JP2006196189A - Thermo-protector, manufacturing and mounting method of the same - Google Patents

Thermo-protector, manufacturing and mounting method of the same Download PDF

Info

Publication number
JP2006196189A
JP2006196189A JP2005003268A JP2005003268A JP2006196189A JP 2006196189 A JP2006196189 A JP 2006196189A JP 2005003268 A JP2005003268 A JP 2005003268A JP 2005003268 A JP2005003268 A JP 2005003268A JP 2006196189 A JP2006196189 A JP 2006196189A
Authority
JP
Japan
Prior art keywords
elastic body
conductor
housing
contact
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005003268A
Other languages
Japanese (ja)
Inventor
Toshiaki Kawanishi
俊朗 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2005003268A priority Critical patent/JP2006196189A/en
Publication of JP2006196189A publication Critical patent/JP2006196189A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To safely manufacture a thermo-protector of a case type, operated by releasing elastic strain energy of an elastic body held by joining and fixing by a fusible material, by the fusion of the fusible material, safely by eliminating thermal effect when casing. <P>SOLUTION: One end of a linear or plate-shaped elastic body 3 is fixed to one conductor 2 of a pair of conductors 2 and 20 arranged with a predetermined vertical space in a housing 1 by a fusible material 4, the other end of the elastic body 3 is pushed in the longitudinal direction by a pressing piece 5 to elastically bend and deform elastic body 2, and the bent elastic body is contacted with the other conductor 20 to form a contact. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は可溶材の融点または軟化点を動作温度とするサーモプロテクタ及びその製作方法並びに取付け方法に関するものである。   The present invention relates to a thermoprotector having a melting point or a softening point of a soluble material as an operating temperature, a manufacturing method thereof, and an attaching method.

電子・電気機器における異常発熱を感知し、この感知に基づくカットオフ動作で機器を電源から遮断して機器の過熱を防止し、火災の発生を未然に防止するサーモプロテクタとして、弾性歪みエネルギーを蓄積させておき、可溶材の溶融乃至は軟化により弾性歪みエネルギーを解放させる方式が知られている。
例えば図8の(イ)に示すように弾性金属片2'を強制的に曲げ、この曲げ弾性金属片1'の両端を曲げ反力に抗して一対の固定端子41',42'に所定融点の可溶合金(はんだ)3'で接合し、周囲温度が可溶合金2'の融点まで昇温して可溶合金が溶融されると、図8の(ロ)に示すように弾性金属片2'の曲げ応力を解除させて弾性金属片2'の一端と一方の固定端子42'との接合を脱離して通電を遮断するものが知られている(特許文献1参照)。
サーモプロテクタにおいても、通常の電子部品と同様、機械的保護が必要であり、通常ケーシングで保護される。
電子部品をケーシングする場合、ケーシングを分割式とし、電子部品本体を分割ケーシングで包囲し、このケーシングのパーティング面を超音波溶着等で融着したり、接着剤で接着することが知られている。
Accumulated elastic strain energy as a thermo protector that detects abnormal heat generation in electronic and electrical devices, cuts off the device from the power supply by cut-off operation based on this detection, prevents overheating of the device, and prevents the occurrence of fire. In addition, a method of releasing elastic strain energy by melting or softening a soluble material is known.
For example, as shown in FIG. 8 (a), the elastic metal piece 2 ′ is forcibly bent, and both ends of the bent elastic metal piece 1 ′ are subjected to a bending reaction force to be fixed to the pair of fixed terminals 41 ′ and 42 ′. When a melting alloy (solder) 3 ′ having a melting point is joined and the ambient temperature is raised to the melting point of the soluble alloy 2 ′ to melt the soluble alloy, as shown in FIG. There is known a technique in which the bending stress of the piece 2 ′ is released and the connection between one end of the elastic metal piece 2 ′ and one fixed terminal 42 ′ is released to cut off the current supply (see Patent Document 1).
The thermo protector also requires mechanical protection like a normal electronic component, and is usually protected by a casing.
When casing electronic components, it is known that the casing is divided, the electronic component main body is surrounded by the divided casing, and the parting surface of this casing is fused by ultrasonic welding or bonded with an adhesive. Yes.

特開平7−29481号公報JP 7-29481 A

しかしながら、可溶合金で弾性体の弾性歪エネルギーを保持している前記のサーモプロテクタでは、分割ケーシングのパーティング面を超音波溶着等で融着する際、融着時の熱で可溶合金が軟化されて弾性歪エネルギーを保持できなくなって不良品化される懸念がある。
分割ケーシングのパーティング面を接着剤で接着すれば、かかる懸念はないが、ケーシングタイプのサーモプロテクタをフロー法またはリフロー法はんだ付けにより実装する場合、サーモプロテクタがはんだ融点よりも相当に高い温度にかなり長い時間加熱されるので、実装時に可溶合金が軟化されて弾性歪エネルギーを保持できなくなって損傷される畏れがある。
However, in the above-described thermoprotector that retains the elastic strain energy of the elastic body with a fusible alloy, when the parting surface of the divided casing is fused by ultrasonic welding or the like, the fusible alloy is heated by the heat at the time of fusing. There is a concern that the elastic strain energy may not be maintained due to softening, resulting in a defective product.
If the parting surface of the split casing is bonded with an adhesive, there is no such concern, but when the casing type thermo protector is mounted by flow method or reflow method soldering, the temperature of the thermo protector is much higher than the solder melting point. Since it is heated for a considerably long time, the fusible alloy is softened during mounting, and the elastic strain energy cannot be maintained and may be damaged.

本発明の目的は、可溶材による接合固定で保持されている弾性体の弾性歪エネルギーが可溶材の溶融で解放されて動作されるケースタイプのサーモプロテクタを、ケーシング時での熱的影響を排除して安全に製作できるようにし、また実装はんだ付け時の熱的影響を排除して安全に実装できるようにすることにある。   The object of the present invention is to eliminate the thermal effect of the case type thermo protector that is operated by releasing the elastic strain energy of the elastic body held by joining and fixing with the soluble material by melting the soluble material. Therefore, it is possible to manufacture safely, and to eliminate the thermal influence during mounting soldering and to enable safe mounting.

請求項1に係るサーモプロテクタは、接点を構成する部材と接点を開閉するための線状または板状の弾性体がハウジング内に収容され、該弾性体の一端部が可溶材により固定され、当該弾性体の他端がハウジングの挿入孔から挿入固定された押え片で長手方向に押圧されて当該弾性体が弾性的に曲げ変形されることにより前記接点がオン状態に保持されており、前記可溶材の溶融乃至は軟化で弾性体の弾性歪エネルギーが解放されて前記接点がオフとされることを特徴とする。   In the thermo protector according to claim 1, a member constituting the contact and a linear or plate-like elastic body for opening and closing the contact are accommodated in the housing, and one end of the elastic body is fixed by a soluble material, The other end of the elastic body is pressed in the longitudinal direction by a holding piece inserted and fixed from the insertion hole of the housing, and the elastic body is elastically bent and deformed, so that the contact is held in the on state. The contact point is turned off by releasing the elastic strain energy of the elastic body by melting or softening the molten material.

請求項2に係るサーモプロテクタは、請求項1のサーモプロテクタにおいて、ハウジング内に所定の上下間隔を隔てて配設された一対の導体の一方の導体に線状または板状弾性体の一端部が可溶材により固定され、該弾性体の他端が押え片で長手方向に押圧されて弾性体が弾性的に曲げ変形され、該曲げ弾性体が他方の導体に接触されて接点が構成されていることを特徴とする。   The thermo-protector according to claim 2 is the thermo-protector according to claim 1, wherein one end of a linear or plate-like elastic body is attached to one conductor of a pair of conductors arranged at predetermined vertical intervals in the housing. The elastic body is fixed by a fusible material, the other end of the elastic body is pressed in the longitudinal direction by a pressing piece, the elastic body is elastically bent and deformed, and the bending elastic body is brought into contact with the other conductor to form a contact point. It is characterized by that.

請求項3に係るサーモプロテクタは、請求項1または2のサーモプロテクタにおいて、押え片に引き抜き方向に対し挿入孔に係止される抜け止め突起が設けられていることを特徴とする。   The thermo protector according to claim 3 is characterized in that, in the thermo protector according to claim 1 or 2, the holding piece is provided with a retaining protrusion that is locked to the insertion hole in the pulling direction.

請求項4に係るサーモプロテクタは、請求項2または3のサーモプロテクタにおいて、線状または板状弾性体の一端部の一方の導体への可溶材による固定が面接合により行われていることを特徴とする。   The thermo protector according to claim 4 is the thermo protector according to claim 2 or 3, wherein one end of the linear or plate-like elastic body is fixed to one conductor by a soluble material by surface bonding. And

請求項5に係るサーモプロテクタは、請求項2または3のサーモプロテクタにおいて、線状または板状弾性体の一端部が折り返され、該折り返し端部が一方の導体に可溶材により面接合されていることを特徴とする。   The thermo protector according to claim 5 is the thermo protector according to claim 2 or 3, wherein one end portion of the linear or plate-like elastic body is folded, and the folded end portion is surface-bonded to one conductor by a soluble material. It is characterized by that.

請求項6に係るサーモプロテクタは、請求項2〜5何れかのサーモプロテクタにおいて、弾性体が金属、金属と樹脂との重合物あるいは複合物の何れかであることを特徴とする。   The thermo protector according to claim 6 is the thermo protector according to any one of claims 2 to 5, wherein the elastic body is any one of a metal, a polymer of a metal and a resin, or a composite.

請求項7に係るサーモプロテクタは、請求項2〜6何れかのサーモプロテクタにおいて、可溶材が低融点金属または熱可塑性樹脂であることを特徴とする。   The thermo protector according to claim 7 is the thermo protector according to any one of claims 2 to 6, wherein the soluble material is a low melting point metal or a thermoplastic resin.

請求項8に係るサーモプロテクタは、請求項1〜7何れかのサーモプロテクタにおいて、接点が保護材で包囲されていることを特徴とする。   The thermo protector according to claim 8 is the thermo protector according to any one of claims 1 to 7, wherein the contact is surrounded by a protective material.

請求項9に係るサーモプロテクタは、請求項1のサーモプロテクタにおいて、可溶材が低融点金属または熱可塑性樹脂であり、弾性体が金属、金属と樹脂との重合物あるいは複合物、または樹脂の何れかであることを特徴とする。   The thermo protector according to claim 9 is the thermo protector according to claim 1, wherein the soluble material is a low melting point metal or a thermoplastic resin, and the elastic body is any of a metal, a polymer or a composite of a metal and a resin, or a resin. It is characterized by.

請求項10に係るサーモプロテクタの製作方法は、請求項1〜9何れかのサーモプロテクタを製作する方法であり、接点を構成する部材及び一端部を可溶材により固定した線状または板状弾性体を分割ハウジング内に収容し、該ハウジングのパーティング面を融着したのち、ハウジングの挿入孔から押え片を挿入固定して弾性体の他端を長手方向に押圧することにより弾性片を他方の導体に接触させることを特徴とする。   A manufacturing method of the thermo protector according to claim 10 is a method of manufacturing the thermo protector according to any one of claims 1 to 9, wherein a member constituting the contact and one end portion are fixed by a soluble material, or a linear or plate-like elastic body. After the parting surface of the housing is fused, the presser piece is inserted and fixed from the insertion hole of the housing and the other end of the elastic body is pressed in the longitudinal direction to fix the elastic piece to the other. It is characterized by being brought into contact with a conductor.

請求項11に係るサーモプロテクタの取付け方法は、請求項1〜9何れかのサーモプロテクタを取付ける方法であり、押え片の未挿入状態でハウジングを被保護機器にはんだ付けしたのちに、押え片の挿入固定を行うことを特徴とする。   The attachment method of the thermo protector according to claim 11 is a method of attaching the thermo protector according to any one of claims 1 to 9, and after soldering the housing to the protected device in a state where the press piece is not inserted, It is characterized by inserting and fixing.

ハウジング内に収容され、一端部が可溶材により固定された弾性体の他端をハウジングの挿入孔から挿入した押え片で押圧して弾性体に弾性曲げ歪エネルギーを与えており、ハウジングを分割式にしてハウジングのパーティング面を熱融着しても、この熱融着後に押え片を挿入固定して弾性体に弾性曲げ歪エネルギーを与えることができる。従って、ハウジング時での可溶材の熱的軟化を排除して不良品の発生なく安全な製作を達成できる。   The elastic body is accommodated in a housing, and the other end of the elastic body, one end of which is fixed by a fusible material, is pressed with a pressing piece inserted from the insertion hole of the housing to give elastic bending strain energy to the elastic body. Even if the parting surface of the housing is heat-sealed, the elastic piece can be given elastic bending strain energy by inserting and fixing the presser piece after the heat-sealing. Accordingly, it is possible to eliminate the thermal softening of the fusible material at the time of housing and to achieve safe production without generating defective products.

また、フロー法やリフロー法によりサーモプロテクタを実装する場合、ハウジングをフロー法やリフロー法により回路基板にはんだ付けした後、押え片を挿入固定して弾性体に弾性曲げ歪エネルギーを与えることができるので、当サーモプロテクタを良好な動作性を保証して安全に実装できる。   Also, when mounting the thermo protector by the flow method or the reflow method, after the housing is soldered to the circuit board by the flow method or the reflow method, the holding piece can be inserted and fixed to give elastic bending strain energy to the elastic body. Therefore, this thermo protector can be safely implemented while guaranteeing good operability.

図1の(イ)及び(ロ)は本発明に係るサーモプロテクタの基本的構造の一例を示し、図1の(イ)は動作前を、図1の(ロ)は動作後をそれぞれ示している。
図1において、1はハウジングであり、上下の2分割片が超音波融着等による熱融着により融着され、または接着剤により接着されて組み立てられている。このハウジング1には熱可塑性樹脂またはセラミックスを使用できる。2,20はハウジング内に互いに上下に配置された導体であり、リード部がハウジング外部に導出されている。これら導体のハウジング内面への固定は、リベッティング突起11、接着剤または粘着剤により行うことができる。3は線状または板状の弾性体であり、一端部が一方の導体2に可溶材4で面接合されている。12はハウジングの一端面に設けられた挿入孔、5は挿入孔12より挿入され固定された押え片であり、弾性体3が他端においてこの押え片5で長手方向に押圧され曲げ変形されて弾性曲げ歪エネルギーが保持されている。弾性体3の他端は押え片5の内側の窪み51に支持されており、その支持状態は実質的にヒンジ支持である。押え片5は後述するように合成樹脂で成形されるが、弾性体他端を支持する部位にゴム弾性を付与して押圧力を調節することができる。
eは曲げ変形された弾性体3と他方の導体20との接触面である。
ハウジング1への押え片5の固定は超音波融着やレーザ溶接による熱融着、接着剤による接着、押え片に設けた抜け止め突起の係止等で行うことができる。
1 (a) and 1 (b) show an example of the basic structure of the thermoprotector according to the present invention. FIG. 1 (b) shows before operation, and FIG. 1 (b) shows after operation. Yes.
In FIG. 1, reference numeral 1 denotes a housing, and upper and lower divided pieces are assembled by heat fusion by ultrasonic fusion or the like, or bonded by an adhesive. The housing 1 can be made of thermoplastic resin or ceramics. Reference numerals 2 and 20 denote conductors arranged one above the other in the housing, and lead portions are led out of the housing. Fixing of these conductors to the inner surface of the housing can be performed by the riveting protrusion 11, an adhesive, or an adhesive. Reference numeral 3 denotes a linear or plate-like elastic body, one end of which is surface-bonded to one conductor 2 with a soluble material 4. Reference numeral 12 denotes an insertion hole provided on one end surface of the housing, and 5 denotes a pressing piece inserted and fixed through the insertion hole 12. The elastic body 3 is pressed and bent in the longitudinal direction by the pressing piece 5 at the other end. Elastic bending strain energy is maintained. The other end of the elastic body 3 is supported by a recess 51 inside the presser piece 5, and the support state is substantially hinge support. The presser piece 5 is formed of a synthetic resin as will be described later. However, the pressing force can be adjusted by applying rubber elasticity to a portion supporting the other end of the elastic body.
e is a contact surface between the elastic body 3 bent and deformed and the other conductor 20.
Fixing of the presser piece 5 to the housing 1 can be performed by ultrasonic welding or heat welding by laser welding, adhesion by an adhesive, locking of a retaining protrusion provided on the presser piece, or the like.

図1における弾性体3の曲げ形状は、図2の(イ)に示す一端固定・他端ヒンジ支持の柱に長手方向圧縮力fを作用させたときの撓み形状にほぼ等しく、図1において弾性体3の一端部と一方の導体2との可溶材4による接合界面に剪断力fが作用し、更に曲げモーメントmに基づく劈開力(垂直方向引張り力)が作用している。その曲げモーメントmは、両端固定の柱に長手方向圧縮力が作用したときにその両固定端に作用する曲げモーメントよりも小である。
従って、可溶材4により接合した界面に作用する劈開力を充分に小さくでき、それだけ接合界面を安定に保持できる。
The bending shape of the elastic body 3 in FIG. 1 is substantially equal to the bending shape when the longitudinal compression force f is applied to the column of the one end fixed and other end hinge support shown in FIG. A shearing force f acts on the joining interface of the one end portion of the body 3 and the one conductor 2 by the soluble material 4, and further, a cleavage force (vertical tensile force) based on the bending moment m acts. The bending moment m is smaller than the bending moment acting on both fixed ends when a longitudinal compression force is applied to the columns fixed at both ends.
Therefore, the cleavage force acting on the interface joined by the fusible material 4 can be made sufficiently small, and the joining interface can be kept stable as much.

図2の(イ)の一端固定・他端ヒンジ支持の柱において、長手方向圧縮力fが加えられたときに一端固定箇所に曲げモーメント反力mが作用するのは、図2の(ロ)に示すように他端もヒンジ支持の柱に対し、すなわち両端ヒンジ支持の柱に対し、一端側の撓み角βを0にするように曲げモーメントmを加えたのと同じとみなすことができ、従って弾性体の一端部を一方の導体に可溶材により面接合固定しても、その一端部に臨む弾性体箇所の角度をβとすれば、弾性体一端部に作用する曲げモーメントをほぼ0にでき、可溶材による面接合の固定界面に作用する反力を剪断力のみとすることができる。   2 (a), the bending moment reaction force m acts on the one-end fixed portion when the longitudinal compression force f is applied in the column of the one-end fixed / other-end hinge support in FIG. As shown in FIG. 4, the other end can be regarded as the same as the bending moment m applied to the hinge supporting column, that is, to the both end hinge supporting column so that the bending angle β on one end side becomes 0, Therefore, even if one end of the elastic body is surface-bonded and fixed to one conductor by a fusible material, if the angle of the elastic body facing the one end is β, the bending moment acting on one end of the elastic body is almost zero. The reaction force acting on the fixed interface of the surface bonding by the fusible material can be only the shearing force.

図3は本発明に係るサーモプロテクタにおける弾性体の前記した実施例とは別の曲げ状態の異なる例を示し、図3の(イ)の例では、弾性体3の一端部を所定の角度βで折り返し、この折り返し部を可溶材4で一方の導体2に面接合で固定し、次で弾性体3の他端に押え片5を押し付けて弾性体3を曲げ変形させるようにし、図3の(ロ)の例では、弾性体3の一端部を一方の導体厚みに等しい垂直部30を経て所定の角度βで折り返し、この折り返し部の内側面を一方の導体2の先端部裏面に可溶材4により面接合で固定し、次で弾性体3の他端に押え片5を押し付けて弾性体3を曲げ変形させるようにし、図3の(ハ)の例では、弾性体3の一端部を所定の角度(π−β)で曲げ、この曲げた一端部を可溶材4で一方の導体2に面接合で固定し、次で弾性体3の他端に押え片5を押し付けて弾性体3を曲げ変形させるようにしてある。   FIG. 3 shows an example in which the elastic body of the thermoprotector according to the present invention is different from the above-described embodiment in the bending state. In the example of FIG. 3A, one end of the elastic body 3 is set at a predetermined angle β. 3, the folded portion is fixed to one conductor 2 by surface bonding with a fusible material 4, and then the pressing piece 5 is pressed against the other end of the elastic body 3 so as to bend and deform the elastic body 3. In the example of (b), one end portion of the elastic body 3 is folded at a predetermined angle β through a vertical portion 30 equal to one conductor thickness, and the inner surface of this folded portion is a soluble material on the back surface of the tip portion of one conductor 2. 4 is fixed by surface bonding, and then the pressing piece 5 is pressed against the other end of the elastic body 3 to bend and deform the elastic body 3. In the example of FIG. Bend at a predetermined angle (π−β) and fix one end of the bent portion to one conductor 2 with a soluble material 4 by surface bonding. And, it is constituted such that it is bent and deformed elastic member 3 is pressed against the pressing piece 5 to the other end of the elastic body 3 in the following.

弾性体のこれらの曲げ状態によれば、弾性体の一端部に作用する曲げモーメント反力を充分に小さくでき、その理由を例えば図3の(イ)のものについて説明すると次の通りである。
図4の(イ)〜(ロ)に示すように、一端部を所定の角度βで一方の導体2に可溶材4で接合固定した弾性体3の他端側に垂直方向力qを加えてその他端を一方の導体2に近接させると、弾性体3の一端部に角度βを小さくする方向の曲げモーメント反力mが発生する。次で、図4の(ハ)に示すように、弾性体3の他端に押え片5を押し付けて弾性体に弾性曲げ歪エネルギーを加えると、弾性体の一端側の角度(β−Δβ)を大きくする方向の曲げモーメント反力m’が作用する。この曲げモーメント反力m’で前記の曲げモーメント反力mが減少され、前記角度βが特定の角度(両端ヒンジ支持の柱に長手方向圧縮力が作用したときのヒンジ支持の撓み角)であるときに曲げモーメント反力m’で前記の曲げモーメント反力mが相殺されて弾性体の一端部に作用する曲げモーメント反力が0とされる。
このように本発明に係るサーモプロテクタでは、弾性体の一端部と一方の導体との可溶材による固定接合部に作用する曲げモーメント反力を充分に小さくでき、主なる反力を長手方向圧縮力に基づく剪断力にできる。
According to these bending states of the elastic body, the bending moment reaction force acting on one end of the elastic body can be made sufficiently small. The reason for this will be described with reference to FIG.
As shown in FIGS. 4A to 4B, a vertical force q is applied to the other end side of the elastic body 3 whose one end is joined and fixed to one conductor 2 with a soluble material 4 at a predetermined angle β. When the other end is brought close to one conductor 2, a bending moment reaction force m is generated at one end portion of the elastic body 3 in a direction that decreases the angle β. Next, as shown in FIG. 4C, when the elastic piece 3 is pressed against the other end of the elastic body 3 and elastic bending strain energy is applied to the elastic body, an angle (β−Δβ) on one end side of the elastic body is obtained. The bending moment reaction force m ′ is applied in the direction of increasing. The bending moment reaction force m ′ reduces the bending moment reaction force m, and the angle β is a specific angle (the deflection angle of the hinge support when the longitudinal compression force acts on the pillars of the hinge support at both ends). Sometimes the bending moment reaction force m ′ cancels out the bending moment reaction force m, and the bending moment reaction force acting on one end of the elastic body becomes zero.
As described above, in the thermo protector according to the present invention, the bending moment reaction force acting on the fixed joint portion by the soluble material between the one end portion of the elastic body and the one conductor can be sufficiently reduced, and the main reaction force is reduced in the longitudinal compressive force. Based on the shear force.

前記接合界面の剪断応力τは弾性体3に作用する長手方向圧縮力をp、接合界面の面積をSとすると、τ=p/Sで与えられ、接合界面の剪断強度をf/Sを越える強度とする必要がある。この剪断強度は充分な安全率を有するものでなくてはならず、このため面接合される部分の弾性体または一方の導体の双方あるいは一方に、孔、窪み、切欠きを設けて可溶材を食い込ませたり、面接合される接触片端部または一方のリード導体部分の一方または双方を粗面として接合界面の剪断強度を増強することが望ましい。また、前記可溶材で面接合された界面を機械的に補強するために可溶材を盛り付けることもできる。また、可溶材で接合される弾性体部分を局部的に溶接性に優れた素材に変えることもできる。   The shear stress τ of the joint interface is given by τ = p / S, where p is the longitudinal compressive force acting on the elastic body 3 and S is the area of the joint interface, and the shear strength of the joint interface exceeds f / S. It needs to be strong. This shear strength must have a sufficient safety factor. For this reason, holes, dents, and notches are provided in both or one of the elastic bodies and / or one of the conductors to be surface-bonded so that the soluble material can be used. It is desirable to increase the shear strength of the joining interface by roughening one or both of the contact piece end portion or one lead conductor portion to be bitten or surface-bonded. Moreover, in order to reinforce mechanically the interface surface-bonded with the said soluble material, a soluble material can also be arranged. Moreover, the elastic body part joined by a soluble material can also be changed into the raw material excellent in weldability locally.

本発明に係るサーモプロテクタを製作するには、広巾の弾性体の一端部を広巾の導体に可溶材により面接合し、これを短冊状に分割切断した弾性体付き導体を使用することができる。   In order to manufacture the thermo protector according to the present invention, it is possible to use a conductor with an elastic body in which one end portion of a wide elastic body is surface-bonded to a wide conductor with a soluble material, and this is divided and cut into strips.

本発明に係るサーモプロテクタにおいては、ハウジングとして上下に分割したタイプを使用し、そのハウジング片を共通化することが好ましい。
図5〔図5の(イ)は平面図、同じく(ロ)は図5の(イ)のロ−ロ断面図、同じく(ハ)は左側面図、同じく(ニ)は右側面図〕はハウジング片の一例を示し、ベース部13の両脇に側壁部14,14を設け、その長手方向中央において段差15を付け、各側壁部14,14の長手方向一端側に導体押え用凸部16,16を設け、各側壁上面の内側半分の面に超音波溶着用エネルギーダイレクタとしての三角凸条17を設けてある。また、ベース部の一端側にハウジング片内巾よりも狭巾のリベッテング突部11を設けてある。12は押え片挿入孔とされる切欠き部であり、一方のハウジング片のみに穿設される。
In the thermo protector according to the present invention, it is preferable to use a vertically divided type housing and to share the housing piece.
FIG. 5 (FIG. 5 (a) is a plan view, (b) is a cross-sectional view of FIG. 5 (a), (c) is a left side view, and (d) is a right side view) An example of the housing piece is shown. Side wall portions 14 and 14 are provided on both sides of the base portion 13, a step 15 is provided at the center in the longitudinal direction, and the convex portion 16 for conductor pressing is provided at one end side in the longitudinal direction of each side wall portion 14 and 14. , 16 and triangular ridges 17 as ultrasonic welding energy directors are provided on the inner half of the upper surface of each side wall. Further, a rivet projection 11 having a narrower width than the inner width of the housing piece is provided on one end side of the base portion. Reference numeral 12 denotes a cutout portion that serves as a presser piece insertion hole, and is formed only in one housing piece.

このハウジング片を用いて本発明に係るサーモプロテクタを製作するには、図6−1〔図6−1の(イ)は平面図、同じく(ロ)は図6−1の(イ)のロ−ロ断面図、同じく(ハ)は図6−1の(ロ)のハ−ハ断面図〕に示すように、導体2に弾性体3を既に可溶材4で接合した弾性体付き導体A(導体部分の一端側の巾は両押え用凸部65,65間の内巾に等しくするようにやや狭くしてある)を孔において一方のハウジング片10にリベッテング突部11の加熱圧潰により固定し、また、図6−2の(イ)に示すように、弾性体無しの導体20についても、孔を穿設しこの孔において他方のハウジング片10’にリベッテング突部11の加熱圧潰により固定し、両ハウジング片を上下にかつ導体2,20のリード線部の向きを逆とするように重畳して両ハウジング片10,10’の側壁を段差(図6の15,15)の噛み合いで勘合し、弾性体付き導体Aの導体部分2の巾両側に他方のハウジング片10’の導体押え用凸部16,16を当接し、ついで超音波溶着機にセットし、両ハウジング片の前記エネルギーダイレクタを圧潰溶着させる。〔図6−2の(ロ)〕
この段階では、まだ弾性体に弾性歪エネルギーが加えられておらず可溶体が無負荷状態にあるから、リベッテング突部圧潰のための加熱、両ハウジング片の超音波溶着等による加熱にもかかわらず可溶材による固定接合界面を安定に保持できる。
次で、図6−2の(ハ)〜(ニ)に示すように押え片5を切欠き部12から挿入し、弾性体3の他端に押え片5を押し付け弾性体3に弾性曲げ歪エネルギーを加えて弾性体3を他方の導体20に接触させ、この時点で押え片5をハウジングに固定し、これにてサーモプロテクタの製作を終了する。
In order to manufacture the thermo-protector according to the present invention using this housing piece, FIG. 6-1 [FIG. 6-1 (A) is a plan view, and (B) is the same as FIG. -B cross-sectional view, similarly (C) is a cross-sectional view of (C) in FIG. 6A], the elastic body-equipped conductor A ( The width of one end side of the conductor portion is slightly narrowed so as to be equal to the inner width between the pressing convex portions 65, 65) and fixed to one housing piece 10 in the hole by heating crushing of the ribeting projection 11. Further, as shown in FIG. 6B, the conductor 20 without an elastic body is also provided with a hole, and the hole is fixed to the other housing piece 10 ′ by heat crushing of the riveting protrusion 11. Both housing pieces are up and down and the direction of the lead wires of the conductors 2 and 20 is reversed. The side walls of both housing pieces 10 and 10 'are engaged with each other by the engagement of the steps (15 and 15 in FIG. 6), and the conductor of the other housing piece 10' is placed on both sides of the conductor portion 2 of the conductor A with elastic body. The pressing convex portions 16 and 16 are brought into contact with each other, and then set on an ultrasonic welding machine to crush and weld the energy directors of both housing pieces. [(B) in FIG. 6-2]
At this stage, no elastic strain energy has been applied to the elastic body, and the fusible body is in an unloaded state. Therefore, despite the heating for crushing the riveting protrusion and the ultrasonic welding of both housing pieces, etc. It is possible to stably maintain a fixed joint interface with a soluble material.
Next, as shown in FIGS. 6B to 6D, the presser piece 5 is inserted from the notch 12, the presser piece 5 is pressed against the other end of the elastic body 3, and elastic bending strain is applied to the elastic body 3. Energy is applied to bring the elastic body 3 into contact with the other conductor 20, and at this point, the presser piece 5 is fixed to the housing, thereby completing the production of the thermo protector.

押え片を固定するには、図6−3に示すように押え片5に抜け止め用の突起51を設け、この抜け止め用の突起51を切欠き部12の内側縁端に引き抜き方向に対し係止させることができる。
この係止固定に代え接着剤または、超音波溶着やレザー溶着等の熱融着により固定することもできる。
超音波溶着やレザー溶着等の熱融着の場合でも、弾性体一端部の可溶材による固定接合箇所とこの溶着箇所との距離が長いので、可溶材による固定接合状態を安定に保持できる。
In order to fix the presser piece, as shown in FIG. 6-3, the presser piece 5 is provided with a retaining protrusion 51, and the retaining protrusion 51 is formed on the inner edge of the notch 12 with respect to the pulling direction. It can be locked.
Instead of this locking and fixing, it can also be fixed by an adhesive or heat fusion such as ultrasonic welding or leather welding.
Even in the case of thermal welding such as ultrasonic welding and leather welding, the distance between the fixed joint portion by the soluble material at one end of the elastic body and the welded portion is long, so that the fixed joint state by the soluble material can be stably maintained.

図6−2に示すサーモプロテクタの製作工程での弾性体の負荷状態は既述した図4の通りであり、垂直方向力qを加えた際、一方の導体2が曲げモーメント〔図4の(ロ)のm〕で反り曲がるのを防止するために、図6−1の16、16で示した両押え用凸部で一方の導体2を押え付けるようにしており、弾性体3への弾性曲げ歪エネルギーの付与をスムーズに行うことができる。   The load state of the elastic body in the manufacturing process of the thermo protector shown in FIG. 6-2 is as shown in FIG. 4 described above, and when the vertical force q is applied, one conductor 2 is subjected to a bending moment [(( In order to prevent warping and bending at m] of b), one of the conductors 2 is pressed by the pressing convex portions 16 and 16 in FIG. Bending strain energy can be applied smoothly.

前記した各実施例の弾性体には、金属、金属と合成樹脂との積層体、金属粉体の混合により導電化した合成樹脂等を使用できる。   As the elastic body of each of the embodiments described above, a metal, a laminate of a metal and a synthetic resin, a synthetic resin made conductive by mixing metal powder, or the like can be used.

上記実施例のサーモプロテクタにおいては、平常時オンの状態にされている。可溶材にはんだのような低融点合金や導電性の熱可塑性樹脂を用いる場合、一方の導体2→可溶材4による接合界面→弾性体3と他方の導体20との接触界面→他方の導体20の経路で常時導通状態が維持されている。   In the thermo protector of the above embodiment, it is normally turned on. When a low-melting-point alloy such as solder or a conductive thermoplastic resin is used for the fusible material, one conductor 2 → the bonding interface by the fusible material 4 → the contact interface between the elastic body 3 and the other conductor 20 → the other conductor 20 The conduction state is always maintained in this path.

上記実施例のサーモプロテクタの可溶材4に絶縁性の熱可塑性樹脂も使用でき、この場合、常時導通状態が一方の導体2→弾性体3の他端と一方の導体2との接触界面→弾性体3と他方の導体20との接触界面→他方の導体20の経路で維持されている。   Insulating thermoplastic resin can also be used for the fusible material 4 of the thermo protector of the above embodiment, and in this case, the always conductive state is the contact interface between the one conductor 2 → the other end of the elastic body 3 and the one conductor 2 → elasticity. The contact interface between the body 3 and the other conductor 20 is maintained by the path of the other conductor 20.

弾性体と他方の導体との接触界面や一方の導体と弾性体との接触界面の酸化・腐食を防止して長期間安定な常時導通状態を維持するために、その接触界面の周りを常温で液体の保護材、例えば油(例えばシリコン系)、油脂、高沸点有機溶剤等で包囲することが好ましく、押え片を挿入する前に弾性体の中間部表面や弾性体の他端に保護材を塗布し、而るのち、押え片を挿入して弾性体中間を他の導体に接触させ、弾性体他端を一方の導体に接触させれば、接触界面から保護材が接触圧力で絞り出されて接触界面の周りが自ずから保護材で包囲され、接触界面を良好な電気的接触面とすることができる。   In order to prevent oxidation and corrosion of the contact interface between the elastic body and the other conductor and between the one conductor and the elastic body and maintain a stable continuous state for a long period of time, around the contact interface at room temperature It is preferable to surround with a liquid protective material such as oil (for example, silicon), fats and oils, a high boiling point organic solvent, etc., and before inserting the presser piece, a protective material is applied to the intermediate surface of the elastic body or the other end of the elastic body. Apply and then insert the presser piece to bring the middle of the elastic body into contact with the other conductor and the other end of the elastic body into contact with one of the conductors, and the protective material will be squeezed out from the contact interface with the contact pressure. Thus, the periphery of the contact interface is naturally surrounded by a protective material, and the contact interface can be a good electrical contact surface.

上記のサーモプロテクタにおいては、外部温度の上昇により可溶材が融点乃至は軟化点にまで加熱されると、弾性体の弾性歪エネルギーが解放され、弾性体と他方の導体との接触箇所が離脱されてオフ動作する。
図1の(ロ)はオフ動作の状態を示しており、弾性歪エネルギーが解放された弾性体3の他端が押え片5の窪み51に納められ、同弾性体3の一端部と他方の導体20との間にリベッテング突部11の圧潰頭部が介在されて再導通が防止されている。
In the above-mentioned thermo protector, when the soluble material is heated to the melting point or the softening point due to an increase in the external temperature, the elastic strain energy of the elastic body is released and the contact portion between the elastic body and the other conductor is released. Off.
FIG. 1B shows the state of the off operation, where the other end of the elastic body 3 from which the elastic strain energy has been released is stored in the recess 51 of the presser piece 5, and the one end of the elastic body 3 and the other end The crushing head of the riveting protrusion 11 is interposed between the conductor 20 and re-conduction is prevented.

図7−1の(イ)(動作前)及び(ロ)(動作後)は本発明に係るサーモプロテクタの上記とは別の実施例を示している。
図7−1において、1はハウジングであり、前記したように分割式とし、そのパーティング面を熱融着や接着剤により接合してある。材質には、セラミックスや合成樹脂を使用できる。2aは可動導体、20aは固定導体である。3は弾性体であり、一端部をハウジング1のベース面に可溶材4により面接合固定してある。5はハウジング1の挿通孔12に挿入固定した押え片であり、弾性体3の他端を押圧して弾性体3に弾性曲げ歪エネルギーを加えると共に弾性体3の曲げ変形反力で可動導体2aを固定導体20aに接触させてある。
可溶材4には熱可塑性樹脂や可溶合金を使用できる。弾性体3の一端部を可溶合金4によりハウジング1のベース面に接合固定するには、金属箔の貼付・エッチングや金属粉ペーストの印刷・焼き付けによりハウジングのベース面を金属化することが好ましい。
弾性体3には、例えばリン青銅の金属を好適に使用できるが、導電性が要求されないので、樹脂(熱可塑性樹脂や熱硬化性樹脂)をガラス繊維、金属繊維、合成繊維等の繊維で補強したFRP、高剛性エンジニアリングプラスチック等も使用できる。
FIGS. 7-1 (a) (before operation) and (b) (after operation) show an embodiment different from the above of the thermoprotector according to the present invention.
In FIG. 7A, reference numeral 1 denotes a housing, which is divided as described above, and its parting surfaces are joined by heat fusion or an adhesive. Ceramics or synthetic resin can be used as the material. 2a is a movable conductor and 20a is a fixed conductor. Reference numeral 3 denotes an elastic body, and one end portion thereof is surface-bonded and fixed to the base surface of the housing 1 with a soluble material 4. Reference numeral 5 denotes a pressing piece inserted and fixed in the insertion hole 12 of the housing 1. The other end of the elastic body 3 is pressed to apply elastic bending strain energy to the elastic body 3, and the movable conductor 2 a is bent by the bending deformation reaction force of the elastic body 3. Is in contact with the fixed conductor 20a.
As the soluble material 4, a thermoplastic resin or a soluble alloy can be used. In order to join and fix one end of the elastic body 3 to the base surface of the housing 1 with the fusible alloy 4, it is preferable to metallize the base surface of the housing by sticking / etching metal foil or printing / baking metal powder paste. .
For example, phosphor bronze metal can be suitably used for the elastic body 3, but since conductivity is not required, the resin (thermoplastic resin or thermosetting resin) is reinforced with fibers such as glass fiber, metal fiber, and synthetic fiber. FRP, high-rigidity engineering plastic, etc. can also be used.

弾性体3の一端部を可溶材4でハウジング1のベース面に接合固定するには、図7−2の(イ)に示すように弾性体3の一端部を可溶材4により角度ほぼ0の面接合で固定すること、図7−2の(ロ)に示すように弾性体3の一端部を所定の角度で曲げ可溶材4によりその曲げ端部を面接合で固定すること、図7−3の(ハ)に示すように弾性体3の一端部を折り返し可溶材4によりその折り返し端部を面接合で固定すること等が可能である。   In order to join and fix one end of the elastic body 3 to the base surface of the housing 1 with the fusible material 4, the one end of the elastic body 3 is angled substantially zero by the fusible material 4 as shown in FIG. Fixing by surface bonding, fixing one end of the elastic body 3 at a predetermined angle with a bendable material 4 at a predetermined angle, as shown in FIG. As shown in 3 (c), one end of the elastic body 3 can be folded back and the folded end can be fixed by surface bonding with the soluble material 4.

図7−1に示すサーモプロテクタを製作するには、弾性体に弾性曲げ歪エネルギーを加えずにハウジングのパーティング面の熱融着を行い、最終段階でハウジングの挿入孔から押え片を挿入固定して弾性体の他端を押圧し、弾性体を曲げ変形させてその曲げで可動導体を固定導体に接触させる。この場合、ハウジングのパーティング面の熱融着時、弾性体にはまだ弾性曲げ歪エネルギーが加えられておらず、また、弾性体に弾性曲げ歪エネルギーが加えられた状態では加熱されないか、加熱されても押え片をハウジングに融着させる程度の可溶材から充分に隔離された位置での加熱に過ぎないから、可溶材による接合固定状態を安全に保持できる。   To manufacture the thermo protector shown in Fig. 7-1, heat-bonding the parting surface of the housing without applying elastic bending strain energy to the elastic body, and inserting and fixing the presser piece from the insertion hole of the housing at the final stage Then, the other end of the elastic body is pressed, the elastic body is bent and deformed, and the movable conductor is brought into contact with the fixed conductor by the bending. In this case, at the time of heat-sealing the parting surface of the housing, the elastic body has not yet been subjected to elastic bending strain energy, and is not heated in a state where elastic bending strain energy is applied to the elastic body. Even if it is done, since it is only heating at a position sufficiently separated from the soluble material to the extent that the presser piece is fused to the housing, it is possible to safely maintain the bonded and fixed state by the soluble material.

図7−1に示すサーモプロテクタにおいて、常時は、固定導体20a→固定導体20aと可動導体2aとの接触面→可動導体2aの経路で導通されている。可溶材4は、導通経路に含まれていないので、その導通性への可溶材の導電性の関与はない。
外部温度の上昇により可溶材4がその融点乃至は軟化点にまで加熱されると、弾性体3の曲げ歪エネルギーにより当該弾性体3とハウジングベース面との間の可溶材4による面接合が離脱され、同弾性体3が元の直線状に復帰され、可動導体2aがその弾性により固定導体20aより脱離されて非復帰のオフ動作が完結される。
In the thermo protector shown in FIG. 7A, the conductor is normally conducted along the path of the fixed conductor 20a → the contact surface between the fixed conductor 20a and the movable conductor 2a → the movable conductor 2a. Since the soluble material 4 is not included in the conduction path, the conductivity of the soluble material is not involved in the conductivity.
When the soluble material 4 is heated to its melting point or softening point due to an increase in external temperature, the surface bonding by the soluble material 4 between the elastic body 3 and the housing base surface is released by the bending strain energy of the elastic body 3. Then, the elastic body 3 is restored to the original linear shape, and the movable conductor 2a is detached from the fixed conductor 20a due to its elasticity, and the non-returning off operation is completed.

本発明に係るサーモプロテクタを被保護機器に取付けるには、例えば回路基板に実装するには、弾性体に弾性歪エネルギーを加えていない状態、すなわち、押え片の未挿入固定状態でフロー法やリフロー法はんだ付けにより回路基板に取付け、この取付け後に押え片を挿入固定して弾性体に弾性歪エネルギーを保持させることができる。この場合、フローまたはリフロー法はんだ付け時、弾性体にはまだ弾性曲げ歪エネルギーが加えられておらず、弾性体に弾性曲げ歪エネルギーが加えられていない状態でフローまたはリフロー法はんだ付けが行われるから、可溶材による接合固定状態を安全に保持できる。   In order to attach the thermo protector according to the present invention to a protected device, for example, when mounted on a circuit board, the elastic body is not subjected to elastic strain energy, that is, the press method is not inserted and fixed in the flow method or reflow. It is attached to the circuit board by soldering, and after this attachment, the pressing piece can be inserted and fixed to hold the elastic strain energy in the elastic body. In this case, at the time of flow or reflow soldering, elastic bending strain energy is not yet applied to the elastic body, and flow or reflow soldering is performed without elastic bending strain energy being applied to the elastic body. Therefore, it is possible to safely maintain the bonded and fixed state with the soluble material.

上記実施例では導体にリード線部を設けているが、ハウジングの両端部外面に電極を設け各電極を導体に導通したチップタイプとすることもできる。   In the above embodiment, the lead wire portion is provided on the conductor. However, a chip type in which electrodes are provided on the outer surfaces of both end portions of the housing and each electrode is electrically connected to the conductor may be used.

弾性体として金属を使用する場合、例えばリン青銅を例示できる。弾性金属材と合成樹脂との複合体としては、例えばリン青銅板とポリアミドフィルムとの積層体を例示きる。   When using a metal as an elastic body, phosphor bronze can be illustrated, for example. Examples of the composite of the elastic metal material and the synthetic resin include a laminate of a phosphor bronze plate and a polyamide film.

弾性体2の寸法は、金属弾性板の場合、例えば厚み0.008〜0.1mm、巾0.3〜4.6mm、長さ1.5〜11mmとされる。   In the case of a metal elastic plate, the elastic body 2 has, for example, a thickness of 0.008 to 0.1 mm, a width of 0.3 to 4.6 mm, and a length of 1.5 to 11 mm.

ハウジングや押え片に使用する樹脂は異なる樹脂とすることもできるが、特にポケカーボネートとすることが好ましい。   The resin used for the housing and the presser piece can be a different resin, but is particularly preferably a pocket carbonate.

上記弾性体2としての樹脂や可溶材3としての熱可塑性樹脂としては、ポリカ−ボネ−ト、ポリエチレンテレフタレ−ト、ポリエチレンナフタレ−ト、ポリアミド、ポリイミド、ポリブチレンテレフタレ−ト、ポリフェニレンオキシド、ポリエチレンサルファイド、ポリサルホン等のエンジニアリングプラスチック、ポリアセタ−ル、ポリフェニレンスルフィド、ポリオキシベンゾイル、ポリエ−テルエ−テルケトン、ポリエ−テルイミド等のエンジニアリングプラスチックやポリプロピレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリメチルメタクリレ−ト、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、エチレンポリテトラフルオロエチレン共重合体、エチレン酢酸ビニル共重合体(EVA)、AS樹脂、ABS樹脂、アイオノマ−、AAS樹脂、ACS樹脂等中から所定融点のものを選定できる。
ハウジングや押え片には、これらの樹脂の外、セラミックスも使用できる。ハウジングの寸法は、例えば厚み0.3〜1.5mm、巾1〜5mm、長さ2〜12mmとされる。
Examples of the resin as the elastic body 2 and the thermoplastic resin as the soluble material 3 include polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polybutylene terephthalate, and polyphenylene oxide. Engineering plastics such as polyethylene sulfide and polysulfone, engineering plastics such as polyacetal, polyphenylene sulfide, polyoxybenzoyl, polyetheretherketone and polyetherimide, polypropylene, polyvinylchloride, polyvinylacetate, polymethylmethacrylate , Polyvinylidene chloride, polytetrafluoroethylene, ethylene polytetrafluoroethylene copolymer, ethylene vinyl acetate copolymer (EVA), AS resin, ABS resin, ionomer AAS resin, can be selected ones of a predetermined melting point from in ACS resin.
In addition to these resins, ceramics can also be used for the housing and the pressing piece. The dimensions of the housing are, for example, a thickness of 0.3 to 1.5 mm, a width of 1 to 5 mm, and a length of 2 to 12 mm.

上記可溶材としての可溶合金としては、PbやCd等の生体系に有害な元素を含まないものを使用することが好ましく、次ぎの組成[A](1)43%<Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%<Sn≦44%,55%<In≦74%,1%≦Bi<20%、(4)46%<Sn≦70%,18%≦In<48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In<37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%<Sn≦60%,20%≦In<50%,12%<Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn−Bi系合金の組成[B](16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn−Sb系合金の組成[C](18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn系合金の組成[D](20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Bi系合金の組成、[E](22)50%Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn系合金の組成[F](24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加等のIn系合金の組成(27)2%≦Zn≦15%,70%≦Sn≦95%,残Bi及びその合金100重量部にAu、In、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加した合金の組成等からサーモプロテクタの動作温度に適合した融点の組成を選定することができる。
また、可溶合金にb.c.cやc.p.h等の結晶構造の金属を多く含ませることにより塑性変形を抑止しクリープ強度を向上させることができる。
As the soluble alloy as the soluble material, it is preferable to use an alloy that does not contain elements harmful to biological systems such as Pb and Cd. The following composition [A] (1) 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55%, remaining Bi, (3) 25% <Sn ≦ 44%, 55% <In ≦ 74%, 1% ≦ Bi <20%, (4) 46% <Sn ≦ 70%, 18% ≦ In <48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In <37%, remaining Bi (however, Bi57.5%, In25.2%, Sn17.3% and Bi54%, In29.7%, Sn16.3% based on Bi ± 2%, (Except for the range of In and Sn ± 1%), (6) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, remaining Bi, (7) 25% < n ≦ 60%, 20% ≦ In <50%, 12% <Bi ≦ 33%, (8) Ag, Au, Cu, Ni, Pd, Pt, 100 parts by weight of any one of (1) to (7) Add one or more of Sb, Ga, Ge, and P in a total of 0.01 to 7 parts by weight, (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, remaining Bi, ( 10) Add 3-5 parts by weight of Bi to 100 parts by weight of 47% ≦ Sn ≦ 49%, 51% ≦ In ≦ 53%, (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12% , Remaining In, (12) 0.3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, (13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35% , Remaining In, (14) any one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in 100 parts by weight of any one of (14), (9) to (13) 0.01 to 7 parts by weight in total, (15) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, 100 parts by weight of the remaining Bi is Ag, Au, Cu, Ni, Pd, Pt, Sb, In-Sn-Bi based alloy composition [B] (16) 30% ≦ Sn ≦ 70%, such as addition of 0.01 to 7 parts by weight of one or more of Ga, Ge, and P in total. 3% .ltoreq.Sb.ltoreq.20%, the balance Bi, (17) (16), 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P or a total of 0.1 or more. Composition of Bi—Sn—Sb alloy such as addition of 01 to 7 parts by weight [C] (18) 52% ≦ In ≦ 85%, remaining Sn, (19) In 100 parts by weight of (18), Ag, Au, In-Sn based compounds such as addition of 0.01 to 7 parts by weight of one or more of Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P [D] (20) 45% ≦ Bi ≦ 55%, remaining In, (21) Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, 100 parts by weight of the composition of (20) Composition of In-Bi alloy such as addition of 0.01 to 7 parts by weight of one or more of P, [E] (22) 50% Bi ≦ 56%, remaining Sn, (23) (22 The composition of a Bi-Sn alloy such as Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P is added in a total of 0.01 to 7 parts by weight to 100 parts by weight of [F] (24) Add one or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P to 100 parts by weight of In, in total 0.01 to 7 parts by weight, (25) Au, Bi, Cu, Ni, Pd, Pt, Ga, G in 100 parts by weight of 90% ≦ In ≦ 99.9%, 0.1% ≦ Ag ≦ 10% e, one or more of P are added in a total of 0.01 to 7 parts by weight, (26) Au in 100 parts by weight of 95% ≦ In ≦ 99.9%, 0.1% ≦ Sb ≦ 5%, Composition of In-based alloy such as addition of 0.01 to 7 parts by weight of one or more of Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P (27) 2% ≦ Zn ≦ 15%, 70% ≦ Sn ≦ 95%, the remaining Bi and its alloy 100 parts by weight, total of 0.01 to 7 parts by weight of one or more of Au, In, Cu, Ni, Pd, Pt, Ga, Ge, P A composition having a melting point suitable for the operating temperature of the thermoprotector can be selected from the composition of the added alloy.
Moreover, b. c. c and c. p. By containing a large amount of metal having a crystal structure such as h, plastic deformation can be suppressed and the creep strength can be improved.

これらの合金、特に、Biリッチ合金の場合は、弾性体に予め層状に被覆しておくことが好ましい。   In the case of these alloys, particularly Bi-rich alloys, it is preferable to coat the elastic body in layers.

導体には、ニッケル、銅、銅合金等の導電性金属乃至は合金を使用でき、必要に応じ鍍金することができる。   As the conductor, a conductive metal or alloy such as nickel, copper, or copper alloy can be used, and can be plated as necessary.

リチウムイオン2次電池、リチウムポリマー2次電池等に対する電池パックにおいては、電池や電力トランジスター等の異常発熱を検知して不通電とするサーモプロテクタが必要であるが、本発明に係るサーモプロテクタにおいては小型化が容易であり電池パックに良好に組み込み得、その電池用サーモプロテクタとして好適に利用できる。   In battery packs for lithium ion secondary batteries, lithium polymer secondary batteries, etc., a thermo protector for detecting abnormal heat generation such as a battery or a power transistor and de-energizing is necessary. In the thermo protector according to the present invention, however, Miniaturization is easy, it can be incorporated well into a battery pack, and it can be suitably used as a thermo-protector for the battery.

本発明に係るサーモプロテクタの一実施例を示す図面である。It is drawing which shows one Example of the thermo protector which concerns on this invention. 本発明に係るサーモプロテクタにおける弾性体の応力状態を示すために使用した一端ヒンジ支持・他端固定の柱及び両端ヒンジ支持柱の力学的状態を示す図面である。It is drawing which shows the mechanical state of the pillar of one end hinge support and other end fixation used in order to show the stress state of the elastic body in the thermoprotector which concerns on this invention, and a both-ends hinge support pillar. 本発明に係るサーモプロテクタにおける弾性体一端部と導体との可溶材による面接合構造の異なる例を示す図面である。It is drawing which shows the example from which the surface joining structure by the soluble material of the elastic body one end part and conductor in the thermoprotector which concerns on this invention differs. 本発明に係るサーモプロテクタの製作において、弾性体を曲げてその一端部を導体に可溶材により面接合する過程を示す図面である。4 is a diagram illustrating a process of bending an elastic body and surface-bonding one end portion thereof to a conductor with a soluble material in the manufacture of the thermo protector according to the present invention. 本発明に係るサーモプロテクタのハウジングを示す図面である。It is drawing which shows the housing of the thermoprotector which concerns on this invention. 本発明に係るサーモプロテクタの製作における初期の工程を示す図面である。It is drawing which shows the initial process in manufacture of the thermo protector which concerns on this invention. 本発明に係るサーモプロテクタの製作における後続の工程を示す図面である。It is drawing which shows the subsequent process in manufacture of the thermo protector which concerns on this invention. 本発明に係るサーモプロテクタにおける押え片の係止構造を示す図面である。It is drawing which shows the latching structure of the presser piece in the thermoprotector which concerns on this invention. 本発明に係るサーモプロテクタの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermoprotector which concerns on this invention. 別の実施例における弾性体の可溶材による面接合固定構造の異なる例を示す図面である。It is drawing which shows the example from which the surface bonding fixing structure by the soluble material of the elastic body in another Example differs. 従来のサーモプロテクタを示す図面である。It is drawing which shows the conventional thermo protector.

符号の説明Explanation of symbols

1 ハウジング
11 挿入孔
10 ハウジング片
2 一方の導体
2a 一方の導体
20 他方の導体
20a 他方の導体
3 弾性体
4 可溶材
5 押え片
DESCRIPTION OF SYMBOLS 1 Housing 11 Insertion hole 10 Housing piece 2 One conductor 2a One conductor 20 The other conductor 20a The other conductor 3 Elastic body 4 Soluble material 5 Pressing piece

Claims (11)

接点を構成する部材と接点を開閉するための線状または板状の弾性体がハウジング内に収容され、該弾性体の一端部が可溶材により固定され、当該弾性体の他端がハウジングの挿入孔から挿入固定された押え片で長手方向に押圧されて当該弾性体が弾性的に曲げ変形されることにより前記接点がオン状態に保持されており、前記可溶材の溶融乃至は軟化で弾性体の弾性歪エネルギーが解放されて前記接点がオフとされることを特徴とするサーモプロテクタ。 A member constituting the contact and a linear or plate-like elastic body for opening and closing the contact are accommodated in the housing, one end of the elastic body is fixed by a soluble material, and the other end of the elastic body is inserted into the housing The elastic body is pressed in the longitudinal direction by a presser piece inserted and fixed from the hole, and the elastic body is elastically bent and deformed, so that the contact is held in an on state. A thermo protector characterized in that the elastic strain energy is released and the contact is turned off. ハウジング内に所定の上下間隔を隔てて配設された一対の導体の一方の導体に線状または板状弾性体の一端部が可溶材により固定され、該弾性体の他端が押え片で長手方向に押圧されて弾性体が弾性的に曲げ変形され、該曲げ弾性体が他方の導体に接触されて接点が構成されていることを特徴とする請求項1記載のサーモプロテクタ。 One end of a linear or plate-like elastic body is fixed to one conductor of a pair of conductors arranged at predetermined vertical intervals in the housing by a soluble material, and the other end of the elastic body is elongated by a presser piece. 2. The thermo protector according to claim 1, wherein the elastic body is elastically bent and deformed by being pressed in the direction, and the bending elastic body is brought into contact with the other conductor to constitute a contact. 押え片に引き抜き方向に対し挿入孔に係止される抜け止め突起が設けられていることを特徴とする請求項1または2記載のサーモプロテクタ。 The thermoprotector according to claim 1 or 2, wherein a retaining protrusion is provided on the presser piece to be retained in the insertion hole in the pulling direction. 線状または板状弾性体の一端部の一方の導体への可溶材による固定が面接合により行われていることを特徴とする請求項2または3記載のサーモプロテクタ。 The thermoprotector according to claim 2 or 3, wherein the one or more end portions of the linear or plate-like elastic body are fixed to one conductor by a soluble material by surface bonding. 線状または板状弾性体の一端部が折り返され、該折り返し端部が一方の導体に可溶材により面接合されていることを特徴とする請求項2または3記載のサーモプロテクタ。 4. The thermo protector according to claim 2, wherein one end of the linear or plate-like elastic body is folded back, and the folded end is surface-bonded to one conductor by a soluble material. 弾性体が金属、金属と樹脂との重合物あるいは複合物の何れかであることを特徴とする請求項2〜5何れか記載のサーモプロテクタ。 The thermo protector according to any one of claims 2 to 5, wherein the elastic body is any one of a metal, a polymer of a metal and a resin, or a composite. 可溶材が低融点金属または熱可塑性樹脂であることを特徴とする請求項2〜6何れか記載のサーモプロテクタ。 The thermoprotector according to any one of claims 2 to 6, wherein the soluble material is a low-melting-point metal or a thermoplastic resin. 接点が保護材で包囲されていることを特徴とする請求項1〜7何れか記載のサーモプロテクタ。 The thermoprotector according to claim 1, wherein the contact is surrounded by a protective material. 可溶材が低融点金属または熱可塑性樹脂であり、弾性体が金属、金属と樹脂との重合物あるいは複合物、または樹脂の何れかであることを特徴とする請求項1記載のサーモプロテクタ。 2. The thermoprotector according to claim 1, wherein the soluble material is a low melting point metal or a thermoplastic resin, and the elastic body is any one of a metal, a polymer or a composite of a metal and a resin, or a resin. 請求項1〜9何れか記載のサーモプロテクタを製作する方法であり、接点を構成する部材及び一端部を可溶材により固定した線状または板状弾性体を分割ハウジング内に収容し、該ハウジングのパーティング面を融着したのち、ハウジングの挿入孔から押え片を挿入固定して弾性体の他端を長手方向に押圧することにより弾性片を他方の導体に接触させることを特徴とするサーモプロテクタの製作方法。 A method of manufacturing the thermoprotector according to any one of claims 1 to 9, wherein a member constituting a contact and a linear or plate-like elastic body having one end fixed with a soluble material are accommodated in a divided housing, A thermo protector characterized in that, after the parting surface is fused, the pressing piece is inserted and fixed from the insertion hole of the housing and the other end of the elastic body is pressed in the longitudinal direction to bring the elastic piece into contact with the other conductor. How to make. 請求項1〜9何れか記載のサーモプロテクタを取付ける方法であり、押え片の未挿入状態でハウジングを被保護機器にはんだ付けしたのちに、押え片の挿入固定を行うことを特徴とするサーモプロテクタの取付け方法。 A method of attaching the thermoprotector according to any one of claims 1 to 9, wherein the presser piece is inserted and fixed after the housing is soldered to a protected device in a state where the presser piece is not inserted. Installation method.
JP2005003268A 2005-01-11 2005-01-11 Thermo-protector, manufacturing and mounting method of the same Withdrawn JP2006196189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003268A JP2006196189A (en) 2005-01-11 2005-01-11 Thermo-protector, manufacturing and mounting method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003268A JP2006196189A (en) 2005-01-11 2005-01-11 Thermo-protector, manufacturing and mounting method of the same

Publications (1)

Publication Number Publication Date
JP2006196189A true JP2006196189A (en) 2006-07-27

Family

ID=36802103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003268A Withdrawn JP2006196189A (en) 2005-01-11 2005-01-11 Thermo-protector, manufacturing and mounting method of the same

Country Status (1)

Country Link
JP (1) JP2006196189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272387A (en) * 2009-05-22 2010-12-02 Uchihashi Estec Co Ltd Protection element
JP2016129097A (en) * 2015-01-09 2016-07-14 株式会社オートネットワーク技術研究所 Thermal fuse structure and electrical junction box
CN109817479A (en) * 2019-02-27 2019-05-28 嵊州市甘霖王氏热保护器厂 A kind of manufacturing method of thermal protector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010272387A (en) * 2009-05-22 2010-12-02 Uchihashi Estec Co Ltd Protection element
JP2016129097A (en) * 2015-01-09 2016-07-14 株式会社オートネットワーク技術研究所 Thermal fuse structure and electrical junction box
WO2016111218A1 (en) * 2015-01-09 2016-07-14 株式会社オートネットワーク技術研究所 Temperature fuse structure, and electric connection box
CN109817479A (en) * 2019-02-27 2019-05-28 嵊州市甘霖王氏热保护器厂 A kind of manufacturing method of thermal protector
CN109817479B (en) * 2019-02-27 2023-10-31 嵊州市甘霖王氏热保护器厂 Manufacturing method of thermal protector

Similar Documents

Publication Publication Date Title
JP4410056B2 (en) Thermosensor, thermoprotector, and method of manufacturing thermosensor
US7345570B2 (en) Thermoprotector
TWI547966B (en) Circuit breaker and battery pack including the same
US11004634B2 (en) Breaker and safety circuit provided with same
JP2016031917A (en) Breaker, safety circuit with the same, and secondary battery circuit
JP2017098186A (en) Breaker, safety circuit with the same, and secondary battery circuit
WO2002067282A1 (en) Thermal fuse
JP6703004B2 (en) Electronic device housing, method of manufacturing electronic device housing, and breaker including the same
JP2006196189A (en) Thermo-protector, manufacturing and mounting method of the same
JP6393119B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
JP4269264B2 (en) Thin thermal fuse
JP2005063792A (en) Heat sensitive element and thermo-protector
JP4554436B2 (en) Thermo protector and manufacturing method thereof
JP4223354B2 (en) Thermo protector
JP2000164093A (en) Thermal fuse and its manufacture
CN109314013B (en) Miniature circuit breaker for portable equipment and manufacturing method thereof
JP4097806B2 (en) Manufacturing method of thin temperature fuse
JP2006155974A (en) Thermoprotector
JP4527609B2 (en) Thermo protector
JP2006202677A (en) Thermo-protector and manufacturing method of thermo-protector
JP2006147326A (en) Thermo protector
JP7471625B2 (en) Battery pack and battery pack manufacturing method
JP4387251B2 (en) Thermo protector
JP6038680B2 (en) Breaker device
JP2007005066A (en) Thermoprotector and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091221