JP4527609B2 - Thermo protector - Google Patents

Thermo protector Download PDF

Info

Publication number
JP4527609B2
JP4527609B2 JP2005177092A JP2005177092A JP4527609B2 JP 4527609 B2 JP4527609 B2 JP 4527609B2 JP 2005177092 A JP2005177092 A JP 2005177092A JP 2005177092 A JP2005177092 A JP 2005177092A JP 4527609 B2 JP4527609 B2 JP 4527609B2
Authority
JP
Japan
Prior art keywords
contact piece
lead conductor
conductor portion
contact
thermo protector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005177092A
Other languages
Japanese (ja)
Other versions
JP2006351394A (en
Inventor
俊朗 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2005177092A priority Critical patent/JP4527609B2/en
Publication of JP2006351394A publication Critical patent/JP2006351394A/en
Application granted granted Critical
Publication of JP4527609B2 publication Critical patent/JP4527609B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は可溶材の融点または軟化点を動作温度とするサーモプロテクタに関するものである。   The present invention relates to a thermo protector whose operating temperature is the melting point or softening point of a soluble material.

電子・電気機器における異常発熱を感知し、この感知に基づくカットオフ動作で機器を電源から遮断して機器の過熱を防止し、火災の発生を未然に防止するサーモプロテクタとして、弾性歪みエネルギーを蓄積しておき、可溶材の溶融乃至は軟化により弾性歪みエネルギーを解放させる方式が知られている。
例えば、図9に示すサーモプロテクタでは、弾性接触片2’の一端部21’がリード導体部分1’にリベッティングや溶接等により固定され、該弾性接触片2’が凸曲線状に曲げられて弾性曲げ歪エネルギーが加えられた状態で当該弾性接触片2’の他端部22’が前記リード導体部分1’に低融点可溶合金等の可溶材3’による面接合で固定されて弾性接触片2’の曲げ頂部が他方のリード導体部分10’に接触されており、可溶材3’の溶融乃至は軟化による前記弾性曲げ歪エネルギーの解放で前記接触が開放される(特許文献1参照)。
Accumulated elastic strain energy as a thermo protector that detects abnormal heat generation in electronic and electrical devices, cuts off the device from the power supply by cut-off operation based on this detection, prevents overheating of the device, and prevents the occurrence of fire. A method of releasing elastic strain energy by melting or softening a soluble material is known.
For example, in the thermo protector shown in FIG. 9, one end portion 21 ′ of the elastic contact piece 2 ′ is fixed to the lead conductor portion 1 ′ by riveting, welding, or the like, and the elastic contact piece 2 ′ is bent into a convex curve to be elastic. With the bending strain energy applied, the other end 22 'of the elastic contact piece 2' is fixed to the lead conductor portion 1 'by surface bonding with a soluble material 3' such as a low-melting-point fusible alloy. The 2 ′ bending top is in contact with the other lead conductor portion 10 ′, and the contact is released by releasing the elastic bending strain energy by melting or softening the fusible material 3 ′ (see Patent Document 1).

特開2005−78954号公報JP 2005-78954 A

しかしながら、このサーモプロテクタでは、弾性接触片2’の凸曲線頂部とリード導体部分10’との接触点pの接触抵抗を低くするために接触圧力を相当に高くする必要があり、この接触圧の増大により接触片2‘の他端部22’に作用する曲げモーメントが増し、可溶材3‘による接合界面に作用する劈開力が増加して接合界面の長期安定性が損なわれ易い。
特許文献1の実施例では、前記接触点pでの接触抵抗を低くするために前記可溶材3’よりも低融点のはんだで接触点を接合しているが、これでは、サーモプロテクタの動作の際にはんだが溶融されて糸引き現象が生じ再導通が生じ易くなる。
However, in this thermo protector, in order to reduce the contact resistance at the contact point p between the convex curve top of the elastic contact piece 2 ′ and the lead conductor portion 10 ′, it is necessary to considerably increase the contact pressure. Due to the increase, the bending moment acting on the other end portion 22 ′ of the contact piece 2 ′ increases, the cleavage force acting on the joining interface by the fusible material 3 ′ increases, and the long-term stability of the joining interface tends to be impaired.
In the example of Patent Document 1, the contact point is joined with solder having a melting point lower than that of the fusible material 3 ′ in order to reduce the contact resistance at the contact point p. At this time, the solder is melted to cause a stringing phenomenon and re-conduction is likely to occur.

本発明の目的は、弾性歪エネルギーをはんだ等の可溶材による接合固定で支持している弾性体の弾性歪エネルギーが可溶体の溶融で解放されて良好に動作するサーモプロテクタを提供することにある。   An object of the present invention is to provide a thermo protector that operates satisfactorily by the elastic strain energy of the elastic body supporting the elastic strain energy by joining and fixing with a soluble material such as solder being released by melting of the soluble body. .

請求項1に係るサーモプロテクタは、ハウジング内に互いに上下に収容された両リード導体部分の一方のリード導体部分に弾性を有する接触片が弾性歪エネルギーを保持した曲げ状態で両端部において固定されており、一方の固定が可溶材を介しての面接合により行われており、前記曲げ状態の接触片に他方のリード導体部分が接触されており、この接触箇所に他方のリード導体部分及び接触片よりも軟質の導電材が介在されていることを特徴とする。
請求項2に係るサーモプロテクタは、請求項1のサーモプロテクタにおいて、軟質導電材の融点が可溶材の融点よりも高くされていることを特徴とする。
請求項3に係るサーモプロテクタは、請求項1または2のサーモプロテクタにおいて、他方のリード導体部または接触片の何れかに軟質導電材5が固着されていることを特徴とする。
請求項4に係るサーモプロテクタは、請求項1〜3何れかのサーモプロテクタにおいて、軟質導電材がInまたはInを主成分とする合金であることを特徴とする。
請求項5に係るサーモプロテクタは、請求項1〜3何れかのサーモプロテクタにおいて、軟質導電材が導電性樹脂であることを特徴とする。
請求項6に係るサーモプロテクタは、請求項1〜5何れかのサーモプロテクタにおいて、接触片が他方のリード導体部分側に凸の曲線状に弾性変形されており、接触片の一端部が折り返されその折り返し部が一方のリード導体部分に可溶材を介して面接合されていることを特徴とする。
請求項7に係るサーモプロテクタは、請求項1〜6何れかのサーモプロテクタにおいて、可溶材が低融点金属であることを特徴とする。
請求項8に係るサーモプロテクタは、請求項1〜6何れか記載のサーモプロテクタにおいて、接触片の一端側と一方のリード導体部分との面接合箇所における可溶材が熱可塑性樹脂であり、接触片の他端側と一方のリード導体部分との固定が電気的導通のもとで行われていることを特徴とする。
請求項9に係るサーモプロテクタは、請求項1〜8何れかのサーモプロテクタにおいて、弾性を有する接触片が金属または金属と樹脂との重合物あるいは複合物であることを特徴とする。
請求項10に係るサーモプロテクタは、請求項1〜9何れかのサーモプロテクタにおいて、弾性を有する接触片が多層の重畳体とされていることを特徴とする。
請求項11に係るサーモプロテクタは、請求項1〜10何れかのサーモプロテクタにおいて、ハウジングが上下に二分割の分割式とされ、弾性を有する接触片が固定された一方のリード導体部分が一方の分割ハウジング片内に収容され、他方のリード導体部分が他方の分割ハウジング片内に収容されていることを特徴とする。
The thermo protector according to claim 1 is fixed at both ends in a bent state in which a resilient contact piece holds elastic strain energy on one lead conductor portion of both lead conductor portions accommodated in the housing one above the other. One of the lead conductor portions is in contact with the bent contact piece, and the other lead conductor portion and the contact piece are in contact with the bent contact piece. It is characterized in that a softer conductive material is interposed.
The thermo protector according to claim 2 is the thermo protector according to claim 1, characterized in that the melting point of the soft conductive material is higher than the melting point of the soluble material.
The thermo protector according to claim 3 is characterized in that, in the thermo protector according to claim 1 or 2, the soft conductive material 5 is fixed to either the other lead conductor portion or the contact piece.
The thermo protector according to claim 4 is the thermo protector according to any one of claims 1 to 3, wherein the soft conductive material is In or an alloy containing In as a main component.
The thermo protector according to claim 5 is the thermo protector according to any one of claims 1 to 3, wherein the soft conductive material is a conductive resin.
The thermo protector according to claim 6 is the thermo protector according to any one of claims 1 to 5, wherein the contact piece is elastically deformed in a convex curved shape toward the other lead conductor portion, and one end of the contact piece is folded back. The folded portion is surface-bonded to one lead conductor portion via a fusible material.
The thermo protector according to claim 7 is the thermo protector according to any one of claims 1 to 6, wherein the soluble material is a low melting point metal.
The thermo protector according to claim 8 is the thermo protector according to any one of claims 1 to 6, wherein the soluble material at the surface joining portion between one end side of the contact piece and one lead conductor portion is a thermoplastic resin. The other end side of the lead wire and one lead conductor portion are fixed under electrical conduction.
A thermo protector according to claim 9 is the thermo protector according to any one of claims 1 to 8, wherein the elastic contact piece is a metal or a polymer or a composite of a metal and a resin.
The thermo protector according to claim 10 is the thermo protector according to any one of claims 1 to 9, characterized in that the elastic contact piece is a multi-layered superposed body.
The thermo protector according to claim 11 is the thermo protector according to any one of claims 1 to 10, wherein the housing is divided into two parts in the vertical direction, and one lead conductor portion to which an elastic contact piece is fixed is one of the thermo protectors. It is accommodated in the divided housing piece, and the other lead conductor portion is accommodated in the other divided housing piece.

弾性を有する接触片が弾性歪エネルギーを保持した状態で一方のリード導体部分に固定され、少なくとも接触片の片端の固定が可溶材を介して面接合により行われ、その接触片の曲げ頂部が他方めんのリード導体部分に軟質導電材を介して接触されており、その接触界面のリード導体部位や接触片部位に凹凸があったり、同接触界面への異物の介入があっても、軟質導電材のために同接触界面の接触抵抗を低くできる。
従って、接触抵抗の低減のために接触圧力を高くする必要がなく、可溶材により一方のリード導体部分に面接合された接触片端部に作用する曲げモーメントを低くでき、その接合界面に作用する劈開力(法線方向反力)の増加を排除できる。
従って、接合界面の可溶材がクリープ変形するのを防止でき、可溶材による面接合界面を安定に保持できる。
An elastic contact piece is fixed to one lead conductor portion while retaining elastic strain energy, and at least one end of the contact piece is fixed by surface bonding through a fusible material, and the bending top of the contact piece is the other Even if the lead conductor part of the noodle is in contact with the soft conductor through the soft conductive material and the lead conductor part or the contact piece part of the contact interface is uneven or there is foreign matter intervention at the contact interface, the soft conductive material For this reason, the contact resistance of the contact interface can be lowered.
Therefore, it is not necessary to increase the contact pressure in order to reduce the contact resistance, the bending moment acting on the end of the contact piece surface-bonded to one lead conductor portion by the fusible material can be lowered, and the cleavage acting on the joint interface. An increase in force (normal reaction force) can be eliminated.
Therefore, it is possible to prevent the soluble material at the bonding interface from being creep-deformed and to stably maintain the surface bonding interface by the soluble material.

図1の(イ)〜(ハ)は本発明に係るサーモプロテクタの基本的構造の一例を示し、図1の(イ)は動作前を、図1の(ロ)は動作後をそれぞれ示し、図1の(ハ)は図1の(イ)におけるハ−ハ断面図を示している。
図1において、6はハウジング、1,10はハウジング内に互いに上下に配置されたリード導体部分である。2は弾性を有する接触片であり、先端部21が折り返されて一方のリード導体部分1の先端部上面に可溶材3を介して面接合で固定され、水平方向圧縮力pにより曲げ状態とされて先端側の撓み角αL’が後述の角度αLにほぼ等しくされ、後端側22が同上リード導体部分1に撓み角0で溶接、リベッティング等により固定されている。
1 (a) to 1 (c) show an example of the basic structure of the thermoprotector according to the present invention, FIG. 1 (a) shows before operation, and FIG. 1 (b) shows after operation. (C) in FIG. 1 is a cross-sectional view taken along the line ha in FIG.
In FIG. 1, 6 is a housing, and 1 and 10 are lead conductor portions disposed one above the other in the housing. Reference numeral 2 denotes an elastic contact piece. The tip end portion 21 is folded back and fixed to the upper surface of the tip end portion of one lead conductor portion 1 via a fusible material 3 and is bent by a horizontal compression force p. The bending angle αL ′ on the front end side is made substantially equal to an angle αL described later, and the rear end side 22 is fixed to the lead conductor portion 1 with the bending angle 0 by welding, riveting or the like.

このようにして曲げられた接触片2には弾性曲げ歪エネルギーが保持されている。
この曲げ接触片2に他方のリード導体部分10が軟質導電材5を介して接触されている。この軟質導電材5は他方のリード導体部分10及び接触片2より硬度が小とされており、例えばIn、Inを主成分とする合金、導電性粉末の添加により導電性とした樹脂やゴム等の導電性高分子材料を使用できる。
図1の(イ)において、接触片2の先端側21の撓み角がαL’、後端側22の撓み角が0、固定点での水平方向圧縮力がp、高さがhである弾性接触片の撓み状態は、一端固定・他端ヒンジ支持の支柱の水平方向圧縮力pによる撓み状態にほぼ等しい。
Elastic bending strain energy is held in the contact piece 2 bent in this way.
The other lead conductor portion 10 is in contact with the bending contact piece 2 via the soft conductive material 5. The soft conductive material 5 has a lower hardness than the other lead conductor portion 10 and the contact piece 2, for example, an alloy containing In, In as a main component, resin or rubber made conductive by adding conductive powder, etc. The conductive polymer material can be used.
In FIG. 1A, the elasticity of the contact piece 2 having a bending angle αL ′ on the front end side 21, a bending angle 0 on the rear end side 22, a horizontal compression force p at a fixed point, and a height h. The bending state of the contact piece is substantially equal to the bending state due to the horizontal compression force p of the column fixed to one end and supported by the other end hinge.

図2は一端固定・他端ヒンジ支持の柱(Long column)の水平方向圧縮力pによる撓み状態を示している。
図2において、点(x,y)での曲げモーメントをMとすると、
FIG. 2 shows a state of bending by a horizontal compression force p of a column (Long column) fixed at one end and supported at the other end hinge.
In FIG. 2, when the bending moment at the point (x, y) is M x ,

y/dx=−M/EI
が成立し(ただし、EIは柱の曲げ剛性)、曲げモーメントMxが
d 2 y / dx 2 = −M x / EI
(Where EI is the bending rigidity of the column) and the bending moment Mx is

=py−Mox/L
で与えられるから、凸曲線の形状yは、p/EI=kとおいて、
M x = py-Mox / L
Since the convex curve shape y is p / EI = k 2 ,

y=A〔coskx−(sinkx)/kL+(x/L)−1〕
tankL=kL
で与えられ、係数Aはx=L'において凸曲線yの高さが既知のhであることから、
y = A [coskx- (sinkx) / kL + (x / L) -1]
tankL = kL
Since the height of the convex curve y is known h at x = L ′, the coefficient A is given by

x=L'=h、(dy/dx)x=L'=0
より求めることができる。
従って、ヒンジ支持端での撓み角αLは、
y x = L ′ = h, (dy / dx) x = L ′ = 0
It can be obtained more.
Therefore, the deflection angle αL at the hinge support end is

αL=(dy/dx)x=L=A〔−(coskL)/L−k(sinkL)+(1/L)〕
で与えられる。
αL = (dy / dx) x = L = A [− (coskL) / L−k (sinkL) + (1 / L)]
Given in.

図2において、ヒンジ支持端を力学的に凍結しても(ヒンジ支持端の撓み角をそのままにしてヒンジ支持を固定支持に変えても)力学的状態は変わらない。従って、図1の(イ)の撓み角αL’を図2における撓み角αLに等しくし、かつ接触個所eでの接触圧力を0とすれば、図1の(イ)において一方のリード導体部分1の先端側と弾性接触片2との接合箇所に曲げモーメントが作用するのを排除し得る。
接触個所eの接触界面には、In、Inを主成分とする合金、導電性樹脂等の軟質導電材5を介在させてあるから、ごく低い接触圧力で低い接触抵抗を保証でき、その接触圧力に基づき可溶材3による接合界面に作用する劈開力を僅小にでき、その接合界面に実質的に剪断応力のみを作用させることができる。従って、曲げモーメント反力に基づく劈開力により接合界面が劈開されるのをよく防止できる。
In FIG. 2, even if the hinge support end is dynamically frozen (even if the hinge support end is bent and the hinge support is changed to a fixed support), the mechanical state does not change. Accordingly, if the deflection angle αL ′ in FIG. 1A is equal to the deflection angle αL in FIG. 2 and the contact pressure at the contact point e is 0, one lead conductor portion in FIG. It can be excluded that a bending moment acts on the joint portion between the tip end side of 1 and the elastic contact piece 2.
Since a soft conductive material 5 such as In, an alloy containing In as a main component, or a conductive resin is interposed at the contact interface of the contact point e, a low contact resistance can be ensured with a very low contact pressure. Accordingly, the cleavage force acting on the joint interface by the fusible material 3 can be made small, and substantially only the shear stress can be applied to the joint interface. Therefore, it is possible to well prevent the joint interface from being cleaved by the cleavage force based on the bending moment reaction force.

前記接合界面の剪断応力τは接触片2に作用する水平方向圧縮力をp、接合界面の面積をSとすると、τ=p/Sで与えられ、接合界面の剪断強度をf/Sを越える強度とする必要がある。この剪断強度は充分な安全率を有するものでなくてはならず、このため面接合される部分の接触片2または一方のリード導体1の双方あるいは一方に、孔、窪み、切欠きを設けて可溶材3を食い込ませたり、面接合される接触片端部または一方のリード導体部分の一方または双方を粗面として接合界面の剪断強度を増強することが望ましい。また、前記可溶材3で面接合された界面を機械的に補強するために可溶材を盛り付けることもできる。   The shear stress τ of the joint interface is given by τ = p / S, where p is the horizontal compressive force acting on the contact piece 2 and S is the area of the joint interface, and the shear strength of the joint interface exceeds f / S. It needs to be strong. This shear strength must have a sufficient safety factor. For this reason, a hole, a recess, or a notch is provided in both or one of the contact piece 2 and / or one lead conductor 1 of the portion to be surface-bonded. It is desirable to increase the shear strength of the bonding interface by biting the fusible material 3 or by roughening one or both of the contact piece end portion or one lead conductor portion to be surface-bonded. Moreover, in order to reinforce mechanically the interface surface-bonded by the said soluble material 3, a soluble material can also be arranged.

前記接触片2には、金属、金属と合成樹脂との複合体を用いることができる。複合体には、金属粉を混合した樹脂も含まれる。   The contact piece 2 may be a metal or a composite of a metal and a synthetic resin. The composite includes a resin mixed with metal powder.

前記可溶材3には、はんだ等の低融点可溶合金、低融点可溶単体金属または熱可塑性樹脂、或いは導電性粉末を添加した導電性熱可塑性樹脂を用いることができる。可溶材3を介しての面接合は、通電加熱や電磁誘導加熱等を用いた溶接により行うことができる。溶接界面にフラックスを塗布することが好ましい。
接触片全長の片面または両面に可溶材をコーティングして弾性体全長の曲げ剛性を均等化することは、曲げ応力の集中化防止に有効である。
The fusible material 3 may be a low melting point soluble alloy such as solder, a low melting point soluble single metal or thermoplastic resin, or a conductive thermoplastic resin to which conductive powder is added. The surface bonding through the fusible material 3 can be performed by welding using energization heating or electromagnetic induction heating. It is preferable to apply a flux to the weld interface.
Coating the fusible material on one or both sides of the entire length of the contact piece to equalize the bending rigidity of the entire length of the elastic body is effective for preventing concentration of bending stress.

図1の(イ)において、一方のリード導体部分1→接触片2→接触片2と他方のリード導体部分10との接触面→他方のリード導体部分10の経路で常時電気的に導通されている。
この状態において、(1)リード導体部分10と接触片2との接触界面に軟質導電材5が介在されているから、低い接触圧力のもとでも低接触抵抗の電気的同通を保証できること、(2)可溶材3による接合界面に前記接触圧力に基づき作用する劈開力を僅小にできて接合界面のクリープ変形を防止できること、などから安定な電気的導通を確保できる。
In FIG. 1A, one lead conductor portion 1 → contact piece 2 → contact surface between the contact piece 2 and the other lead conductor portion 10 → the other lead conductor portion 10 is always electrically connected along the path. Yes.
In this state, (1) since the soft conductive material 5 is interposed at the contact interface between the lead conductor portion 10 and the contact piece 2, it is possible to ensure electrical communication with low contact resistance even under a low contact pressure. (2) Stable electrical continuity can be ensured from the fact that the cleavage force acting on the bonding interface of the fusible material 3 based on the contact pressure can be made small and creep deformation of the bonding interface can be prevented.

周囲温度の上昇により可溶材3が溶融乃至は軟化されると、図1の(ロ)に示すように、曲げ接触片2の可溶材3による拘束が解除され、その曲げ接触片2の弾性曲げ歪エネルギーが解放され、曲げ接触片2が元の直線状に復元されて他方のリード導体部分10と接触片2との接触が脱離され電気的導通が遮断される。
この際、軟質導電材5の脱落を防止するために、一方のリード導体部分1と軟質導電材5との間、または弾性接触片と軟質導電材5との間を固着しておくことが好ましい。また、一方のリード導体部分1または接触片3に予めディピングにより軟質導電材層を被覆しておくことが好ましい。
When the soluble material 3 is melted or softened due to an increase in the ambient temperature, as shown in FIG. 1B, the restriction of the bending contact piece 2 by the soluble material 3 is released, and the bending contact piece 2 is elastically bent. The strain energy is released, the bending contact piece 2 is restored to the original linear shape, the contact between the other lead conductor portion 10 and the contact piece 2 is removed, and the electrical conduction is interrupted.
At this time, in order to prevent the soft conductive material 5 from falling off, it is preferable to fix between one lead conductor portion 1 and the soft conductive material 5 or between the elastic contact piece and the soft conductive material 5. . Moreover, it is preferable that one lead conductor portion 1 or the contact piece 3 is previously coated with a soft conductive material layer by dipping.
.

図1の(イ)において、接触片2の撓みyが前記した通り、
y=A〔coskx−(sinkx)/kL+(x/L)−1〕
で与えられ、位置xでの曲げモーメントM(x)が
M(x)=EI・dy/dx
で与えられ、接触片2と他のリード導体部分10との接触箇所eと接触片後端22との間の接触片部分に蓄えられる弾性歪エネルギーWが

Figure 0004527609
で与えられる。
また、可溶材3による接合界面に作用する剪断力Sは
S=kEI
で表すことができる。
弾性歪エネルギーWは動作速度に関与し、剪断力Sは可溶材3による接合界面の安定性に関与し、接触片2の曲げ剛性EIを所望値に設定することが必要である。
この曲げ剛性の調整には、多層積重構成とすることが有効である。1枚ものの弾性接触片の厚みをt、巾をb、弾性率をEとすると、その弾性接触片の曲げ剛性EIは
EI=Ebt/12
で与えられ、この1枚もの弾性接触片の厚みtをn分割して積重構成にすると、その弾性接触片の曲げ剛性EI’は
EI’=Ebn(t/n)/12=Ebt/(12n
で与えられ、例えばn=2の場合、曲げ剛性を1/4にできる。 In (a) of FIG. 1, the deflection y of the contact piece 2 is as described above.
y = A [coskx- (sinkx) / kL + (x / L) -1]
And the bending moment M (x) at position x is M (x) = EI · d 2 y / dx 2
The elastic strain energy W stored in the contact piece portion between the contact point e between the contact piece 2 and the other lead conductor portion 10 and the contact piece rear end 22 is given by
Figure 0004527609
Given in.
Further, the shearing force S acting on the joining interface by the soluble material 3 is S = k 2 EI
Can be expressed as
The elastic strain energy W is related to the operating speed, the shear force S is related to the stability of the joining interface by the soluble material 3, and the bending rigidity EI of the contact piece 2 needs to be set to a desired value.
In order to adjust the bending rigidity, it is effective to adopt a multilayer stack structure. The thickness of the elastic contact piece of one-sheet t, the width b, and the elastic modulus E, the bending rigidity EI of the elastic contact piece EI = Ebt 3/12
Given, if the thickness t of the elastic contact piece also this one to the stacking configuration to n divided, the flexural rigidity EI of the elastic contact piece 'is EI' = Ebn (t / n ) 3/12 = Ebt 3 / (12n 2 )
For example, when n = 2, the bending rigidity can be reduced to ¼.

上記において、一方のリード導体部分1と接触片2との電気的導通は、可溶材3として可溶金属や導電性熱可塑性樹脂を使用する場合、可溶材により確保できる。
一方のリード導体部分1と接触片後端部22との結着には、スポット抵抗溶接、レーザ溶接、超音波溶接、高周波溶接または電磁誘導加熱溶接等の溶接やリベッティングを使用できる。
リード導体部分と弾性接触片との溶接性を向上させるために、局部的に溶接性に優れた材料で置き換えることもできる。
可溶材3として絶縁性の熱可塑性樹脂を使用する場合、リード導体部分1と接触片後端部22との結着箇所において電気的導通性が確保される。
In the above description, the electrical continuity between the one lead conductor portion 1 and the contact piece 2 can be ensured by a soluble material when a soluble metal or a conductive thermoplastic resin is used as the soluble material 3.
For the binding between the one lead conductor portion 1 and the contact piece rear end portion 22, welding such as spot resistance welding, laser welding, ultrasonic welding, high frequency welding or electromagnetic induction heating welding, or riveting can be used.
In order to improve the weldability between the lead conductor portion and the elastic contact piece, it can be replaced with a material that is locally excellent in weldability.
When an insulating thermoplastic resin is used as the fusible material 3, electrical continuity is ensured at the location where the lead conductor portion 1 and the contact piece rear end 22 are bonded.

図1に示す例では、接触片2の先端側21を角度ほぼαL'で折り返し、その折り返し部を一方のリード導体部分1の先端部上面に可溶材3を介して面接合し、接触片2の後端側22を水平方向圧縮力pを加えた状態で角度0にて一方のリード導体部分1の後端側に溶接やリベッティングにより結着しているが、図3の(イ)に示すように接触片2の先端側21を接触片厚みの立ち上げ211を経て角度ほぼαL'で折り返し、その折り返し部を一方のリード導体部分1の先端部裏面に可溶材3を介して面接合し、接触片2の後端側22を水平方向圧縮力pを加えた状態で角度0にて一方のリード導体部分1の後端側に溶接やリベッティングにより結着することもできる。また、図3の(ロ)に示すように、接触片の先端側21を角度ほぼ(π−αL')で折り曲げ、その折り曲げ部21を一方のリード導体部分1の先端部上面に可溶材を介して面接合し、接触片2の後端側22を水平方向圧縮力pを加えた状態で角度0にて一方のリード導体部分1に溶接やリベッティングにより結着することもできる。   In the example shown in FIG. 1, the distal end side 21 of the contact piece 2 is folded back at an angle of approximately αL ′, and the folded portion is surface-bonded to the upper surface of the distal end portion of one lead conductor portion 1 via a soluble material 3. The rear end side 22 is bonded to the rear end side of one lead conductor portion 1 at an angle of 0 with a horizontal compression force p applied thereto by welding or riveting, as shown in FIG. Thus, the front end side 21 of the contact piece 2 is folded back at an angle of approximately αL ′ through the rise 211 of the contact piece thickness, and the folded portion is surface-bonded to the back surface of the front end portion of one lead conductor portion 1 via the soluble material 3. Further, the rear end side 22 of the contact piece 2 can be bonded to the rear end side of one lead conductor portion 1 by welding or riveting at an angle 0 in a state where the horizontal compression force p is applied. Further, as shown in FIG. 3B, the distal end side 21 of the contact piece is bent at an angle of approximately (π−αL ′), and the bent portion 21 is put on the upper surface of the distal end portion of one lead conductor portion 1 with a soluble material. The contact piece 2 can be bonded to the one lead conductor portion 1 at an angle 0 by welding or riveting in a state where a horizontal compression force p is applied.

また、図4の(イ)に示すように、接触片2の後端側22を角度ほぼαL'で折り返し、その折り返し部22を一方のリード導体部分1の上面に可溶材3を介して面接合し、接触片2の先端側21を水平方向圧縮力pを加えた状態で角度0にて一方のリード導体部分1の先端側に溶接やリベッティングにより結着すること、図4の(ロ)に示すように、接触片2の後端側22を角度ほぼ(π−αL')で折り曲げ、その折り曲げ部22を一方のリード導体部分1の上面に可溶材3を介して面接合し、接触片2の先端側21を水平方向圧縮力pを加えた状態で角度0にて一方のリード導体部分1の先端側に溶接(例えばスポット溶接)やリベッティングにより結着することも可能である。   Further, as shown in FIG. 4A, the rear end side 22 of the contact piece 2 is folded back at an angle of approximately αL ′, and the folded portion 22 is interviewed via the fusible material 3 on the upper surface of one lead conductor portion 1. 4, the distal end side 21 of the contact piece 2 is bonded to the distal end side of one lead conductor portion 1 at an angle 0 with a horizontal compression force p applied, by welding or riveting, 2, the rear end side 22 of the contact piece 2 is bent at an angle of approximately (π−αL ′), and the bent portion 22 is surface-bonded to the upper surface of one lead conductor portion 1 via the fusible material 3 and contacted. It is also possible to bind the distal end side 21 of the piece 2 to the distal end side of one lead conductor portion 1 by welding (for example, spot welding) or riveting at an angle 0 with the horizontal compression force p applied.

図5の(イ)〜(ハ)は本発明に係るサーモプロテクタの基本的構造の別例を示し、図5の(イ)は動作前を、図5の(ロ)は動作後をそれぞれ示し、図5の(ハ)は図5の(イ)におけるハ−ハ断面図を示している。
図5において、5はハウジング、1,10はハウジング内に互いに上下に配置されたリード導体部分である。2は弾性を有する接触片であり、先端部がほぼ角度βL’で折り返されて一方のリード導体部分1の先端部上面に可溶材3を介して面接合で固定され、水平方向圧縮力pにより曲げ状態とされて先端側21の撓み角βL’が後述の角度βLにほぼ等しくされている。後端側22は角度略(π−βL’)で折り曲げられ同上リード導体部分1に先端側21の撓み角βL’にほぼ等しい角度で溶接やリベッティングにより固定されている。曲げられた接触片2には弾性曲げ歪エネルギーが保持されている。
曲げ接触片2に前記の他方のリード導体部分10とが軟質導電材5を介して接触されている。
図5の(イ)における、先端側21の撓み角がβL’、後端側22の撓み角がほぼβL’、固定点での水平方向圧縮力がp、高さがhである弾性接触片2の撓み状態は、両端ヒンジ支持の支柱の水平方向圧縮力pによる撓み状態にほぼ等しい。
5 (a) to 5 (c) show another example of the basic structure of the thermoprotector according to the present invention, FIG. 5 (a) shows before operation, and FIG. 5 (b) shows after operation. (C) in FIG. 5 shows a cross-sectional view of the ha-ha in FIG.
In FIG. 5, 5 is a housing, and 1 and 10 are lead conductor portions arranged one above the other in the housing. Reference numeral 2 denotes an elastic contact piece whose front end is folded back at an angle βL ′ and fixed to the upper surface of the front end of one lead conductor portion 1 by surface bonding via a fusible material 3, and by a horizontal compression force p. In the bent state, the bending angle βL ′ of the distal end side 21 is substantially equal to an angle βL described later. The rear end side 22 is bent at an angle of approximately (π−βL ′) and is fixed to the lead conductor portion 1 by welding or riveting at an angle substantially equal to the deflection angle βL ′ of the front end side 21. The bent contact piece 2 retains elastic bending strain energy.
The other lead conductor portion 10 is in contact with the bending contact piece 2 via the soft conductive material 5.
In FIG. 5A, an elastic contact piece having a bending angle of βL ′ at the front end side 21, a bending angle of approximately βL ′ at the rear end side 22, a horizontal compressive force p at a fixed point, and a height of h. The bending state of 2 is substantially equal to the bending state due to the horizontal compression force p of the column supported by the hinges at both ends.

図6は両端ヒンジ支持の柱(Long column)の水平方向圧縮力pによる撓み状態を示している。
図6において、点(x,y)での曲げモーメントをMとすると、
FIG. 6 shows a bent state due to a horizontal compression force p of a column supported by hinges at both ends.
In FIG. 6, when the bending moment at the point (x, y) is M x ,

y/dx=−M/EI
が成立し(ただし、EIは柱の曲げ剛性)、曲げモーメントM
d 2 y / dx 2 = −M x / EI
(Where EI is the bending stiffness of the column) and the bending moment M x is

=py
で与えられるから、凸曲線の形状yは、p/EI=kとおいて、
M x = py
Since the convex curve shape y is p / EI = k 2 ,

y=B・sinkx
sinkL=0
で与えられ、
従って、
y = B ・ sinkx
sinkL = 0
Given in
Therefore,

y=B・sin(πx/L)
で与えられる。
係数Bはx=L/2において凸曲線yの高さが既知のhであることから、
y = B · sin (πx / L)
Given in.
The coefficient B is h where the height of the convex curve y is known at x = L / 2.

x=L/2=h、(dy/dx)x=L/2=0
より求めることができ
y x = L / 2 = h, (dy / dx) x = L / 2 = 0
Can ask more

B=h
で与えられる。
従って、ヒンジ支持端での撓み角βLは、
B = h
Given in.
Therefore, the deflection angle βL at the hinge support end is

βL=(dy/dx)x=Lまたは0=hπ/L
で与えられる。
βL = (dy / dx) x = L or 0 = hπ / L
Given in.

図6において、ヒンジ支持端を力学的に凍結しても(両ヒンジ支持端を撓み角を同一角度のままで両固定支持に変えても)力学的状態は変わらない。従って、図5の(イ)の撓み角βL’を図6における撓み角βLにほぼ等しくすれば、図6の(イ)において一方のリード導体部分1の先端部21と弾性接触片2との接合箇所に曲げモーメントが作用するのを排除して可溶材3による接合界面に剪断応力のみを作用させることができる。従って、曲げモーメント反力に基づく接合界面を劈開しようとする応力が作用するのを防止できる。   In FIG. 6, the mechanical state does not change even if the hinge support ends are dynamically frozen (even if both hinge support ends are bent at the same angle and changed to both fixed supports). Therefore, if the deflection angle βL ′ in FIG. 5A is substantially equal to the deflection angle βL in FIG. 6, the tip 21 of one lead conductor portion 1 and the elastic contact piece 2 in FIG. It is possible to eliminate only the bending moment from acting on the joining portion and allow only the shear stress to act on the joining interface of the soluble material 3. Therefore, it is possible to prevent a stress from cleaving the bonding interface based on the bending moment reaction force from acting.

前記した通り、接合界面の剪断応力τは弾性接触片に作用する水平方向圧縮力をp、接合界面の面積をSとすると、τ=p/Sで与えられ、接合界面の剪断強度をf/Sを越える強度とする必要がある。この剪断強度は充分な安全率を有するものでなくてはならず、可溶材を介して面接合される接触片先端部または一方のリード導体部分の双方あるいは一方に、孔、窪み、切欠きを設けて可溶材を食い込ませたり、可溶材を介して面接合される接触片先端部または一方のリード導体部分の一方または双方を粗面として接合界面の剪断強度を増強することが望ましい。また、前記可溶材で面接合された界面を機械的に補強するために可溶材を盛り付けることもできる。   As described above, the shear stress τ at the joining interface is given by τ = p / S, where p is the horizontal compressive force acting on the elastic contact piece, and S is the area of the joining interface, and the shear strength at the joining interface is f / The strength needs to exceed S. This shear strength must have a sufficient safety factor, and a hole, a dent, or a notch is formed in both or one of the leading end of the contact piece and one lead conductor portion to be surface-bonded via a soluble material. It is desirable to increase the shear strength of the bonding interface by providing a bite of a soluble material and roughening one or both of the front end of the contact piece and one lead conductor portion to be surface-bonded via the soluble material. Moreover, in order to reinforce mechanically the interface surface-bonded with the said soluble material, a soluble material can also be arranged.

前記接触片2には、金属、金属と合成樹脂との複合体を用いることができる。形状は、通常板状乃至は箔状とされるが、線状とすることも可能である。
複合体には、金属粉を混合した樹脂も含まれる。このように弾性接触片に金属粉混合樹脂のような電気抵抗値の高いものを使用する場合、抵抗体の過電流による通電発熱で可溶材を溶融させてプロテクタを動作させることもできる。
前記可溶材3には、はんだ等の可溶合金、単体金属または熱可塑性樹脂、或いは導電性粉末を添加した導電性熱可塑性樹脂を用いることができる。
The contact piece 2 may be a metal or a composite of a metal and a synthetic resin. The shape is usually a plate shape or a foil shape, but may be a linear shape.
The composite includes a resin mixed with metal powder. Thus, when using a thing with high electrical resistance value like a metal powder mixed resin for an elastic contact piece, a soluble material can be fuse | melted by the energization heat_generation | fever by the overcurrent of a resistor, and a protector can also be operated.
As the fusible material 3, a fusible alloy such as solder, a single metal or a thermoplastic resin, or a conductive thermoplastic resin to which conductive powder is added can be used.

図5の(イ)において、一方のリード導体部分1→接触片2→接触片2と他方のリード導体部分10との接触面→他方のリード導体部分10の経路で常時電気的に導通されている。
この状態において、、(1)リード導体部分10と接触片2との接触界面に軟質導電材5が介在されているから、低い接触圧力のもとでも低接触抵抗の電気的同通を保証できること、(2)可溶材3による接合界面に前記接触圧力に基づき作用する劈開力を僅小にできて接合界面のクリープ変形を防止できること、から安定な電気的導通を確保できる。
In FIG. 5A, one lead conductor portion 1 → contact piece 2 → contact surface between the contact piece 2 and the other lead conductor portion 10 → the other lead conductor portion 10 is always electrically connected along the path. Yes.
In this state, (1) since the soft conductive material 5 is interposed at the contact interface between the lead conductor portion 10 and the contact piece 2, it is possible to ensure electrical communication with low contact resistance even under a low contact pressure. (2) Since the cleavage force acting on the joining interface by the fusible material 3 based on the contact pressure can be made small and creep deformation at the joining interface can be prevented, stable electrical conduction can be secured.

図5の(ロ)に示すように、周囲温度の上昇により可溶材3が溶融乃至は軟化されると、曲げ接触片2の可溶材3による拘束が解除され、その曲げ接触片2の弾性曲げ歪エネルギーが解放され、曲げ接触片2が元の直線状に復元され他方のリード導体部分10と接触片2との接触が脱離されて電気的導通が遮断される。   As shown in FIG. 5B, when the soluble material 3 is melted or softened due to an increase in ambient temperature, the bending contact piece 2 is released from the restraint by the soluble material 3, and the bending contact piece 2 is elastically bent. The strain energy is released, the bending contact piece 2 is restored to the original linear shape, the contact between the other lead conductor portion 10 and the contact piece 2 is released, and the electrical conduction is interrupted.

図5の(イ)において、接触片2の撓みyが前記した通り、
y=B・sin(πx/L)
で与えられ、位置xでの曲げモーメントM(x)が
M(x)=EI・dy/dx
で与えられ、接触片2と他のリード導体部分10との接触箇所eと接触片後端22との間の接触片部分に蓄えられる弾性歪エネルギーWが

Figure 0004527609
で与えられる。
また、可溶材3による接合界面に作用する剪断力Sは
S=kEI
で表すことができる。
弾性歪エネルギーWは動作速度に関与し、剪断力Sは可溶材3による接合界面の安定性に関与し、接触片2の曲げ剛性EIを所望値に設定することが必要である。
この曲げ剛性の調整には、多層積重構成とすることが有効である。接触片2が板状の場合、1枚ものの弾性接触片の厚みをt、巾をb、弾性率をEとすると、その弾性接触片の曲げ剛性EIは
EI=Ebt/12
で与えられ、この1枚もの弾性接触片の厚みtをn分割して積重構成にすると、その弾性接触片の曲げ剛性EI’は
EI’=Ebn(t/n)/12=Ebt/(12n
で与えられ、例えばn=2の場合、曲げ剛性を1/4にできる。 In (a) of FIG. 5, the deflection y of the contact piece 2 is as described above.
y = B · sin (πx / L)
And the bending moment M (x) at position x is M (x) = EI · d 2 y / dx 2
The elastic strain energy W stored in the contact piece portion between the contact point e between the contact piece 2 and the other lead conductor portion 10 and the contact piece rear end 22 is given by
Figure 0004527609
Given in.
Further, the shearing force S acting on the joining interface by the soluble material 3 is S = k 2 EI
Can be expressed as
The elastic strain energy W is related to the operating speed, the shear force S is related to the stability of the joining interface by the soluble material 3, and the bending rigidity EI of the contact piece 2 needs to be set to a desired value.
In order to adjust the bending rigidity, it is effective to adopt a multilayer stack structure. When the contact piece 2 is plate-like, one of the thickness of the resilient contact piece t, the width b, and the elastic modulus E, the bending rigidity EI of the elastic contact piece EI = Ebt 3/12
Given, if the thickness t of the elastic contact piece also this one to the stacking configuration to n divided, the flexural rigidity EI of the elastic contact piece 'is EI' = Ebn (t / n ) 3/12 = Ebt 3 / (12n 2 )
For example, when n = 2, the bending rigidity can be reduced to ¼.

上記において、一方のリード導体部分1と接触片2との電気的導通は、可溶材3として可溶金属や導電性熱可塑性樹脂を使用する場合、可溶材により確保できる。
一方のリード導体部分1と接触片後端部22との結着には、スポット抵抗溶接、レーザ溶接、超音波溶接、高周波溶接または電磁誘導加熱溶接等の溶接やリベッティングを使用できる。
リード導体部分と弾性接触片との溶接性を向上させるために、局部的に溶接性に優れた材料で置き換えることもできる。
可溶材3として絶縁性の熱可塑性樹脂を使用する場合、リード導体部分1と接触片後端部22との結着箇所において電気的導通性が確保される。
In the above description, the electrical continuity between the one lead conductor portion 1 and the contact piece 2 can be ensured by a soluble material when a soluble metal or a conductive thermoplastic resin is used as the soluble material 3.
For the binding between the one lead conductor portion 1 and the contact piece rear end portion 22, welding such as spot resistance welding, laser welding, ultrasonic welding, high frequency welding or electromagnetic induction heating welding, or riveting can be used.
In order to improve the weldability between the lead conductor portion and the elastic contact piece, it can be replaced with a material that is locally excellent in weldability.
When an insulating thermoplastic resin is used as the fusible material 3, electrical continuity is ensured at the location where the lead conductor portion 1 and the contact piece rear end 22 are bonded.

図5の(イ)に示す例では、接触片2の先端側21を角度ほぼβL'で折り返し、接触片2の後端側22を角度ほぼ(π−βL')で折り曲げ、先端側折り返し部21を一方のリード導体部分1の先端部上面に可溶材3を介して面接合し、後端側22を水平方向圧縮力pを加え溶接やリベッティングにより角度ほぼβL'で固定しているが、図7の(イ)に示すように接触片2の先端側21を接触片厚みの立ち上げ211を経て角度βL'で折り返し、接触片2の後端側22を角度ほぼ(π−βL')で折り曲げ、先端側折り返し部21を一方のリード導体部分1の先端部上面に可溶材3を介して面接合し、後端側を水平方向圧縮力pを加え溶接やリベッティングにより角度ほぼβL'で固定することもできる。また、図7の(ロ)に示すように、接触片2の先端側21を角度ほぼ(π−βL')で折り曲げ、接触片2の後端側22を角度ほぼ(π−βL')で折り曲げ、先端側折り曲げ部21を一方のリード導体部分1の先端部上面に可溶材3を介して面接合し、後端側22を水平方向圧縮力pを加え溶接やリベッティングにより角度ほぼβL'で固定することもできる。   In the example shown in FIG. 5A, the front end side 21 of the contact piece 2 is folded at an angle of approximately βL ′, the rear end side 22 of the contact piece 2 is folded at an angle of approximately (π−βL ′), and the front end side folded portion is formed. 21 is joined to the upper surface of the tip of one lead conductor portion 1 via a fusible material 3 and the rear end side 22 is fixed at an angle of approximately βL ′ by applying a horizontal compression force p and welding or riveting. As shown in FIG. 7 (a), the front end side 21 of the contact piece 2 is turned back at an angle βL ′ through a rise 211 of the contact piece thickness, and the rear end side 22 of the contact piece 2 is set at an angle of approximately (π−βL ′) The front end side folded portion 21 is surface-joined to the upper surface of the front end portion of one lead conductor portion 1 via the fusible material 3, and the rear end side is applied with a horizontal compression force p at an angle of approximately βL ′ by welding or riveting. It can also be fixed. Further, as shown in FIG. 7B, the front end side 21 of the contact piece 2 is bent at an angle of approximately (π−βL ′), and the rear end side 22 of the contact piece 2 is bent at an angle of approximately (π−βL ′). The bent end portion 21 is joined to the upper surface of the leading end portion of one lead conductor portion 1 via the fusible material 3, and the rear end side 22 is applied with a horizontal compression force p at an angle of approximately βL ′ by welding or riveting. It can also be fixed.

本発明に係るサーモプロテクタにおいては、ハウジングとして上下に分割したタイプを使用し、そのハウジング片を共通化することが好ましく、図8−1〜図8−5はその実施例を示している。
図8−1〔図8−1の(イ)は平面図、同じく(ロ)は図8−1の(イ)のロ−ロ断面図、同じく(ハ)は左側面図、同じく(ニ)は右側面図〕はハウジング片60の一例を示し、ベース部61の両脇に側壁部62,62を設け、その長手方向中央において段差63を付け、各側壁部62,62の長手方向一端側にリード導体押え用凸部65,65を設け、各側壁上面の内側半分の面に超音波溶着用エネルギーダイレクタとしての三角凸条64を設けてある。また、ベース部の一端側にハウジング片内巾よりも狭巾のリベッテング突部4を設けてある。
In the thermo protector according to the present invention, it is preferable to use a vertically divided type housing and to share the housing piece, and FIGS. 8-1 to 8-5 show the embodiments.
8-1 [(a) in FIG. 8-1 is a plan view, (b) is a cross-sectional view of (b) in FIG. 8-1, [c] is a left side view, [d] Is a right side view] shows an example of the housing piece 60. Side walls 62, 62 are provided on both sides of the base 61, a step 63 is provided in the center in the longitudinal direction, and one end in the longitudinal direction of each of the side walls 62, 62 is shown. Are provided with convex portions 65, 65 for pressing the lead conductor, and triangular ridges 64 as ultrasonic welding energy directors are provided on the inner half of the upper surface of each side wall. Further, a riveting protrusion 4 having a narrower width than the inner width of the housing piece is provided on one end side of the base portion.

このハウジング片を用いて本発明に係るサーモプロテクタを製作するには、接触片付きリード導体(リード導体部分の一端側の巾は両押え用凸部65,65間の内巾に等しくするようにやや狭くしてある)に孔を穿設し、図8−2〔図8−2の(イ)は平面図、同じく(ロ)は図8−2の(イ)のロ−ロ断面図、同じく(ハ)は図8−2の(ロ)のハ−ハ断面図〕に示すように、孔を穿設した接触片2付きリード導体1(リード導体1と接触片2他端との連結はスポット溶接により行ってある)を孔において一方のハウジング片60にリベッテング突部4の加熱圧潰により固定し、また、図8−3に示すように、接触片無しのリード導体10についても、孔を穿設しこの孔において他方のハウジング片60にリベッテング突部4の加熱圧潰により固定し、次いで、図8−4に示すように、接触片2の上面に軟質導電材55を付着させ、両ハウジング片を上下にかつリード導体部分1,10のリード部の向きを逆とするように重畳して両ハウジング片60,60の側壁を段差63,63の噛み合いで勘合し、接触片付きリード導体のリード導体部分1の巾両側に他方のハウジング片のリード導体押え用凸部65,65を当接し、ついで超音波溶着機にセットし、両ハウジング片の前記エネルギーダイレクタを圧潰溶着させ、これにてサーモプロテクタの製作を終了する。
両ハウジング片間の接合を音波溶着で行うことに代え、レザー溶着や接着剤を使用することも可能である。
また、リード導体1と接触片2他端とのスポット溶接による連結に代え、接触片2他端をリベッテング突部4で留止してリード導体1に電気的に接触させてもよい。
上下のハウジング片間の結着には気密性を必要としない。ハウジング内外間の通気性のもとでも、前記した通り、接触片2と他方のリード導体部分10との接触状態の初期の滑り性を保護コート剤5の空気遮断作用のためによく保持でき、迅速な遮断動作を確保できる。
In order to manufacture the thermo protector according to the present invention using this housing piece, a lead conductor with a contact piece (the width on one end side of the lead conductor portion is slightly equal to the inner width between both pressing convex portions 65, 65). 8-2 [(b) in FIG. 8-2 is a plan view, and (b) is a cross-sectional view of the roll in FIG. (C) is a cross-sectional view of (B) in FIG. 8-2]. As shown in FIG. 8-2, the lead conductor 1 with the contact piece 2 having a hole (the connection between the lead conductor 1 and the other end of the contact piece 2 is Is fixed to one housing piece 60 by heating and crushing the ribeting projection 4 in the hole, and the lead conductor 10 without the contact piece is also provided with a hole as shown in FIG. In this hole, the other housing piece 60 is heated and crushed by the riveting projection 4. Next, as shown in FIG. 8-4, a soft conductive material 55 is attached to the upper surface of the contact piece 2 so that both housing pieces are up and down and the direction of the lead portions of the lead conductor portions 1 and 10 is reversed. The side walls of both housing pieces 60, 60 are engaged with each other by engaging the steps 63, 63 so that the lead conductor pressing convex portions 65 of the other housing piece are formed on the width sides of the lead conductor portion 1 of the lead conductor with contact pieces. 65 is abutted, and then set in an ultrasonic welding machine, the energy directors of both housing pieces are crushed and welded, thereby completing the production of the thermo protector.
Instead of joining the two housing pieces by sonic welding, it is also possible to use leather welding or an adhesive.
Further, instead of connecting the lead conductor 1 and the other end of the contact piece 2 by spot welding, the other end of the contact piece 2 may be retained by the riveting protrusion 4 to be brought into electrical contact with the lead conductor 1.
Airtightness is not required for the connection between the upper and lower housing pieces. Even under the air permeability between the inside and outside of the housing, as described above, the initial sliding property of the contact state between the contact piece 2 and the other lead conductor portion 10 can be well maintained for the air blocking action of the protective coating agent 5; A quick shut-off operation can be secured.

両リード導体のリード部の高さレベルを合わせるように、図8−5に示すように一方のリード導体1のリード部をハウジング端面に沿い段差を介して折り曲げ加工することもできる。   As shown in FIG. 8-5, the lead portion of one lead conductor 1 can be bent along the end face of the housing through a step so that the height levels of the lead portions of both lead conductors are matched.

図8−1〜図8−2に示したサモプロテクタの動作後の状態は実質的に図1の(ロ)または図5の(ロ)に示した状態に同じであるが、可溶材の溶融乃至は軟化により解放された接触片2の先端部が、リード導体部分1収容ハウジング片60のリベッテング突部4の直下に潜入して他方のリード導体部分10との再接触が確実に防止される特徴がある。   The state after the operation of the samo protector shown in FIGS. 8-1 to 8-2 is substantially the same as the state shown in FIG. 1B or FIG. 5B, but the fusible material is melted. Or, the tip of the contact piece 2 released by softening enters under the riveting protrusion 4 of the lead conductor portion 1 housing piece 60 and reliably prevents recontact with the other lead conductor portion 10. There are features.

上記弾性接触片2に用いる金属材には、例えばリン青銅を例示できる。接触片として樹脂製を使用する場合、樹脂(熱可塑性樹脂や熱硬化性樹脂)をガラス繊維、金属繊維、合成繊維等の繊維で補強したFRP、高剛性エンジニアリングプラスチック等を可溶材として使用する熱可塑性樹脂との融点との相対的な関係を考慮して選択できる。弾性材として、弾性金属材と合成樹脂との複合体、例えばリン青銅板とポリアミドフィルムとの積層体を使用することもできる。   Examples of the metal material used for the elastic contact piece 2 include phosphor bronze. When using resin as the contact piece, heat that uses FRP reinforced resin (thermoplastic resin or thermosetting resin) with fibers such as glass fiber, metal fiber, synthetic fiber, high-rigidity engineering plastic, etc. as soluble material The selection can be made in consideration of the relative relationship with the melting point of the plastic resin. As the elastic material, a composite of an elastic metal material and a synthetic resin, for example, a laminate of a phosphor bronze plate and a polyamide film can be used.

接触片2の寸法は、金属弾性板の場合、例えば厚み0.008〜0.1mm、巾0.3〜4.6mm、長さ1.5〜11mmとされる。   In the case of a metal elastic plate, the dimensions of the contact piece 2 are, for example, a thickness of 0.008 to 0.1 mm, a width of 0.3 to 4.6 mm, and a length of 1.5 to 11 mm.

上記弾性接触片2としての樹脂や可溶材3としての熱可塑性樹脂や軟質導電材のベースとしての熱可塑性樹脂としては、ポリエチレンテレフタレ−ト、ポリエチレンナフタレ−ト、ポリアミド、ポリイミド、ポリブチレンテレフタレ−ト、ポリフェニレンオキシド、ポリエチレンサルファイド、ポリサルホン等のエンジニアリングプラスチック、ポリアセタ−ル、ポリカ−ボネ−ト、ポリフェニレンスルフィド、ポリオキシベンゾイル、ポリエ−テルエ−テルケトン、ポリエ−テルイミド等のエンジニアリングプラスチックやポリプロピレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリメチルメタクリレ−ト、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、エチレンポリテトラフルオロエチレン共重合体、エチレン酢酸ビニル共重合体(EVA)、AS樹脂、ABS樹脂、アイオノマ−、AAS樹脂、ACS樹脂等中から所定融点のものを選定できる。
ハウジングには、これらの樹脂の外、セラミックスも使用できる。ハウジングの寸法は、例えば厚み0.3〜1.5mm、巾1〜5mm、長さ2〜12mmとされる。
Examples of the resin as the elastic contact piece 2, the thermoplastic resin as the soluble material 3, and the thermoplastic resin as the base of the soft conductive material include polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polybutylene terephthalate. Engineering plastics such as talates, polyphenylene oxides, polyethylene sulfides, polysulfones, engineering plastics such as polyacetals, polycarbonates, polyphenylene sulfides, polyoxybenzoyls, polyether ether ketones, polyether imides, polypropylene, poly Vinyl chloride, polyvinyl acetate, polymethyl methacrylate, polyvinylidene chloride, polytetrafluoroethylene, ethylene polytetrafluoroethylene copolymer, ethylene vinyl acetate copolymer ( VA), AS resin, ABS resin, ionomer -, AAS resin, can be selected ones from among ACS resin of a predetermined melting point.
In addition to these resins, ceramics can also be used for the housing. The dimensions of the housing are, for example, a thickness of 0.3 to 1.5 mm, a width of 1 to 5 mm, and a length of 2 to 12 mm.

上記可溶材としての可溶合金としては、PbやCd等の生体系に有害な元素を含まないものを使用することが好ましく、次ぎの組成[A](1)43%<Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%<Sn≦44%,55%<In≦74%,1%≦Bi<20%、(4)46%<Sn≦70%,18%≦In<48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In<37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%<Sn≦60%,20%≦In<50%,12%<Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn−Bi系合金の組成[B](16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn−Sb系合金の組成[C](18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn系合金の組成[D](20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Bi系合金の組成、[E](22)50%≦Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn系合金の組成[F](24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加等のIn系合金の組成(27)2%≦Zn≦15%,70%≦Sn≦95%,残Bi及びその合金100重量部にAu、In、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加した合金の組成等からサーモプロテクタの動作温度に適合した融点の組成を選定することができる。
また、可溶合金にb.c.cやc.p.h等の結晶構造の金属を多く含ませることにより塑性変形を抑止しクリープ強度を向上させることができる。
As the soluble alloy as the soluble material, it is preferable to use an alloy that does not contain elements harmful to biological systems such as Pb and Cd. The following composition [A] (1) 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55%, remaining Bi, (3) 25% <Sn ≦ 44%, 55% <In ≦ 74%, 1% ≦ Bi <20%, (4) 46% <Sn ≦ 70%, 18% ≦ In <48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In <37%, remaining Bi (however, Bi57.5%, In25.2%, Sn17.3% and Bi54%, In29.7%, Sn16.3% based on Bi ± 2%, (Except for the range of In and Sn ± 1%), (6) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, remaining Bi, (7) 25% < n ≦ 60%, 20% ≦ In <50%, 12% <Bi ≦ 33%, (8) Ag, Au, Cu, Ni, Pd, Pt, 100 parts by weight of any one of (1) to (7) Add one or more of Sb, Ga, Ge, and P in a total of 0.01 to 7 parts by weight, (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, remaining Bi, ( 10) Add 3-5 parts by weight of Bi to 100 parts by weight of 47% ≦ Sn ≦ 49%, 51% ≦ In ≦ 53%, (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12% , Remaining In, (12) 0.3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, (13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35% , Remaining In, (14) any one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in 100 parts by weight of any one of (14), (9) to (13) 0.01 to 7 parts by weight in total, (15) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, 100 parts by weight of the remaining Bi is Ag, Au, Cu, Ni, Pd, Pt, Sb, In-Sn-Bi based alloy composition [B] (16) 30% ≦ Sn ≦ 70%, such as addition of 0.01 to 7 parts by weight of one or more of Ga, Ge, and P in total. 3% .ltoreq.Sb.ltoreq.20%, the balance Bi, (17) (16), 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P or a total of 0.1 or more. Composition of Bi—Sn—Sb alloy such as addition of 01 to 7 parts by weight [C] (18) 52% ≦ In ≦ 85%, remaining Sn, (19) In 100 parts by weight of (18), Ag, Au, In-Sn based compounds such as addition of 0.01 to 7 parts by weight of one or more of Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P [D] (20) 45% ≦ Bi ≦ 55%, remaining In, (21) Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, 100 parts by weight of the composition of (20) Composition of In-Bi alloy such as addition of 0.01 to 7 parts by weight of one or more of P, [E] (22) 50% ≦ Bi ≦ 56%, remaining Sn, (23) ( 22) 100 parts by weight of Bi-Sn alloy such as Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P or a total of 0.01 to 7 parts by weight of one or more of them. Composition [F] (24) Add one or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P to 100 parts by weight of In in total 0.01 to 7 parts by weight, (25 ) Au, Bi, Cu, Ni, Pd, Pt, Ga, 100 parts by weight of 90% ≦ In ≦ 99.9%, 0.1% ≦ Ag ≦ 10% Add one or more of Ge and P in a total of 0.01 to 7 parts by weight, (26) Au in 100 parts by weight of 95% ≦ In ≦ 99.9%, 0.1% ≦ Sb ≦ 5%, Composition of In-based alloy such as addition of 0.01 to 7 parts by weight of one or more of Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P (27) 2% ≦ Zn ≦ 15%, 70% ≦ Sn ≦ 95%, the remaining Bi and its alloy 100 parts by weight, total of 0.01 to 7 parts by weight of one or more of Au, In, Cu, Ni, Pd, Pt, Ga, Ge, P The composition of the melting point suitable for the operating temperature of the thermo protector can be selected from the composition of the added alloy.
Moreover, b. c. c and c. p. By containing a large amount of metal having a crystal structure such as h, plastic deformation can be suppressed and the creep strength can be improved.

これらの合金、特に、Biリッチ合金の場合は、金属接触片に予め層状に被覆しておくことが好ましい。   In the case of these alloys, particularly Bi-rich alloys, it is preferable to coat the metal contact pieces in layers.

上記のリード導体には、ニッケル、銅、銅合金等の導電性金属乃至は合金を使用でき、必要に応じ鍍金することができる。   For the lead conductor, a conductive metal or alloy such as nickel, copper, copper alloy or the like can be used, and can be plated as necessary.

リチウムイオン2次電池、リチウムポリマー2次電池等に対する電池パックにおいては、電池や電力トランジスター等の異常発熱を検知して不通電とするサーモプロテクタが必要であるが、本発明に係るサーモプロテクタにおいては小型化が容易であり電池パックに良好に組み込み得、その電池用サーモプロテクタとして好適に利用できる。   In battery packs for lithium ion secondary batteries, lithium polymer secondary batteries, etc., a thermo protector for detecting abnormal heat generation such as a battery or a power transistor and de-energizing is necessary. In the thermo protector according to the present invention, however, Miniaturization is easy, it can be incorporated well into a battery pack, and it can be suitably used as a thermo-protector for the battery.

本発明に係るサーモプロテクタの基本的構成を示す図面である。It is drawing which shows the basic composition of the thermo protector which concerns on this invention. 一端ヒンジ支持・他端固定の柱の力学的状態を示す図面である。It is drawing which shows the mechanical state of the pillar of one end hinge support and other end fixation. 図1に示すサーモプロテクタに使用される弾性接触片付きリード導体の別例を示す図面である。It is drawing which shows another example of the lead conductor with an elastic contact piece used for the thermo protector shown in FIG. 図1に示すサーモプロテクタに使用される弾性接触片付きリード導体の上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the lead conductor with an elastic contact piece used for the thermo protector shown in FIG. 本発明に係るサーモプロテクタの上記とは別の基本的構成を示す図面である。It is drawing which shows the fundamental structure different from the above of the thermoprotector which concerns on this invention. 両端ヒンジ支持の柱の力学的状態を示す図面である。It is drawing which shows the mechanical state of the pillar of both-ends hinge support. 図5に示すサーモプロテクタに使用される弾性接触片付きリード導体の別例を示す図面である。It is drawing which shows another example of the lead conductor with an elastic contact piece used for the thermo protector shown in FIG. 本発明に係るサーモプロテクタに使用するハウジング片の一例を示す図面である。It is drawing which shows an example of the housing piece used for the thermoprotector which concerns on this invention. 図8−1のハウジング片を用いてサーモプロテクタを製作する場合の工程の一部を示す図面である。It is drawing which shows a part of process in the case of manufacturing a thermo protector using the housing piece of FIGS. 図8−1のハウジング片を用いてサーモプロテクタを製作する場合の工程の上記とは別の一部を示す図面である。It is drawing which shows a part different from the above of the process in the case of manufacturing a thermoprotector using the housing piece of FIGS. 図8−1のハウジング片を用いてサーモプロテクタを製作する場合の工程の上記とは別の一部を示す図面である。It is drawing which shows a part different from the above of the process in the case of manufacturing a thermoprotector using the housing piece of FIGS. 図8−1のハウジング片を用いてサーモプロテクタの一実施例を示す図面である。It is drawing which shows one Example of a thermo protector using the housing piece of FIGS. 従来のサーモプロテクタを示す図面である。It is drawing which shows the conventional thermo protector.

符号の説明Explanation of symbols

1 一方のリード導体部分
10 他方のリード導体部分
2 接触片
21 接触片の一端部
22 接触片の他端部
3 可溶材
4 リベッティグまたは溶接箇所
5 軟質導電材
6 ハウジング
DESCRIPTION OF SYMBOLS 1 Lead conductor part 10 Other lead conductor part 2 Contact piece 21 One end part 22 of a contact piece The other end part 3 of a contact piece Soluble material 4 Riveting or welding place 5 Soft conductive material 6 Housing

Claims (11)

ハウジング内に互いに上下に収容された両リード導体部分の一方のリード導体部分に弾性を有する接触片が弾性歪エネルギーを保持した曲げ状態で両端部において固定されており、一方の固定が可溶材を介しての面接合により行われており、前記曲げ状態の接触片に他方のリード導体部分が接触されており、この接触箇所に他方のリード導体部分及び接触片よりも軟質の導電材が介在されていることを特徴とするサーモプロテクタ。 An elastic contact piece is fixed at both ends in a bent state holding elastic strain energy to one lead conductor portion of both lead conductor portions accommodated in the housing above and below each other. The other lead conductor portion is in contact with the bent contact piece, and a conductive material softer than the other lead conductor portion and the contact piece is interposed at the contact portion. A thermo protector characterized by 軟質導電材の融点が可溶材の融点よりも高くされていることを特徴とする請求項1記載のサーモプロテクタ。 The thermoprotector according to claim 1, wherein the melting point of the soft conductive material is higher than the melting point of the soluble material. 他方のリード導体部または接触片の何れかに軟質導電材が固着されていることを特徴とする請求項1または2記載のサーモプロテクタ。 3. The thermoprotector according to claim 1, wherein a soft conductive material is fixed to either the other lead conductor portion or the contact piece. 軟質導電材がInまたはInを主成分とする合金であることを特徴とする請求項1〜3何れか記載のサーモプロテクタ。 The thermoprotector according to any one of claims 1 to 3, wherein the soft conductive material is In or an alloy containing In as a main component. 軟質導電材5が導電性樹脂であることを特徴とする請求項1〜3何れか記載のサーモプロテクタ。 The thermoprotector according to any one of claims 1 to 3, wherein the soft conductive material 5 is a conductive resin. 接触片が他方のリード導体部分側に凸の曲線状に弾性変形されており、接触片の一端部が折り返されその折り返し部が一方のリード導体部分に可溶材を介して面接合されていることを特徴とする請求項1〜5何れか記載のサーモプロテクタ。 The contact piece is elastically deformed into a convex curve on the other lead conductor portion side, one end portion of the contact piece is folded back, and the folded portion is surface-bonded to one lead conductor portion via a soluble material. The thermoprotector according to any one of claims 1 to 5. 可溶材が低融点金属であることを特徴とする請求項1〜6何れか記載のサーモプロテクタ。 The thermoprotector according to claim 1, wherein the soluble material is a low melting point metal. 接触片の一端側と一方のリード導体部分との面接合箇所における可溶材が熱可塑性樹脂であり、接触片の他端側と一方のリード導体部分との固定が電気的導通のもとで行われていることを特徴とする請求項1〜6何れか記載のサーモプロテクタ。 The fusible material at the surface joint between one end of the contact piece and one lead conductor is a thermoplastic resin, and the other end of the contact piece and one lead conductor are fixed under electrical continuity. The thermo protector according to claim 1, wherein the thermo protector is provided. 弾性を有する接触片が金属または金属と樹脂との重合物あるいは複合物であることを特徴とする請求項1〜8何れか記載のサーモプロテクタ。 The thermoprotector according to any one of claims 1 to 8, wherein the contact piece having elasticity is a metal or a polymer or a composite of a metal and a resin. 弾性を有する接触片が多層の重畳体とされていることを特徴とする請求項1〜9何れか記載のサーモプロテクタ。 The thermoprotector according to claim 1, wherein the contact piece having elasticity is a multi-layered superposed body. ハウジングが上下に二分割の分割式とされ、弾性を有する接触片が固定された一方のリード導体部分が一方の分割ハウジング片内に収容され、他方のリード導体部分が他方の分割ハウジング片内に収容されていることを特徴とする請求項1〜10何れか記載のサーモプロテクタ。 The housing is divided into upper and lower parts, one lead conductor part to which an elastic contact piece is fixed is accommodated in one split housing part, and the other lead conductor part is contained in the other split housing part. The thermo protector according to claim 1, wherein the thermo protector is accommodated.
JP2005177092A 2005-06-17 2005-06-17 Thermo protector Expired - Fee Related JP4527609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177092A JP4527609B2 (en) 2005-06-17 2005-06-17 Thermo protector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177092A JP4527609B2 (en) 2005-06-17 2005-06-17 Thermo protector

Publications (2)

Publication Number Publication Date
JP2006351394A JP2006351394A (en) 2006-12-28
JP4527609B2 true JP4527609B2 (en) 2010-08-18

Family

ID=37647019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177092A Expired - Fee Related JP4527609B2 (en) 2005-06-17 2005-06-17 Thermo protector

Country Status (1)

Country Link
JP (1) JP4527609B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078954A (en) * 2003-09-01 2005-03-24 Uchihashi Estec Co Ltd Thermosensor and thermoprotector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078954A (en) * 2003-09-01 2005-03-24 Uchihashi Estec Co Ltd Thermosensor and thermoprotector

Also Published As

Publication number Publication date
JP2006351394A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4410056B2 (en) Thermosensor, thermoprotector, and method of manufacturing thermosensor
US7345570B2 (en) Thermoprotector
US20110068889A1 (en) Thermal fuse element, thermal fuse and battery using the thermal fuse
JP4290426B2 (en) Thermal fuse
EP2988313B2 (en) Protective device
US20170062167A1 (en) Protective Device
JP2017098186A (en) Breaker, safety circuit with the same, and secondary battery circuit
JP4527609B2 (en) Thermo protector
JP4269264B2 (en) Thin thermal fuse
JP2006196189A (en) Thermo-protector, manufacturing and mounting method of the same
JP2005063792A (en) Heat sensitive element and thermo-protector
JP4554436B2 (en) Thermo protector and manufacturing method thereof
JP2006155974A (en) Thermoprotector
JP4223354B2 (en) Thermo protector
JP2006147326A (en) Thermo protector
JP2007005066A (en) Thermoprotector and manufacturing method of the same
JP4387227B2 (en) Thermo protector
JP3985820B2 (en) Temperature-sensitive circuit breaker membrane device and energizing circuit device using the same
JP7471625B2 (en) Battery pack and battery pack manufacturing method
JP4387251B2 (en) Thermo protector
KR102578064B1 (en) protection element
JP2006202677A (en) Thermo-protector and manufacturing method of thermo-protector
JP2013182750A (en) Temperature fuse and manufacturing method thereof
JP2006351393A (en) Thermo-protector
JP2002184279A (en) Thin fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees