JP2006155974A - Thermoprotector - Google Patents

Thermoprotector Download PDF

Info

Publication number
JP2006155974A
JP2006155974A JP2004341543A JP2004341543A JP2006155974A JP 2006155974 A JP2006155974 A JP 2006155974A JP 2004341543 A JP2004341543 A JP 2004341543A JP 2004341543 A JP2004341543 A JP 2004341543A JP 2006155974 A JP2006155974 A JP 2006155974A
Authority
JP
Japan
Prior art keywords
contact piece
lead conductor
conductor portion
contact
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004341543A
Other languages
Japanese (ja)
Inventor
Toshiaki Kawanishi
俊朗 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2004341543A priority Critical patent/JP2006155974A/en
Publication of JP2006155974A publication Critical patent/JP2006155974A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoprotector working when elastic deformation energy of an elastic body supported via binding fixation by a fusible material such as solder is released by fusion of the fusible material. <P>SOLUTION: A contact piece 2, in which one lead conductor part 1 between both lead conductor parts 1 and 10 housed on the upper side and the lower side in a housing 6 has elasticity, is fixed in the both end parts while being bent for holding elastic deformation energy, and at least one side fixation 21 is carried out by face binding via the fusible material 3, while the other lead conductor part 10 is brought into contact with the bent contact piece 2. The periphery of the contact part is surrounded by a protection coat. When the fusible material is melted/softened, the elastic deformation energy is released to interrupt electric conduction between the both lead conductors. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は可溶材の融点または軟化点を動作温度とするサーモプロテクタに関するものである。   The present invention relates to a thermo protector whose operating temperature is the melting point or softening point of a soluble material.

電子・電気機器における異常発熱を感知し、この感知に基づくカットオフ動作で機器を電源から遮断して機器の過熱を防止し、火災の発生を未然に防止するサーモプロテクタとして、弾性歪みエネルギーを蓄積しておき、可溶材の溶融乃至は軟化により弾性歪みエネルギーを解放させる方式が知られている。
例えば図9の(イ)に示すように弾性金属片2'を強制的に曲げ、この曲げ弾性金属片1'の両端を曲げ反力に抗して一対の固定端子41',42'に所定融点の可溶合金(はんだ)3'で接合し、周囲温度が可溶合金2'の融点まで昇温して可溶合金が溶融されると、図9の(ロ)に示すように弾性金属片2'の曲げ応力を解除させて弾性金属片2'の一端と一方の固定端子42'との接合を脱離して通電を遮断するものが知られている(特許文献1参照)。
また、図10の(イ)に示すように一端にリード端子13'を取付けた金属ケース14'内に一端側から所定融点のペレット2'、座板15'、圧縮スプリング1'、座板16'を順次に収容し、更に外周が金属ケース内面に摺動接触されたコンタクト42'を収容し、リードピン貫通ブッシング17'を金属ケース14'の他端側に固定し、このブッシング17'とコンタクト42'との間に引外しスプリング18'を組み込んでリード端子13'→金属ケース14'→コンタクト42'→リードピン41'を経る導通路を構成し、周囲温度がペレット2'の融点まで昇温されてペレット2'が溶融されると、図10の(ロ)に示すように圧縮スプリング1'の圧縮応力を解放させて引外しスプリング18'の圧縮応力でリードピン41'の先端からコンタクト42'を離隔させて前記導通路を遮断するものも知られており、いわゆる、ペレットタイプ温度ヒューズと称されている(非特許文献1参照)。
Accumulated elastic strain energy as a thermo protector that detects abnormal heat generation in electronic and electrical devices, cuts off the device from the power supply by cut-off operation based on this detection, prevents overheating of the device, and prevents the occurrence of fire. A method of releasing elastic strain energy by melting or softening a soluble material is known.
For example, as shown in FIG. 9 (a), the elastic metal piece 2 ′ is forcibly bent, and both ends of the bent elastic metal piece 1 ′ are subjected to a bending reaction force to be fixed to the pair of fixed terminals 41 ′ and 42 ′. When joining with a melting alloy (solder) 3 ′ having a melting point and the ambient temperature is raised to the melting point of the melting alloy 2 ′ and the melting alloy is melted, as shown in FIG. There is known a technique in which the bending stress of the piece 2 ′ is released and the connection between one end of the elastic metal piece 2 ′ and one fixed terminal 42 ′ is released to cut off the current supply (see Patent Document 1).
Further, as shown in FIG. 10 (a), a pellet 2 ′ having a predetermined melting point, a seat plate 15 ′, a compression spring 1 ′, and a seat plate 16 from one end side in a metal case 14 ′ having a lead terminal 13 ′ attached to one end. 'Is sequentially accommodated, and the contact 42' whose outer periphery is slidably contacted with the inner surface of the metal case is accommodated, and the lead pin through bushing 17 'is fixed to the other end side of the metal case 14'. A trip spring 18 'is assembled between the lead terminal 13', the metal case 14 ', the contact 42', and the lead pin 41 ', and the ambient temperature is raised to the melting point of the pellet 2'. When the pellet 2 'is melted, the compressive stress of the compression spring 1' is released as shown in FIG. 10B, and the contact 42 'from the tip of the lead pin 41' is released by the compressive stress of the tripping spring 18 '. Release There is also known one that blocks the conduction path at a distance and is called a so-called pellet type thermal fuse (see Non-Patent Document 1).

特開平7−29481号公報JP 7-29481 A 電気工学ハンドブック1988の第818頁Page 818 of Electrical Engineering Handbook 1988

しかしながら、図9に示す方式では、弾性金属片の曲げ反力M’及び押し拡げ力F’が可溶合金(はんだ)に作用するから、可溶合金における応力分布が複雑であり、応力集中に基づくクリープが生じ易く、動作不良が発生し易い。更に、可溶合金が通電路の一部となっているので、可溶合金のクリープによる抵抗増大により発熱し、自己発熱による動作誤差も懸念される。更に、また溶融した合金の糸引きによる動作不良も生じ得る。
また、図10に示す方式では、座板による均圧化のためにペレットを一様に圧縮できても構造が複雑であり、小型化やコスト面での不利を免れ得ない。
However, in the method shown in FIG. 9, since the bending reaction force M ′ and the spreading force F ′ of the elastic metal piece act on the soluble alloy (solder), the stress distribution in the soluble alloy is complicated, and stress concentration occurs. Based on this, creep is likely to occur, and malfunction is likely to occur. Furthermore, since the fusible alloy is a part of the current path, heat is generated due to an increase in resistance due to creep of the fusible alloy, and there is a concern about an operation error due to self-heating. Furthermore, malfunctions due to stringing of the molten alloy can also occur.
Further, in the method shown in FIG. 10, even if the pellets can be uniformly compressed for pressure equalization by the seat plate, the structure is complicated, and disadvantages in terms of downsizing and cost cannot be avoided.

本発明の目的は、弾性歪エネルギーをはんだ等の可溶材による接合固定で支持している弾性体の弾性歪エネルギーが可溶体の溶融で解放されて良好に動作するサーモプロテクタを提供することにある。   An object of the present invention is to provide a thermo protector that operates satisfactorily by the elastic strain energy of the elastic body supporting the elastic strain energy by joining and fixing with a soluble material such as solder being released by melting of the soluble body. .

請求項1に係るサーモプロテクタは、ハウジング内に互いに上下に収容された両リード導体部分の一方のリード導体部分に弾性を有する接触片が弾性歪エネルギーを保持した曲げ状態で両端部において固定されており、一方の固定が可溶材を介しての面接合により行われており、前記曲げ状態の接触片に他方のリード導体部分が接触されており、この接触箇所の周りが保護コートで包囲されており、前記可溶材の溶融乃至は軟化により前記弾性歪エネルギーが解放されて両リード導体間の電気的導通が遮断されることを特徴とする。   The thermo protector according to claim 1 is fixed at both ends in a bent state in which a resilient contact piece holds elastic strain energy on one lead conductor portion of both lead conductor portions accommodated in the housing one above the other. One of the lead conductor portions is in contact with the bent contact piece, and the periphery of the contact portion is surrounded by a protective coat. The elastic strain energy is released by melting or softening the fusible material, and electrical conduction between both lead conductors is interrupted.

請求項2に係るサーモプロテクタは、請求項1のサーモプロテクタにおいて、保護コートが油、油脂、有機溶剤、前記可溶材よりも低融点のワックスまたは熱可塑性樹脂の何れかであることを特徴とする。   The thermo protector according to claim 2 is characterized in that, in the thermo protector according to claim 1, the protective coat is any one of oil, fats and oils, an organic solvent, a wax having a melting point lower than that of the soluble material, or a thermoplastic resin. .

請求項3に係るサーモプロテクタは、請求項1または2のサーモプロテクタにおいて、弾性を有する接触片が他方のリード導体部分側に凸の曲線状に弾性変形されており、接触片の一端部が折り返されその折り返し部が一方のリード導体部分に可溶材を介して面接合されていることを特徴とする。   The thermo protector according to claim 3 is the thermo protector according to claim 1 or 2, wherein the elastic contact piece is elastically deformed in a convex curve shape on the other lead conductor portion side, and one end of the contact piece is folded back. The folded portion is surface-bonded to one lead conductor portion via a fusible material.

請求項4に係るサーモプロテクタは、請求項1〜3何れかのサーモプロテクタにおいて、可溶材が低融点金属であることを特徴とする。   The thermo protector according to claim 4 is the thermo protector according to any one of claims 1 to 3, wherein the soluble material is a low melting point metal.

請求項5に係るサーモプロテクタは、請求項1〜3何れかのサーモプロテクタにおいて、接触片の一端側と一方のリード導体部分との面接合箇所における可溶材が熱可塑性樹脂であり、接触片の他端側と一方のリード導体部分との固定が電気的導通のもとで行われていることを特徴とする。   The thermo protector according to claim 5 is the thermo protector according to any one of claims 1 to 3, wherein the soluble material at the surface joining portion between the one end side of the contact piece and the one lead conductor portion is a thermoplastic resin. The other end side and the one lead conductor portion are fixed under electrical conduction.

請求項6に係るサーモプロテクタは、請求項1〜5何れかのサーモプロテクタにおいて、弾性を有する接触片が金属または金属と樹脂との重合物あるいは複合物であることを特徴とする。   The thermo protector according to claim 6 is the thermo protector according to any one of claims 1 to 5, characterized in that the elastic contact piece is a metal or a polymer or a composite of a metal and a resin.

請求項7に係るサーモプロテクタは、請求項1〜6何れかのサーモプロテクタにおいて、ハウジングが上下に二分割の分割式とされ、弾性を有する接触片が固定された一方のリード導体部分が一方の分割ハウジング片内に収容され、他方のリード導体部分が他方の分割ハウジング片内に収容され、両分割ハウジング片が組合わされていることを特徴とする。   The thermo protector according to claim 7 is the thermo protector according to any one of claims 1 to 6, wherein the housing is divided into two parts in the vertical direction, and one lead conductor portion to which the elastic contact piece is fixed is one of the thermo protectors. It is accommodated in the divided housing piece, the other lead conductor portion is accommodated in the other divided housing piece, and both the divided housing pieces are combined.

請求項8に係るサーモプロテクタは、請求項7のサーモプロテクタにおいて、上下の分割ハウジング片が同一品であることを特徴とする。   The thermo protector according to claim 8 is the thermo protector according to claim 7, wherein the upper and lower divided housing pieces are the same product.

ハウジング内に互いに上下に収容された両リード導体部分の一方のリード導体部分に弾性を有する接触片が弾性歪エネルギーを保持した曲げ状態で両端部において固定されており、一方の固定が可溶材を介しての面接合により行われており、他方の固定が可溶材を介さずに行われており、前記曲げ状態の接触片に他方のリード導体部分が接触されいるサーモプロテクタにおいては、可溶材が溶融されたときに前記接触箇所での滑りが悪いと、接触箇所と前記他方の可溶材を介していない固定箇所との間の曲げ接触片部分に貯蔵されている弾性歪エネルギーを速やかに解放させ難い。
本発明では、前記接触箇所を保護コートで包囲しており、酸化か腐食による滑り低下をよく排除できる。また、接触片を一端ヒンジ支持の柱を軸方向に圧縮したときの力学的状態とほぼ同じ力学的状態に安定に保持できる結果、ヒンジ支持点側に相当する弾性接触片一端の一方のリード導体部分への固定部に曲げモーメント反力が作用するのをよく抑制できてその弾性接触片一端部と一方のリード導体部分との可溶材を介しての面接合界面に作用する応力を主に剪断応力にして当該界面に曲げモーメント反力に基づく劈開力が作用するのをよく軽減できる。
従って、可溶材による面接合界面を安定に保持でき、接合界面の可溶材がクリープするのを防止できると共に電気的接触箇所の滑り性を初期のままに保持でき、良好な迅速動作を達成できる。
An elastic contact piece is fixed at both ends in a bent state holding elastic strain energy to one lead conductor portion of both lead conductor portions accommodated in the housing above and below each other. In the thermo-protector in which the other lead conductor portion is in contact with the bent contact piece, the other material is fixed without using a soluble material, and the other lead conductor portion is in contact with the bent contact piece. If the sliding at the contact location is poor when melted, the elastic strain energy stored in the bending contact piece portion between the contact location and the fixed location not through the other soluble material is quickly released. hard.
In this invention, the said contact location is surrounded by the protective coat, and the slip fall by oxidation or corrosion can be excluded well. In addition, as a result that the contact piece can be stably held in a mechanical state substantially the same as the mechanical state when the column of the hinge support at one end is compressed in the axial direction, one lead conductor at one end of the elastic contact piece corresponding to the hinge support point side The bending moment reaction force can be well suppressed from acting on the fixed part to the part, and the stress acting on the interface between the elastic contact piece and one lead conductor part through the fusible material is mainly sheared. It is possible to reduce well the cleavage force based on the bending moment reaction force acting on the interface as a stress.
Therefore, it is possible to stably hold the surface bonding interface by the fusible material, to prevent the fusible material at the bonding interface from creeping, and to keep the slipping property of the electrical contact portion as the initial state, thereby achieving a good quick operation.

図1の(イ)〜(ハ)は本発明に係るサーモプロテクタの基本的構造の一例を示し、図1の(イ)は動作前を、図1の(ロ)は動作後をそれぞれ示し、図1の(ハ)は図1の(イ)におけるハ−ハ断面図を示している。
図1において、6はハウジング、1,10はハウジング内に互いに上下に配置されたリード導体部分である。2は弾性を有する接触片であり、先端部21が折り返されて一方のリード導体部分1の先端部上面に可溶材3を介して面接合で固定され、水平方向圧縮力pにより曲げ状態とされて先端側の撓み角αL’が後述の角度αLにほぼ等しくされ、後端側22が同上リード導体部分1に撓み角0で溶接、リベッティング等により固定されている。
このようにして曲げられた接触片2には弾性曲げ歪エネルギーが保持されている。
この曲げ接触片2に他方のリード導体部分10が電気的に接触され、この接触箇所が保護コートで包囲されている。この保護コート剤には、油、油脂、有機溶剤、前記可溶材よりも低融点のワックスまたは熱可塑性樹脂等を用いることができる。特に常温で液体のものを毛細管現象により接触箇所周りの間隙に保持させるようにすることが好ましい。
図1の(イ)において、接触片2の先端側21の撓み角がαL’、後端側22の撓み角が0、固定点での水平方向圧縮力がp、高さがhである弾性接触片の撓み状態は、一端固定・他端ヒンジ支持の支柱の水平方向圧縮力pによる撓み状態にほぼ等しい。
1 (a) to 1 (c) show an example of the basic structure of the thermoprotector according to the present invention, FIG. 1 (a) shows before operation, and FIG. 1 (b) shows after operation. (C) in FIG. 1 is a cross-sectional view taken along the line ha in FIG.
In FIG. 1, 6 is a housing, and 1 and 10 are lead conductor portions disposed one above the other in the housing. Reference numeral 2 denotes an elastic contact piece. The tip end portion 21 is folded back and fixed to the upper surface of the tip end portion of one lead conductor portion 1 via a fusible material 3 and is bent by a horizontal compression force p. The bending angle αL ′ on the front end side is made substantially equal to an angle αL described later, and the rear end side 22 is fixed to the lead conductor portion 1 with the bending angle 0 by welding, riveting or the like.
Elastic bending strain energy is held in the contact piece 2 bent in this way.
The other lead conductor portion 10 is in electrical contact with the bending contact piece 2, and the contact portion is surrounded by a protective coat. As this protective coating agent, oil, fats and oils, an organic solvent, wax having a melting point lower than that of the soluble material, thermoplastic resin, or the like can be used. In particular, it is preferable to hold a liquid at room temperature in the gap around the contact portion by capillary action.
In FIG. 1A, the elasticity of the contact piece 2 having a bending angle αL ′ on the front end side 21, a bending angle 0 on the rear end side 22, a horizontal compression force p at a fixed point, and a height h. The bending state of the contact piece is substantially equal to the bending state due to the horizontal compression force p of the column fixed to one end and supported by the other end hinge.

図2は一端固定・他端ヒンジ支持の柱(Long column)の水平方向圧縮力pによる撓み状態を示している。
図2において、点(x,y)での曲げモーメントをMとすると、
FIG. 2 shows a state of bending by a horizontal compression force p of a column (Long column) fixed at one end and supported at the other end hinge.
In FIG. 2, when the bending moment at the point (x, y) is M x ,

y/dx=−M/EI
が成立し(ただし、EIは柱の曲げ剛性)、曲げモーメントMxが
d 2 y / dx 2 = −M x / EI
(Where EI is the bending rigidity of the column) and the bending moment Mx is

=py−Mox/L
で与えられるから、凸曲線の形状yは、p/EI=kとおいて、
M x = py-Mox / L
Since the convex curve shape y is p / EI = k 2 ,

y=A〔coskx−(sinkx)/kL+(x/L)−1〕
tankL=kL
で与えられ、係数Aはx=L'において凸曲線yの高さが既知のhであることから、
y = A [coskx- (sinkx) / kL + (x / L) -1]
tankL = kL
Since the height of the convex curve y is known h at x = L ′, the coefficient A is given by

x=L'=h、(dy/dx)x=L'=0
より求めることができる。
従って、ヒンジ支持端での撓み角αLは、
y x = L ′ = h, (dy / dx) x = L ′ = 0
It can be obtained more.
Therefore, the deflection angle αL at the hinge support end is

αL=(dy/dx)x=L=A〔−(coskL)/L−k(sinkL)+(1/L)〕
で与えられる。
αL = (dy / dx) x = L = A [− (coskL) / L−k (sinkL) + (1 / L)]
Given in.

図2において、ヒンジ支持端を力学的に凍結しても(ヒンジ支持端の撓み角をそのままにしてヒンジ支持を固定支持に変えても)力学的状態は変わらない。従って、図1の(イ)の撓み角αL’を図2における撓み角αLに等しくすれば、図1の(イ)において一方のリード導体部分1の先端側と弾性接触片2との接合箇所に曲げモーメントが作用するのを排除し得て可溶材3による接合界面に剪断応力のみを作用させることができる。従って、曲げモーメント反力に基づく接合界面を劈開しようとする応力が作用するのを良好に防止できる。   In FIG. 2, even if the hinge support end is dynamically frozen (even if the hinge support end is bent and the hinge support is changed to a fixed support), the mechanical state does not change. Accordingly, if the deflection angle αL ′ in FIG. 1 (a) is made equal to the deflection angle αL in FIG. 2, the joint portion between the tip side of one lead conductor portion 1 and the elastic contact piece 2 in FIG. Thus, it is possible to eliminate the bending moment from acting on the joint, and it is possible to cause only the shear stress to act on the joining interface of the soluble material 3. Accordingly, it is possible to satisfactorily prevent the stress that attempts to cleave the joint interface based on the bending moment reaction force.

前記接合界面の剪断応力τは接触片2に作用する水平方向圧縮力をp、接合界面の面積をSとすると、τ=p/Sで与えられ、接合界面の剪断強度をf/Sを越える強度とする必要がある。この剪断強度は充分な安全率を有するものでなくてはならず、このため面接合される部分の接触片2または一方のリード導体1の双方あるいは一方に、孔、窪み、切欠きを設けて可溶材3を食い込ませたり、面接合される接触片端部または一方のリード導体部分の一方または双方を粗面として接合界面の剪断強度を増強することが望ましい。また、前記可溶材3で面接合された界面を機械的に補強するために可溶材を盛り付けることもできる。   The shear stress τ of the joint interface is given by τ = p / S, where p is the horizontal compressive force acting on the contact piece 2 and S is the area of the joint interface, and the shear strength of the joint interface exceeds f / S. It needs to be strong. This shear strength must have a sufficient safety factor. For this reason, a hole, a recess, or a notch is provided in both or one of the contact piece 2 and / or one lead conductor 1 of the portion to be surface-bonded. It is desirable to increase the shear strength of the bonding interface by biting the fusible material 3 or by roughening one or both of the contact piece end portion or one lead conductor portion to be surface-bonded. Moreover, in order to reinforce the interface surface-bonded by the said soluble material 3, a soluble material can also be arranged.

前記接触片2には、金属、金属と合成樹脂との複合体を用いることができる。複合体には、金属粉を混合した樹脂も含まれる。このように弾性体に金属粉混合樹脂のような電気抵抗値の高いものを使用する場合、抵抗体の過電流による通電発熱で可溶材を溶融させてプロテクタを動作させることもできる。   The contact piece 2 may be a metal or a composite of a metal and a synthetic resin. The composite includes a resin mixed with metal powder. Thus, when using a thing with high electrical resistance value like a metal powder mixed resin for an elastic body, a soluble material can be fuse | melted by the energization heat_generation | fever by the overcurrent of a resistor, and a protector can also be operated.

前記可溶材3には、はんだ等の低融点可溶合金、低融点可溶単体金属または熱可塑性樹脂、或いは導電性粉末を添加した導電性熱可塑性樹脂を用いることができる。可溶材3を介しての面接合は、通電加熱や電磁誘導加熱等を用いた溶接により行うことができる。溶接界面にフラックスを塗布することが好ましい。
接触片全長の片面または両面に可溶材をコーティングして弾性体全長の曲げ剛性を均等化することは、曲げ応力の集中化防止に有効である。
The fusible material 3 may be a low melting point soluble alloy such as solder, a low melting point soluble single metal or thermoplastic resin, or a conductive thermoplastic resin to which conductive powder is added. The surface bonding through the fusible material 3 can be performed by welding using energization heating or electromagnetic induction heating. It is preferable to apply a flux to the weld interface.
Coating the fusible material on one or both sides of the entire length of the contact piece to equalize the bending rigidity of the entire length of the elastic body is effective for preventing concentration of bending stress.

図1の(イ)において、一方のリード導体部分1→接触片2→接触片2と他方のリード導体部分10との接触面→他方のリード導体部分10の経路で常時電気的に導通されている。
この状態において、(1)一方のリード導体部分1と接触片2との可溶材3を介しての面接合界面に作用する応力は主に一様分布の剪断応力であり、応力集中による可溶材3のクリープを排除できること、(2)接触片2の曲げに基づく反力(図2における水平方向圧縮力p、曲げモーメント反力Mを参照)が一方のリード導体部分1に作用するが、そのリード導体部分1の固定や同リード導体部分1の充分な曲げ剛性のために全体を力学的に安定に保持できること等のために、他方のリード導体部分と接触片との安定な電気的接触状態を保証できる。従って、安定な電気的導通を確保できる。
In FIG. 1A, one lead conductor portion 1 → contact piece 2 → contact surface between the contact piece 2 and the other lead conductor portion 10 → the other lead conductor portion 10 is always electrically connected along the path. Yes.
In this state, (1) the stress acting on the interface between the one lead conductor portion 1 and the contact piece 2 through the fusible material 3 is mainly a uniform distribution of shear stress, and the fusible material due to stress concentration. can be eliminated 3 creep, (2) the reaction force based on the bending of the contact piece 2 (horizontal compressive force p in FIG. 2, refer to the bending moment reaction force M 0) is acts on one of the lead conductor portion 1, Since the lead conductor portion 1 is fixed and the lead conductor portion 1 has sufficient bending rigidity, the entire lead conductor portion 1 can be mechanically and stably held. We can guarantee the condition. Therefore, stable electrical conduction can be ensured.

前記接触片2と他方のリード導体部分10との接触面を前記可溶材3よりも低融点の可溶金属で接合して電気接触抵抗を低くすることができる。   The contact surface between the contact piece 2 and the other lead conductor portion 10 can be joined with a fusible metal having a melting point lower than that of the fusible material 3 to reduce the electric contact resistance.

周囲温度の上昇により可溶材3が溶融乃至は軟化されると、図1の(ロ)に示すように、曲げ接触片2の可溶材3による拘束が解除され、その曲げ接触片2の弾性曲げ歪エネルギーが解放され、曲げ接触片2が元の直線状に復元されて他方のリード導体部分10と接触片2との接触が脱離され電気的導通が遮断される。   When the soluble material 3 is melted or softened due to an increase in the ambient temperature, as shown in FIG. 1B, the restriction of the bending contact piece 2 by the soluble material 3 is released, and the bending contact piece 2 is elastically bent. The strain energy is released, the bending contact piece 2 is restored to the original linear shape, the contact between the other lead conductor portion 10 and the contact piece 2 is removed, and the electrical conduction is interrupted.

図1の(イ)において、接触片2の撓みyが前記した通り、
y=A〔coskx−(sinkx)/kL+(x/L)−1〕
で与えられ、位置xでの曲げモーメントM(x)が
M(x)=EI・dy/dx
で与えられ、接触片2と他のリード導体部分10との接触箇所eと接触片後端22との間の接触片部分に蓄えられる弾性歪エネルギーWが

Figure 2006155974
で与えられる。
而るに、前記接触箇所eの周囲を保護コートで包囲しており、接触箇所が酸化や腐食(特に異種金属腐食)等で固まるのを防止できて接触箇所の当初の滑り性をよく保持できるから、前記の貯蔵弾性歪エネルギーWが小さくても、そのエネルギーを迅速に解放させることができる。従って、接触片を薄くしても、迅速な遮断作動をサーモプロテクタの小型化のもとで達成できる。 In (a) of FIG. 1, the deflection y of the contact piece 2 is as described above.
y = A [coskx- (sinkx) / kL + (x / L) -1]
And the bending moment M (x) at position x is M (x) = EI · d 2 y / dx 2
The elastic strain energy W stored in the contact piece portion between the contact point e between the contact piece 2 and the other lead conductor portion 10 and the contact piece rear end 22 is given by
Figure 2006155974
Given in.
Therefore, the periphery of the contact point e is surrounded by a protective coat, and the contact point can be prevented from solidifying due to oxidation or corrosion (particularly, dissimilar metal corrosion), and the initial slipperiness of the contact point can be maintained well. Therefore, even if the storage elastic strain energy W is small, the energy can be released quickly. Therefore, even if the contact piece is made thin, a quick shut-off operation can be achieved with the miniaturization of the thermo protector.

上記において、一方のリード導体部分1と接触片2との電気的導通は、可溶材3として可溶金属や導電性熱可塑性樹脂を使用する場合、可溶材により確保できる。
一方のリード導体部分1と接触片後端部22との結着には、スポット抵抗溶接、レーザ溶接、超音波溶接、高周波溶接または電磁誘導加熱溶接等の溶接やリベッティングを使用できる。
リード導体部分と弾性接触片との溶接性を向上させるために、局部的に溶接性に優れた材料で置き換えることもできる。
可溶材3として絶縁性の熱可塑性樹脂を使用する場合、リード導体部分1と接触片後端部22との結着箇所において電気的導通性が確保される。
In the above description, the electrical continuity between the one lead conductor portion 1 and the contact piece 2 can be ensured by a soluble material when a soluble metal or a conductive thermoplastic resin is used as the soluble material 3.
For the binding between the one lead conductor portion 1 and the contact piece rear end portion 22, welding such as spot resistance welding, laser welding, ultrasonic welding, high frequency welding or electromagnetic induction heating welding, or riveting can be used.
In order to improve the weldability between the lead conductor portion and the elastic contact piece, it can be replaced with a material that is locally excellent in weldability.
When an insulating thermoplastic resin is used as the fusible material 3, electrical continuity is ensured at the location where the lead conductor portion 1 and the contact piece rear end 22 are bonded.

図1に示す例では、接触片2の先端側21を角度ほぼαL'で折り返し、その折り返し部を一方のリード導体部分1の先端部上面に可溶材3を介して面接合し、接触片2の後端側22を水平方向圧縮力pを加えた状態で角度0にて一方のリード導体部分1の後端側に溶接やリベッティングにより結着しているが、図3の(イ)に示すように接触片2の先端側21を接触片厚みの立ち上げ211を経て角度ほぼαL'で折り返し、その折り返し部を一方のリード導体部分1の先端部裏面に可溶材3を介して面接合し、接触片2の後端側22を水平方向圧縮力pを加えた状態で角度0にて一方のリード導体部分1の後端側に溶接やリベッティングにより結着することもできる。また、図3の(ロ)に示すように、接触片の先端側21を角度ほぼ(π−αL')で折り曲げ、その折り曲げ部21を一方のリード導体部分1の先端部上面に可溶材を介して面接合し、接触片2の後端側22を水平方向圧縮力pを加えた状態で角度0にて一方のリード導体部分1に溶接やリベッティングにより結着することもできる。   In the example shown in FIG. 1, the distal end side 21 of the contact piece 2 is folded back at an angle of approximately αL ′, and the folded portion is surface-bonded to the upper surface of the distal end portion of one lead conductor portion 1 via a soluble material 3. The rear end side 22 is bonded to the rear end side of one lead conductor portion 1 at an angle of 0 with a horizontal compression force p applied thereto by welding or riveting, as shown in FIG. Thus, the front end side 21 of the contact piece 2 is folded back at an angle of approximately αL ′ through the rise 211 of the contact piece thickness, and the folded portion is surface-bonded to the back surface of the front end portion of one lead conductor portion 1 via the soluble material 3. The rear end side 22 of the contact piece 2 can be bonded to the rear end side of one lead conductor portion 1 by welding or riveting at an angle of 0 in a state where the horizontal compression force p is applied. Further, as shown in FIG. 3B, the distal end side 21 of the contact piece is bent at an angle of approximately (π−αL ′), and the bent portion 21 is put on the upper surface of the distal end portion of one lead conductor portion 1 with a soluble material. The contact piece 2 can be bonded to the one lead conductor portion 1 at an angle 0 by welding or riveting in a state where a horizontal compression force p is applied.

また、図4の(イ)に示すように、接触片2の後端側22を角度ほぼαL'で折り返し、その折り返し部22を一方のリード導体部分1の上面に可溶材3を介して面接合し、接触片2の先端側21を水平方向圧縮力pを加えた状態で角度0にて一方のリード導体部分1の先端側に溶接やリベッティングにより結着すること、図4の(ロ)に示すように、接触片2の後端側22を角度ほぼ(π−αL')で折り曲げ、その折り曲げ部22を一方のリード導体部分1の上面に可溶材3を介して面接合し、接触片2の先端側21を水平方向圧縮力pを加えた状態で角度0にて一方のリード導体部分1の先端側に溶接やリベッティングにより結着することも可能である。   Further, as shown in FIG. 4A, the rear end side 22 of the contact piece 2 is folded back at an angle of approximately αL ′, and the folded portion 22 is interviewed via the fusible material 3 on the upper surface of one lead conductor portion 1. 4, the distal end side 21 of the contact piece 2 is bonded to the distal end side of one lead conductor portion 1 at an angle 0 with a horizontal compression force p applied, by welding or riveting, 2, the rear end side 22 of the contact piece 2 is bent at an angle of approximately (π−αL ′), and the bent portion 22 is surface-bonded to the upper surface of one lead conductor portion 1 via the fusible material 3 and contacted. It is also possible to bind the distal end side 21 of the piece 2 to the distal end side of one lead conductor portion 1 by welding or riveting at an angle of 0 with a horizontal compression force p applied.

図5の(イ)〜(ハ)は本発明に係るサーモプロテクタの基本的構造の別例を示し、図5の(イ)は動作前を、図5の(ロ)は動作後をそれぞれ示し、図5の(ハ)は図5の(イ)におけるハ−ハ断面図を示している。
図5において、5はハウジング、1,10はハウジング内に互いに上下に配置されたリード導体部分である。2は弾性を有する接触片であり、先端部がほぼ角度βL’で折り返されて一方のリード導体部分1の先端部上面に可溶材3を介して面接合で固定され、水平方向圧縮力pにより曲げ状態とされて先端側21の撓み角βL’が後述の角度βLにほぼ等しくされている。後端側22は角度略(π−βL’)で折り曲げられ同上リード導体部分1に先端側21の撓み角βL’にほぼ等しい角度で溶接やリベッティングにより固定されている。曲げられた接触片2には弾性曲げ歪エネルギーが保持されている。
曲げ接触片2に前記の他方のリード導体部分10が接触されて、接触箇所の周りが前記と同様に保護コートで包囲されている。
図5の(イ)における、先端側21の撓み角がβL’、後端側22の撓み角がほぼβL’、固定点での水平方向圧縮力がp、高さがhである弾性接触片2の撓み状態は、両端ヒンジ支持の支柱の水平方向圧縮力pによる撓み状態にほぼ等しい。
5 (a) to 5 (c) show another example of the basic structure of the thermoprotector according to the present invention, FIG. 5 (a) shows before operation, and FIG. 5 (b) shows after operation. (C) in FIG. 5 shows a cross-sectional view of the ha-ha in FIG.
In FIG. 5, 5 is a housing, and 1 and 10 are lead conductor portions arranged one above the other in the housing. Reference numeral 2 denotes an elastic contact piece whose front end is folded back at an angle βL ′ and fixed to the upper surface of the front end of one lead conductor portion 1 by surface bonding via a fusible material 3, and by a horizontal compression force p. In the bent state, the bending angle βL ′ of the distal end side 21 is substantially equal to an angle βL described later. The rear end side 22 is bent at an angle of approximately (π−βL ′) and is fixed to the lead conductor portion 1 by welding or riveting at an angle substantially equal to the deflection angle βL ′ of the front end side 21. The bent contact piece 2 retains elastic bending strain energy.
The other lead conductor portion 10 is brought into contact with the bending contact piece 2, and the periphery of the contact portion is surrounded by a protective coat in the same manner as described above.
In FIG. 5A, an elastic contact piece having a bending angle of βL ′ at the front end side 21, a bending angle of approximately βL ′ at the rear end side 22, a horizontal compressive force p at a fixed point, and a height of h. The bending state of 2 is substantially equal to the bending state due to the horizontal compression force p of the column supported by the hinges at both ends.

図6は両端ヒンジ支持の柱(Long column)の水平方向圧縮力pによる撓み状態を示している。
図6において、点(x,y)での曲げモーメントをMとすると、
FIG. 6 shows a bent state due to a horizontal compression force p of a column supported by hinges at both ends.
In FIG. 6, when the bending moment at the point (x, y) is M x ,

y/dx=−M/EI
が成立し(ただし、EIは柱の曲げ剛性)、曲げモーメントM
d 2 y / dx 2 = −M x / EI
(Where EI is the bending stiffness of the column) and the bending moment M x is

=py
で与えられるから、凸曲線の形状yは、p/EI=kとおいて、
M x = py
Since the convex curve shape y is p / EI = k 2 ,

y=B・sinkx
sinkL=0
で与えられ、
従って、
y = B ・ sinkx
sinkL = 0
Given in
Therefore,

y=B・sin(πx/L)
で与えられる。
係数Bはx=L/2において凸曲線yの高さが既知のhであることから、
y = B · sin (πx / L)
Given in.
The coefficient B is h where the height of the convex curve y is known at x = L / 2.

x=L/2=h、(dy/dx)x=L/2=0
より求めることができ
y x = L / 2 = h, (dy / dx) x = L / 2 = 0
Can ask more

B=h
で与えられる。
従って、ヒンジ支持端での撓み角βLは、
B = h
Given in.
Therefore, the deflection angle βL at the hinge support end is

βL=(dy/dx)x=Lまたは0=hπ/L
で与えられる。
βL = (dy / dx) x = L or 0 = hπ / L
Given in.

図6において、ヒンジ支持端を力学的に凍結しても(両ヒンジ支持端を撓み角を同一角度のままで両固定支持に変えても)力学的状態は変わらない。従って、図5の(イ)の撓み角βL’を図6における撓み角βLにほぼ等しくすれば、図6の(イ)において一方のリード導体部分1の先端部21と弾性接触片2との接合箇所に曲げモーメントが作用するのを排除して可溶材3による接合界面に剪断応力のみを作用させることができる。従って、曲げモーメント反力に基づく接合界面を劈開しようとする応力が作用するのを良好に防止できる。   In FIG. 6, the mechanical state does not change even if the hinge support ends are dynamically frozen (even if both hinge support ends are bent at the same angle and changed to both fixed supports). Therefore, if the deflection angle βL ′ in FIG. 5A is substantially equal to the deflection angle βL in FIG. 6, the tip 21 of one lead conductor portion 1 and the elastic contact piece 2 in FIG. It is possible to eliminate only the bending moment from acting on the joining portion and allow only the shear stress to act on the joining interface of the soluble material 3. Accordingly, it is possible to satisfactorily prevent the stress that attempts to cleave the joint interface based on the bending moment reaction force.

前記した通り、接合界面の剪断応力τは弾性接触片に作用する水平方向圧縮力をp、接合界面の面積をSとすると、τ=p/Sで与えられ、接合界面の剪断強度をf/Sを越える強度とする必要がある。この剪断強度は充分な安全率を有するものでなくてはならず、可溶材を介して面接合される接触片先端部または一方のリード導体部分の双方あるいは一方に、孔、窪み、切欠きを設けて可溶材を食い込ませたり、可溶材を介して面接合される接触片先端部または一方のリード導体部分の一方または双方を粗面として接合界面の剪断強度を増強することが望ましい。また、前記可溶材で面接合された界面を機械的に補強するために可溶材を盛り付けることもできる。   As described above, the shear stress τ at the joining interface is given by τ = p / S, where p is the horizontal compressive force acting on the elastic contact piece, and S is the area of the joining interface, and the shear strength at the joining interface is f / The strength needs to exceed S. This shear strength must have a sufficient safety factor, and a hole, a dent, or a notch is formed in both or one of the leading end of the contact piece and one lead conductor portion to be surface-bonded via a soluble material. It is desirable to increase the shear strength of the bonding interface by providing a bite of a soluble material and roughening one or both of the front end of the contact piece and one lead conductor portion to be surface-bonded via the soluble material. Moreover, in order to reinforce mechanically the interface surface-bonded with the said soluble material, a soluble material can also be arranged.

前記接触片2には、金属、金属と合成樹脂との複合体を用いることができる。
複合体には、金属粉を混合した樹脂も含まれる。このように弾性接触片に金属粉混合樹脂のような電気抵抗値の高いものを使用する場合、抵抗体の過電流による通電発熱で可溶材を溶融させてプロテクタを動作させることもできる。
前記可溶材3には、はんだ等の可溶合金、単体金属または熱可塑性樹脂、或いは導電性粉末を添加した導電性熱可塑性樹脂を用いることができる。
弾性接触片全長の片面または両面に可溶材をコーティングして弾性接触片全長の曲げ剛性を均等化することは、曲げ応力の集中化防止に有効である。
The contact piece 2 may be a metal or a composite of a metal and a synthetic resin.
The composite includes a resin mixed with metal powder. Thus, when using a thing with high electrical resistance value like a metal powder mixed resin for an elastic contact piece, a soluble material can be fuse | melted by the energization heat_generation | fever by the overcurrent of a resistor, and a protector can also be operated.
As the fusible material 3, a fusible alloy such as solder, a single metal or a thermoplastic resin, or a conductive thermoplastic resin to which conductive powder is added can be used.
Coating the fusible material on one or both sides of the entire length of the elastic contact piece to equalize the bending rigidity of the entire length of the elastic contact piece is effective in preventing concentration of bending stress.

図5の(イ)において、一方のリード導体部分1→接触片2→接触片2と他方のリード導体部分10との接触面→他方のリード導体部分10の経路で常時電気的に導通されている。
この状態において、(1)一方のリード導体部分1と接触片2の各端部との可溶材3を介しての面接合界面に作用する応力が主に一様分布の剪断応力であり、応力集中による可溶材のクリープを排除できること、(2)接触片2の曲げに基づく反力(図6における水平方向圧縮力pを参照)が一方のリード導体部分1に作用するが、そのリード導体部分1の固定や同リード導体部分1の充分な曲げ剛性により全体を力学的に安定に保持できることのために、他方のリード導体部分10と接触片2との安定な電気的接触状態を保証できる。従って、安定な電気的導通を確保できる。
In FIG. 5A, one lead conductor portion 1 → contact piece 2 → contact surface between the contact piece 2 and the other lead conductor portion 10 → the other lead conductor portion 10 is always electrically connected along the path. Yes.
In this state, (1) the stress acting on the interfacial bonding interface between the one lead conductor portion 1 and each end of the contact piece 2 through the fusible material 3 is mainly a uniformly distributed shear stress. Creep of fusible material due to concentration can be eliminated, and (2) reaction force based on bending of the contact piece 2 (see horizontal compression force p in FIG. 6) acts on one lead conductor portion 1, but the lead conductor portion Since the whole can be mechanically and stably held by fixing one and the sufficient bending rigidity of the lead conductor portion 1, a stable electrical contact state between the other lead conductor portion 10 and the contact piece 2 can be ensured. Therefore, stable electrical conduction can be ensured.

図5の(ロ)に示すように、周囲温度の上昇により可溶材3が溶融乃至は軟化されると、曲げ接触片2の可溶材3による拘束が解除され、その曲げ接触片2の弾性曲げ歪エネルギーが解放され、曲げ接触片2が元の直線状に復元され他方のリード導体部分10と接触片2との接触が脱離されて電気的導通が遮断される。   As shown in FIG. 5B, when the soluble material 3 is melted or softened due to an increase in ambient temperature, the bending contact piece 2 is released from the restraint by the soluble material 3, and the bending contact piece 2 is elastically bent. The strain energy is released, the bending contact piece 2 is restored to the original linear shape, the contact between the other lead conductor portion 10 and the contact piece 2 is released, and the electrical conduction is interrupted.

図5の(イ)において、接触片2の撓みyが前記した通り、
y=B・sin(πx/L)
で与えられ、位置xでの曲げモーメントM(x)が
M(x)=EI・dy/dx
で与えられ、接触片2と他のリード導体部分10との接触箇所eと接触片後端22との間の接触片部分に蓄えられる弾性歪エネルギーWが

Figure 2006155974
で与えられる。
而るに、前記接触箇所eの周囲を保護コートで包囲しており、接触箇所が酸化等で固まるのを防止できて接触箇所の当初の滑り性をよく保持できるから、前記の貯蔵弾性歪エネルギーWが小さくても、そのエネルギーを迅速に解放させることができる。従って、接触片を薄くしても、迅速な遮断作動をサーモプロテクタの小型化のもとで達成できる。 In (a) of FIG. 5, the deflection y of the contact piece 2 is as described above.
y = B · sin (πx / L)
And the bending moment M (x) at position x is M (x) = EI · d 2 y / dx 2
The elastic strain energy W stored in the contact piece portion between the contact point e between the contact piece 2 and the other lead conductor portion 10 and the contact piece rear end 22 is given by
Figure 2006155974
Given in.
Therefore, since the contact portion e is surrounded by a protective coat, the contact portion can be prevented from solidifying due to oxidation or the like, and the initial sliding property of the contact portion can be well maintained. Even if W is small, the energy can be released quickly. Therefore, even if the contact piece is made thin, a quick shut-off operation can be achieved with the miniaturization of the thermo protector.

上記において、一方のリード導体部分1と接触片2との電気的導通は、可溶材3として可溶金属や導電性熱可塑性樹脂を使用する場合、可溶材により確保できる。
一方のリード導体部分1と接触片後端部22との結着には、スポット抵抗溶接、レーザ溶接、超音波溶接、高周波溶接または電磁誘導加熱溶接等の溶接やリベッティングを使用できる。
リード導体部分と弾性接触片との溶接性を向上させるために、局部的に溶接性に優れた材料で置き換えることもできる。
可溶材3として絶縁性の熱可塑性樹脂を使用する場合、リード導体部分1と接触片後端部22との結着箇所において電気的導通性が確保される。
In the above description, the electrical continuity between the one lead conductor portion 1 and the contact piece 2 can be ensured by a soluble material when a soluble metal or a conductive thermoplastic resin is used as the soluble material 3.
For the binding between the one lead conductor portion 1 and the contact piece rear end portion 22, welding such as spot resistance welding, laser welding, ultrasonic welding, high frequency welding or electromagnetic induction heating welding, or riveting can be used.
In order to improve the weldability between the lead conductor portion and the elastic contact piece, it can be replaced with a material that is locally excellent in weldability.
When an insulating thermoplastic resin is used as the fusible material 3, electrical continuity is ensured at the location where the lead conductor portion 1 and the contact piece rear end 22 are bonded.

図5の(イ)に示す例では、接触片2の先端側21を角度ほぼβL'で折り返し、接触片2の後端側22を角度ほぼ(π−βL')で折り曲げ、先端側折り返し部21を一方のリード導体部分1の先端部上面に可溶材3を介して面接合し、後端側22を水平方向圧縮力pを加え溶接やリベッティングにより角度ほぼβL'で固定しているが、図7の(イ)に示すように接触片2の先端側21を接触片厚みの立ち上げ211を経て角度βL'で折り返し、接触片2の後端側22を角度ほぼ(π−βL')で折り曲げ、先端側折り返し部21を一方のリード導体部分1の先端部上面に可溶材3を介して面接合し、後端側を水平方向圧縮力pを加え加え溶接やリベッティングにより角度ほぼβL'で固定することもできる。また、図7の(ロ)に示すように、接触片2の先端側21を角度ほぼ(π−βL')で折り曲げ、接触片2の後端側22を角度ほぼ(π−βL')で折り曲げ、先端側折り曲げ部21を一方のリード導体部分1の先端部上面に可溶材3を介して面接合し、後端側22を水平方向圧縮力pを加え溶接やリベッティングにより角度ほぼβL'で固定することもできる。   In the example shown in FIG. 5A, the front end side 21 of the contact piece 2 is folded at an angle of approximately βL ′, the rear end side 22 of the contact piece 2 is folded at an angle of approximately (π−βL ′), and the front end side folded portion is formed. 21 is joined to the upper surface of the tip of one lead conductor portion 1 via a fusible material 3 and the rear end side 22 is fixed at an angle of approximately βL ′ by applying a horizontal compression force p and welding or riveting. As shown in FIG. 7 (a), the front end side 21 of the contact piece 2 is turned back at an angle βL ′ through a rise 211 of the contact piece thickness, and the rear end side 22 of the contact piece 2 is set at an angle of approximately (π−βL ′). The front end side folded portion 21 is surface-joined to the upper surface of the leading end portion of one lead conductor portion 1 via the fusible material 3, and a horizontal compression force p is applied to the rear end side by welding or riveting to form an angle of approximately βL ′. It can also be fixed with. Further, as shown in FIG. 7B, the front end side 21 of the contact piece 2 is bent at an angle of approximately (π−βL ′), and the rear end side 22 of the contact piece 2 is bent at an angle of approximately (π−βL ′). The bent end portion 21 is joined to the upper surface of the leading end portion of one lead conductor portion 1 via the fusible material 3, and the rear end side 22 is applied with a horizontal compression force p at an angle of approximately βL ′ by welding or riveting. It can also be fixed.

本発明に係るサーモプロテクタにおいては、ハウジングとして上下に分割したタイプを使用し、そのハウジング片を共通化することが好ましく、図8−1〜図8−5はその実施例を示している。
図8−1〔図8−1の(イ)は平面図、同じく(ロ)は図8−1の(イ)のロ−ロ断面図、同じく(ハ)は左側面図、同じく(ニ)は右側面図〕はハウジング片60の一例を示し、ベース部61の両脇に側壁部62,62を設け、その長手方向中央において段差63を付け、各側壁部62,62の長手方向一端側にリード導体押え用凸部65,65を設け、各側壁上面の内側半分の面に超音波溶着用エネルギーダイレクタとしての三角凸条64を設けてある。また、ベース部の一端側にハウジング片内巾よりも狭巾のリベッテング突部4を設けてある。
In the thermo protector according to the present invention, it is preferable to use a vertically divided type housing and to share the housing piece, and FIGS. 8-1 to 8-5 show the embodiments.
8-1 [(a) in FIG. 8-1 is a plan view, (b) is a cross-sectional view of (b) in FIG. 8-1, [c] is a left side view, [d] Is a right side view] shows an example of the housing piece 60. Side walls 62, 62 are provided on both sides of the base 61, a step 63 is provided in the center in the longitudinal direction, and one end in the longitudinal direction of each of the side walls 62, 62 is shown. Are provided with convex portions 65, 65 for pressing the lead conductor, and triangular ridges 64 as ultrasonic welding energy directors are provided on the inner half of the upper surface of each side wall. Further, a riveting protrusion 4 having a narrower width than the inner width of the housing piece is provided on one end side of the base portion.

このハウジング片を用いて本発明に係るサーモプロテクタを製作するには、接触片付きリード導体(リード導体部分の一端側の巾は両押え用凸部65,65間の内巾に等しくするようにやや狭くしてある)に孔を穿設し、図8−2〔図8−2の(イ)は平面図、同じく(ロ)は図8−2の(イ)のロ−ロ断面図、同じく(ハ)は図8−2の(ロ)のハ−ハ断面図〕に示すように、孔を穿設した接触片2付きリード導体1を孔において一方のハウジング片60にリベッテング突部4の加熱圧潰により固定し、また、図8−3に示すように、接触片無しのリード導体10についても、孔を穿設しこの孔において他方のハウジング片60にリベッテング突部4の加熱圧潰により固定し、次いで、図8−4に示すように、接触片2の上面に油等の保護コート剤5を付着させ、両ハウジング片を上下にかつリード導体部分1,10のリード部の向きを逆とするように重畳して両ハウジング片60,60の側壁を段差63,63の噛み合いで勘合し、接触片付きリード導体のリード導体部分1の巾両側に他方のハウジング片のリード導体押え用凸部65,65を当接し、ついで超音波溶着機にセットし、両ハウジング片の前記エネルギーダイレクタを圧潰溶着させ、これにてサーモプロテクタの製作を終了する。
前記超音波溶着に代え、レザー溶着や接着剤を使用することも可能である。
上下のハウジング片間の結着には気密性を必要としない。ハウジング内外間の通気性のもとでも、前記した通り、接触片2と他方のリード導体部分10との接触状態の初期の滑り性を保護コート剤5の空気遮断作用のためによく保持でき、迅速な遮断動作を確保できる。
In order to manufacture the thermo protector according to the present invention using this housing piece, a lead conductor with a contact piece (the width on one end side of the lead conductor portion is slightly equal to the inner width between both pressing convex portions 65, 65). 8-2 [(b) in FIG. 8-2 is a plan view, and (b) is a cross-sectional view of the roll in FIG. (C) is a cross-sectional view of (B) in FIG. 8-2]. As shown in FIG. 8-2, the lead conductor 1 with the contact piece 2 having the hole formed therein is connected to the one housing piece 60 in the hole. As shown in FIG. 8-3, the lead conductor 10 without a contact piece is also provided with a hole and fixed to the other housing piece 60 by the heat crushing of the riveting protrusion 4 as shown in FIG. 8-3. Then, as shown in FIG. 8-4, protection of oil or the like on the upper surface of the contact piece 2 The sheet material 5 is attached, and both housing pieces are overlapped with each other so that the lead conductor portions 1 and 10 are in opposite directions, and the side walls of both housing pieces 60 and 60 are engaged with the steps 63 and 63. The lead conductor pressing convex portions 65, 65 of the other housing piece are brought into contact with the width sides of the lead conductor portion 1 of the lead conductor with the contact piece, and then set on an ultrasonic welding machine, and the energy of both housing pieces is set. The director is crushed and welded to complete the production of the thermo protector.
It is also possible to use leather welding or an adhesive instead of the ultrasonic welding.
Airtightness is not required for the connection between the upper and lower housing pieces. Even under the air permeability between the inside and outside of the housing, as described above, the initial sliding property of the contact state between the contact piece 2 and the other lead conductor portion 10 can be well maintained for the air blocking action of the protective coating agent 5; A quick shut-off operation can be secured.

両リード導体のリード部の高さレベルを合わせるように、図8−5に示すように一方のリード導体1のリード部をハウジング端面に沿い段差を介して折り曲げ加工することもできる。

図8−1〜図8−2に示したサモプロテクタの動作後の状態は実質的に図1の(ロ)または図5の(ロ)に示した状態に同じであるが、可溶材の溶融乃至は軟化により解放された接触片2の先端部が、リード導体部分1収容ハウジング片60のリベッテング突部4の直下に潜入して他方のリード導体部分10との再接触が確実に防止される特徴がある。
As shown in FIG. 8-5, the lead portion of one lead conductor 1 can be bent along the end face of the housing through a step so that the height levels of the lead portions of both lead conductors are matched.
Z
The state after the operation of the samo protector shown in FIGS. 8-1 to 8-2 is substantially the same as the state shown in FIG. 1B or FIG. 5B, but the fusible material is melted. Or, the tip of the contact piece 2 released by softening enters under the riveting protrusion 4 of the lead conductor portion 1 housing piece 60 and reliably prevents recontact with the other lead conductor portion 10. There are features.

上記弾性接触片2に用いる金属材には、例えばリン青銅を例示できる。接触片として樹脂製を使用する場合、樹脂(熱可塑性樹脂や熱硬化性樹脂)をガラス繊維、金属繊維、合成繊維等の繊維で補強したFRP、高剛性エンジニアリングプラスチック等を可溶材として使用する熱可塑性樹脂との融点との相対的な関係を考慮して選択できる。弾性材として、弾性金属材と合成樹脂との複合体、例えばリン青銅板とポリアミドフィルムとの積層体を使用することもできる。   Examples of the metal material used for the elastic contact piece 2 include phosphor bronze. When using resin as the contact piece, heat that uses FRP reinforced resin (thermoplastic resin or thermosetting resin) with fibers such as glass fiber, metal fiber, synthetic fiber, high-rigidity engineering plastic, etc. as soluble material The selection can be made in consideration of the relative relationship with the melting point of the plastic resin. As the elastic material, a composite of an elastic metal material and a synthetic resin, for example, a laminate of a phosphor bronze plate and a polyamide film can be used.

接触片2の寸法は、金属弾性板の場合、例えば厚み0.008〜0.1mm、巾0.3〜4.6mm、長さ1.5〜11mmとされる。   In the case of a metal elastic plate, the dimensions of the contact piece 2 are, for example, a thickness of 0.008 to 0.1 mm, a width of 0.3 to 4.6 mm, and a length of 1.5 to 11 mm.

上記弾性接触片2としての樹脂や可溶材3としての熱可塑性樹脂としては、ポリエチレンテレフタレ−ト、ポリエチレンナフタレ−ト、ポリアミド、ポリイミド、ポリブチレンテレフタレ−ト、ポリフェニレンオキシド、ポリエチレンサルファイド、ポリサルホン等のエンジニアリングプラスチック、ポリアセタ−ル、ポリカ−ボネ−ト、ポリフェニレンスルフィド、ポリオキシベンゾイル、ポリエ−テルエ−テルケトン、ポリエ−テルイミド等のエンジニアリングプラスチックやポリプロピレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリメチルメタクリレ−ト、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、エチレンポリテトラフルオロエチレン共重合体、エチレン酢酸ビニル共重合体(EVA)、AS樹脂、ABS樹脂、アイオノマ−、AAS樹脂、ACS樹脂等中から所定融点のものを選定できる。
ハウジングには、これらの樹脂の外、セラミックスも使用できる。ハウジングの寸法は、例えば厚み0.3〜1.5mm、巾1〜5mm、長さ2〜12mmとされる。
Examples of the resin as the elastic contact piece 2 and the thermoplastic resin as the soluble material 3 include polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polybutylene terephthalate, polyphenylene oxide, polyethylene sulfide, and polysulfone. Engineering plastics such as engineering plastics, polyacetal, polycarbonate, polyphenylene sulfide, polyoxybenzoyl, polyether ether ketone, polyetherimide, etc., polypropylene, polyvinyl chloride, polyvinyl acetate, polymethyl methacrylate -To, polyvinylidene chloride, polytetrafluoroethylene, ethylene polytetrafluoroethylene copolymer, ethylene vinyl acetate copolymer (EVA), AS resin, ABS resin, iono -, it can be selected ones AAS resin, from in ACS resin of a predetermined melting point.
In addition to these resins, ceramics can also be used for the housing. The dimensions of the housing are, for example, a thickness of 0.3 to 1.5 mm, a width of 1 to 5 mm, and a length of 2 to 12 mm.

上記可溶材としての可溶合金としては、PbやCd等の生体系に有害な元素を含まないものを使用することが好ましく、次ぎの組成[A](1)43%<Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%<Sn≦44%,55%<In≦74%,1%≦Bi<20%、(4)46%<Sn≦70%,18%≦In<48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In<37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%<Sn≦60%,20%≦In<50%,12%<Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn−Bi系合金の組成[B](16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn−Sb系合金の組成[C](18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn系合金の組成[D](20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Bi系合金の組成、[E](22)50%Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn系合金の組成[F](24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加等のIn系合金の組成(27)2%≦Zn≦15%,70%≦Sn≦95%,残Bi及びその合金100重量部にAu、In、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加した合金の組成等からサーモプロテクタの動作温度に適合した融点の組成を選定することができる。
また、可溶合金にb.c.cやc.p.h等の結晶構造の金属を多く含ませることにより塑性変形を抑止しクリープ強度を向上させることができる。
As the soluble alloy as the soluble material, it is preferable to use an alloy that does not contain elements harmful to biological systems such as Pb and Cd. The following composition [A] (1) 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55%, remaining Bi, (3) 25% <Sn ≦ 44%, 55% <In ≦ 74%, 1% ≦ Bi <20%, (4) 46% <Sn ≦ 70%, 18% ≦ In <48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In <37%, remaining Bi (however, Bi57.5%, In25.2%, Sn17.3% and Bi54%, In29.7%, Sn16.3% based on Bi ± 2%, (Except for the range of In and Sn ± 1%), (6) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, remaining Bi, (7) 25% < n ≦ 60%, 20% ≦ In <50%, 12% <Bi ≦ 33%, (8) Ag, Au, Cu, Ni, Pd, Pt, 100 parts by weight of any one of (1) to (7) Add one or more of Sb, Ga, Ge, and P in a total of 0.01 to 7 parts by weight, (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, remaining Bi, ( 10) Add 3-5 parts by weight of Bi to 100 parts by weight of 47% ≦ Sn ≦ 49%, 51% ≦ In ≦ 53%, (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12% , Remaining In, (12) 0.3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, (13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35% , Remaining In, (14) any one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in 100 parts by weight of any one of (14), (9) to (13) 0.01 to 7 parts by weight in total, (15) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, 100 parts by weight of the remaining Bi is Ag, Au, Cu, Ni, Pd, Pt, Sb, In-Sn-Bi based alloy composition [B] (16) 30% ≦ Sn ≦ 70%, such as addition of 0.01 to 7 parts by weight of one or more of Ga, Ge, and P in total. 3% .ltoreq.Sb.ltoreq.20%, the balance Bi, (17) (16), 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P or a total of 0.1 or more. Composition of Bi—Sn—Sb alloy such as addition of 01 to 7 parts by weight [C] (18) 52% ≦ In ≦ 85%, remaining Sn, (19) In 100 parts by weight of (18), Ag, Au, In-Sn based compounds such as addition of 0.01 to 7 parts by weight of one or more of Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P [D] (20) 45% ≦ Bi ≦ 55%, remaining In, (21) Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, 100 parts by weight of the composition of (20) Composition of In-Bi alloy such as addition of 0.01 to 7 parts by weight of one or more of P, [E] (22) 50% Bi ≦ 56%, remaining Sn, (23) (22 The composition of a Bi-Sn alloy such as Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P is added in a total of 0.01 to 7 parts by weight to 100 parts by weight of [F] (24) Add one or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P to 100 parts by weight of In, in total 0.01 to 7 parts by weight, (25) Au, Bi, Cu, Ni, Pd, Pt, Ga, G in 100 parts by weight of 90% ≦ In ≦ 99.9%, 0.1% ≦ Ag ≦ 10% e, one or more of P are added in a total of 0.01 to 7 parts by weight, (26) Au in 100 parts by weight of 95% ≦ In ≦ 99.9%, 0.1% ≦ Sb ≦ 5%, Composition of In-based alloy such as addition of 0.01 to 7 parts by weight of one or more of Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P (27) 2% ≦ Zn ≦ 15%, 70% ≦ Sn ≦ 95%, the remaining Bi and its alloy 100 parts by weight, total of 0.01 to 7 parts by weight of one or more of Au, In, Cu, Ni, Pd, Pt, Ga, Ge, P A composition having a melting point suitable for the operating temperature of the thermoprotector can be selected from the composition of the added alloy.
Moreover, b. c. c and c. p. By containing a large amount of metal having a crystal structure such as h, plastic deformation can be suppressed and the creep strength can be improved.

これらの合金、特に、Biリッチ合金の場合は、金属接触片に予め層状に被覆しておくことが好ましい。   In the case of these alloys, particularly Bi-rich alloys, it is preferable to coat the metal contact pieces in layers.

上記のリード導体には、ニッケル、銅、銅合金等の導電性金属乃至は合金を使用でき、必要に応じ鍍金することができる。   For the lead conductor, a conductive metal or alloy such as nickel, copper, or copper alloy can be used, and can be plated as necessary.

リチウムイオン2次電池、リチウムポリマー2次電池等に対する電池パックにおいては、電池や電力トランジスター等の異常発熱を検知して不通電とするサーモプロテクタが必要であるが、本発明に係るサーモプロテクタにおいては小型化が容易であり電池パックに良好に組み込み得、その電池用サーモプロテクタとして好適に利用できる。   In battery packs for lithium ion secondary batteries, lithium polymer secondary batteries, etc., a thermo protector for detecting abnormal heat generation such as a battery or a power transistor and de-energizing is necessary. In the thermo protector according to the present invention, however, Miniaturization is easy, it can be incorporated well into a battery pack, and it can be suitably used as a thermo-protector for the battery.

本発明に係るサーモプロテクタの基本的構成を示す図面である。It is drawing which shows the basic composition of the thermo protector which concerns on this invention. 一端ヒンジ支持・他端固定の柱の力学的状態を示す図面である。It is drawing which shows the mechanical state of the pillar of one end hinge support and other end fixation. 図1に示すサーモプロテクタに使用される弾性接触片付きリード導体の別例を示す図面である。It is drawing which shows another example of the lead conductor with an elastic contact piece used for the thermo protector shown in FIG. 図1に示すサーモプロテクタに使用される弾性接触片付きリード導体の上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the lead conductor with an elastic contact piece used for the thermo protector shown in FIG. 本発明に係るサーモプロテクタの上記とは別の基本的構成を示す図面である。It is drawing which shows the fundamental structure different from the above of the thermoprotector which concerns on this invention. 両端ヒンジ支持の柱の力学的状態を示す図面である。It is drawing which shows the mechanical state of the pillar of both-ends hinge support. 図5に示すサーモプロテクタに使用される弾性接触片付きリード導体の別例を示す図面である。It is drawing which shows another example of the lead conductor with an elastic contact piece used for the thermo protector shown in FIG. 本発明に係るサーモプロテクタに使用するハウジング片の一例を示す図面である。It is drawing which shows an example of the housing piece used for the thermoprotector which concerns on this invention. 図8−1のハウジング片を用いてサーモプロテクタを製作する場合の工程の一部を示す図面である。It is drawing which shows a part of process in the case of manufacturing a thermo protector using the housing piece of FIGS. 図8−1のハウジング片を用いてサーモプロテクタを製作する場合の工程の上記とは別の一部を示す図面である。It is drawing which shows a part different from the above of the process in the case of manufacturing a thermoprotector using the housing piece of FIGS. 図8−1のハウジング片を用いてサーモプロテクタを製作する場合の工程の上記とは別の一部を示す図面である。It is drawing which shows a part different from the above of the process in the case of manufacturing a thermoprotector using the housing piece of FIGS. 図8−1のハウジング片を用いてサーモプロテクタの一実施例を示す図面である。It is drawing which shows one Example of a thermo protector using the housing piece of FIGS. 従来のサーモプロテクタを示す図面である。It is drawing which shows the conventional thermo protector. 上記とは別の従来のサーモプロテクタを示す図面である。It is drawing which shows the conventional thermo protector different from the above.

符号の説明Explanation of symbols

1 一方のリード導体部分
10 他方のリード導体部分
2 接触片
21 接触片の一端部
22 接触片の他端部
3 可溶材
4 リベッティグまたは溶接箇所
5 保護コート剤
6 ハウジング
DESCRIPTION OF SYMBOLS 1 Lead conductor part 10 The other lead conductor part 2 Contact piece 21 One end part 22 of a contact piece The other end part 3 of a contact piece Soluble material 4 Riveting or welding place 5 Protective coating agent 6 Housing

Claims (8)

ハウジング内に互いに上下に収容された両リード導体部分の一方のリード導体部分に弾性を有する接触片が弾性歪エネルギーを保持した曲げ状態で両端部において固定されており、一方の固定が可溶材を介しての面接合により行われており、前記曲げ状態の接触片に他方のリード導体部分が接触されており、この接触箇所の周りが保護コートで包囲されており、前記可溶材の溶融乃至は軟化により前記弾性歪エネルギーが解放されて両リード導体間の電気的導通が遮断されることを特徴とするサーモプロテクタ。 An elastic contact piece is fixed at both ends in a bent state holding elastic strain energy to one lead conductor portion of both lead conductor portions accommodated in the housing above and below each other. The other lead conductor portion is in contact with the contact piece in the bent state, and the contact portion is surrounded by a protective coat, so that the soluble material can be melted or A thermo protector characterized in that the elastic strain energy is released by softening and electrical conduction between both lead conductors is interrupted. 保護コートが油、油脂、有機溶剤、前記可溶材よりも低融点のワックスまたは熱可塑性樹脂の何れかであることを特徴とする請求項1記載のサーモプロテクタ。 The thermoprotector according to claim 1, wherein the protective coat is any one of oil, fats and oils, an organic solvent, a wax having a melting point lower than that of the soluble material, or a thermoplastic resin. 弾性を有する接触片が他方のリード導体部分側に凸の曲線状に弾性変形されており、接触片の一端部が折り返されその折り返し部が一方のリード導体部分に可溶材を介して面接合されていることを特徴とする請求項1または2記載のサーモプロテクタ。 The elastic contact piece is elastically deformed into a convex curve on the other lead conductor portion side, one end of the contact piece is folded back, and the folded portion is surface-bonded to one lead conductor portion via a soluble material. The thermoprotector according to claim 1, wherein the thermoprotector is provided. 可溶材が低融点金属であることを特徴とする請求項1〜3何れか記載のサーモプロテクタ。 The thermoprotector according to any one of claims 1 to 3, wherein the soluble material is a low melting point metal. 接触片の一端側と一方のリード導体部分との面接合箇所における可溶材が熱可塑性樹脂であり、接触片の他端側と一方のリード導体部分との固定が電気的導通のもとで行われていることを特徴とする請求項1〜3何れか記載のサーモプロテクタ。 The fusible material at the surface joint between one end of the contact piece and one lead conductor is a thermoplastic resin, and the other end of the contact piece and one lead conductor are fixed under electrical continuity. The thermo protector according to claim 1, wherein the thermo protector is provided. 弾性を有する接触片が金属または金属と樹脂との重合物あるいは複合物であることを特徴とする請求項1〜5何れか記載のサーモプロテクタ。 6. The thermoprotector according to claim 1, wherein the contact piece having elasticity is a metal or a polymer or a composite of a metal and a resin. ハウジングが上下に二分割の分割式とされ、弾性を有する接触片が固定された一方のリード導体部分が一方の分割ハウジング片内に収容され、他方のリード導体部分が他方の分割ハウジング片内に収容されていることを特徴とする請求項1〜6何れか記載のサーモプロテクタ。 The housing is divided into upper and lower parts, one lead conductor part to which an elastic contact piece is fixed is accommodated in one split housing part, and the other lead conductor part is contained in the other split housing part. The thermo protector according to claim 1, wherein the thermo protector is accommodated. 上下の分割ハウジング片が共通であることを特徴とする請求項7記載のサーモプロテクタ。 The thermo-protector according to claim 7, wherein the upper and lower divided housing pieces are common.
JP2004341543A 2004-11-26 2004-11-26 Thermoprotector Pending JP2006155974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341543A JP2006155974A (en) 2004-11-26 2004-11-26 Thermoprotector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341543A JP2006155974A (en) 2004-11-26 2004-11-26 Thermoprotector

Publications (1)

Publication Number Publication Date
JP2006155974A true JP2006155974A (en) 2006-06-15

Family

ID=36634020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341543A Pending JP2006155974A (en) 2004-11-26 2004-11-26 Thermoprotector

Country Status (1)

Country Link
JP (1) JP2006155974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015007459A1 (en) * 2013-07-16 2015-01-22 Robert Bosch Gmbh Assembly for the fuse protection of an electrochemical accumulator cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015007459A1 (en) * 2013-07-16 2015-01-22 Robert Bosch Gmbh Assembly for the fuse protection of an electrochemical accumulator cell

Similar Documents

Publication Publication Date Title
JP4410056B2 (en) Thermosensor, thermoprotector, and method of manufacturing thermosensor
US7345570B2 (en) Thermoprotector
JP4290426B2 (en) Thermal fuse
EP2988313B2 (en) Protective device
JP4746985B2 (en) Thermal fuse element, thermal fuse and battery using the same
JPWO2007132808A1 (en) Protective element
JP4630403B2 (en) Protective element
JP6195910B2 (en) Protective device
JP2017098186A (en) Breaker, safety circuit with the same, and secondary battery circuit
JP2006196189A (en) Thermo-protector, manufacturing and mounting method of the same
JP4912447B2 (en) Alloy type thermal fuse
JP2006155974A (en) Thermoprotector
JP4269264B2 (en) Thin thermal fuse
JP2005063792A (en) Heat sensitive element and thermo-protector
JP4223354B2 (en) Thermo protector
JP4527609B2 (en) Thermo protector
JP4943360B2 (en) Protective element
JP2006147326A (en) Thermo protector
JP4387227B2 (en) Thermo protector
JP4554436B2 (en) Thermo protector and manufacturing method thereof
JP4387251B2 (en) Thermo protector
JP4223368B2 (en) Thermo protector
JP3985820B2 (en) Temperature-sensitive circuit breaker membrane device and energizing circuit device using the same
WO2023074752A1 (en) Breaker
JP2006202677A (en) Thermo-protector and manufacturing method of thermo-protector