JP4223354B2 - Thermo protector - Google Patents

Thermo protector Download PDF

Info

Publication number
JP4223354B2
JP4223354B2 JP2003308408A JP2003308408A JP4223354B2 JP 4223354 B2 JP4223354 B2 JP 4223354B2 JP 2003308408 A JP2003308408 A JP 2003308408A JP 2003308408 A JP2003308408 A JP 2003308408A JP 4223354 B2 JP4223354 B2 JP 4223354B2
Authority
JP
Japan
Prior art keywords
lead conductor
elastic body
housing
elastic
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003308408A
Other languages
Japanese (ja)
Other versions
JP2005078954A (en
Inventor
俊朗 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2003308408A priority Critical patent/JP4223354B2/en
Publication of JP2005078954A publication Critical patent/JP2005078954A/en
Application granted granted Critical
Publication of JP4223354B2 publication Critical patent/JP4223354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Description

本発明は可溶材の融点または軟化点を動作温度とするサーモプロテクに関するものである。 The present invention relates to thermo-protector to operating temperature melting or softening point of the fusible material.

電子・電気機器における異常発熱を感知し、この感知に基づくカットオフ動作で機器を電源から遮断して機器の過熱を防止し、火災の発生を未然に防止するサーモプロテクタとして、弾性応力を利用する応力型、バイメタルスイッチのような熱応力型が存在する。
応力型としては、例えば図6の(イ)に示すように弾性金属片2'を強制的に曲げ、この曲げ弾性金属片1'の両端を曲げ反力に抗して一対の固定端子41',42'に所定融点の可溶合金(はんだ)3'で接合し、周囲温度が可溶合金2'の融点まで昇温して可溶合金が溶融されると、図6の(ロ)に示すように弾性金属片2'の曲げ応力を解除させて弾性金属片2'の一端と一方の固定端子42'との接合を脱離して通電を遮断するものが知られている(特許文献1参照)。
また、図7の(イ)に示すように一端にリード端子13'を取付けた金属ケース14'内に一端側から所定融点のペレット2'、座板15'、圧縮スプリング1'、座板16'を順次に収容し、更に外周が金属ケース内面に摺動接触されたコンタクト42'を収容し、リードピン貫通ブッシング17'を金属ケース14'の他端側に固定し、このブッシング17'とコンタクト42'との間に引外しスプリング18'を組み込んでリード端子13'→金属ケース14'→コンタクト42'→リードピン41'を経る導通路を構成し、周囲温度がペレット2'の融点まで昇温されてペレット2'が溶融されると、図7の(ロ)に示すように圧縮スプリング1'の圧縮応力を解放させて引外しスプリング18'の圧縮応力でリードピン41'の先端からコンタクト42'を離隔させて前記導通路を遮断するものも知られており、いわゆる、ペレットタイプ温度ヒューズと称されている(非特許文献1参照)。
前記の熱応力型としては、既述した通りバイメタルスイッチが知られている。
Elastic stress is used as a thermo protector that detects abnormal heat generation in electronic and electrical equipment, cuts off the equipment from the power supply by cut-off operation based on this detection, prevents the equipment from overheating, and prevents the occurrence of fire. There are stress types and thermal stress types such as bimetal switches.
As the stress type, for example, as shown in FIG. 6 (a), the elastic metal piece 2 ′ is forcibly bent, and both ends of the bent elastic metal piece 1 ′ are resisted against bending reaction force and a pair of fixed terminals 41 ′. , 42 ′ with a melting alloy (solder) 3 ′ having a predetermined melting point, the ambient temperature is raised to the melting point of the melting alloy 2 ′, and the melting alloy is melted, as shown in FIG. As shown in the figure, the bending stress of the elastic metal piece 2 ′ is released to disconnect the connection between one end of the elastic metal piece 2 ′ and one fixed terminal 42 ′ to cut off the energization (Patent Document 1). reference).
Further , as shown in FIG. 7 (a), a pellet 2 ′ having a predetermined melting point, a seat plate 15 ′, a compression spring 1 ′, and a seat plate 16 from one end side in a metal case 14 ′ having a lead terminal 13 ′ attached to one end. 'Is sequentially accommodated, and the contact 42' whose outer periphery is slidably contacted with the inner surface of the metal case is accommodated, and the lead pin through bushing 17 'is fixed to the other end side of the metal case 14'. A trip spring 18 'is assembled between the lead terminal 13', the metal case 14 ', the contact 42', and the lead pin 41 ', and the ambient temperature is raised to the melting point of the pellet 2'. When the pellet 2 'is melted, the compressive stress of the compression spring 1' is released as shown in FIG. 7B, and the contact 42 'from the tip of the lead pin 41' by the compressive stress of the tripping spring 18 '. Separated It is also known to cut off the conduction path, and it is called a so-called pellet type thermal fuse (see Non-Patent Document 1).
As described above, a bimetal switch is known as the thermal stress type.

特開平7−29481号公報JP 7-29481 A 電気工学ハンドブック1988の第818頁Page 818 of Electrical Engineering Handbook 1988

しかしながら、図6に示す応力型では、弾性金属片の曲げ反力M’及びn方向押し拡げ力F’が可溶合金(はんだ)に作用するから、可溶合金における応力分布が複雑であり、作用部位が局部的であるために応力集中が避けられずクリープの基づく動作不良が発生し易い。更に、可溶合金が通電路の一部となっているので、可溶合金のクリープによる抵抗増大により発熱し、自己発熱による動作誤差も懸念される。また、溶融した合金の糸引きによる動作不良も生じ得る。
また、図7に示すペレットタイプでは、座板による均圧化のためにペレットを一様に圧縮できても構造が複雑であり、小型化やコスト面での不利を免れ得ない。
更に、バイメタルタイプは復帰型であり、オン・オフの繰返しが進むにつれてヒステリシスにより動作温度が経時的に上昇する危険性がある。
However, in the stress type shown in FIG. 6 , since the bending reaction force M ′ of the elastic metal piece and the n-direction expansion force F ′ act on the soluble alloy (solder), the stress distribution in the soluble alloy is complicated. Since the site of action is local, stress concentration is unavoidable and malfunction due to creep tends to occur. Furthermore, since the fusible alloy is a part of the current path, heat is generated due to an increase in resistance due to creep of the fusible alloy, and there is a concern about an operation error due to self-heating. Also, malfunction due to stringing of the molten alloy can occur.
In the pellet type shown in FIG. 7 , the structure is complicated even if the pellet can be uniformly compressed for pressure equalization by the seat plate, and the disadvantages in terms of downsizing and cost cannot be avoided.
Further, the bimetal type is a return type, and there is a risk that the operating temperature rises with time due to hysteresis as the ON / OFF repetition progresses.

本発明の目的は、弾性歪エネルギーをはんだ等の可溶材による接合固定で支持している弾性体の弾性歪エネルギーが可溶体の溶融で解放されて動作するタイプのサーモセンサの長期安定性を保証し、かかるサーモセンサを使用するサーモプロテクタの動作の信頼性の向上を図ることにある。   The purpose of the present invention is to guarantee the long-term stability of a thermosensor that operates with the elastic strain energy released by melting of the fusible material, which is supported by bonding and fixing with a fusible material such as solder. In addition, the reliability of the operation of the thermo protector using such a thermo sensor is improved.

請求項1に係るサーモプロテクタは、上下一対の電極のうちの一方の電極を片面に有する躯体のその電極に導電弾性体の一端部を面接触で、かつ電気的に導通させて固定し、その導電弾性体に長手方向荷重を作用させて弾性曲げ変形させると共に他端部を前記一方の電極に可溶材による面接合で固定し、前記一方の電極に対する他方の電極を収容したハウジングを前記躯体に結着すると共に前記曲げ変形された導電弾性体の曲げ頂部を他方の電極に接触させてなり、前記可溶材の溶融乃至は軟化による曲げ変形導電弾性体の弾性歪エネルギーの解放で動作させることを特徴とする。The thermo-protector according to claim 1 is configured to fix one end of the conductive elastic body to the electrode of the housing having one of the upper and lower electrodes on one side by surface contact and electrically conducting, A longitudinal elastic load is applied to the conductive elastic body to cause elastic bending deformation, and the other end is fixed to the one electrode by surface bonding with a soluble material, and a housing containing the other electrode with respect to the one electrode is attached to the casing. The bending top of the conductive elastic body that has been bound and deformed is brought into contact with the other electrode, and is operated by releasing the elastic strain energy of the bending deformable conductive elastic body by melting or softening of the soluble material. Features.

請求項2に係るサーモプロテクタは、弾性金属製リード導体の先端から所定の距離を隔てた箇所を躯体の片面に面接触で固定し、そのリード導体を先端に長手方向荷重を作用させて弾性曲げ変形させると共に先端部を前記の躯体片面に可溶材による面接合で固定し、前記一方のリード導体に対する他方のリード導体の先端部を収容したハウジングを前記躯体に結着すると共に前記曲げ変形された導電弾性体の曲げ頂部を他方のリード導体先端部に接触させてなり、前記可溶材の溶融乃至は軟化による曲げ変形導電弾性体の弾性歪エネルギーの解放で動作させることを特徴とする。The thermo-protector according to claim 2 is a method in which a portion spaced a predetermined distance from the tip of the elastic metal lead conductor is fixed to one surface of the housing by surface contact, and the lead conductor is elastically bent by applying a longitudinal load to the tip. At the same time, the front end portion is fixed to the one surface of the housing by surface bonding with a soluble material, and the housing accommodating the front end portion of the other lead conductor with respect to the one lead conductor is bound to the housing and is bent and deformed. The bending top portion of the conductive elastic body is brought into contact with the tip end portion of the other lead conductor, and the operation is performed by releasing the elastic strain energy of the bending deformation conductive elastic body by melting or softening of the soluble material.

請求項3に係るサーモプロテクタは、請求項2のサーモプロテクタにおいて、面接合される弾性体端部または躯体面の少なくとも一方に、孔、窪み、切欠きを設けて可溶材を食い込ませたことを特徴とする。 The thermo protector according to claim 3 is the thermo protector according to claim 2, wherein at least one of the end of the elastic body or the surface of the housing to be surface-bonded is provided with a hole, a depression, and a notch, and the fusible material is engulfed. Features.

請求項4に係るサーモプロテクタは、請求項2のサーモセンサにおいて、面接合される弾性体端部または躯体面の少なくとも一方を粗面としたことを特徴とする。 According to a fourth aspect of the present invention, there is provided the thermo protector according to the second aspect, wherein at least one of the end portion of the elastic body or the surface of the casing to be surface-bonded is a rough surface.

請求項5に係るサーモセンサは、請求項1〜4の何れかのサーモプロテクタにおいて、可溶材が低融点金属であることを特徴とする。 A thermosensor according to a fifth aspect is the thermoprotector according to any one of the first to fourth aspects , wherein the soluble material is a low melting point metal.

請求項6に係るサーモセンサは、請求項1〜4の何れかのサーモプロテクタにおいて、可溶材が熱可塑性樹脂であることを特徴とする。 The thermosensor according to claim 6 is the thermoprotector according to any one of claims 1 to 4, wherein the soluble material is a thermoplastic resin.

弾性体他端部と躯体面との間の可溶材による接合を面で行ない、弾性体に加えた弾性歪エネルギーをこの接合面で支え、その接合面に主に剪断力のみを作用させるようにしてあるから、接合界面の可溶材の応力分布を一様な剪断応力分布にできる。従って、可溶材での応力集中よるクリープをよく防止でき、可溶材クリープによる動作不良を排除して長期安定性を保証できる。   The other end of the elastic body and the housing surface are joined by a soluble material on the surface, and the elastic strain energy applied to the elastic body is supported by this joint surface so that only the shearing force acts mainly on the joint surface. Therefore, the stress distribution of the soluble material at the joint interface can be made uniform. Therefore, creep due to stress concentration in the fusible material can be well prevented, and malfunctions due to the fusible material creep can be eliminated to ensure long-term stability.

図1は本発明において使用するサーモセンサの基本的構造を示す図面である。
図1において、1は躯体である。2は板状、箔状または線状の弾性体であり、一端部を躯体面に平行接触で固定し、弾性体他端部22を躯体面に平行に接触させた状態で当該弾性体他端部22に縦方向荷重fを作用させて弾性曲げ歪エネルギーを加え、この弾性曲げ歪エネルギーを加えたままで弾性体他端部22を躯体面に可溶材3により面接合してある。
このサーモセンサにおいては、外部温度が上昇されて可溶材3が溶融若しくは軟化されると、接合界面32が破断され、弾性曲げ歪エネルギーが解放されて弾性体が元の直線形状に復帰される。
FIG. 1 shows the basic structure of a thermosensor used in the present invention .
In FIG. 1, 1 is a housing. Reference numeral 2 denotes a plate-like, foil-like or linear elastic body, one end of which is fixed in parallel contact with the housing surface, and the other end of the elastic body is in contact with the other end 22 of the elastic body in parallel with the housing surface. A longitudinal load f is applied to the portion 22 to add elastic bending strain energy, and the elastic body other end portion 22 is surface-bonded to the housing surface with the soluble material 3 while the elastic bending strain energy is applied.
In this thermosensor, when the external temperature is raised and the soluble material 3 is melted or softened, the bonding interface 32 is broken, the elastic bending strain energy is released, and the elastic body is restored to the original linear shape.

図1において、弾性体2の他端部が未固定のとき、オイレルの理論から縦方向荷重fが4πEI/L(Lは弾性体長さ)を越えると座屈を生じる。すなわち、このオイレルの荷重以上では、縦方向荷重fがなす仕事fΔλ(Δλは弾性体他端の移動距離)が弾性体2の曲げ歪エネルギーを越えて系が不安定化し座屈を生じる。
座屈が生じない安定系での弾性体の曲げ形状yを近似的に
In FIG. 1, when the other end of the elastic body 2 is not fixed, buckling occurs if the longitudinal load f exceeds 4π 2 EI / L 2 (L is the length of the elastic body) according to Euler's theory. That is, above this Euler load, the work fΔλ (Δλ is the movement distance of the other end of the elastic body) made by the longitudinal load f exceeds the bending strain energy of the elastic body 2 and the system becomes unstable and buckling occurs.
Approximate the bending shape y of an elastic body in a stable system without buckling

y=h(1−cos2πx/L)/2   y = h (1-cos2πx / L) / 2

とすると、上記の押し付け量Δλ、すなわち

Figure 0004223354
Then, the above pressing amount Δλ, that is,
Figure 0004223354

は、Δλ=π/(4L)で与えられ、 Is given by Δλ = π 2 h 2 / (4L),

h=2(Δλ・L)1/2/π h = 2 (Δλ · L) 1/2 / π

から、押し付け量Δλの調整により所定の曲げ高さhを設定できる。 Therefore, the predetermined bending height h can be set by adjusting the pressing amount Δλ.

図1において、可溶材3が融点乃至は軟化点に達すると、弾性体2の曲げ高さhが零になり、弾性体他端が外側にΔλだけ移動して元の直線状態に復帰する。
上記において、弾性体他端部22と躯体面との接合界面32に作用する主な力は剪断力fであり、接合界面の面積をSとすれば、剪断力fに対する接合界面の剪断応力τは、
In FIG. 1, when the fusible material 3 reaches the melting point or softening point, the bending height h of the elastic body 2 becomes zero, and the other end of the elastic body moves outward by Δλ to return to the original linear state.
In the above, the main force acting on the joining interface 32 between the elastic body other end 22 and the housing surface is the shearing force f. If the area of the joining interface is S, the shear stress τ of the joining interface with respect to the shearing force f. Is

τ=f/S   τ = f / S

で与えらる。
弾性体他端部と躯体面との接合界面に作用する曲げ反力については、弾性体他端部22を撓み角ほぼ零で固定してあるから、その曲げ反力を小にとどめ得、しかもその曲げ反力に対する接合面の応力を接合面積Sに分散させ得るから、僅小にとどめ得る。
Given in.
Regarding the bending reaction force acting on the joint interface between the other end of the elastic body and the housing surface, the other end 22 of the elastic body is fixed at a deflection angle of almost zero, so that the bending reaction force can be kept small. Since the stress of the joint surface with respect to the bending reaction force can be dispersed in the joint area S, it can be kept small.

前記接合界面の剪断応力τ=f/Sに対し、接合界面の剪断強度をf/Sを越える強度とする必要がある。この剪断強度は充分な安全率を有するものでなくてはならず、このため面接合される弾性体他端部または躯体面の一方または双方に、孔、窪み、切欠きを設けて可溶材を食い込ませたり、面接合される弾性体他端部または躯体面の一方または双方を粗面として接合界面の剪断強度を増強することが望ましい。また、前記可溶材で面接合された界面を機械的に補強するために弾性体の先端面と躯体面とにわたって可溶材を盛り付けることもできる。   For the shear stress τ = f / S at the joint interface, the shear strength at the joint interface needs to exceed f / S. This shear strength must have a sufficient safety factor. For this reason, a hole, a recess, or a notch is provided in one or both of the other end of the elastic body to be surface-bonded or the housing surface so that the soluble material can be used. It is desirable to enhance the shear strength of the joining interface by using one or both of the other end of the elastic body or the surface of the elastic body to be bitten or surface bonded. Moreover, in order to reinforce the interface surface-bonded with the said soluble material mechanically, a soluble material can also be piled up over the front end surface and housing surface of an elastic body.

前記躯体1には、前記剪断力fに耐え得る強度の絶縁体または金属体或いは両者の複合体が用いられる。後述するサーモプロテクタの場合、プロテクタのベース躯体を用いることができる。
前記弾性体2には、金属、合成樹脂または金属と合成樹脂との複合体を用いることができる。複合体には、金属粉を混合した樹脂も含まれる。このように弾性体に金属粉混合樹脂のような電気抵抗値の高いものを使用する場合、抵抗体の通電発熱で可溶材を溶融させてセンサまたはプロテクタを動作させることもできる。
前記可溶材3には、はんだ等の可溶合金、単体金属または熱可塑性樹脂、或いは導電性粉末を添加した導電性熱可塑性樹脂を用いることができる。
For the casing 1, an insulator or metal body having a strength capable of withstanding the shearing force f or a composite of both is used. In the case of a thermo protector described later, a protector base housing can be used.
As the elastic body 2, a metal, a synthetic resin, or a composite of a metal and a synthetic resin can be used. The composite includes a resin mixed with metal powder. As described above, when an elastic body having a high electrical resistance value such as a metal powder mixed resin is used, the sensor or the protector can be operated by melting the fusible material by energization heat generation of the resistor.
As the fusible material 3, a fusible alloy such as solder, a single metal or a thermoplastic resin, or a conductive thermoplastic resin to which conductive powder is added can be used.

前記のサーモセンサを製作するには、弾性体の一端部を躯体面に平行接触で固定し、次いで弾性体他端部を躯体面に平行接触させた状態で縦方向荷重fを加えて弾性体を曲げ変形させ、次いで弾性体他端部と躯体面との間に可溶材を介在させ、この可溶材の加熱溶融・凝固により接触界面を接合し、これにて製作を終了する。
この場合、可溶材の溶融・凝固時、その溶融温度のもとでも弾性体の曲げ歪を保持させるように、すなわち弾性体が焼鈍されることのないように、可溶材の融点乃至は軟化点を弾性体の融点乃至は軟化点よりも充分に高くしてある。
而して、サーモセンサの動作時、可溶材がその融点乃至は軟化点近傍までに加熱された際でも弾性体の弾性歪エネルギーを保持させ得、可溶材がその融点乃至は軟化点にまで加熱されると確実に動作させ得る。
To manufacture the thermo sensor, one end of the elastic body is fixed in parallel contact with the housing surface, and then the longitudinal load f is applied in a state where the other end of the elastic body is in parallel contact with the housing surface. Then, a fusible material is interposed between the other end of the elastic body and the housing surface, and the contact interface is joined by heating and melting / solidifying the fusible material, thereby completing the production.
In this case, the melting point or softening point of the soluble material is maintained so that the bending strain of the elastic body is maintained even when the soluble material is melted / solidified, that is, the elastic body is not annealed. Is sufficiently higher than the melting point or softening point of the elastic body.
Thus, during operation of the thermosensor, the elastic strain energy of the elastic body can be maintained even when the soluble material is heated to its melting point or near the softening point, and the soluble material is heated to its melting point or softening point. When it is done, it can operate reliably.

前記弾性体一端部21と躯体面との固定においても、前記サーモセンサの製作時及び動作時の何れの加熱に対しても安定に保持される耐熱性が必要であり、その固定は、躯体が合成樹脂(可溶材の軟化点よりも高い軟化点を有する)の場合、予め設けた突起を固定子とするリベッティング、可溶材の融点乃至は軟化点よりも高い融点乃至は軟化点を有する接着剤を使用でき、躯体面が金属の場合、抵抗溶接や電磁誘導加熱溶接等の溶接(フラックスを使用した溶接が好ましい)を使用できる。   The fixing of the elastic body one end 21 and the housing surface also requires heat resistance that is stably maintained against any heating during manufacture and operation of the thermosensor. In the case of a synthetic resin (having a softening point higher than the softening point of the fusible material), riveting using a projection provided in advance as a stator, an adhesive having a melting point or softening point higher than the melting point or softening point of the fusible material When the casing surface is metal, welding such as resistance welding or electromagnetic induction heating welding (welding using a flux is preferable) can be used.

図1に示すサーモセンサでは、弾性体の他端部のみを可溶材で躯体面に面接合しているが、弾性体の一端部も可溶材で躯体面に面接合することができる。   In the thermosensor shown in FIG. 1, only the other end portion of the elastic body is surface-bonded to the housing surface with a soluble material, but one end portion of the elastic body can also be surface-bonded to the housing surface with a soluble material.

図2の(イ)は本発明に係るサーモプロテクタの一実施例の平面図を、図2の(ロ)は図2の(イ)におけるロ−ロ断面図を、図2の(ハ)は図2の(イ)におけるハ−ハ断面図をそれぞれ示している。
図2において、1はベース躯体であり、セラミックスや合成樹脂等の絶縁体から構成してある。41,42は扁平リード導体であり、一方のリード導体41の先端部には直線状電極部410を設け、他方のリード導体42の先端部には前記直線状電極部410に対し厚み方向にギャップを隔てて配置される折り曲げ電極部420を設けてある。2は弾性金属板であり、一端部21を一方のリード導体41に面接触でリベット5や溶接等により固定し、この状態で弾性板2の他端部22に前記縦方向荷重fを作用させて弾性板2に曲げ歪エネルギーを加え、更に弾性板他端部22を一方のリード導体41の最先端部に面接触で可溶合金や熱可塑性樹脂等の可溶材3の溶融・凝固(可溶材の溶融温度は弾性板の焼き鈍し温度よりも充分に低くしてある)により接合固定して本発明に係るサーモセンサを組み立て、前記弾性板2の曲げ外面を前記他方のリード導体42の折り曲げ電極部420に接触させてある。
6はハウジングであり、セラミックスや合成樹脂等の絶縁体で構成してあり、融着例えば高周波溶着(ベース1及びハウジング6が共に合成樹脂の場合)や接着剤や嵌合方式等によりベース躯体に結着してある。
2 (a) is a plan view of an embodiment of the thermoprotector according to the present invention, FIG. 2 (b) is a cross-sectional view of FIG. 2 (a), and FIG. FIG. 3 is a cross-sectional view taken along the line A in FIG.
In FIG. 2, reference numeral 1 denotes a base housing, which is composed of an insulator such as ceramics or synthetic resin. Reference numerals 41 and 42 denote flat lead conductors. A straight electrode portion 410 is provided at the tip of one lead conductor 41, and a gap is formed in the thickness direction with respect to the straight electrode portion 410 at the tip of the other lead conductor 42. The bending electrode part 420 arrange | positioned at intervals is provided. Reference numeral 2 denotes an elastic metal plate. One end 21 is fixed to one lead conductor 41 by surface contact by rivets 5 or welding, and the vertical load f is applied to the other end 22 of the elastic plate 2 in this state. Then, bending strain energy is applied to the elastic plate 2, and the elastic plate other end 22 is melted and solidified by a surface contact with the leading end portion of one lead conductor 41 of a soluble material 3 such as a soluble alloy or a thermoplastic resin (possible). (The melting temperature of the molten material is set sufficiently lower than the annealing temperature of the elastic plate) to assemble the thermosensor according to the present invention, and the bent outer surface of the elastic plate 2 is the bent electrode of the other lead conductor 42 It is in contact with the part 420.
Reference numeral 6 denotes a housing, which is composed of an insulator such as ceramics or synthetic resin, and is attached to the base casing by fusion, for example, high frequency welding (when the base 1 and the housing 6 are both synthetic resin), an adhesive, a fitting method, or the like. It is bound.

このサーモプロテクタにおいて、常時は、一方のリード導体→弾性板→弾性板と他方のリード導体電極部との接触面→他方のリード導体の経路で導通されている。可溶材3は、導通経路に含まれていないので、その導通性に可溶材の導電性が関与することはない。
このサーモプロテクタの動作について説明すると、外部温度の上昇により可溶材3がその融点乃至は軟化点にまで加熱されると、弾性板2の曲げ歪エネルギーにより弾性板他端部22と一方のリード導体電極最先端部411との間の可溶材3による面接合が解放され、図3に示すように弾性板2が元の平板状に復帰されて弾性板の曲げ高さが0にされ、前記弾性板2と他方のリード導体電極部420との接触が脱離されて非復帰の通電オフが行なわれる。この場合、可溶材が溶融乃至は軟化して弾性体の弾性歪エネルギーが解放されることが動作開始要件であるから、たとえ可溶材の糸引きが生じても、動作性能に影響を与えることがない。
図2の(ロ)における弾性板2の曲げ外面と他方のリード導体電極部420との接触面に後述するように接触圧力が作用し、接触抵抗の低減に役立つが、更なる接触抵抗の低減を図るために、その接触面を前記した可溶材よりも低融点のはんだで接合することもできる。この場合、糸引きを抑えるために、低融点はんだの層を十分薄くすることが好ましい。
In this thermoprotector, the electrical conduction is always made by the path of one lead conductor → elastic plate → the contact surface between the elastic plate and the other lead conductor electrode portion → the other lead conductor. Since the soluble material 3 is not included in the conduction path, the conductivity of the soluble material is not involved in the conductivity.
The operation of the thermoprotector will be described. When the fusible material 3 is heated to its melting point or softening point due to an increase in external temperature, the elastic plate other end 22 and one lead conductor are caused by the bending strain energy of the elastic plate 2. As shown in FIG. 3, the elastic plate 2 is restored to the original flat plate shape and the bending height of the elastic plate is reduced to 0, as shown in FIG. The contact between the plate 2 and the other lead conductor electrode portion 420 is removed, and the non-returning energization is turned off. In this case, since it is a requirement for starting the operation that the soluble material melts or softens and the elastic strain energy of the elastic body is released, even if stringing of the soluble material occurs, the operation performance may be affected. Absent.
A contact pressure acts on the contact surface between the bent outer surface of the elastic plate 2 and the other lead conductor electrode portion 420 in FIG. 2B, as will be described later, and helps to reduce the contact resistance. In order to achieve this, the contact surfaces can be joined with solder having a melting point lower than that of the soluble material described above. In this case, it is preferable to make the low melting point solder layer sufficiently thin in order to suppress stringing.

図2に示すサーモプロテクタを製作するには、図4の(イ)に示すようにベース躯体1に一方のリード導体41の電極部410を配置し、該電極部410上に弾性板2を配置し、該弾性体2の一端部21を電極部410と共にリベット等5によりベース躯体1に固定し、次いで、図4の(ロ)に示すように、弾性板他端部22に縦方向荷重fを加えて弾性板2に曲げ歪エネルギーを与え、この状態で図4の(ハ)に示すように弾性板他端部22と一方のリード導体電極部先端側411との接触界面を可溶合金や熱可塑性樹脂等の可溶材3の溶融・凝固により接合固定し、次いで図4の(ニ)に示すように他方のリード導体42を配置して当該リード導体42の折り曲げ電極部420を弾性板2の曲げ頂部に接触させ、ついで図4の(ニ)に示すようにハウジング6を融着、接着剤または嵌合方式によりベース躯体1に結着し、これにて製作を終了する。
この製作時、ハウジング6の結着により他方のリード導体42の折り曲げ電極部420が押えられて弾性体2の曲げ頂面との接触面に反力f’が生じるが、弾性板2の曲げ剛性EIが小さいためにこの反力f’を充分に小さくでき、図4の(ニ)において可溶材3による接合面に前記反力f’に基づき作用する曲げモーメントf’L’も充分に小さくできる。従って、弾性板他端部と一方のリード導体電極部先端側との間の可溶材による接合面での単純な剪断応力一様分布をよく維持できる。
To manufacture the thermo protector shown in FIG. 2, the electrode portion 410 of one lead conductor 41 is arranged on the base housing 1 and the elastic plate 2 is arranged on the electrode portion 410 as shown in FIG. Then, one end portion 21 of the elastic body 2 is fixed to the base casing 1 together with the electrode portion 410 by a rivet 5 or the like, and then the longitudinal load f is applied to the elastic plate other end portion 22 as shown in FIG. 4 to give bending elastic energy to the elastic plate 2, and in this state, as shown in FIG. 4C, the contact interface between the elastic plate other end portion 22 and one lead conductor electrode portion tip side 411 is made of a soluble alloy. Then, the other lead conductor 42 is arranged as shown in FIG. 4 (d), and the bent electrode portion 420 of the lead conductor 42 is made of an elastic plate. 2 is brought into contact with the top of the bend, and then as shown in FIG. It was bound to the base skeleton 1 a housing 6 fusion, by an adhesive or fitting manner as to end the production at this.
At the time of manufacturing, the bending electrode portion 420 of the other lead conductor 42 is pressed by the housing 6 and a reaction force f ′ is generated on the contact surface with the bending top surface of the elastic body 2. Since the EI is small, the reaction force f ′ can be made sufficiently small, and the bending moment f′L ′ acting on the joint surface by the soluble material 3 based on the reaction force f ′ in FIG. . Therefore, it is possible to maintain a simple uniform distribution of shear stress on the joint surface by the fusible material between the other end portion of the elastic plate and the one end side of one lead conductor electrode portion.

図2〜図4により説明したサーモプロテクタでは、弾性体の他端部のみを可溶材で躯体面に面接合しているが、弾性体の一端部も可溶材で躯体面に面接合することができる。
図2において、他方のリード導体42の電極部420は一方のリード導体41の電極部410に対して一定の距離を隔てて配置したものであれば、図示のものに限定されず、例えばリード導体42の屈曲部をハウジング6の外側に位置させることもできる。
図2に示すサーモプロテクタにおいては、弾性体の一端部21とリード導体41との間にカーボン等の抵抗体を介在させ、こ抵抗体の異常発熱時で可溶材3を溶融させて動作させることも可能である。すなわち、外部からの加熱と抵抗体の所定の通電発熱の何れかで動作させることもできる。
In the thermo protector described with reference to FIGS. 2 to 4, only the other end portion of the elastic body is surface-bonded to the housing surface with a soluble material, but one end portion of the elastic body may be surface-bonded to the housing surface with a soluble material. it can.
In FIG. 2, the electrode part 420 of the other lead conductor 42 is not limited to the one shown in the figure as long as it is arranged at a certain distance from the electrode part 410 of the one lead conductor 41. It is also possible to position the bent portions 42 on the outside of the housing 6.
In the thermo protector shown in FIG. 2, a resistor such as carbon is interposed between the one end portion 21 of the elastic body and the lead conductor 41, and the soluble material 3 is melted and operated when the resistor is abnormally heated. Is also possible. That is, it can be operated by either external heating or predetermined energization heat generation of the resistor.

図5の(イ)は本発明に係るサーモプロテクタの別実施例の平面図を、図5の(ロ)は図5の(イ)におけるロ−ロ断面図をそれぞれ示し、一方のリード導体を弾性金属製とし、このリード線先端部をサーモセンサの弾性体に使用している。 図5の(ハ)は同上実施例の動作後を示す図面である。
図5において、1はベース躯体であり、セラミックスや合成樹脂等の絶縁体から構成してある。41は一方のリード導体であり、先端部が板状の弾性金属製とし、先端から所定の距離を隔てた箇所を躯体面に面接触でリベットや溶接等5により固定し、この状態で当該リード導体41の先端部に縦方向荷重fを加えて弾性リード導体先端部2に曲げ歪エネルギーを与え、更に弾性リード導体最先端部411を躯体面に面接触で可溶合金や熱可塑性樹脂等の可溶材3の溶融・凝固(可溶材の溶融温度は弾性リード導体の焼き鈍し温度よりも充分に低くしてある)により接合固定して本発明に係るサーモセンサを形成してある。
前記躯体面への弾性リード導体41の面接触下での溶接固定5や面接触下での可溶合金3による接合固定には、金属箔の貼付・エッチングや金属粉ペーストの印刷・焼き付けにより躯体面を金属化したうえで行なうことができる。
42は他方の扁平リード導体であり、先端部421を折り曲げ成形して一方の弾性リード導体先端部2の曲げ頂面に接触させてある。
6はハウジングであり、セラミックスや合成樹脂等の絶縁体から構成してあり、融着例えば高周波溶着(ベース及びハウジングが共に合成樹脂の場合)や接着剤や嵌合方式等によりベース躯体に結着してある。
前記一方のリード導体には、弾性丸線の先端部を薄く圧潰加工したものを使用することもできる。
FIG. 5 (a) is a plan view of another embodiment of the thermoprotector according to the present invention, FIG. 5 (b) is a cross-sectional view of FIG. 5 (b), and one lead conductor is shown. The lead wire tip is used as an elastic body of the thermosensor. FIG. 5 (c) is a view showing the operation after the operation of the embodiment.
In FIG. 5, reference numeral 1 denotes a base housing, which is composed of an insulator such as ceramics or synthetic resin. Reference numeral 41 denotes one lead conductor, the tip of which is made of a plate-like elastic metal, and a portion spaced from the tip by a predetermined distance is fixed to the housing surface by surface contact with a rivet, welding, or the like 5, and in this state the lead A longitudinal load f is applied to the leading end of the conductor 41 to give bending strain energy to the leading end 2 of the elastic lead conductor, and the elastic lead conductor leading end 411 is contacted to the housing surface by a surface such as a soluble alloy or a thermoplastic resin. The thermosensor according to the present invention is formed by melting and solidifying the fusible material 3 (the melting temperature of the fusible material is sufficiently lower than the annealing temperature of the elastic lead conductor).
For welding and fixing 5 with the elastic lead conductor 41 in surface contact with the surface of the housing and for joining and fixing with the fusible alloy 3 under surface contact, the housing is obtained by pasting / etching metal foil or printing / baking metal powder paste. This can be done after metallizing the surface.
The other flat lead conductor 42 is formed by bending the tip portion 421 and contacting the bending top surface of the tip portion 2 of one elastic lead conductor.
Reference numeral 6 denotes a housing, which is made of an insulator such as ceramics or synthetic resin, and is bonded to the base casing by fusion, for example, high frequency welding (when the base and the housing are both synthetic resin), an adhesive, or a fitting method. It is.
As the one lead conductor, an elastic round wire whose tip is thinly crushed can be used.

このサーモプロテクタにおいて、常時は、一方のリード導体41→一方のリード導体先端部2と他方のリード導体42の先端折り曲げ部420との接触面→他方のリード導体42の経路で導通されている。可溶材3は、導通経路に含まれていないので、可溶材の導電性の関与はない。
このサーモプロテクタの動作について説明すると、外部温度の上昇により可溶材3がその融点乃至は軟化点にまで加熱されると、一方の弾性リード導体先端部2の曲げ歪エネルギーにより一方のリード導体最先端部411と躯体面との間の可溶材3による面接合が解放され、図5の(ロ)に示すように弾性リード導体先端部2が元の平板状に復帰されて当該先端部2の曲げ高さが0にされ、前記一方の弾性リード導体先端部2と他方のリード導体42の先端折り曲げ部420との接触面が脱離されて非復帰の通電オフが完結される。
In this thermo-protector, the lead conductor 41 is normally conducted through the path of the one lead conductor 41 → the one lead conductor tip 2 and the contact surface between the tip bent portion 420 of the other lead conductor 42 → the other lead conductor 42. Since the soluble material 3 is not included in the conduction path, the conductive property of the soluble material is not involved.
The operation of this thermo protector will be described. When the soluble material 3 is heated to its melting point or softening point due to an increase in external temperature, the leading edge of one lead conductor is caused by the bending strain energy of one elastic lead conductor tip 2. The surface joining by the fusible material 3 between the part 411 and the housing surface is released, and the elastic lead conductor tip 2 is returned to the original flat plate shape as shown in FIG. The height is reduced to 0, the contact surface between the one elastic lead conductor tip 2 and the tip bent portion 420 of the other lead conductor 42 is detached, and the non-returning energization-off is completed.

上記においても、弾性リード導体先端部2の曲げ外面と他方のリード導体42の先端折り曲げ部420との接触面に接触圧力が作用し、接触抵抗の低減に役立つが、更なる接触抵抗の低減を図るために、その接触面を前記した可溶材より低融点のはんだで接合することもできる。   Also in the above, the contact pressure acts on the contact surface between the bent outer surface of the tip portion 2 of the elastic lead conductor 2 and the tip bent portion 420 of the other lead conductor 42, which helps to reduce the contact resistance, but further reduces the contact resistance. For the purpose of illustration, the contact surface can be joined with a solder having a melting point lower than that of the aforementioned soluble material.

上記弾性金属材には、例えばリン青銅を使用できる。弾性材として樹脂製を使用する場合、樹脂(熱可塑性樹脂や熱硬化性樹脂)をガラス繊維、金属繊維、合成繊維等の繊維で補強したFRP、高剛性エンジニアリングプラスチック等を可溶材として使用する熱可塑性樹脂との融点との相対的な関係を考慮して選択できる。弾性材として、弾性金属材と合成樹脂との複合体、例えばリン青銅板とポリアミドフィルムとの積層体を使用することもできる。   For example, phosphor bronze can be used as the elastic metal material. When using resin as an elastic material, heat using FRP reinforced resin (thermoplastic resin or thermosetting resin) with fiber such as glass fiber, metal fiber, synthetic fiber, high-rigidity engineering plastic, etc. as soluble material The selection can be made in consideration of the relative relationship with the melting point of the plastic resin. As the elastic material, a composite of an elastic metal material and a synthetic resin, for example, a laminate of a phosphor bronze plate and a polyamide film can be used.

上記弾性材としての樹脂や可溶材としての熱可塑性樹脂としては、ポリエチレンテレフタレ−ト、ポリエチレンナフタレ−ト、ポリアミド、ポリイミド、ポリブチレンテレフタレ−ト、ポリフェニレンオキシド、ポリエチレンサルファイド、ポリサルホン等のエンジニアリングプラスチック、ポリアセタ−ル、ポリカ−ボネ−ト、ポリフェニレンスルフィド、ポリオキシベンゾイル、ポリエ−テルエ−テルケトン、ポリエ−テルイミド等のエンジニアリングプラスチックやポリプロピレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリメチルメタクリレ−ト、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、エチレンポリテトラフルオロエチレン共重合体、エチレン酢酸ビニル共重合体(EVA)、AS樹脂、ABS樹脂、アイオノマ−、AAS樹脂、ACS樹脂等中から所定融点のものを選定できる。   Examples of the resin as the elastic material and the thermoplastic resin as the soluble material include polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polybutylene terephthalate, polyphenylene oxide, polyethylene sulfide, and polysulfone. Engineering plastics such as plastic, polyacetal, polycarbonate, polyphenylene sulfide, polyoxybenzoyl, polyether ether ketone, polyetherimide, polypropylene, polyvinyl chloride, polyvinyl acetate, polymethyl methacrylate, Polyvinylidene chloride, polytetrafluoroethylene, ethylene polytetrafluoroethylene copolymer, ethylene vinyl acetate copolymer (EVA), AS resin, ABS resin, ionomer, A S resin, can be selected ones of a predetermined melting point from in ACS resin.

上記可溶材としての可溶合金としては、PbやCd等の生体系に有害な元素を含まないものを使用することが好ましく、次ぎの組成[A](1)43%Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%Sn≦44%,55%In≦74%,1%≦Bi20%、(4)46%Sn≦70%,18%≦In48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%Sn≦60%,20%≦In50%,12%Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn−Bi系合金の組成[B](16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn−Sb系合金の組成[C](18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn系合金の組成[D](20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Bi系合金の組成、[E](22)50%Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn系合金の組成[F](24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加等のIn系合金の組成等からサーモセンサまたはサーモプロテクタの動作温度に適合した融点の組成を選定することができる。   As the soluble alloy, it is preferable to use an alloy that does not contain elements harmful to biological systems such as Pb and Cd. The following composition [A] (1) 43% Sn ≦ 70%, 0 .5% ≦ In ≦ 10%, remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55%, remaining Bi, (3) 25% Sn ≦ 44%, 55% In ≦ 74% 1% ≦ Bi 20%, (4) 46% Sn ≦ 70%, 18% ≦ In 48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In 37%, remaining Bi (However, Bi ± 2%, In and Sn ± 1% are excluded based on Bi57.5%, In25.2%, Sn17.3% and Bi54%, In29.7%, and Sn16.3%, respectively. ), (6) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, remaining Bi, (7) 25% Sn ≦ 60%, 2 % ≦ In 50%, 12% Bi ≦ 33%, (8) 1 of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in any one of (8) (1) to (7) 0.01 to 7 parts by weight in total of seeds or two or more kinds, (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, remaining Bi, (10) 47% ≦ Sn ≦ 49% 3 to 5 parts by weight of Bi are added to 100 parts by weight of 51% ≦ In ≦ 53%, (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12%, remaining In, (12) 0. 3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, (13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35%, remaining In, (14) (9 ) To (13) 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P or a total of 0.01 to 7 weights Addition, (15) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, remaining Bi is 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P Alternatively, the composition of the In—Sn—Bi alloy, such as the addition of two or more of 0.01 to 7 parts by weight in total [B] (16) 30% ≦ Sn ≦ 70%, 0.3% ≦ Sb ≦ 20%, Add one or more of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P to 100 parts by weight of the remaining Bi, (17), (16), and add 0.01 to 7 parts by weight in total, etc. The composition [C] (18) 52% ≦ In ≦ 85% of the Bi—Sn—Sb based alloy of the following: Sn, (19) In 100 parts by weight of (18), Ag, Au, Cu, Ni, Pd, Pt, Composition [D] (20) 4 of In-Sn alloy such that one or more of Sb, Ga, Ge, and P are added in a total of 0.01 to 7 parts by weight. 1% or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in 100 parts by weight of the composition of 5% ≦ Bi ≦ 55%, remaining In, (21) (20) In-Bi based alloy composition such as addition of 0.01 to 7 parts by weight in total, [E] (22) 50% Bi ≦ 56%, remaining Sn, (23) Ag in 100 parts by weight of (22), Bi-Sn based alloy composition [F] (24) In, such as addition of one or more of Au, Cu, Ni, Pd, Pt, Ga, Ge, P in a total of 0.01 to 7 parts by weight One to two parts or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P are added in a total of 0.01 to 7 parts by weight to 100 parts by weight, (25) 90% ≦ In ≦ 99.9 %, 0.1% ≦ Ag ≦ 10% in 100 parts by weight of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, P or 2 0.01-7 parts by weight in total of seeds or more, (26) Au, Bi, Cu, Ni, Pd, 100 parts by weight of 95% ≦ In ≦ 99.9%, 0.1% ≦ Sb ≦ 5%, The composition of the melting point suitable for the operating temperature of the thermosensor or thermoprotector is selected from the composition of the In-based alloy such as addition of 0.01 to 7 parts by weight of one or more of Pt, Ga, Ge and P. be able to.

上記リード導体には、ニッケル、銅、銅合金等の導電性金属乃至は合金を使用でき、必要に応じ鍍金することができる。
上述した通り、リード導体の先端部に接点材や電極を設けることができ、また弾性金属リード導体の先端部を圧潰加工して弾性板状とすることもできる。
これらの場合、躯体及びハウジング外のリード導体の形状は任意の形状にできる。
For the lead conductor, a conductive metal or alloy such as nickel, copper, or copper alloy can be used, and can be plated as necessary.
As described above, a contact material or an electrode can be provided at the tip of the lead conductor, and the tip of the elastic metal lead conductor can be crushed into an elastic plate shape.
In these cases, the shape of the lead conductor outside the housing and the housing can be any shape.

リチウムイオン2次電池、リチウムポリマー2次電池等の高いエネルギー密度の2次電池では、その高いエネルギー密度のために異常時の発熱温度が高く、その発熱を検知して電池を不通電とするサーモプロテクタが必要であるが、本発明に係るサーモプロテクタにおいては小型化が容易であり電池パックに良好に組み込み得、その電池用サーモプロテクタとして好適に利用できる。   High energy density secondary batteries, such as lithium ion secondary batteries and lithium polymer secondary batteries, have a high heat generation temperature due to the high energy density, and the heat is detected so that the battery is de-energized. Although a protector is required, the thermo protector according to the present invention can be easily reduced in size and can be favorably incorporated into a battery pack, and can be suitably used as a thermo protector for a battery.

本発明において使用するサーモセンサを示す図面である。It is drawing which shows the thermosensor used in this invention. 本発明に係るサーモプロテクタの一実施例を示す図面である。It is drawing which shows one Example of the thermo protector which concerns on this invention. 図2に示すサーモプロテクタの動作状態を示す図面である。It is drawing which shows the operation state of the thermo protector shown in FIG. 図2に示すサーモプロテクタの製作過程をを示す図面である。It is drawing which shows the manufacture process of the thermo protector shown in FIG. 本発明に係るサーモプロテクタの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermoprotector which concerns on this invention. 従来のサーモプロテクタを示す図面である。It is drawing which shows the conventional thermo protector. 従来のサーモプロテクタの上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the conventional thermoprotector.

符号の説明Explanation of symbols

1 躯体
2 弾性体
21 弾性体の一端部
22 弾性体の他端部
3 可溶材
32 接合面
41 リード導体
42 リード導体
410 電極
420 電極
4100 固定接点材
4200 可動接点材
5 弾性体一端部の固定箇所
6 ハウジング
DESCRIPTION OF SYMBOLS 1 Housing 2 Elastic body 21 One end part 22 of an elastic body The other end part 3 of an elastic body Soluble material 32 Joining surface 41 Lead conductor 42 Lead conductor 410 Electrode 420 Electrode 4100 Fixed contact material 4200 Movable contact material 5 Fixed location of one end of elastic body 6 Housing

Claims (6)

上下一対の電極のうちの一方の電極を片面に有する躯体のその電極に導電弾性体の一端部を面接触で、かつ電気的に導通させて固定し、その導電弾性体に長手方向荷重を作用させて弾性曲げ変形させると共に他端部を前記一方の電極に可溶材による面接合で固定し、前記一方の電極に対する他方の電極を収容したハウジングを前記躯体に結着すると共に前記曲げ変形された導電弾性体の曲げ頂部を他方の電極に接触させてなり、前記可溶材の溶融乃至は軟化による曲げ変形導電弾性体の弾性歪エネルギーの解放で動作させることを特徴とするサーモプロテクタ One end of the conductive elastic body is fixed to the electrode of the housing having one electrode of a pair of upper and lower electrodes on one side by surface contact and electrical conduction, and a longitudinal load is applied to the conductive elastic body. The other end portion is fixed to the one electrode by surface bonding with a soluble material, and the housing containing the other electrode with respect to the one electrode is bound to the housing and is bent and deformed. A thermo protector characterized in that a bending top portion of a conductive elastic body is brought into contact with the other electrode and is operated by releasing elastic strain energy of the bending deformation conductive elastic body by melting or softening of the soluble material . 弾性金属製リード導体の先端から所定の距離を隔てた箇所を躯体の片面に面接触で固定し、そのリード導体を先端に長手方向荷重を作用させて弾性曲げ変形させると共に先端部を前記の躯体片面に可溶材による面接合で固定し、前記一方のリード導体に対する他方のリード導体の先端部を収容したハウジングを前記躯体に結着すると共に前記曲げ変形された導電弾性体の曲げ頂部を他方のリード導体先端部に接触させてなり、前記可溶材の溶融乃至は軟化による曲げ変形導電弾性体の弾性歪エネルギーの解放で動作させることを特徴とするサーモプロテクタ。A portion at a predetermined distance from the tip of the elastic metal lead conductor is fixed to one surface of the housing by surface contact, and the lead conductor is elastically bent and deformed by applying a longitudinal load to the tip. A housing fixed to one surface by a fusible material and containing the tip of the other lead conductor with respect to the one lead conductor is connected to the housing, and the bending top of the conductive elastic body that has been bent and deformed is connected to the other. A thermo protector which is brought into contact with a lead conductor tip and is operated by releasing elastic strain energy of a bending deformation conductive elastic body by melting or softening of the soluble material.
面接合される弾性金属製リード導体の先端部または躯体面の少なくとも一方に、孔、窪み、切欠きを設けて可溶材を食い込ませたことを特徴とする請求項記載のサーモプロテクタ 3. The thermo protector according to claim 2 , wherein a fusible material is encroached by providing a hole, a dent, or a notch in at least one of a front end portion or a casing surface of the elastic metal lead conductor to be surface bonded. 面接合される弾性金属製リード導体の先端部または躯体面の少なくとも一方を粗面としたことを特徴とする請求項2記載のサーモプロテクタ3. The thermo protector according to claim 2, wherein at least one of a tip end portion or a casing surface of the elastic metal lead conductor to be surface-bonded is a rough surface. 可溶材が低融点金属であることを特徴とする請求項1〜4何れか記載のサーモプロテクタThe thermoprotector according to claim 1, wherein the soluble material is a low melting point metal. 可溶材が熱可塑性樹脂であることを特徴とする請求項1〜4何れか記載のサーモプロテクタThe thermoprotector according to any one of claims 1 to 4, wherein the soluble material is a thermoplastic resin.
JP2003308408A 2003-09-01 2003-09-01 Thermo protector Expired - Fee Related JP4223354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003308408A JP4223354B2 (en) 2003-09-01 2003-09-01 Thermo protector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003308408A JP4223354B2 (en) 2003-09-01 2003-09-01 Thermo protector

Publications (2)

Publication Number Publication Date
JP2005078954A JP2005078954A (en) 2005-03-24
JP4223354B2 true JP4223354B2 (en) 2009-02-12

Family

ID=34410889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003308408A Expired - Fee Related JP4223354B2 (en) 2003-09-01 2003-09-01 Thermo protector

Country Status (1)

Country Link
JP (1) JP4223354B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554436B2 (en) * 2005-05-25 2010-09-29 内橋エステック株式会社 Thermo protector and manufacturing method thereof
JP4527609B2 (en) * 2005-06-17 2010-08-18 内橋エステック株式会社 Thermo protector
FR2891688B1 (en) * 2005-10-05 2007-11-30 Seb Sa FLUID HEATING DEVICE WITH THERMAL FUSE

Also Published As

Publication number Publication date
JP2005078954A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US7385474B2 (en) Thermosensor, thermoprotector, and method of producing a thermosensor
US7345570B2 (en) Thermoprotector
EP2988313B2 (en) Protective device
JP6195910B2 (en) Protective device
US20170062167A1 (en) Protective Device
JP2017098186A (en) Breaker, safety circuit with the same, and secondary battery circuit
JP4223354B2 (en) Thermo protector
JP6457810B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
JP2005063792A (en) Heat sensitive element and thermo-protector
JP2006196189A (en) Thermo-protector, manufacturing and mounting method of the same
JP6592299B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
JP4554436B2 (en) Thermo protector and manufacturing method thereof
JP4387251B2 (en) Thermo protector
JP4387227B2 (en) Thermo protector
WO2020022298A1 (en) Circuit breaker, safety circuit and secondary battery pack
JP4515995B2 (en) Open / close switch
JP4223368B2 (en) Thermo protector
JP2006155974A (en) Thermoprotector
JP2006147326A (en) Thermo protector
WO2024069853A1 (en) Breaker and secondary battery pack including same
WO2023074752A1 (en) Breaker
JP6038680B2 (en) Breaker device
JP2007005066A (en) Thermoprotector and manufacturing method of the same
JP4527609B2 (en) Thermo protector
JP2005268078A (en) Thermo-protector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees