JP2005063792A - Heat sensitive element and thermo-protector - Google Patents

Heat sensitive element and thermo-protector Download PDF

Info

Publication number
JP2005063792A
JP2005063792A JP2003291588A JP2003291588A JP2005063792A JP 2005063792 A JP2005063792 A JP 2005063792A JP 2003291588 A JP2003291588 A JP 2003291588A JP 2003291588 A JP2003291588 A JP 2003291588A JP 2005063792 A JP2005063792 A JP 2005063792A
Authority
JP
Japan
Prior art keywords
elastic
sensitive element
plate
heat
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003291588A
Other languages
Japanese (ja)
Inventor
Toshiaki Kawanishi
俊朗 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2003291588A priority Critical patent/JP2005063792A/en
Publication of JP2005063792A publication Critical patent/JP2005063792A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To ensure the long-term stability of a heat sensitive element of non-return type having as an operating source the stored elastic strain energy of an elastic material. <P>SOLUTION: The elastic materials 11, 12 are held in the shape of storing elastic strain energy by unifying a fusible material 3 with the surfaces of the elastic materials. Softening or melting of the fusible material 3 releases the strain energy, whereby the elastic materials 11, 12 are deformed. The elastic strain needs to be held for the elastic materials 11, 12 to store the elastic strain energy. Since the fusible material 3 is integrated with the elastic material surfaces to hold the elastic strain, the stress exerted on the large interface between the elastic materials 11, 12 and the fusible material 3 can be distributed, thereby suppressing the creep of the fusible material and ensuring the long-term stability of the thermally sensitive element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は弾性歪エネルギーを利用して動作させる感熱エレメント及びその感熱エレメントを使用したサーモプロテクタに関するものである。   The present invention relates to a heat sensitive element that operates using elastic strain energy and a thermo protector using the heat sensitive element.

従来、弾性歪を利用した感熱エレメントとしてバイメタルが知られている。すなわち、熱膨張係数の異なる材料を積層一体化し、加熱により弾性曲げ応力を発生させ、その曲げ歪を感熱量として使用することが知られている。
このバイメタルの一例として、熱膨張係数がα,α、弾性率がE,E、厚みが等厚のh、巾が等しい材料の積層体が温度上昇tのもとで生じる歪の曲げ半径rを求めると、
Conventionally, a bimetal is known as a thermal element using elastic strain. That is, it is known that materials having different thermal expansion coefficients are laminated and integrated, elastic bending stress is generated by heating, and the bending strain is used as a heat sensitive amount.
As an example of this bimetal, a thermal expansion coefficient of α 1 , α 2 , elastic modulus of E 1 , E 2 , an equal thickness of h, and a laminate of materials having the same width are subjected to distortion caused by a temperature rise t. When the bending radius r is obtained,

1/r=(α−α)t/h・24E/〔(E+E+12E1 / r = (α 1 −α 2 ) t / h · 24E 1 E 2 / [(E 1 + E 2 ) 2 + 12E 1 E 2 ]

で与えられる。
この式からも明らかなように曲げ歪が温度上昇tに比例するため、特定の温度のもとでの跳躍的変化量を得ることができず、特定の温度を動作温度とするサーモプロテクタとして使用するには、付帯手段を必要とし、構成の複雑化が避けられない。
また、温度が降下すれば元に戻り、復帰型であるという制限もある。
Given in.
As is clear from this equation, since the bending strain is proportional to the temperature rise t, it is not possible to obtain a jumping change amount at a specific temperature, and it is used as a thermo protector with a specific temperature as the operating temperature. In order to do so, additional means are required, which complicates the configuration.
There is also a restriction that if the temperature drops, it returns to its original state and is a return type.

従来、図9の(イ)に示すように弾性金属片1’を弾性的に曲げ、この曲げ弾性金属片の両端を曲げ反力に抗し特定融点の可溶合金3’で電極41’,42’に接合して弾性曲げ歪エネルギーを蓄えさせ、周囲温度が可溶合金3’の融点まで昇温されて可溶合金3’が溶融されると、その弾性曲げ歪エネルギーを解放させて図9の(ロ)に示すように弾性金属片1’と電極42’との間を分離し通電を遮断するものが公知であり(例えば、特許文献1参照)、このサーモプロテクタでは特定の温度、すなわち可溶合金の融点で動作させることができ、しかも非復帰型である。従って、前記したバイメタル式サーモプロテクタの不具合を解消できる。   Conventionally, as shown in FIG. 9A, the elastic metal piece 1 'is elastically bent, and both ends of the bending elastic metal piece are resisted against bending reaction force by a soluble alloy 3' having a specific melting point and electrodes 41 ', The elastic bending strain energy is accumulated by joining to 42 ', and when the ambient temperature is raised to the melting point of the soluble alloy 3' and the soluble alloy 3 'is melted, the elastic bending strain energy is released and the figure is released. As shown in 9 (b), there is known one that separates between the elastic metal piece 1 ′ and the electrode 42 ′ and cuts off the energization (see, for example, Patent Document 1). In this thermoprotector, a specific temperature, That is, it can be operated at the melting point of the fusible alloy and is non-returnable. Accordingly, it is possible to solve the problems of the bimetal thermoprotector described above.

特開平7−29481号公報JP 7-29481 A

しかしながら、図9に示すサーモプロテクタでは、弾性金属片の弾性曲げ歪エネルギーを支持する可溶合金での応力分布が複雑であり、可溶合金での応力集中が避けられずクリープに基づく動作不良が発生し易い。   However, in the thermo protector shown in FIG. 9, the stress distribution in the fusible alloy that supports the elastic bending strain energy of the elastic metal piece is complicated, and stress concentration in the fusible alloy is unavoidable, resulting in malfunction due to creep. It is easy to generate.

本発明の目的は、蓄えた弾性材の弾性歪エネルギーを動作源とする非復帰型の感熱エレメントの長期安定性を保証し、かかる感熱エレメントを使用した動作信頼性に優れたサーモプロテクタを提供することにある。   An object of the present invention is to provide a thermo protector that guarantees long-term stability of a non-returnable thermal element that uses the stored elastic strain energy of an elastic material as an operating source and that is excellent in operational reliability using the thermal element. There is.

請求項1に係る感熱エレメントは、弾性材が可溶材の弾性材表面への一体化により弾性歪エネルギーを蓄えた形状に保持され、該可溶材の軟化乃至は溶融により弾性歪エネルギーが解放されて弾性材が変形されることを特徴とする。
請求項2に係る感熱エレメントは、弾性材が重ね体または折り返し体であり、弾性材の重ね面または折り返し重ね面への可溶材の一体化により弾性材が弾性歪エネルギーを蓄えた形状に保持され、該可溶材の軟化乃至は溶融により弾性歪エネルギーが解放されて弾性材が変形されることを特徴とする。
請求項3に係る感熱エレメントは、請求項1または2の感熱エレメントにおいて、弾性材に弾性板が使用され、弾性板に可溶材が食い込む窪みまたは孔が設けられていることを特徴とする。
請求項4に係る感熱エレメントは、請求項1〜3何れかの感熱エレメントにおいて、弾性材に弾性板が使用され、粗面化された弾性板表面に可溶材が一体化されていることを特徴とする。
請求項5に係る感熱エレメントは、請求項1、3、4何れかの感熱エレメントにおいて、弾性板と可溶材とが交互に積層されていることを特徴とする。
請求項6に係る感熱エレメントは、請求項1〜5何れかの感熱エレメントにおいて、弾性材が弾性金属製とされていることを特徴とする。
請求項7に係る感熱エレメントは、請求項6の感熱エレメントにおいて、可溶材が可溶合金であることを特徴とする。
請求項8に係る感熱エレメントは、請求項6の感熱エレメントにおいて、可溶材が熱可塑性樹脂であることを特徴とする。
請求項9に係る感熱エレメントは、請求項1〜5何れかの感熱エレメントにおいて、弾性板が弾性を有する樹脂製であり、可溶材が熱可塑性樹脂であることを特徴とする。
請求10に係る感熱エレメントは、請求項1〜5何れかの感熱エレメントにおいて、弾性板が金属板と樹脂板との重合物であり、可溶材が熱可塑性樹脂または可溶合金であることを特徴とする。
In the heat-sensitive element according to claim 1, the elastic material is held in a shape storing elastic strain energy by integrating the soluble material on the elastic material surface, and the elastic strain energy is released by softening or melting the soluble material. The elastic material is deformed.
In the heat-sensitive element according to claim 2, the elastic material is a laminated body or a folded body, and the elastic material is held in a shape in which elastic strain energy is stored by integrating the fusible material into the laminated surface of the elastic material or the folded-up surface. The elastic material is deformed by releasing elastic strain energy by softening or melting the fusible material.
The heat sensitive element according to claim 3 is characterized in that, in the heat sensitive element according to claim 1 or 2, an elastic plate is used as the elastic material, and a recess or a hole into which the soluble material bites into the elastic plate is provided.
The thermal element according to claim 4 is the thermal element according to any one of claims 1 to 3, wherein an elastic plate is used as an elastic material, and a soluble material is integrated with a roughened elastic plate surface. And
The thermal element according to claim 5 is characterized in that, in the thermal element according to any one of claims 1, 3, and 4, elastic plates and soluble materials are alternately laminated.
The thermal element according to claim 6 is the thermal element according to any one of claims 1 to 5, characterized in that the elastic material is made of an elastic metal.
The heat-sensitive element according to claim 7 is characterized in that, in the heat-sensitive element according to claim 6, the soluble material is a soluble alloy.
The heat-sensitive element according to claim 8 is the heat-sensitive element according to claim 6, wherein the soluble material is a thermoplastic resin.
The thermal element according to claim 9 is the thermal element according to any one of claims 1 to 5, wherein the elastic plate is made of a resin having elasticity, and the soluble material is a thermoplastic resin.
The heat-sensitive element according to claim 10 is the heat-sensitive element according to any one of claims 1 to 5, wherein the elastic plate is a polymer of a metal plate and a resin plate, and the soluble material is a thermoplastic resin or a soluble alloy. And

請求項11に係るサーモプロテクタは、一対のリード導体間に接点を有し、請求項1〜10何れかの感熱エレメントの変形により接点を開閉させることを特徴とする。
請求項12に係るサーモプロテクタは、請求項6〜8または10何れかの感熱エレメントの弾性金属材を一方のリード導体と電気的に一体化し、該弾性金属材と他方のリード導体との間の接点を感熱エレメントの変形により開閉するようにしたことを特徴とする。
請求項13に係るサーモプロテクタは、請求項11または12のサーモプロテクタにおいて接点を感熱エレメントの可溶材の融点以下の可溶合金で接合したことを特徴とする。
A thermo protector according to an eleventh aspect has a contact point between a pair of lead conductors, and the contact point is opened and closed by deformation of the thermal element according to any one of the first to tenth aspects.
A thermo-protector according to claim 12 electrically integrates the elastic metal material of the thermal element according to any one of claims 6 to 8 or 10 with one lead conductor, and between the elastic metal material and the other lead conductor. The contact is opened and closed by deformation of the thermal element.
A thermo protector according to a thirteenth aspect is characterized in that, in the thermo protector according to the eleventh or twelfth aspect, the contacts are joined by a soluble alloy having a melting point equal to or lower than the melting point of the fusible material of the thermal element.

弾性材に弾性歪エネルギーを蓄えさせるには、その弾性歪を保持する必要があるが、弾性材表面に可溶材を一体化してその保持を行なっており、弾性材と可溶材との広い界面のためにその界面に作用する応力を分散させることができる。
従って、可溶材のクリープを充分に抑制でき、感熱エレメントの長期安定性をよく保証できる。
In order to store the elastic strain energy in the elastic material, it is necessary to hold the elastic strain. However, the soluble material is integrated and held on the surface of the elastic material, and the elastic material has a wide interface between the soluble material and the soluble material. Therefore, the stress acting on the interface can be dispersed.
Therefore, the creep of the fusible material can be sufficiently suppressed, and the long-term stability of the thermosensitive element can be well guaranteed.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明に係る感熱エレメントの一例を示し、図1の(イ)は動作前を、図1の(ロ)は動作後の状態をそれぞれ示している。
図の(イ)において、11,12は2枚の弾性板、3は弾性板11,12間に一体化された可溶材層である。弾性曲げ歪エネルギーが零のときの弾性板11,12の形状は図1の(ロ)に示されている水平板状である。図1の(イ)において、弾性板11,12が一様な曲げ半径のもとで弾性的に曲げられ、その曲げ反力が弾性板11,12間に一体化された可溶材層3により保持されて弾性曲げ歪エネルギーが蓄えられている。
図1の(イ)において、感熱エレメントの曲げ半径をr、各弾性板の厚みをt,t、同じく弾性率をE,E、巾を共にbとすれば、各弾性板に作用するモーメント反力がM=E/r(I=bt /12),M=E/r(I=bt /12)で与えられ、単位長さ当たりの弾性曲げ歪エネルギーがw=M /2E,w=M /2Eで与えられるから、結局、両弾性板の全長の弾性曲げ歪エネルギーWは、弾性板の長さをLとして
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a thermal element according to the present invention. FIG. 1 (a) shows a state before operation, and FIG. 1 (b) shows a state after operation.
In FIG. 2A, 11 and 12 are two elastic plates, and 3 is a soluble material layer integrated between the elastic plates 11 and 12. The shape of the elastic plates 11 and 12 when the elastic bending strain energy is zero is a horizontal plate shape shown in FIG. In FIG. 1A, the elastic plates 11 and 12 are elastically bent under a uniform bending radius, and the bending reaction force is caused by the soluble material layer 3 integrated between the elastic plates 11 and 12. The elastic bending strain energy is retained and stored.
In FIG. 1A, if the bending radius of the thermal element is r, the thickness of each elastic plate is t 1 , t 2 , the elastic modulus is E 1 , E 2 , and the width is both b, moment reaction force acts M 1 = E 1 I 1 / r (I 1 = bt 1 3/12), is given by M 2 = E 2 I 2 / r (I 2 = bt 2 3/12), the unit Since the elastic bending strain energy per length is given by w 1 = M 1 2 / 2E 1 I 1 , w 2 = M 2 2 / 2E 2 I 2 , the elastic bending strain energy W of the entire length of both elastic plates is eventually obtained. Is the length of the elastic plate as L

W=L/(2r)・〔(E)+(E)〕 W = L / (2r 2 ) · [(E 1 I 1 ) + (E 2 I 2 )]

で与えられる。
この弾性曲げ歪エネルギーWが可溶材層3の強度により保持され、各弾性板11,12と可溶材層3との界面に作用するせん断応力及び可溶材層内部に作用する長さ方向応力(引っ張り応力、圧縮応力)に可溶材層3の強度が耐えて、前記弾性曲げ歪エネルギーWが蓄えられている。
上記において、両弾性板の厚み、巾及び弾性率が等しいとすると、曲げ中立面は可溶材層の中央を通り、ある断面での可溶材層の長さ方向応力状態は図2に示す通りとなり、中立面n−nより外側(弾性板12側)に圧縮応力が、中立面n−nより内側(弾性板11側)に引っ張り応力が作用し、両応力の最大応力値δmaxは、可溶材の弾性率をE、厚みをtとすると、
Given in.
This elastic bending strain energy W is held by the strength of the soluble material layer 3, and shear stress acting on the interface between the elastic plates 11, 12 and the soluble material layer 3 and longitudinal stress acting on the inside of the soluble material layer (tensile) The strength of the fusible material layer 3 can withstand stress and compressive stress, and the elastic bending strain energy W is stored.
In the above description, assuming that the thickness, width and elastic modulus of both elastic plates are equal, the bending neutral surface passes through the center of the soluble material layer, and the longitudinal stress state of the soluble material layer in a certain cross section is as shown in FIG. Thus, compressive stress acts on the outer side (elastic plate 12 side) from the neutral surface nn, and tensile stress acts on the inner side (elastic plate 11 side) from the neutral surface nn, and the maximum stress value δmax of both stresses is If the elastic modulus of the soluble material is E 3 and the thickness is t 3 ,

δmax=E/(2r) δmax = E 3 t 3 / (2r)

で与えられ、更に各弾性板の厚みをtとすると、各弾性板11,12と可溶材層3との界面に作用するせん断応力τは Further, when the thickness of each elastic plate is t, the shear stress τ acting on the interface between each elastic plate 11 and 12 and the soluble material layer 3 is

τ∝(t+t)/r τ∝ (t + t 3 ) / r

で与えられる。
このせん断応力や前記引っ張り応力及び圧縮応力は感熱エレメントの曲げ径rが感熱エレメント全長に沿い一定であれば一定となり、集中応力の発生を排除できる。
上記において、感熱エレメントの長さ方向に沿って曲げ半径が変化しても、その変化の程度が緩やかであれば、せん断応力や前記引っ張り応力及び圧縮応力の感熱エレメントの長さ方向への沿っての変化も緩慢にでき、感熱エレメントの長さ方向に沿って曲げ半径の緩慢な変化があっても、集中応力の発生を充分に排除できる。
Given in.
The shear stress, the tensile stress, and the compressive stress are constant if the bending diameter r of the thermal element is constant along the entire length of the thermal element, and generation of concentrated stress can be eliminated.
In the above, even if the bending radius changes along the length direction of the thermal element, if the degree of the change is moderate, the shear stress, the tensile stress and the compressive stress along the length direction of the thermal element. It is possible to slow down the change of the temperature, and even if there is a slow change of the bending radius along the length direction of the thermal element, generation of concentrated stress can be sufficiently eliminated.

図1に示す実施例に対し可溶材層3の厚みを充分に薄くして弾性板と可溶材層との界面のせん断反力のみで弾性曲げ歪エネルギーを保持させることもできる。   It is also possible to maintain the elastic bending strain energy only by the shear reaction force at the interface between the elastic plate and the soluble material layer by sufficiently reducing the thickness of the soluble material layer 3 relative to the embodiment shown in FIG.

図1に示す実施例では独立した二枚の弾性板を使用しているが、図3に示すように折り返して重ねた弾性板112を使用し、この重ね弾性板を曲げ、その弾性曲げ歪エネルギーを折り返し弾性板の重ね面を可溶材層3で一体化して保持することもできる。   In the embodiment shown in FIG. 1, two independent elastic plates are used. However, as shown in FIG. 3, an elastic plate 112 folded and overlapped is used. Can be held together by the soluble material layer 3.

図1や図3に示す感熱エレメントを製作するには、弾性板間に板状可溶材を挾み、全体を加熱して板状可溶材を溶融させ、この状態で全体を所定の曲げ径で曲げて弾性板に弾性曲げ歪エネルギーを与え、次いで全体を冷却して溶融可溶材を凝固させると共に可溶材と弾性板との界面を一体化させ、この凝固した可溶材の強度で前記弾性板の弾性曲げ歪エネルギーを保持させる方法を使用できる。この場合、前記の加熱温度、すなわち可溶材の融点でも弾性板の弾性を保持し得るように、弾性板の焼き鈍し温度を可溶材の融点よりも充分に高くする必要がある。
この加熱には、加熱炉の外、弾性板が金属板の場合、通電加熱や電磁誘導加熱を使用することもできる。
In order to manufacture the heat-sensitive element shown in FIG. 1 or FIG. 3, a plate-like soluble material is sandwiched between elastic plates, and the whole is heated to melt the plate-like soluble material. The elastic plate is bent to give elastic bending strain energy, and then the whole is cooled to solidify the meltable soluble material, and the interface between the soluble material and the elastic plate is integrated. The strength of the solidified soluble material A method of maintaining elastic bending strain energy can be used. In this case, the annealing temperature of the elastic plate needs to be sufficiently higher than the melting point of the soluble material so that the elasticity of the elastic plate can be maintained even at the heating temperature, that is, the melting point of the soluble material.
For this heating, when the elastic plate is a metal plate, electric heating or electromagnetic induction heating can be used outside the heating furnace.

前記弾性板に弾性金属板を使用し、可溶材にはんだを用いる場合、フラックスを用いて接合強度の向上を図ることが望ましい。
前記弾性板には、弾性金属例えばリン青銅や高弾性樹脂例えばガラス繊維強化ポリエステル樹脂のような繊維強化樹脂やエンジニアリングプラスチックを用いることができる。
When an elastic metal plate is used for the elastic plate and solder is used for the fusible material, it is desirable to improve the bonding strength using a flux.
For the elastic plate, an elastic metal such as phosphor bronze or a high elastic resin such as a fiber reinforced resin such as glass fiber reinforced polyester resin or an engineering plastic can be used.

前記可溶材には、はんだ等の可溶合金や熱可塑性樹脂を用いることができる。通常、弾性材として弾性金属を使用する場合は、可溶材として可溶合金や熱可塑性樹脂が使用され、弾性材として繊維強化樹脂やエンジニアリングプラスチックを用いる場合は、それらよりも低融点の熱可塑性樹脂が使用される。   As the soluble material, a soluble alloy such as solder or a thermoplastic resin can be used. Usually, when an elastic metal is used as the elastic material, a soluble alloy or a thermoplastic resin is used as the soluble material, and when a fiber reinforced resin or engineering plastic is used as the elastic material, a thermoplastic resin having a lower melting point than those. Is used.

可溶合金としては、PbやCd等の生体系に有害な元素を含まないものを使用することが好ましく、次ぎの組成[A](1)43%Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%Sn≦44%,55%In≦74%,1%≦Bi20%、(4)46%Sn≦70%,18%≦In48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%Sn≦60%,20%≦In50%,12%Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn−Bi系合金の組成[B](16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn−Sb系合金の組成[C](18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn系合金の組成[D](20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Bi系合金の組成、[E](22)50%Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn系合金の組成[F](24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加等のIn系合金の組成等から感温エレメントの動作温度に適合した融点の組成を選定することができる。   As the fusible alloy, it is preferable to use an alloy which does not contain elements harmful to biological systems such as Pb and Cd. The following composition [A] (1) 43% Sn ≦ 70%, 0.5% ≦ In ≦ 10%, remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55%, remaining Bi, (3) 25% Sn ≦ 44%, 55% In ≦ 74%, 1% ≦ Bi20 %, (4) 46% Sn ≦ 70%, 18% ≦ In 48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In 37%, remaining Bi (Bi57. 5%, In25.2%, Sn17.3% and Bi54%, In29.7%, and Sn16.3% are excluded from the range of Bi ± 2%, In and Sn ± 1%), (6) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, remaining Bi, (7) 25% Sn ≦ 60%, 20% ≦ In50%, 2% Bi ≦ 33%, any one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in 100 parts by weight of any of (8) (1) to (7) 0.01 to 7 parts by weight, (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, remaining Bi, (10) 47% ≦ Sn ≦ 49%, 51% ≦ In ≦ 53% 100 parts by weight of Bi 3-5 parts by weight, (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12%, remaining In, (12) 0.3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, (13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35%, remaining In, (14) (9) to (13) One or two or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P are added in a total of 0.01 to 7 parts by weight to any 100 parts by weight of (15) 1 % ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, the remaining Bi is 100 parts by weight, and one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P is added Composition of In—Sn—Bi alloy such as 0.01 to 7 parts by weight added [B] (16) 30% ≦ Sn ≦ 70%, 0.3% ≦ Sb ≦ 20%, remaining Bi, (17) Bi-Sn-Sb such that 0.01 to 7 parts by weight of one or more of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P is added to 100 parts by weight of (16). Composition [C] (18) 52% ≦ In ≦ 85%, remaining Sn, (19) (18) in 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, In-Sn alloy composition [D] (20) 45% ≦ Bi ≦ 55%, such that one or more of P is added in a total of 0.01 to 7 parts by weight , Remaining In, (21) and 100 parts by weight of the composition of (20), one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P are added in a total of 0.01 to 7 In-Bi alloy composition such as addition of parts by weight, [E] (22) 50% Bi ≦ 56%, remaining Sn, (23) In addition to 100 parts by weight of (22), Ag, Au, Cu, Ni, Pd , Pt, Ga, Ge, P One or two or more of a total of 0.01 to 7 parts by weight of a Bi-Sn alloy composition [F] (24) In 100 parts by weight of In, Au, Bi , Cu, Ni, Pd, Pt, Ga, Ge, P or a total of 0.01 to 7 parts by weight, (25) 90% ≦ In ≦ 99.9%, 0.1% ≦ One or two or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P are added to 100 parts by weight of Ag ≦ 10% in total 0.0 1 to 7 parts by weight, (26) Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, 100 parts by weight of 95% ≦ In ≦ 99.9%, 0.1% ≦ Sb ≦ 5% The composition of the melting point suitable for the operating temperature of the thermosensitive element can be selected from the composition of the In-based alloy such as the addition of 0.01 to 7 parts by weight of one or more of P in total.

前記弾性板や可溶材として使用する繊維強化樹脂の樹脂や熱可塑性樹脂には、ポリエチレンテレフタレ−ト、ポリエチレンナフタレ−ト、ポリアミド、ポリイミド、ポリブチレンテレフタレ−ト、ポリフェニレンオキシド、ポリエチレンサルファイド、ポリサルホン等のエンジニアリングプラスチック、ポリアセタ−ル、ポリカ−ボネ−ト、ポリフェニレンスルフィド、ポリオキシベンゾイル、ポリエ−テルエ−テルケトン、ポリエ−テルイミド等のエンジニアリングプラスチックやポリプロピレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリメチルメタクリレ−ト、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、エチレンポリテトラフルオロエチレン共重合体、エチレン酢酸ビニル共重合体(EVA)、AS樹脂、ABS樹脂、アイオノマ−、AAS樹脂、ACS樹脂等の合成樹脂単体または繊維強化樹脂の中から所定融点のものを選定できる。   Fiber reinforced resin resin and thermoplastic resin used as the elastic plate and soluble material include polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polybutylene terephthalate, polyphenylene oxide, polyethylene sulfide, Engineering plastics such as polysulfone, engineering plastics such as polyacetal, polycarbonate, polyphenylene sulfide, polyoxybenzoyl, polyether ether ketone, polyetherimide, polypropylene, polyvinyl chloride, polyvinyl acetate, polymethyl methacrylate Rate, polyvinylidene chloride, polytetrafluoroethylene, ethylene polytetrafluoroethylene copolymer, ethylene vinyl acetate copolymer (EVA), AS resin, ABS resin, Io Ma -, AAS resin, can be selected ones of a predetermined melting point among the synthetic resin alone or a fiber-reinforced resin such as ACS resin.

図1の(イ)に示す感熱エレメントにおいては、可溶材3がその融点にまで加熱されて軟化乃至は溶融されると、弾性板11,12に蓄えられていた弾性曲げ歪エネルギーが解放されて弾性板11,12が図1の(ロ)に示す原形(水平板状)に戻され、その変形量が感熱出力とされる。この場合、弾性板11,12の弾性曲げ歪エネルギーの解放が可溶材3の軟化と同時に行なわれるから、迅速な動作を保証できる。
この動作までは、弾性板と可溶材層との接合界面に前記した通り、せん断応力が作用している。このせん断応力の作用のもとでも、感熱エレメントの形状を安定に保持し得るように、弾性板と可溶材層との界面を充分なせん断強度で接合してあり、弾性板に可溶材が食い込む窪みを設けること、弾性板に可溶材が食い込む孔を設けること、弾性板の表面を粗面にして可溶材に対する接合面積を大きくすること等が有効である。
In the thermosensitive element shown in FIG. 1A, when the fusible material 3 is heated to its melting point and softened or melted, the elastic bending strain energy stored in the elastic plates 11 and 12 is released. The elastic plates 11 and 12 are returned to the original shape (horizontal plate shape) shown in (b) of FIG. 1, and the amount of deformation is the thermal output. In this case, since the elastic bending strain energy of the elastic plates 11 and 12 is released simultaneously with the softening of the fusible material 3, a quick operation can be guaranteed.
Until this operation, as described above, the shear stress acts on the bonding interface between the elastic plate and the soluble material layer. Even under the action of the shear stress, the interface between the elastic plate and the soluble material layer is joined with sufficient shear strength so that the shape of the thermal element can be stably maintained, and the soluble material bites into the elastic plate. It is effective to provide a recess, to provide a hole into which the fusible material bites into the elastic plate, to make the surface of the elastic plate rough and to increase the bonding area to the fusible material.

図1に示す実施例では、二枚の弾性板を使用しているが、三枚以上の弾性板を使用することもでき、この構成によれば、全体の弾性曲げ歪エネルギーの同一量のもとで弾性曲げ歪エネルギーを弾性板の枚数に応じ分散して蓄えさせることができ、可溶材層に作用する応力もその分散性に応じ分散させることができるために、可溶材のクリープをより効果的に防止でき、感熱エレメントの一層の長期安定性を保証できる。   In the embodiment shown in FIG. 1, two elastic plates are used, but three or more elastic plates can also be used. According to this configuration, the same amount of the entire elastic bending strain energy can be used. The elastic bending strain energy can be distributed and stored according to the number of elastic plates, and the stress acting on the fusible material layer can also be dispersed according to the dispersibility. Can be prevented and further long-term stability of the thermal element can be guaranteed.

図4は本発明に係る感熱エレメントの別例を示し、図4の(イ)は動作前を、図4の(ロ)は動作後の状態をそれぞれ示している。
図4の(イ)において、1は一枚の弾性板、3は弾性板に一体化された板状可溶材である。弾性曲げ歪エネルギーが零のときの弾性板の形状は図4の(ロ)に示されている水平板状である。
図4の(イ)において、弾性板1が一様な曲げ半径のもとで弾性的に曲げられ、その曲げ反力が弾性板1に一体化された板状可溶材3により保持されて弾性曲げ歪エネルギーが蓄えられている。
図4の(イ)において、感熱エレメントの曲げ半径をr、弾性板1の厚みをt、同じく弾性率をE、巾をbとすれば、弾性曲げ歪エネルギーWは、弾性板の長さをLとして
FIG. 4 shows another example of the thermal element according to the present invention. FIG. 4A shows a state before the operation, and FIG. 4B shows a state after the operation.
In FIG. 4A, 1 is a single elastic plate, and 3 is a plate-like soluble material integrated with the elastic plate. The shape of the elastic plate when the elastic bending strain energy is zero is a horizontal plate shape shown in FIG.
4A, the elastic plate 1 is elastically bent under a uniform bending radius, and the bending reaction force is held by the plate-like soluble material 3 integrated with the elastic plate 1 to be elastic. Bending strain energy is stored.
In FIG. 4A, if the bending radius of the thermal element is r, the thickness of the elastic plate 1 is t 1 , the elastic modulus is E 1 , and the width is b, the elastic bending strain energy W is the length of the elastic plate. Let S be L

W=L(E)/(2rW = L (E 1 I 1 ) / (2r 2 )

で与えられる。
この弾性曲げ歪エネルギーWが板状可溶材3の強度により保持され、弾性板1と板状可溶材3との界面に作用するせん断応力及び板状可溶材内部に作用する長さ方向応力(引っ張り応力、圧縮応力)に板状可溶材3が耐えて前記弾性曲げ歪エネルギーWが蓄えられている。
Given in.
This elastic bending strain energy W is held by the strength of the plate-like soluble material 3, and shear stress acting on the interface between the elastic plate 1 and the plate-like soluble material 3 and longitudinal stress acting on the inside of the plate-like soluble material (tensile) The plate soluble material 3 can withstand the stress and compressive stress, and the elastic bending strain energy W is stored.

図5は図4の(イ)に示す感熱エレメントの板状可溶材3の応力状態を示し、曲げ中立面n−nより曲げ内側で引っ張り応力を受け、中立面n−nより曲げ外側(弾性板1側)で圧縮応力を受け、弾性板1と板状可溶材3との界面にせん断応力が作用している。これらの応力に板状可溶材3が強度的に耐えて前記弾性曲げ歪エネルギーが蓄積されている。
図5において、弾性板1から曲げ中立面n−nまでの距離をt’、板状可溶材3から曲げ中立面n−nまでの距離をT’、感熱エレメントの曲げ半径をr、板状可溶材の弾性率をEとすれば、弾性板に接する界面での圧縮応力δm、板状可溶材3の表面での引っ張り応力応力δm’
FIG. 5 shows the stress state of the plate-like fusible material 3 of the heat-sensitive element shown in FIG. 4 (a), receiving tensile stress inside the bending from the bending neutral surface nn, and bending outward from the neutral surface nn. A compressive stress is received at the (elastic plate 1 side), and a shearing stress acts on the interface between the elastic plate 1 and the plate-like soluble material 3. The plate-like soluble material 3 withstands these stresses in strength, and the elastic bending strain energy is accumulated.
In FIG. 5, the distance from the elastic plate 1 to the bending neutral plane nn is t 3 ′, the distance from the plate-like soluble material 3 to the bending neutral plane nn is T 3 ′, and the bending radius of the thermal element is r, if the elastic modulus of the plate-friendly welding material and E 3, compressive stress at the interface in contact with the elastic plate .delta.m, tensile stress stress .delta.m at the surface of the plate-friendly welding material 3 '

δm=E’/r δm = E 3 t 3 '/ r

δm’=E/r δm ′ = E 3 T 3 / r

で与えられ、更に板状可溶材の厚みをtとすれば、せん断応力τは If the thickness of the plate soluble material is t 3 , the shear stress τ is

τ∝(t+t)/r τ∝ (t 1 + t 3 ) / r

で与えられる。
このせん断応力や前記引っ張り応力及び圧縮応力は感熱エレメントの曲げ径rが感熱エレメント全長に沿い一定であれば一定となり、集中応力の発生を排除できる。
この実施例においても、感熱エレメントの長さ方向に沿って曲げ半径が変化しても、その変化の程度が緩やかであれば、せん断応力や前記引っ張り応力及び圧縮応力の感熱エレメントの長さ方向への沿っての変化も緩慢にでき、感熱エレメントの長さ方向に沿って曲げ半径の緩慢な変化があっても、集中応力の発生を充分に排除できる。
Given in.
The shear stress, the tensile stress, and the compressive stress are constant if the bending diameter r of the thermal element is constant along the entire length of the thermal element, and generation of concentrated stress can be eliminated.
In this embodiment as well, even if the bending radius changes along the length direction of the thermal element, if the degree of change is moderate, the shear stress, the tensile stress and the compressive stress in the length direction of the thermal element. The change along the length of the heat-sensitive element can be made slow, and even if there is a slow change in the bending radius along the length direction of the thermal element, generation of concentrated stress can be sufficiently eliminated.

図4の(イ)に示す感熱エレメントにおいて、板状可溶材3がその融点にまで加熱されて軟化乃至は溶融されると、弾性板1に蓄えられていた弾性曲げ歪エネルギーが解放されて弾性板1が図4の(ロ)に示す原形(水平板状)に戻され、その変形量が感熱出力とされる。この場合、弾性板の弾性曲げ歪エネルギーの解放が板状可溶材の軟化と同時に行なわれるから、迅速な動作を保証できる。
この動作までは、弾性板と板状可溶材との接合界面に前記した通り、せん断応力が作用している。このせん断応力の作用のもとでも、感熱エレメントの形状を安定に保持し得るように、弾性板と板状可溶材との界面を充分なせん断強度で接合してあり、前記と同様に弾性板に板状可溶材が食い込む窪みを設けること、弾性板に板状可溶材が食い込む孔を設けること、弾性板の表面を粗面にして板状可溶材に対する接合面積を大きくすること等が有効である。
In the thermosensitive element shown in FIG. 4A, when the plate-like soluble material 3 is heated to its melting point and softened or melted, the elastic bending strain energy stored in the elastic plate 1 is released and elastic. The plate 1 is returned to the original shape (horizontal plate shape) shown in FIG. 4B, and the amount of deformation is the thermal output. In this case, the elastic bending strain energy of the elastic plate is released simultaneously with the softening of the plate-like soluble material, so that a quick operation can be guaranteed.
Until this operation, as described above, the shear stress acts on the bonding interface between the elastic plate and the plate-like soluble material. Even under the action of the shear stress, the interface between the elastic plate and the plate-like soluble material is joined with sufficient shear strength so that the shape of the thermal element can be stably maintained. It is effective to provide a recess into which the plate-like soluble material bites in, to provide a hole into which the plate-like soluble material bites into the elastic plate, and to increase the bonding area to the plate-like soluble material by roughening the surface of the elastic plate is there.

上記実施例では、弾性板に金属単体または樹脂単体を使用しているが、弾性金属板と弾性樹脂板との重合物、例えば銅箔とポリイミドフィルムとの積層物を使用することもできる。この場合、可溶材については金属板面に可溶合金が一体化されるかまたは樹脂板面に熱可塑性樹脂が一体化される。
上記何れの実施例においても、弾性板の原形、すなわち零歪状態での弾性板の形状を平板状としているが、原形状を非平板状とすることもできる。
例えば、図6の(ロ)に示すように弾性板1の原形を高さHのアーチ状とし、このアーチの巾を弾性的に拡げて図6の(イ)に示すように高さを低くするように弾性変形させ、この状態を可溶材3の一体化により保持して弾性曲げ歪エネルギーを蓄えさせ、可溶材3の溶融乃至は軟化により弾性板1を図6の(ロ)に示す原形に戻してアーチ高さを元のHにする構成とすることもできる。
In the above embodiment, a single metal or a single resin is used for the elastic plate, but a polymer of an elastic metal plate and an elastic resin plate, for example, a laminate of a copper foil and a polyimide film can also be used. In this case, with respect to the fusible material, the fusible alloy is integrated with the metal plate surface, or the thermoplastic resin is integrated with the resin plate surface.
In any of the above embodiments, the original shape of the elastic plate, that is, the shape of the elastic plate in the zero strain state is a flat plate shape, but the original shape may be a non-flat plate shape.
For example, as shown in FIG. 6 (b), the original shape of the elastic plate 1 is made into an arch shape having a height H, and the width of this arch is elastically expanded to reduce the height as shown in FIG. 6 (a). This state is elastically deformed, and this state is maintained by integrating the fusible material 3 to store elastic bending strain energy, and the elastic plate 1 is restored to the original shape shown in FIG. It can also be set as the structure which returns to arch and makes arch height the original H.

図7の(イ)は本発明に係るサーモプロテクタの一例を示す平面図、図7の(ロ)は図7の(イ)におけるロ−ロ断面図である。図7の(ハ)は動作後の状態を示す断面図である。
図7において、41,42は一対のリード導体、Aは一方のリード導体41の端部にスポット溶接等により取付けた本発明に係る感熱エレメント、例えば図1や図3に示した感熱エレメントであり、その他端部を他方のリード導体42の端部に接触させ、その接触部位を接点5としている。6は絶縁体ケーシングである。
本発明に係るサーモプロテクタは機器に熱的に接触して取り付ける。機器が何らかの異常により通電発熱されてサーモプロテクタの感熱エレメントAの可溶材の融点に達すると、可溶材が軟化乃至は溶融され、これと同時に感熱エレメントに蓄えられていた弾性歪エネルギーが解放されて迅速に図7の(ハ)に示すように動作され接点が開かれ、機器への通電が遮断される。
この場合、感熱エレメントが非復帰型であるために、前記異常を内在したままでの再導通は排除される。
FIG. 7A is a plan view showing an example of a thermoprotector according to the present invention, and FIG. 7B is a cross-sectional view of FIG. FIG. 7C is a cross-sectional view showing a state after the operation.
7, 41 and 42 are a pair of lead conductors, and A is a thermal element according to the present invention attached to the end of one lead conductor 41 by spot welding or the like, for example, the thermal element shown in FIG. 1 or FIG. The other end is brought into contact with the end of the other lead conductor 42, and the contact portion is used as the contact 5. 6 is an insulator casing.
The thermo protector according to the present invention is attached in thermal contact with the device. When the device is heated by energization due to some abnormality and reaches the melting point of the soluble material of the thermal element A of the thermo protector, the soluble material is softened or melted, and at the same time, the elastic strain energy stored in the thermal element is released. The operation is quickly performed as shown in FIG. 7C to open the contact, and the power supply to the device is cut off.
In this case, since the thermosensitive element is non-returnable, re-conduction with the abnormality existing is eliminated.

この実施例のサーモプロテクタの感熱エレメントは、感熱エレメントの弾性材が金属製であり、それ自体で電気導通性を有している。
かかる感熱エレメントにおいては、固定される端部側を電池の構成部分に直接取付け、電池と一体化して使用することも可能である。
また、図7の(ロ)においてリード導体41と感熱エレメントAの下側弾性板12とを共通とすることも可能である。
In the thermosensitive element of the thermo-protector of this embodiment, the elastic material of the thermosensitive element is made of metal and has electrical conductivity by itself.
In such a heat-sensitive element, it is also possible to directly attach an end side to be fixed to a battery component and use it integrally with the battery.
Further, in FIG. 7B, the lead conductor 41 and the lower elastic plate 12 of the thermal element A can be made common.

図8の(イ)は本発明に係るサーモプロテクタの別例を示す断面図である。図8の(ロ)は動作後の状態を示す断面図である。
図8の(イ)において、一方のリード導体41の端部に可動電極7を取付け、他方のリード導体42の端部を固定電極とし、両電極を接点5において接触させ、可動電極7の下方に前記の図6に示した感熱エレメントAを配設してある。機器に熱的に接触させて取り付けられ、機器が何らかの異常により通電発熱されてサーモプロテクタの感熱エレメントの可溶材の融点に達すると、可溶材が軟化乃至は溶融され、これと同時に感熱エレメントに蓄えられていた弾性歪エネルギーが解放され迅速に図8の(ロ)に示すように動作されて感熱エレメントの高さが増し、可動電極7が感熱エレメントAで押し上げられ、接点5が開かれて機器への通電が遮断される。
この場合も感熱エレメントが非復帰型であるために、前記異常を内在したままでの再導通が排除される。
FIG. 8A is a cross-sectional view showing another example of the thermo protector according to the present invention. FIG. 8B is a cross-sectional view showing a state after the operation.
8A, the movable electrode 7 is attached to the end portion of one lead conductor 41, the end portion of the other lead conductor 42 is used as a fixed electrode, and both electrodes are brought into contact with each other at the contact 5, and below the movable electrode 7. The thermal element A shown in FIG. 6 is disposed. When the device is installed in thermal contact with the device and the device is heated by energization due to any abnormality and reaches the melting point of the fusible material of the thermo-protector's heat-sensitive element, the fusible material is softened or melted and simultaneously stored in the heat-sensitive element. The elastic strain energy that has been released is released and quickly operated as shown in FIG. 8B, the height of the thermal element increases, the movable electrode 7 is pushed up by the thermal element A, and the contact 5 is opened to open the device. The power supply to is cut off.
Also in this case, since the thermosensitive element is non-returnable, reconducting while the abnormality is present is eliminated.

上記何れのサーモプロテクタにおいても、接点5の電気導通性を向上させるために、感熱エレメントの可溶材と同一または以下の融点のはんだ(可溶合金)で接合することができる。   Any of the above thermo protectors can be joined with a solder (soluble alloy) having the same or lower melting point as that of the soluble material of the thermal element in order to improve the electrical conductivity of the contact 5.

リチウムイオン2次電池、リチウムポリマー2次電池等の高いエネルギー密度の2次電池では、その高いエネルギー密度のために異常時の発熱温度が高く、その発熱を検知して電池を不通電とするサーモプロテクタが必要であるが、本発明に係る感熱エレメントにおいては小型化のもとで電池パックに組み込むことが可能である。   High energy density secondary batteries, such as lithium ion secondary batteries and lithium polymer secondary batteries, have a high heat generation temperature due to the high energy density, and the heat is detected so that the battery is de-energized. Although a protector is required, the thermal element according to the present invention can be incorporated into a battery pack under a reduced size.

本発明に係る感熱エレメントの一実施例を示す図面である。It is drawing which shows one Example of the thermal element which concerns on this invention. 図1の(イ)の可溶材の応力状態を示す図面である。It is drawing which shows the stress state of the soluble material of (a) of FIG. 本発明に係る感熱エレメントの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermal element which concerns on this invention. 本発明に係る感熱エレメントの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermal element which concerns on this invention. 図4の(イ)の可溶材の応力状態を示す図面である。It is drawing which shows the stress state of the soluble material of (a) of FIG. 本発明に係る感熱エレメントの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermal element which concerns on this invention. 本発明に係るサーモプロテクタの一実施例を示す図面である。It is drawing which shows one Example of the thermo protector which concerns on this invention. 本発明に係るサーモプロテクタの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermoprotector which concerns on this invention. 従来のサーモプロテクタを示す図面である。It is drawing which shows the conventional thermo protector.

符号の説明Explanation of symbols

1 弾性材
11 弾性材
12 弾性材
3 可溶材
41 リード導体
42 リード導体
5 接点
A 感熱エレメント
DESCRIPTION OF SYMBOLS 1 Elastic material 11 Elastic material 12 Elastic material 3 Soluble material 41 Lead conductor 42 Lead conductor 5 Contact A Thermal element

Claims (13)

弾性材が可溶材の弾性材表面への一体化により弾性歪エネルギーを蓄えた形状に保持され、該可溶材の軟化乃至は溶融により弾性歪エネルギーが解放されて弾性材が変形されることを特徴とする感熱エレメント。 The elastic material is held in a shape storing elastic strain energy by integrating the soluble material on the elastic material surface, and the elastic material is deformed by releasing the elastic strain energy by softening or melting the soluble material. Thermal element. 弾性材が重ね体または折り返し体であり、弾性材の重ね面または折り返し重ね面への可溶材の一体化により弾性材が弾性歪エネルギーを蓄えた形状に保持され、該可溶材の軟化乃至は溶融により弾性歪エネルギーが解放されて弾性材が変形されることを特徴とする感熱エレメント。 The elastic material is a laminated body or a folded body, and the elastic material is held in a shape storing elastic strain energy by the integration of the soluble material on the laminated surface of the elastic material or the folded folded surface, and the soluble material is softened or melted. The heat-sensitive element is characterized in that the elastic material is deformed by releasing elastic strain energy. 弾性材に弾性板が使用され、弾性板に可溶材が食い込む窪みまたは孔が設けられていることを特徴とする請求項1または2記載の感熱エレメント。 The heat-sensitive element according to claim 1 or 2, wherein an elastic plate is used as the elastic material, and a hollow or hole into which the soluble material bites into the elastic plate is provided. 弾性材に弾性板が使用され、粗面化された弾性板表面に可溶材が一体化されていることを特徴とする請求項1〜3何れか記載の感熱エレメント。 The heat-sensitive element according to claim 1, wherein an elastic plate is used as the elastic material, and the soluble material is integrated with the roughened elastic plate surface. 弾性板と可溶材とが交互に積層されていることを特徴とする請求項1、3、4何れか記載の感熱エレメント。 The heat-sensitive element according to claim 1, wherein the elastic plate and the soluble material are alternately laminated. 弾性材が弾性金属製とされていることを特徴とする請求項1〜5何れか記載の感熱エレメント。 The heat-sensitive element according to claim 1, wherein the elastic material is made of an elastic metal. 可溶材が可溶合金であることを特徴とする請求項6記載の感熱エレメント。 The heat-sensitive element according to claim 6, wherein the soluble material is a soluble alloy. 可溶材が熱可塑性樹脂であることを特徴とする請求項6記載の感熱エレメント。 The heat-sensitive element according to claim 6, wherein the soluble material is a thermoplastic resin. 弾性板が弾性を有する樹脂製であり、可溶材が熱可塑性樹脂であることを特徴とする請求項1〜5何れか記載の感熱エレメント。 The heat-sensitive element according to claim 1, wherein the elastic plate is made of a resin having elasticity, and the soluble material is a thermoplastic resin. 弾性板が金属板と樹脂板との重合物であり、可溶材が熱可塑性樹脂または可溶合金であることを特徴とする請求項1〜5何れか記載の感熱エレメント。 6. The heat-sensitive element according to claim 1, wherein the elastic plate is a polymer of a metal plate and a resin plate, and the soluble material is a thermoplastic resin or a soluble alloy. 一対のリード導体間に接点を有し、請求項1〜10何れか記載の感熱エレメントの変形により接点を開閉させることを特徴とするサーモプロテクタ。 A thermo protector comprising a contact point between a pair of lead conductors, wherein the contact point is opened and closed by deformation of the thermal element according to claim 1. 請求項6〜8または9何れか記載の感熱エレメントの弾性金属材を一方のリード導体と電気的に一体化し、該弾性金属材と他方のリード導体との間の接点を感熱エレメントの変形により開閉するようにしたことを特徴とするサーモプロテクタ。 10. The elastic metal material of the heat sensitive element according to claim 6 is electrically integrated with one lead conductor, and a contact between the elastic metal material and the other lead conductor is opened and closed by deformation of the heat sensitive element. A thermo protector, characterized by the fact that 接点間を感熱エレメントの可溶材の融点以下の可溶合金で接合したことを特徴とする請求項11または12記載のサーモプロテクタ。 The thermo protector according to claim 11 or 12, wherein the contacts are joined together with a soluble alloy having a melting point equal to or lower than that of the soluble material of the heat sensitive element.
JP2003291588A 2003-08-11 2003-08-11 Heat sensitive element and thermo-protector Pending JP2005063792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291588A JP2005063792A (en) 2003-08-11 2003-08-11 Heat sensitive element and thermo-protector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003291588A JP2005063792A (en) 2003-08-11 2003-08-11 Heat sensitive element and thermo-protector

Publications (1)

Publication Number Publication Date
JP2005063792A true JP2005063792A (en) 2005-03-10

Family

ID=34369230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291588A Pending JP2005063792A (en) 2003-08-11 2003-08-11 Heat sensitive element and thermo-protector

Country Status (1)

Country Link
JP (1) JP2005063792A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112015A1 (en) * 2005-04-14 2006-10-26 Senju Metal Industry Co., Ltd Alloy for fusible plug and fusible plug
JP2006331777A (en) * 2005-05-25 2006-12-07 Uchihashi Estec Co Ltd Thermo-protector and its manufacturing method
WO2007015291A1 (en) * 2005-08-02 2007-02-08 Senju Metal Industry Co., Ltd Sprinkler head
JP2011202874A (en) * 2010-03-25 2011-10-13 Mitsubishi Electric Corp Alloy for fusible plug, fusible plug using the same, and refrigeration device
CN102426982A (en) * 2011-09-21 2012-04-25 上海航天科工电器研究院有限公司 Built-in protector for compressor
JP2014136236A (en) * 2013-01-16 2014-07-28 Sumitomo Metal Mining Co Ltd Pb-FREE In-BASED SOLDER ALLOY
JP2018118853A (en) * 2017-01-27 2018-08-02 ゼロックス コーポレイションXerox Corporation Automatically adjusting nip force in printing apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112015A1 (en) * 2005-04-14 2006-10-26 Senju Metal Industry Co., Ltd Alloy for fusible plug and fusible plug
US10036479B2 (en) 2005-04-14 2018-07-31 Senju Metal Industry Co., Ltd. Alloy for a fusible plug and a fusible plug
JP2006331777A (en) * 2005-05-25 2006-12-07 Uchihashi Estec Co Ltd Thermo-protector and its manufacturing method
JP4554436B2 (en) * 2005-05-25 2010-09-29 内橋エステック株式会社 Thermo protector and manufacturing method thereof
WO2007015291A1 (en) * 2005-08-02 2007-02-08 Senju Metal Industry Co., Ltd Sprinkler head
US8322453B2 (en) 2005-08-02 2012-12-04 Senju Metal Industry Co., Ltd. Sprinkler head
JP2011202874A (en) * 2010-03-25 2011-10-13 Mitsubishi Electric Corp Alloy for fusible plug, fusible plug using the same, and refrigeration device
CN102426982A (en) * 2011-09-21 2012-04-25 上海航天科工电器研究院有限公司 Built-in protector for compressor
JP2014136236A (en) * 2013-01-16 2014-07-28 Sumitomo Metal Mining Co Ltd Pb-FREE In-BASED SOLDER ALLOY
JP2018118853A (en) * 2017-01-27 2018-08-02 ゼロックス コーポレイションXerox Corporation Automatically adjusting nip force in printing apparatus

Similar Documents

Publication Publication Date Title
JP4410056B2 (en) Thermosensor, thermoprotector, and method of manufacturing thermosensor
US7345570B2 (en) Thermoprotector
JP4290426B2 (en) Thermal fuse
EP2988313B2 (en) Protective device
JP4358134B2 (en) Bypass switch
JP2005063792A (en) Heat sensitive element and thermo-protector
JP4269264B2 (en) Thin thermal fuse
JP2006196189A (en) Thermo-protector, manufacturing and mounting method of the same
JP4223354B2 (en) Thermo protector
JP4554436B2 (en) Thermo protector and manufacturing method thereof
JP2009212007A (en) Protection element
JP4387227B2 (en) Thermo protector
JP4223368B2 (en) Thermo protector
JP4527609B2 (en) Thermo protector
JP2006155974A (en) Thermoprotector
JP4387251B2 (en) Thermo protector
JP2000090792A (en) Alloy type thermal fuse
JP3985820B2 (en) Temperature-sensitive circuit breaker membrane device and energizing circuit device using the same
JP2006147326A (en) Thermo protector
JP3985812B2 (en) Temperature-sensitive circuit breaker membrane device and energizing circuit device using the same
JP2001312950A (en) Thermal fuse having self-heating element and pack battery with the built-in thermal fuse
JP2007115606A (en) On-off switch
JP2007005066A (en) Thermoprotector and manufacturing method of the same
JP4118738B2 (en) Thermal element and thermo protector
JP2005268078A (en) Thermo-protector