いで、上記のようにして得た各超硬質合金の粉末をそれぞれ所定の形状にプレス成形した後、それぞれアルゴン雰囲気中で100Paの減圧下において1400℃で60分間焼結させて、各超硬質合金の焼結体を得た。   Next, each of the superhard alloy powders obtained as described above was press-molded into a predetermined shape, and then sintered at 1400 ° C. for 60 minutes under a reduced pressure of 100 Pa in an argon atmosphere. A sintered body was obtained.

そして、上記のようにして得た各超硬質合金の焼結体の面を鏡面仕上げし、鏡面仕上げされた面について、前記のように走査型電子顕微鏡(SEM)により5000倍のCOMPO像をランダムに10視野撮影し、1視野毎に写真上の528格子点の相を、WC相と、(W,Ti,Ta,Nb)(C,N)相と、Ti(C,N)相とに分類し、残部を結合相として、各相の面積比率を求めて、それぞれ各相の面積比率の平均値を算出し、その結果を表1に示した。また、硬質相成分におけるTi(C,N)の重量比が大きい比較例1〜3の超硬質合金の焼結体においては、サーメットと同じ有芯組織になっていたため、有芯組織として示した。   Then, the surface of the sintered body of each super-hard alloy obtained as described above is mirror-finished, and a 5000-times COMPO image is randomly obtained on the mirror-finished surface by the scanning electron microscope (SEM) as described above. 10 fields of view, and the phase of 528 lattice points on the photograph for each field of view is WC phase, (W, Ti, Ta, Nb) (C, N) phase, and Ti (C, N) phase. The area ratio of each phase was obtained by classifying and the remainder as the binder phase, and the average value of the area ratio of each phase was calculated. The results are shown in Table 1. Moreover, in the sintered body of the superhard alloys of Comparative Examples 1 to 3 in which the weight ratio of Ti (C, N) in the hard phase component is large, the cored structure was the same as that of the cermet, so that the cored structure was shown. .

ここで、実施例2の超硬質合金の焼結体のSEM写真を図1に、実施例3の超硬質合金の焼結体のSEM写真を図2に、実施例4の超硬質合金の焼結体のSEM写真を図3に示した。なお、これらのSEM写真において、(1)として示した白色の部分はWC相、(2)として示した黒色の部分はTi(C,N)相、(3)として示した薄い灰色の部分は(W,Ti,Ta,Nb)(C,N)相(βCN相と略す。)、(4)として示した濃い灰色の部分は結合相である。 Here, the SEM photograph of the sintered body of the super hard alloy of Example 2 is shown in FIG. 1, the SEM photograph of the sintered body of the super hard alloy of Example 3 is shown in FIG. 2, and the sintered body of the super hard alloy of Example 4 is fired. The SEM photograph of the ligature is shown in FIG. In these SEM photographs, the white part shown as (1) is the WC phase, the black part shown as (2) is the Ti (C, N) phase, and the light gray part shown as (3) is The dark gray portions shown as (W, Ti, Ta, Nb) (C, N) phase (abbreviated as β CN phase) and (4) are the binder phase.

また、比較例1の超硬質合金の焼結体のSEM写真を図4に示した。このSEM写真において、(1)として示した黒色に近い部分は芯部となるTi(C,N)相、(2)として示した灰色の部分は周辺組織となる(W,Ti,Ta,Nb)(C,N)相、(3)として示した白色の部分は結合相であり、芯部の周囲に周辺組織を有する有芯組織になっている。   Moreover, the SEM photograph of the sintered compact of the super hard alloy of the comparative example 1 was shown in FIG. In this SEM photograph, the portion near black shown as (1) is the Ti (C, N) phase that becomes the core, and the gray portion shown as (2) is the surrounding structure (W, Ti, Ta, Nb) ) (C, N) phase, white part shown as (3) is a binder phase, and has a cored structure having surrounding tissues around the core part.

(比較例10)
比較例10においては、硬質相成分として、上記の実施例1〜9及び比較例1〜8におけるTi(C,N)粉に代えて、平均粒径が1.2μmでW/Tiが5/5の(W,Ti)C粉を用い、硬質相成分と結合相成分とを下記の表2に示す重量比になるように配合し、それ以外は、上記の実施例1〜9及び比較例1〜9の場合と同様にして超硬質合金の焼結体を得た。
(Comparative Example 10)
In Comparative Example 10, as the hard phase component, instead of the Ti (C, N) powders in Examples 1 to 9 and Comparative Examples 1 to 8, the average particle diameter is 1.2 μm and W / Ti is 5 / 5 (W, Ti) C powder is used, and the hard phase component and the binder phase component are blended so as to have a weight ratio shown in Table 2 below. Otherwise, the above Examples 1 to 9 and Comparative Example In the same manner as in cases 1 to 9, a sintered body of super hard alloy was obtained.

そして、このようにして得た超硬質合金の焼結体についても、上記の実施例1〜9及び比較例1〜9の場合と同様にしてSEM写真を撮影し、組織中の各相の面積比率の平均値を求め、その結果を下記の表2に示した。   And also about the sintered body of the superhard alloy obtained in this way, the SEM photograph was image | photographed similarly to the case of said Examples 1-9 and Comparative Examples 1-9, and the area of each phase in a structure | tissue The average value of the ratios was determined, and the results are shown in Table 2 below.

ここで、この比較例10の超硬質合金の焼結体においては、上記のように硬質相成分にTi(C,N)粉を用いていないため、図5のSEM写真に示すように、Ti(C,N)相が現れず、(1)として示した白色のWC相と、(2)として示した薄い灰色の(W,Ti,Ta,Nb)C相(β相と略す。)と、(3)として示した濃い灰色の結合相とが存在していた。   Here, in the sintered body of the super hard alloy of Comparative Example 10, since Ti (C, N) powder is not used for the hard phase component as described above, as shown in the SEM photograph of FIG. (C, N) phase does not appear, white WC phase shown as (1), and light gray (W, Ti, Ta, Nb) C phase (abbreviated as β phase) shown as (2). , (3) and a dark gray binder phase.

(実施例10,11及び比較例11,12)
実施例10及び比較例11,12においては、硬質相成分として、上記の実施例1〜9及び比較例1〜9におけるC/Nが5/5のTi(C,N)粉に代えて、平均粒径が1.5μmでC/Nが7/3のTi(C,N)粉を、実施例11においては、平均粒径が1.5μmでC/Nが3/7のTi(C,N)粉を用いるようにした。
(Examples 10 and 11 and Comparative Examples 11 and 12)
In Example 10 and Comparative Examples 11 and 12, as a hard phase component, C / N in the above Examples 1 to 9 and Comparative Examples 1 to 9 was replaced with Ti (C, N) powder of 5/5, Ti (C, N) powder having an average particle diameter of 1.5 μm and C / N of 7/3, and in Example 11, Ti (C, N) having an average particle diameter of 1.5 μm and C / N of 3/7 , N) Powder was used.

さらに、実施例10においては、その他の成分として、周期律表IVa、Va、VIa族の炭化物である平均粒径が1.4μmのCr32粉を、実施例11においては、平均粒径が2.5μmのMo2C粉を用いるようにした。 Furthermore, in Example 10, as other components, Cr 3 C 2 powder having an average particle size of 1.4 μm, which is a carbide of periodic table IVa, Va, VIa, is used. In Example 11, the average particle size is Used 2.5 μm Mo 2 C powder.

そして、上記の硬質相成分と結合相成分とその他の成分とを、それぞれ下記の表3に示す重量比になるように配合し、それ以外は、上記の実施例1〜9及び比較例1〜9の場合と同様にして各超硬質合金の焼結体を得た。   And said hard phase component, a binder phase component, and another component are mix | blended so that it may become a weight ratio shown in following Table 3, respectively, Otherwise, said Examples 1-9 and Comparative Examples 1- 1 In the same manner as in the case of 9, sintered bodies of the respective superhard alloys were obtained.

そして、このようにして得た各超硬質合金の焼結体についても、上記の実施例1〜9及び比較例1〜9の場合と同様にしてSEM写真を撮影し、組織中の各相の面積比率の平均値を求め、その結果を下記の表3に示した。   And also about the sintered compact of each super-hard alloy obtained in this way, the SEM photograph was image | photographed similarly to the case of said Examples 1-9 and Comparative Examples 1-9, and each phase in structure | tissue is taken. The average value of the area ratio was determined, and the result is shown in Table 3 below.

そして、上記の実施例1〜11及び比較例1〜12の各超硬質合金の焼結体を用いてISO規格SEKN1203AFN-16のチップを作製し、このように作製した各チップをそれぞれカッター径が100mmの正面フライスに取り付けた。   And the chip | tip of ISO standard SEKN1203AFN-16 was produced using the sintered compact of each super-hard alloy of said Examples 1-11 and Comparative Examples 1-12, and the diameter of each of the produced | generated chip | tips was each set as the cutter diameter. Attached to a 100 mm face mill.

そして、上記の各チップを取り付けた正面フライスを用い、第1切削試験においては、炭素鋼S53C材に対して、切削速度150m/min,送り0.3mm/刃,切込み2.0mm,切削幅75mmの条件で切削長さ0.5mの切削を繰り返して行い、チップにおける逃げ面の摩耗量及びチップの欠けを調べ、上記の摩耗量が0.3mm以上になった場合や、チップに欠けが生じた場合には、その時点における切削長さを、また摩耗量が0.3mm以上にならない場合や、チップに欠けが生じない場合には、切削長さ20mの時点における摩耗量を求め、その結果を下記の表4に示した。   In the first cutting test, the cutting speed is 150 m / min, the feed rate is 0.3 mm / blade, the cutting depth is 2.0 mm, and the cutting width is 75 mm in the first cutting test using the face mill with the above chips attached. Repeat cutting with a cutting length of 0.5m under the conditions described above, and check the amount of wear on the flank face and chip chipping of the chip. If the above wear amount is 0.3 mm or more, or chipping occurs. In this case, the cutting length at that time, and if the wear amount is not 0.3 mm or more, or if the chip is not chipped, the wear amount at the cutting length of 20 m is obtained. Is shown in Table 4 below.

また、第2切削試験においては、SUS304材に対して、切削速度120m/min,送り0.2mm/刃,切込み2.0mm,切削幅75mmの条件で切削長さ0.5mの切削を繰り返して行い、チップにおける逃げ面の摩耗量、チップの欠け及びチップへの切屑の溶着を調べ、上記の摩耗量が0.3mm以上になった場合や、チップに欠けが生じた場合や、チップに溶着が生じた場合には、その時点における切削長さを、また摩耗量が0.3mm以上にならない場合や、チップに欠けが生じない場合や、チップに溶着が生じない場合には、切削長さ5mの時点における摩耗量を求め、その結果を下記の表4に示した。   In the second cutting test, cutting with a cutting length of 0.5 m was repeated on SUS304 material under conditions of a cutting speed of 120 m / min, a feed of 0.2 mm / blade, a cutting depth of 2.0 mm, and a cutting width of 75 mm. Investigate the amount of wear on the flank surface, chip chipping and chip welding on the chip.If the above wear amount is 0.3 mm or more, chipping occurs, or the chip is welded. If the wear amount does not exceed 0.3 mm, the chip does not chip, or the chip does not weld, the cutting length The amount of wear at the time of 5 m was determined, and the results are shown in Table 4 below.

この結果から明らかなように、本発明の条件を満たす実施例1〜11の各超硬質合金の焼結体からなるチップを使用した場合には、上記の第1切削試験及び第2切削試験の何れにおいても、チップの摩耗が少なく、チップが欠けたり、切屑が溶着したりすることはなかった。   As is apparent from the results, when the chips made of the sintered bodies of the superhard alloys of Examples 1 to 11 satisfying the conditions of the present invention are used, the first cutting test and the second cutting test are performed. In any case, there was little wear of the tip, and the tip was not chipped or chips were not welded.

これに対して、比較例1〜3のサーメットと同じ有芯組織になった各超硬質合金の焼結体からなるチップを使用した場合には、上記の第1切削試験及び第2切削試験の何れにおいてもチップに欠けが発生した。   On the other hand, when using a chip made of a sintered body of each superhard alloy that has the same cored structure as the cermets of Comparative Examples 1 to 3, the first cutting test and the second cutting test are performed. In any case, chipping occurred in the chip.

また、WC相の面積比率が45%を超える比較例4及び比較例8、結合相成分が20重量%を超える比較例7、Ti(C,N)相が存在しない比較例10の各超硬質合金の焼結体からなるチップを使用した場合には、上記の第1切削試験及び第2切削試験の何れにおいても、チップの摩耗が大きくなり、さらに比較例4及び比較例10の超硬質合金の焼結体からなるチップを使用した場合には、第2切削試験において切屑の溶着も発生していた。   Further, each of the superhards of Comparative Example 4 and Comparative Example 8 in which the area ratio of the WC phase exceeds 45%, Comparative Example 7 in which the binder phase component exceeds 20% by weight, and Comparative Example 10 in which no Ti (C, N) phase exists. When a chip made of an alloy sintered body is used, the chip wear increases both in the first cutting test and the second cutting test, and the super hard alloys of Comparative Example 4 and Comparative Example 10 are used. In the case where the chip made of the sintered body was used, chip welding occurred in the second cutting test.

また、WC相の面積比率が10%未満になった比較例5及び比較例9、結合相成分が8重量%未満になった比較例6、(W,Ti,Ta,Nb)(C,N)相の面積比率が60%を超える比較例11及び比較例12の各超硬質合金の焼結体からなるチップを使用した場合には、上記の第1切削試験及び第2切削試験の何れにおいてもチップに欠けが発生し、さらに比較例11及び比較例12の超硬質合金の焼結体からなるチップを使用した場合には、第2切削試験において切屑の溶着も発生していた。   Further, Comparative Example 5 and Comparative Example 9 in which the area ratio of the WC phase was less than 10%, Comparative Example 6 in which the binder phase component was less than 8% by weight, (W, Ti, Ta, Nb) (C, N ) In the case of using a chip made of a sintered body of each super hard alloy of Comparative Example 11 and Comparative Example 12 in which the phase area ratio exceeds 60%, in any of the first cutting test and the second cutting test In addition, chipping occurred in the chip, and in the case where the chip made of the sintered super hard alloy of Comparative Example 11 and Comparative Example 12 was used, chip welding occurred in the second cutting test.

実施例2の超硬質合金の焼結体における組織状態を示した図である。6 is a view showing a structure state of a sintered body of a super hard alloy of Example 2. FIG. 実施例3の超硬質合金の焼結体における組織状態を示した図である。6 is a view showing a structure state of a sintered body of a super hard alloy of Example 3. FIG. 実施例4の超硬質合金の焼結体における組織状態を示した図である。It is the figure which showed the structure | tissue state in the sintered compact of the super hard alloy of Example 4. FIG. 比較例1の超硬質合金の焼結体における組織状態を示した図である。6 is a view showing a structure state in a sintered body of a super hard alloy of Comparative Example 1. FIG. 比較例10の超硬質合金の焼結体における組織状態を示した図である。6 is a view showing a structure state of a sintered body of a super hard alloy of Comparative Example 10. FIG.

Claims (3)

WC、Ti(C,N)、(Ta,Nb)C(但し、Nb=0の場合を含む。)を含む硬質相成分と、Co及び/又はNiの結合相成分とからなる超硬質合金において、上記の硬質相成分が80重量%〜92重量%、結合相成分が8重量%〜20重量%の範囲であり、その組織が、WC相、(W,Ti,Ta,Nb)(C,N)相(但し、Nb=0の場合を含む。)、Ti(C,N)相、結合相の4相からなり、走査電子顕微鏡写真により測定した各相の占める面積比率が、WC相が10%〜45%、(W,Ti,Ta,Nb)(C,N)相が30%〜60%、Ti(C,N)相が5%〜25%の範囲であり、残部が結合相からなることを特徴とする超硬質合金   In a superhard alloy comprising a hard phase component containing WC, Ti (C, N), (Ta, Nb) C (including the case where Nb = 0) and a binder phase component of Co and / or Ni. The hard phase component is in the range of 80 wt% to 92 wt%, the binder phase component is in the range of 8 wt% to 20 wt%, and the structure is the WC phase, (W, Ti, Ta, Nb) (C, N) phase (provided that Nb = 0 is included), Ti (C, N) phase, and binder phase, and the area ratio of each phase measured by scanning electron micrograph is WC phase. 10% to 45%, (W, Ti, Ta, Nb) (C, N) phase is in the range of 30% to 60%, Ti (C, N) phase is in the range of 5% to 25%, the balance is the bonded phase Super hard alloy characterized by comprising 請求項1に記載の超硬質合金において、上記の硬質相成分におけるTi(C,N)の量が8重量%〜35重量%の範囲であることを特徴とする超硬質合金。   The superhard alloy according to claim 1, wherein the amount of Ti (C, N) in the hard phase component is in the range of 8 wt% to 35 wt%. 請求項1又は請求項2に記載の超硬質合金において、上記の相成分に、周期律表IVa、Va、VIa族の化合物が5重量%以下含有されていることを特徴とする超硬質合金。   The superhard alloy according to claim 1 or 2, wherein the phase component contains 5% by weight or less of a compound of groups IVa, Va and VIa of the periodic table.
JP2008124502A 2008-05-12 2008-05-12 Super hard alloy Active JP5284684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008124502A JP5284684B2 (en) 2008-05-12 2008-05-12 Super hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008124502A JP5284684B2 (en) 2008-05-12 2008-05-12 Super hard alloy

Publications (2)

Publication Number Publication Date
JP2009275237A true JP2009275237A (en) 2009-11-26
JP5284684B2 JP5284684B2 (en) 2013-09-11

Family

ID=41440936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008124502A Active JP5284684B2 (en) 2008-05-12 2008-05-12 Super hard alloy

Country Status (1)

Country Link
JP (1) JP5284684B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101288A (en) * 2010-11-08 2012-05-31 Tungaloy Corp Cermet and coated cermet
WO2013002270A1 (en) 2011-06-27 2013-01-03 京セラ株式会社 Hard alloy and cutting tool
JP2016098393A (en) * 2014-11-20 2016-05-30 日本特殊合金株式会社 Hard metal alloy
JP2017035750A (en) * 2015-08-10 2017-02-16 三菱マテリアル株式会社 Ti-BASED CERMET CUTTING TOOL EXCELLENT IN ANTI-PLASTIC DEFORMATION, ABNORMAL DAMAGE RESISTANCE AND WEAR RESISTANCE
CN108728719A (en) * 2018-06-11 2018-11-02 顾亚新 A kind of antiwear composite ceramic material and its production technology
CN110172626A (en) * 2019-07-02 2019-08-27 四川神工钨钢刀具有限公司 A kind of nonmagnetic metal ceramal, using and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5684014B2 (en) * 2011-03-17 2015-03-11 ダイジ▲ェ▼ット工業株式会社 Super hard alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196352A (en) * 1986-02-20 1987-08-29 Hitachi Metals Ltd Tough cermet
JP2001131674A (en) * 1999-11-09 2001-05-15 Hitachi Tool Engineering Ltd Tough cermet
JP2003342667A (en) * 2002-05-21 2003-12-03 Kyocera Corp TiCN GROUP CERMET AND ITS MANUFACTURING METHOD
JP2007136656A (en) * 2005-10-18 2007-06-07 Ngk Spark Plug Co Ltd Cermet-made insert and cutting tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196352A (en) * 1986-02-20 1987-08-29 Hitachi Metals Ltd Tough cermet
JP2001131674A (en) * 1999-11-09 2001-05-15 Hitachi Tool Engineering Ltd Tough cermet
JP2003342667A (en) * 2002-05-21 2003-12-03 Kyocera Corp TiCN GROUP CERMET AND ITS MANUFACTURING METHOD
JP2007136656A (en) * 2005-10-18 2007-06-07 Ngk Spark Plug Co Ltd Cermet-made insert and cutting tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012101288A (en) * 2010-11-08 2012-05-31 Tungaloy Corp Cermet and coated cermet
WO2013002270A1 (en) 2011-06-27 2013-01-03 京セラ株式会社 Hard alloy and cutting tool
JPWO2013002270A1 (en) * 2011-06-27 2015-02-23 京セラ株式会社 Hard alloys and cutting tools
EP2725111A4 (en) * 2011-06-27 2015-07-22 Kyocera Corp Hard alloy and cutting tool
US9228252B2 (en) 2011-06-27 2016-01-05 Kyocera Corporation Hard alloy and cutting tool
JP2016098393A (en) * 2014-11-20 2016-05-30 日本特殊合金株式会社 Hard metal alloy
JP2017035750A (en) * 2015-08-10 2017-02-16 三菱マテリアル株式会社 Ti-BASED CERMET CUTTING TOOL EXCELLENT IN ANTI-PLASTIC DEFORMATION, ABNORMAL DAMAGE RESISTANCE AND WEAR RESISTANCE
CN108728719A (en) * 2018-06-11 2018-11-02 顾亚新 A kind of antiwear composite ceramic material and its production technology
CN108728719B (en) * 2018-06-11 2020-06-23 宁夏兴凯硅业有限公司 Wear-resistant composite ceramic material and production process thereof
CN110172626A (en) * 2019-07-02 2019-08-27 四川神工钨钢刀具有限公司 A kind of nonmagnetic metal ceramal, using and preparation method thereof

Also Published As

Publication number Publication date
JP5284684B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP4569767B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JP5284684B2 (en) Super hard alloy
TWI479027B (en) Hard alloy
JP5732663B2 (en) Cubic boron nitride sintered tool
WO2006134944A1 (en) Cermet insert and cutting tool
JP6227517B2 (en) Cemented carbide
JP5684014B2 (en) Super hard alloy
JP2007044807A (en) Extremely small diameter end mill made of cemented carbide
JP2010234519A (en) Cermet and coated cermet
JP2006328477A (en) Wc based cemented carbide member, and coated wc based cemented carbide member
WO2015166730A1 (en) Composite sintered body
JP5851826B2 (en) WC-based cemented carbide for cutting tools having excellent plastic deformation resistance at high temperatures, coated cutting tools, and methods for producing the same
JP2004076049A (en) Hard metal of ultra-fine particles
JP4553380B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JP2009248237A (en) Titanium carbonitride-based cermet cutting tool excellent in wear resistance
JP2009154224A (en) Titanium carbonitride based cermet cutting tool excellent in wear resistance
JP2011207689A (en) Composite sintered compact
JP2006144089A (en) Hard metal made of superfine particle
JP2006131975A (en) Cermet for saw blade
JP2018065228A (en) Ticn-based cermet cutting tool
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JP2006206376A (en) Ceramic sintered compact, cutting insert and cutting tool
JP4553382B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JP4553381B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
JP2022504253A (en) Hard metal with microstructure to improve toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5284684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250