JP4269264B2 - Thin thermal fuse - Google Patents

Thin thermal fuse Download PDF

Info

Publication number
JP4269264B2
JP4269264B2 JP2003274265A JP2003274265A JP4269264B2 JP 4269264 B2 JP4269264 B2 JP 4269264B2 JP 2003274265 A JP2003274265 A JP 2003274265A JP 2003274265 A JP2003274265 A JP 2003274265A JP 4269264 B2 JP4269264 B2 JP 4269264B2
Authority
JP
Japan
Prior art keywords
resin film
weight
lead conductor
parts
thermal fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003274265A
Other languages
Japanese (ja)
Other versions
JP2004071552A (en
Inventor
尚 岡本
和泉 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2003274265A priority Critical patent/JP4269264B2/en
Publication of JP2004071552A publication Critical patent/JP2004071552A/en
Application granted granted Critical
Publication of JP4269264B2 publication Critical patent/JP4269264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Description

本発明は薄型温度ヒューズに関するものである。   The present invention relates to a thin thermal fuse.

近来、携帯電話、ノート型パソコン等の携帯電子機器の二次電源として、リチウムイオン2次電池やリチウムポリマー二次電池等のエネルギー密度の大きい二次電池が使用されている。
これらの二次電池においては、異常時に生じる発熱温度がその大なるエネルギー密度のために高温である。
そこで、薄型温度ヒューズを装着し、その高温に達するまえに電池の通電回路を遮断して重大な事故に至るのを未然に防止することが知られている。
例えば、図9に示す電池パックのように、二次電池を収納する扁平ケース8の側面に薄型温度ヒューズP’を装着し、温度ヒューズの作動で二次電池を負荷から遮断させ得るように所定の回路板81を介して二次電池に回路接続している。
図9において、1’,1’は薄型温度ヒューズの扁平リード導体、82a,82bは電池パックの外部電極であり、リード導体と電極との間をスポット抵抗溶接等により接続してある。
この薄型温度ヒューズとしては、フィルムタイプ、基板タイプ、樹脂モールドタイプ等が知られている。
図10の(イ)は従来公知のフィルムタイプの一例を一部を断面で示す平面図、図10の(ロ)は図10の(イ)におけるロ−ロ断面図である。
図10において、41’は下側樹脂フィルム、1’,1’は下側樹脂フィルム上に配設された一対の扁平リード導体、2’はリード導体1’,1’間に接続された可溶合金片、3’は可溶合金片上及び可溶合金片近傍のリード導体部分に塗布されたフラックスである。42’は上側樹脂フィルムであり、出っ張った被覆フラックス3’上に湾曲された状態で周囲が下側樹脂フィルム及41’び扁平リード導体1’に封着されている。
Recently, secondary batteries with high energy density such as lithium ion secondary batteries and lithium polymer secondary batteries have been used as secondary power sources for portable electronic devices such as mobile phones and notebook computers.
In these secondary batteries, the heat generation temperature generated at the time of abnormality is high because of its large energy density.
Therefore, it is known to install a thin thermal fuse and prevent a serious accident by cutting off the battery energization circuit before reaching the high temperature.
For example, as in the battery pack shown in FIG. 9 , a thin thermal fuse P ′ is mounted on the side surface of the flat case 8 that houses the secondary battery, and the secondary battery can be disconnected from the load by the operation of the thermal fuse. The circuit board 81 is connected to the secondary battery.
In FIG. 9 , 1 'and 1' are flat lead conductors of thin thermal fuses, 82a and 82b are external electrodes of the battery pack, and the lead conductors and electrodes are connected by spot resistance welding or the like.
As this thin thermal fuse, a film type, a substrate type, a resin mold type and the like are known.
FIG. 10 (a) is a plan view partially showing an example of a conventionally known film type in section, and FIG. 10 (b) is a cross-sectional view in FIG. 10 (b).
In FIG. 10 , 41 'is a lower resin film, 1' and 1 'are a pair of flat lead conductors disposed on the lower resin film, and 2' is connected between the lead conductors 1 'and 1'. The molten alloy pieces 3 'are fluxes applied to the lead conductor portions on and near the soluble alloy pieces. Reference numeral 42 ′ denotes an upper resin film, and the periphery is sealed to the lower resin film 41 ′ and the flat lead conductor 1 ′ while being curved on the protruding coating flux 3 ′.

11の(イ)は従来公知のフィルムタイプの別例を一部を断面で示す平面図、図11の(ロ)は図11の(イ)におけるロ−ロ断面図である。
図11において、41’は下側樹脂フィルム、1’,1’は一対の扁平リード導体であり、前記フィルム41’の下面に前半部が固着されると共に先端部101’が絞り出されて前記フィルムの上面に現出されている。2’はリード導体現出部101’,101’間に接続された可溶合金片、3’は可溶合金片2’及び導体現出部101’の可溶合金片端近傍部分に塗布されたフラックスである。42’は上側樹脂フィルムであり、出っ張った被覆フラックス3’上に湾曲された状態で周囲が下側樹脂フィルム41’及び扁平リード導体1’に封着されている。
Plan view showing another example partly in section of (b) is a conventionally known film-type 11, (b) in FIG. 11 B in (b) of FIG. 11 - is a B cross-sectional view.
In FIG. 11 , 41 ′ is a lower resin film, 1 ′ and 1 ′ are a pair of flat lead conductors, the front half is fixed to the lower surface of the film 41 ′, and the tip 101 ′ is squeezed out. Appears on the top of the film. 2 ′ is a fusible alloy piece connected between the lead conductor appearing portions 101 ′ and 101 ′, 3 ′ is applied to the fusible alloy piece 2 ′ and the portion near the end of the fusible alloy piece of the conductor appearing portion 101 ′. It is flux. Reference numeral 42 ′ denotes an upper resin film, and the periphery is sealed to the lower resin film 41 ′ and the flat lead conductor 1 ′ while being curved on the protruding coating flux 3 ′.

図12の(イ)は従来公知の樹脂モールドタイプを示す平面図、図12の(ロ)は図12の(イ)におけるロ−ロ断面図である。
図12において、1’,1’は扁平リード導体、2’は扁平リード導体間に接続された可溶合金片、3’は可溶合金片及び可溶合金片端近傍のリード導体部分に塗布されたフラックスである。40’は樹脂モールド被覆であり、エポキシ樹脂等の硬化型樹脂液の浸漬塗装により設けられている。
(B) is a plan view showing a conventional resin mold type in Figure 12, in FIG. 12 (b) is B in (b) of FIG. 12 - is a B cross-sectional view.
In FIG. 12 , 1 'and 1' are flat lead conductors, 2 'is a fusible alloy piece connected between the flat lead conductors, 3' is applied to the fusible alloy piece and the lead conductor portion near the end of the fusible alloy piece. Flux. Reference numeral 40 'denotes a resin mold coating, which is provided by immersion coating of a curable resin liquid such as an epoxy resin.

図13の(イ)は従来公知の基板タイプの一例を一部を断面で示す平面図、図13の(ロ)は図13の(イ)におけるロ−ロ断面図である。
図13において、51’はセラミックス板のような絶縁基体、6’,6’は絶縁基体上に設けられた一対の電極、1’,1’は各電極6’,6’に接続された扁平リード導体、2’は電極6’,6’間に接続された可溶合金片、3’は可溶合金片及び可溶合金片端からリード導体先端部にわたり塗布されたフラックスである。52’はセラミックス板のようなカバープレート、7’はカバープレート52’の周囲を絶縁基体51’及び扁平リード導体1’に封着するための接着剤であり、出っ張った被覆フラックス3’上にカバープレート52’が載置され、そのプレート周囲にエポキシ樹脂等の二液型接着剤7’が塗着されている。
Plan view showing an example partly in section of the (i) is known substrate type 13, (b) in FIG. 13 B in (b) of FIG. 13 - is a B cross-sectional view.
In FIG. 13 , 51 ′ is an insulating substrate such as a ceramic plate, 6 ′ and 6 ′ are a pair of electrodes provided on the insulating substrate, and 1 ′ and 1 ′ are flat surfaces connected to the electrodes 6 ′ and 6 ′. The lead conductor, 2 ′ is a fusible alloy piece connected between the electrodes 6 ′ and 6 ′, and 3 ′ is a fusible alloy piece and a flux applied from the end of the fusible alloy piece to the lead conductor tip. 52 ′ is a cover plate such as a ceramic plate, and 7 ′ is an adhesive for sealing the periphery of the cover plate 52 ′ to the insulating base 51 ′ and the flat lead conductor 1 ′, and on the protruding coating flux 3 ′. A cover plate 52 ′ is placed, and a two-component adhesive 7 ′ such as an epoxy resin is applied around the plate.

上記温度ヒューズの作動機構は次ぎの通りである。
上記二次電池の異常発熱に対し異常発熱温度よりも充分に低い温度で可溶合金片を溶断させ得るように可溶合金片2’の融点を設定してある。
而して、可溶合金片が溶融されると、溶融合金が既溶融のフラックスとの共存下、電極やリード導体端部に濡れて引っ張られ、その濡れが球状化により拡大されて溶融合金の分断が促進され、その分断により通電が遮断されて前記電池の発熱が停止されると、分断溶融合金が凝固されて非復帰のカットオフが終結される。
前記フラックスは、易酸化性の可溶合金片の酸化を防止すること、可溶合金片に不可避的に含有されている酸化物を加熱によるフラックスの活性化で溶解すること等により、可溶合金片を所定の融点で正確に溶融させると共に表面エネルギー面から溶融合金の前記電極やリード導体端部に対する濡れを促進させる作用を奏し、更に、溶融合金を球状化させる際の空間の確保に不可欠であり、電極やリード導体端部にも充分な量のフラックスを存在させることが必要である。
The operating mechanism of the thermal fuse is as follows.
The melting point of the fusible alloy piece 2 ′ is set so that the fusible alloy piece can be fused at a temperature sufficiently lower than the abnormal heat generation temperature with respect to the abnormal heat generation of the secondary battery.
Thus, when the fusible alloy piece is melted, the molten alloy is wetted and pulled on the electrode and the end of the lead conductor in the coexistence with the already melted flux, and the wetting is expanded by spheroidization and the molten alloy is melted. When the division is promoted and the current is cut off by the division and the heat generation of the battery is stopped, the divided molten alloy is solidified and the non-return cut-off is terminated.
The flux is soluble alloy by preventing oxidation of the easily oxidizable soluble alloy piece, dissolving the oxide inevitably contained in the soluble alloy piece by activation of the flux by heating, etc. It is indispensable to secure the space when the molten alloy is spheroidized, while the piece is melted accurately at a predetermined melting point and the surface energy surface promotes the wetting of the molten alloy to the electrode and the end of the lead conductor. In other words, a sufficient amount of flux needs to be present at the ends of the electrodes and lead conductors.

上記温度ヒューズのフラックスの塗布においては、通常、加熱溶融させた液状フラックスを所定の外郭で付着させ、図14の(イ)に示すように冷却凝固させている。この場合、塗布フラックスの縦断面形状を考察すると、図14の(ロ)に示すように、電極等の表面張力をr、凝固直前のフラックスの表面張力をr、同フラックスと電極等表面との間の界面張力をrmL、接触角をαとすると、 In the coating of the flux of the thermal fuse, usually, the liquid flux is heated and melted by attaching a predetermined outer, and cooled to solidify so as shown in (b) of FIG. 14. In this case, when considering the longitudinal section of the coating flux, as shown in (b) of FIG. 14, the surface tension r m of the electrode or the like, the surface tension of the r L coagulation immediately preceding flux, the flux and the electrode such as surface If the interfacial tension between and is r mL and the contact angle is α,

=rcosα+rmL r m = r L cos α + r mL

の関係があり、接触端から中央に至るほど角度が次第に小さくなっていき、中央で角度0となり、中央から接触端までの距離xが大きくなるほど、中央の高さyが大となる。従って、前記フラックスをリード導体端部にまで被覆させるには、中央高さyを相当に高くする必要がある。 The angle gradually decreases from the contact end to the center, the angle becomes 0 at the center, and the center height y increases as the distance x from the center to the contact end increases. Therefore, in order to coat the flux up to the end portion of the lead conductor, the center height y needs to be considerably increased.

上記フィルムタイプの薄型温度ヒューズでは、上側樹脂フィルムが出っ張った被覆フラックス上にかなり湾曲されて封着されるために、温度ヒューズボディが反り曲げられ、可溶合金片と扁平リード導体との接続箇所の損傷が問題となる。
すなわち、出っ張り被覆フラックスに湾曲状態で当接された当初の上側樹脂フィルムの曲げ半径をr’、上側樹脂フィルムの曲げ剛性を(EI)’、上側樹脂フィルムを除く温度ヒューズボディ部分の曲げ剛性を(EI)とすれば、その温度ヒューズボディ部分に作用する曲げ反力mが
In the above-mentioned film type thin thermal fuse, the upper resin film is curved and sealed on the protruding coating flux, so the thermal fuse body is warped and the connection point between the fusible alloy piece and the flat lead conductor Damage is a problem.
That is, the bending radius of the initial upper resin film in contact with the protruding coating flux in a curved state is r ′, the bending rigidity of the upper resin film is (EI) ′, and the bending rigidity of the thermal fuse body portion excluding the upper resin film is If (EI), the bending reaction force m acting on the thermal fuse body part is

m=1/{r’〔1+(EI)’/(EI)〕}   m = 1 / {r ′ [1+ (EI) ′ / (EI)]}

で与えられ、この曲げ反力mがリード導体の大なる曲げ剛性のために大となり、扁平リード導体と可溶合金片との接続界面にそれだけ大きな剥離力が作用し、接続界面の安全性が阻害される。 This bending reaction force m increases due to the large bending rigidity of the lead conductor, and a large peeling force acts on the connection interface between the flat lead conductor and the fusible alloy piece, thereby reducing the safety of the connection interface. Be inhibited.

上記樹脂モールドタイプの薄型温度ヒューズでは、可溶合金片の上面側にフラックスが多量に塗布されているために、曲げ中立面が扁平リード導体の厚み中心面より外れることが避けられず、樹脂とリード導体との線膨張係数や断面積やヤング率の差に基づき温度変化のために温度ヒューズボディが曲げ変形されるが、曲げ剛性の大なるリード導体に作用する曲げ反力が大きくなり、この場合も、扁平リード導体と可溶合金片との接続界面に剥離力が作用し、接続界面の安全性が阻害される。   In the above-mentioned resin mold type thin thermal fuse, since a large amount of flux is applied to the upper surface side of the fusible alloy piece, it is unavoidable that the bending neutral surface is deviated from the thickness center surface of the flat lead conductor. The thermal fuse body is bent and deformed due to temperature changes based on the difference in linear expansion coefficient, cross-sectional area, and Young's modulus between the lead conductor and the lead conductor, but the bending reaction force acting on the lead conductor with high bending rigidity increases. Also in this case, a peeling force acts on the connection interface between the flat lead conductor and the soluble alloy piece, and the safety of the connection interface is hindered.

これらのフィルムタイプ薄型温度ヒューズや樹脂モールドタイプ薄型温度ヒューズに対し、基板型薄型温度ヒューズでは、全体の曲げ剛性(EI)が大であるために、例え曲げモーメント(M)が作用しても、その曲げの曲率半径(r=EI/M)を充分に大きく保持でき、実質的に曲げ変形を排除でき、前記した可溶合金片−リード導体間接続箇所の不安定化を回避できる。
しかしながら、温度ヒューズのフラックス塗布では、冷却凝固後のフラックスの立体形状が背の高いドーム状曲面になるため、図22の(イ)に示すように、かかるドーム状曲面の被覆フラックス3’上にカバープレート52’を載置する以上、曲面と平面との接触のためにカバープレート52’の支持状態が不安定性が避けられず、カバープレート52’が長軸中心線に対し振れてバランスを崩し傾動を免れ得ない。而して、可溶合金片の前記した分断球状化が図22の(ロ)に示すように、可溶合金片が両側に分断球状化する際の分断溶融合金23a’、23b’に対するフラックス量に異同を来し、フラックス量の少ない側の溶融合金の球状化が他側の溶融合金の球状化よりも鈍化されれて分断作動に遅れが生じるようになる。この際、前記絶縁カバープレート52’の傾き角が製品ごとに異なるために分断作動のバラツキが惹起される。
In contrast to these film type thin type thermal fuses and resin mold type thin type thermal fuses, the board type thin type thermal fuse has a large bending rigidity (EI), so even if a bending moment (M) acts, The bending radius of curvature (r = EI / M) can be kept sufficiently large, bending deformation can be substantially eliminated, and the above-described instability of the connecting portion between the soluble alloy piece and the lead conductor can be avoided.
However, in the flux application of the thermal fuse, the three-dimensional shape of the flux after cooling and solidification becomes a tall dome-shaped curved surface. Therefore, as shown in FIG. As long as the cover plate 52 'is placed, instability of the support state of the cover plate 52' is inevitable due to the contact between the curved surface and the flat surface, and the cover plate 52 'swings with respect to the long axis center line and loses balance. I can't escape tilting. Thus, as shown in FIG. 22B, the amount of flux with respect to the divided molten alloys 23a ′ and 23b ′ when the soluble alloy pieces spheroidize on both sides as shown in FIG. The spheroidization of the molten alloy on the side with less flux is made slower than the spheroidization of the molten alloy on the other side, resulting in a delay in the cutting operation. At this time, since the inclination angle of the insulating cover plate 52 ′ is different for each product, a variation in the dividing operation is caused.

上記した通り、温度ヒューズにおける電極乃至はリード導体端部にも充分な量のフラックスを存在させることが必要である。
従来、可溶合金片端近傍の扁平リード導体部分をポンチにより突出させ、この突出部を塗布フラックスに対する堰として用い、可溶合金片端近傍のリード導体部分のフラックス被覆厚みを厚くすることが公知である(特許文献1参照)。
As described above, it is necessary for a sufficient amount of flux to be present at the end of the electrode or lead conductor in the thermal fuse.
Conventionally, it has been known that a flat lead conductor portion in the vicinity of one end of a fusible alloy piece is projected by a punch, and this protruding portion is used as a weir for the coating flux to increase the flux coating thickness of the lead conductor portion in the vicinity of one end portion of the fusible alloy piece. (See Patent Document 1).

特開2001−52582号JP 2001-52582 A

しかしながら、ポンチ加工では亀裂防止のために扁平リード導体の厚みをある程度厚くする必要があり、これでは扁平リード導体の曲げ剛性を低くし難く、前記したフィルムタイプや樹脂モールドタイプでの曲げ反力に基づく可溶合金片−リード導体間接続箇所の不安定化回避に適合しない。
また、ポンチ加工では突出巾が扁平リード導体巾に較べて狭く、しかも突出外面の角にアールが付き易く、而して、前記基板タイプでのカバープレートの支持状態の不安定性を解消し難いために、カバープレートの傾き固定に起因する前記した分断作動性の低下の問題も解決できない。
However, in punching, it is necessary to increase the thickness of the flat lead conductor to prevent cracking. This makes it difficult to reduce the bending rigidity of the flat lead conductor, and this is in response to the bending reaction force in the film type and resin mold type described above. It is not suitable for avoiding destabilization of the connection point between the fusible alloy piece and the lead conductor.
Also, in punching, the protrusion width is narrower than the flat lead conductor width, and the corners of the protrusion outer surface are easily rounded, so it is difficult to eliminate the instability of the support state of the cover plate in the substrate type. In addition, the above-described problem of degradation of the severability due to the inclination of the cover plate cannot be solved.

本発明の目的は、薄型温度ヒューズにおいて、可溶合金片端から扁平リード導体先端部に至る部分のフラックス被覆厚みを充分に厚くし得ると共にフィルムタイプや樹脂モールドタイプ薄型温度ヒューズに対しては、曲げ反力に基づく可溶合金片−リード導体間接続箇所の不安定化問題を良好に解決でき、基板タイプ薄型温度ヒューズに対しては、可溶合金片の一様な分断球状化を保証して円滑な作動を図ることにある。   It is an object of the present invention to be able to sufficiently increase the thickness of the flux coating in the thin thermal fuse from the one end of the fusible alloy to the tip of the flat lead conductor and bend the film type or resin mold type thin thermal fuse. It can satisfactorily solve the destabilization problem of the connection point between the fusible alloy piece and the lead conductor based on the reaction force, and for the board-type thin thermal fuse, ensure uniform split spheroidization of the fusible alloy piece. It is to achieve smooth operation.

請求項1に係る薄型温度ヒューズは、可溶合金片の厚み中心が扁平リード導体の厚み中心よりも上側に位置された状態で可溶合金片が扁平リード導体間に接続され、可溶合金片及びその近傍のリード導体部分にフラックスが被覆され、これらが下側樹脂フィルムと上側樹脂フィルムとにより前記リード導体を気密に導出して封止され、上側樹脂フィルムがその内面側の出っ張り内容物上で湾曲されてなる温度ヒューズにおいて、可溶合金片端とフィルム封止箇所との間のリード導体部分にその部分の曲げ剛性を低くし、かつ塗布フラックスに対する堰を形成するための折り曲げ凸部折り曲げ凸部が設けられ、この凸部が前記フラックスの塗布に対する堰とされていることを特徴とする。 In the thin thermal fuse according to claim 1, the fusible alloy piece is connected between the flat lead conductors in a state where the thickness center of the fusible alloy piece is positioned above the thickness center of the flat lead conductor. And the lead conductor portion in the vicinity thereof is coated with flux, and these lead conductors are hermetically led out and sealed by the lower resin film and the upper resin film, and the upper resin film is on the protruding contents on the inner surface side. In the thermal fuse formed by bending at the lead conductor part between the one end of the fusible alloy and the film sealing part, the bending rigidity of the lead conductor part is lowered and the weir for the coating flux is formed. The projections are provided as weirs for the application of the flux.

請求項2に係る薄型温度ヒューズは、下側樹脂フィルムの下面に一対の扁平リード導体端部が固着されると共に各リード導体の先端から所定の距離を隔てた部分が所定の巾をもつて前記フィルム上面に現出され、この現出部がランド部とこのランド部後方側の曲げ剛性を低くし、かつ塗布フラックスに対する堰を形成するための折り曲げ凸部とに形成され、その現出されたランド部間に可溶合金片が接続され、前記の可溶合金片及前記ランド部のほぼ全面にフラックスが前記折り曲げ凸部を堰としてフラックスが塗布され、上側樹脂フィルムが前記下側樹脂フィルムの周囲に封着されると共に上側樹脂フィルムがその内面側の出っ張り内容物上で湾曲され、下側樹脂フィルムの下面に補助樹脂フィルムが貼着されていることを特徴とする。 In the thin thermal fuse according to claim 2, a pair of flat lead conductor end portions are fixed to the lower surface of the lower resin film, and a portion spaced a predetermined distance from the tip of each lead conductor has a predetermined width. Appeared on the upper surface of the film, and the exposed part was formed into a land part and a bent convex part for lowering the bending rigidity of the rear side of the land part and forming a weir against the coating flux . A fusible alloy piece is connected between the land portions, the flux is applied to almost the entire surface of the fusible alloy piece and the land portion with the bent convex portion as a weir, and the upper resin film is formed of the lower resin film. The upper resin film is sealed on the periphery and curved on the protruding contents on the inner surface side, and an auxiliary resin film is adhered to the lower surface of the lower resin film.

請求項3では、請求項1〜2何れかの薄型温度ヒューズにおいて、上側樹脂フィルムが下側樹脂フィルムよりも薄くされている。   According to a third aspect of the present invention, in the thin thermal fuse of any one of the first and second aspects, the upper resin film is made thinner than the lower resin film.

請求項4に係る薄型温度ヒューズは、扁平リード導体間に可溶合金片が接続され、可溶合金片及び可溶合金片端から所定の距離を隔てたリード導体箇所までフラックスが付着され、これらを包囲して樹脂層が被覆された温度ヒューズにおいて、可溶合金片端から所定の距離を隔てたリード導体部分にその部分の曲げ剛性を低くし、かつ塗布フラックスに対する堰を形成するための折り曲げ凸部が設けられ、この凸部が前記フラックスの塗布に対する堰とされていることを特徴とする。 In the thin thermal fuse according to claim 4, the fusible alloy piece is connected between the flat lead conductors, and the flux is attached to the fusible alloy piece and the lead conductor portion at a predetermined distance from the end of the fusible alloy piece. In a thermal fuse that is surrounded and covered with a resin layer, a bent convex portion for reducing the bending rigidity of the lead conductor portion at a predetermined distance from one end of the fusible alloy and forming a weir against the applied flux Is provided, and this convex portion is a weir for the application of the flux.

請求項5では、請求項1〜4何れかの薄型温度ヒューズにおいて、折り曲げ凸部の両脇上端にアールが付されている。   According to a fifth aspect of the invention, in the thin thermal fuse according to any one of the first to fourth aspects, the upper ends of both sides of the bent convex portion are rounded.

請求項6に係る薄型温度ヒューズは、可溶合金片の厚み中心が扁平リード導体の厚み中心よりも上側に位置された状態で扁平リード導体間に可溶合金片が接続され、可溶合金片及びその近傍のリード導体部分にフラックスが付着され、これらが下側樹脂フィルムと上側樹脂フィルムとにより前記リード導体を気密に導出して封止され、上側樹脂フィルムがその内面側の出っ張り内容物上で湾曲されてなる温度ヒューズにおいて、扁平リード導体の先端に折り曲げ凸部が設けられ、この凸部前面に可溶合金片端が接続され、同凸部が前記フラックスの塗布に対する堰とされていることを特徴とする。   According to a sixth aspect of the present invention, in the thin thermal fuse, the fusible alloy piece is connected between the flat lead conductors in a state where the thickness center of the fusible alloy piece is located above the thickness center of the flat lead conductor. In addition, the flux is attached to the lead conductor portion in the vicinity thereof, and these lead conductors are hermetically led out and sealed by the lower resin film and the upper resin film, and the upper resin film is on the protruding contents on the inner surface side. In the temperature fuse that is curved in the above, a bent convex portion is provided at the tip of the flat lead conductor, a soluble alloy piece end is connected to the front surface of the convex portion, and the convex portion serves as a weir for the application of the flux. It is characterized by.

請求項7では、請求項6の薄型温度ヒューズにおいて、凸部の両脇上端にアールが付されており、請求項8では請求項7または8の薄型温度ヒューズにおいて、上側樹脂フィルムが下側樹脂フィルムよりも薄くされており、請求項9では、請求項1〜8何れかの薄型温度ヒューズにおいて、温度ヒューズボディ内のリード導体部分の巾が可溶合金片の巾より広くされ、請求項10では、請求項9の薄型温度ヒューズにおいて、温度ヒューズボディ内のリード導体部分が圧延により形成されている。   According to a seventh aspect of the invention, in the thin thermal fuse of the sixth aspect, the upper ends of both sides of the convex portion are rounded, and in an eighth aspect of the thin thermal fuse of the seventh or eighth aspect, the upper resin film is the lower resin. In the thin thermal fuse according to any one of claims 1 to 8, the width of the lead conductor portion in the thermal fuse body is made wider than the width of the fusible alloy piece. In the thin thermal fuse of claim 9, the lead conductor portion in the thermal fuse body is formed by rolling.

請求項11では、請求項1〜10何れかの薄型温度ヒューズにおいて、リード導体がNi製とされ、少なくとも先端部にSn,Cu,Ag,Auの何れか、またはこれらを主成分とする合金が被覆されており、請求項12では、請求項1〜11何れかの薄型温度ヒューズにおいて、可溶合金片を溶断させるための発熱体が付設されている。   In claim 11, in the thin thermal fuse of any one of claims 1 to 10, the lead conductor is made of Ni, and at least one of Sn, Cu, Ag, Au, or an alloy containing these as a main component at the tip portion. In the twelfth aspect, in the thin thermal fuse of any one of the first to eleventh aspects, a heating element for fusing the fusible alloy piece is attached.

請求項13では、請求項1〜12何れかの薄型温度ヒューズにおいて、可溶合金片にIn−Sn−Bi系合金、Bi−Sn−Sb系合金、In−Sn系合金、In−Bi系合金、Bi−Sn系合金、In系合金の何れかであり、In−Sn−Bi系合金の組成が(1)43%<Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%<Sn≦44%,55%<In≦74%,1%≦Bi<20%、(4)46%<Sn≦70%,18%≦In<48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In<37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%<Sn≦60%,20%≦In<50%,12%<Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、Bi−Sn−Sb系合金の組成が(16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、In−Sn系合金の組成が(18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、In−Bi系合金の組成が(20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、Bi−Sn系合金の組成が(22)50%<Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、In系合金の組成が(24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加の何れかを使用している。 The thin thermal fuse according to any one of claims 1 to 12, wherein the fusible alloy piece includes an In-Sn-Bi alloy, a Bi-Sn-Sb alloy, an In-Sn alloy, and an In-Bi alloy. , Bi—Sn alloy, In alloy, and the composition of the In—Sn—Bi alloy is (1) 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, the remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55%, remaining Bi, (3) 25% <Sn ≦ 44%, 55% <In ≦ 74%, 1% ≦ Bi <20%, ( 4) 46% <Sn ≦ 70%, 18% ≦ In <48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In <37%, remaining Bi (however, Bi 57.5%, In 25.2%, Sn 17.3% and Bi 54%, In 29.7%, Sn 16.3% 2%, except In and Sn ± 1% range), (6) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, remaining Bi, (7) 25% <Sn ≦ 60%, 20% ≦ In <50%, 12% <Bi ≦ 33%, (8) Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in any one of 100 parts by weight of (1) to (7) 0.01 to 7 parts by weight in total, (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, remaining Bi, (10) 47% ≦ Sn ≦ 3 to 5 parts by weight of Bi are added to 100 parts by weight of 49%, 51% ≦ In ≦ 53%, (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12%, remaining In, (12) 0.3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, (13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35%, remaining In, (14) (9 To one part or two or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in a total of 0.01 to 7 parts by weight to any 100 parts by weight of (13), (15 ) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, remaining Bi is 100 parts by weight, one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P 0.01 to 7 parts by weight in total, the composition of the Bi—Sn—Sb alloy is (16) 30% ≦ Sn ≦ 70%, 0.3% ≦ Sb ≦ 20%, the remaining Bi, (17) (16 ) Is added in a total of 0.01 to 7 parts by weight of one or more of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P, and the composition of the In—Sn alloy is ( 18) 52% ≦ In ≦ 85%, remaining Sn, (19) Ag, Au, Cu, Ni, Pd in 100 parts by weight of (18) One or more of Pt, Sb, Ga, Ge, and P are added in a total of 0.01 to 7 parts by weight. The composition of the In—Bi alloy is (20) 45% ≦ Bi ≦ 55%, the remaining In, ( 21) A total of 0.01 to 7 parts by weight of one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P is added to 100 parts by weight of the composition of (20), Bi The composition of the Sn-based alloy is (22) 50% <Bi ≦ 56%, the remaining Sn, (23) and 100 parts by weight of (22) of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P One or two or more types are added in a total of 0.01 to 7 parts by weight, and the composition of the In-based alloy is (24) 100 parts by weight of In containing Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, P Add one or more kinds in total 0.01 to 7 parts by weight, (25) 90% ≦ In ≦ 99.9%, 0.1% ≦ Add one or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P to 100 parts by weight of Ag ≦ 10% in total 0.01 to 7 parts by weight, (26) 95% ≦ In ≦ 99.9%, 0.1% ≦ Sb ≦ 5% 100 parts by weight of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, P or a total of 0 or more. Any of 01 to 7 parts by weight added is used.

請求項14では上記請求項1〜10の何れかまたは13の薄型温度ヒューズを電流ヒューズとして使用している。   In the fourteenth aspect, the thin thermal fuse according to any one of the first to tenth aspects or the thirteenth aspect is used as a current fuse.

本発明に係る温度ヒューズでは、リード導体の先端部に設けた折り曲げ凸部またはリード導体先端に設けた折り曲げ凸部を堰とし可溶合金片端近傍にもフラックスを充分な厚みで付着させることができるから、溶融合金の両側への分断球状化を迅速に生じさせ得、迅速な作動を保証できる。
この場合、リード導体を薄くしても前記の堰を良好に設けることができ、特に、フィルムタイプ薄型温度ヒューズに対しては、上側樹脂フィルムの湾曲封着に基づき発生する曲げ反力のリード導体負担分をリード導体の薄肉化・曲げ剛性の低減により軽減できるので、リード導体と可溶合金片との接合界面を安定に保持でき、安定な作動性を保証できる。
In the thermal fuse according to the present invention, the folding protrusion provided at the leading end portion of the lead conductor or the bending protruding portion provided at the leading end of the lead conductor can be used as a weir to allow the flux to adhere to the vicinity of one end of the fusible alloy. Therefore, the split spheroidization on both sides of the molten alloy can be caused quickly, and the rapid operation can be guaranteed.
In this case, even if the lead conductor is thin, the above-mentioned weir can be satisfactorily provided. Especially for the film type thin thermal fuse, the lead conductor of the bending reaction force generated based on the curved sealing of the upper resin film. Since the burden can be reduced by reducing the thickness of the lead conductor and reducing the bending rigidity, the joint interface between the lead conductor and the soluble alloy piece can be stably maintained, and stable operability can be guaranteed .

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1の(イ)は本発明に係る薄型温度ヒューズの一実施例の一部を断面で示す平面図、図1の(ロ)は図1の(イ)におけるローロ断面図である。
図1において、1,1は一対の扁平リード導体であり、先端から所定の距離を隔てた箇所に折り曲げにより凸部11を設けてある。2は両扁平リード導体1,1の先端部の上面間に溶接等により接合した可溶合金片であり、溶接にはスポット抵抗溶接、レーザ溶接等を使用できる。3はフラックスであり、可溶合金片2及び可溶合金片端からリード導体の折り曲げ凸部11に至る部分に付着してあり、凸部11をフラックスの塗布に対する堰として使用し可溶合金片12からリード導体の折り曲げ凸部11に至る部分のフラックス被覆厚みを充分に厚くしてある。41は下側樹脂フィルム、42は上側樹脂フィルムであり、前記両扁平リード導体1,1の前半部と可溶合金片2とをこれらの樹脂フィルム41,42で挾み、上側樹脂フィルム42を出っ張った被覆フラックス3上で湾曲させた状態で周囲部を水平保持の下側樹脂フィルム41に封着してある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 (a) is a plan view showing a part of an embodiment of a thin thermal fuse according to the present invention in section, and FIG. 1 (b) is a cross-sectional view of FIG.
In FIG. 1, reference numerals 1 and 1 denote a pair of flat lead conductors, which are provided with a convex portion 11 by bending at a predetermined distance from the tip. Reference numeral 2 denotes a fusible alloy piece joined by welding or the like between the top surfaces of the tip portions of the flat lead conductors 1 and 1, and spot resistance welding, laser welding, or the like can be used for welding. Reference numeral 3 denotes a flux, which is attached to the portion of the fusible alloy piece 2 and the fusible alloy piece from the end of the lead conductor to the bent convex portion 11 of the lead conductor, and the convex portion 11 is used as a weir for the application of the flux. The flux coating thickness of the portion from the lead conductor to the bent convex portion 11 is made sufficiently thick. 41 is a lower resin film, and 42 is an upper resin film. The upper half of the flat lead conductors 1 and 1 and the soluble alloy piece 2 are sandwiched between these resin films 41 and 42, and the upper resin film 42 is formed. The peripheral portion is sealed to the lower resin film 41 that is horizontally held while being curved on the protruding coating flux 3.

図2の(イ)は本発明に係る薄型温度ヒューズの上記とは別の実施例の一部を断面で示す平面図、図2の(ロ)は図2の(イ)におけるローロ断面図である。
図2において、41は下側樹脂フィルムである。1,1は一対の扁平リード導体であり、前半部を下側樹脂フィルム41の下面に固着すると共にリード導体先端から所定の距離を隔てた位置において上面が下側樹脂フィルム面にほぼ面一の凸部101に、この凸部101の後端部を凸部11に一挙に膨出加工して下側樹脂フィルム41の上面側に現出させ、下側樹脂フィルム41と扁平リード導体1との全界面を融着や接着剤により接合してある。2は可溶合金片であり、リード導体現出部のうちの下側樹脂フィルム上面と実質的に面一の部分101に溶接、例えばスポット抵抗溶接、レーザ溶接等により接続してある。3はフラックスであり、可溶合金片2及び可溶合金片からリード導体の凸部11に至る部分に付着してあり、凸部11をフラックスの堰として使用し、可溶合金片2からリード導体の凸部11に至る部分のフラックス被覆厚みを充分に厚くしてある。42は上側樹脂フィルムであり、出っ張った被覆フラックス2上に湾曲させた状態で周囲部を水平保持の下側樹脂フィルム41に封着してある。
FIG. 2 (a) is a plan view showing a part of another embodiment of the thin thermal fuse according to the present invention different from the above, and FIG. 2 (b) is a cross-sectional view of FIG. is there.
In FIG. 2, 41 is a lower resin film. Reference numerals 1 and 1 denote a pair of flat lead conductors, the front half of which is fixed to the lower surface of the lower resin film 41 and the upper surface thereof is substantially flush with the lower resin film surface at a predetermined distance from the tip of the lead conductor. The rear end portion of the convex portion 101 is bulged into the convex portion 11 at a stroke so as to appear on the upper surface side of the lower resin film 41, and the lower resin film 41 and the flat lead conductor 1 are All interfaces are joined by fusion or adhesive. Reference numeral 2 denotes a fusible alloy piece, which is connected to a portion 101 substantially flush with the upper surface of the lower resin film of the lead conductor appearing portion by welding, for example, spot resistance welding, laser welding or the like. Reference numeral 3 denotes a flux, which is attached to a portion from the fusible alloy piece 2 and the fusible alloy piece to the convex portion 11 of the lead conductor, and the convex portion 11 is used as a weir of the flux, and the lead from the fusible alloy piece 2 The flux coating thickness in the portion reaching the convex portion 11 of the conductor is made sufficiently thick. Reference numeral 42 denotes an upper resin film, which is sealed on the lower resin film 41 that is horizontally held in a state of being curved on the protruding coating flux 2.

図2に示した実施例では、リード導体1の下側樹脂フィルム上面への部分的な現出を膨出加工ににより行い、その現出箇所の両サイドを不加工としているが、図3の(イ)(平面図)及び(ロ)〔図3の(イ)におけるロ−ロ断面図〕に示すように、リード導体先端の近傍位置から所定の距離を隔てた位置までを上面が下側樹脂フィルム41の上面とほぼ面一のランド部101aに、この後方側を凸部11aに一挙に膨出加工し、水密性確保のために下側樹脂フィルム41の裏面に補助樹脂フィルム43を融着や接着剤により貼着することもできる。あるいは、図4の(イ)(平面図)及び(ロ)〔図4の(イ)におけるロ−ロ断面図〕に示すように、リード導体先端から所定の距離を隔てた位置までを上面が下側樹脂フィルム41の上面とほぼ面一のリード導体全巾にわたるランド部101bに、この後方側をリード導体全巾にわたる折り曲げ凸部11bに一挙に曲げ加工し、水密性確保のために下側樹脂フィルム41の裏面に補助樹脂フィルム43を融着や接着剤により貼着することもできる。   In the embodiment shown in FIG. 2, partial appearance of the lead conductor 1 on the upper surface of the lower resin film is performed by bulging, and both sides of the appearance are not processed. As shown in (a) (plan view) and (b) (roll cross-sectional view in (b) of FIG. 3), the upper surface is on the lower side to a position separated from the position near the tip of the lead conductor by a predetermined distance. The land 101a is substantially flush with the upper surface of the resin film 41, and the rear side is bulged into a convex portion 11a. The auxiliary resin film 43 is melted on the back surface of the lower resin film 41 to ensure water tightness. It can also be attached by adhesion or adhesive. Alternatively, as shown in (a) (plan view) and (b) of FIG. 4 (roro sectional view in (a) of FIG. 4), the upper surface extends to a position separated by a predetermined distance from the tip of the lead conductor. In order to ensure watertightness, the rear side of the lower resin film 41 is bent to a land portion 101b that is substantially flush with the upper surface of the lead conductor, and the rear side is bent into a bent convex portion 11b that extends over the entire width of the lead conductor. The auxiliary resin film 43 can also be adhered to the back surface of the resin film 41 by fusion or an adhesive.

この補助樹脂フィルム43は、図2における補助樹脂フィルムが存在しない場合のリード導体先端間の絶縁強度の不足を補完する効果も奏する。   The auxiliary resin film 43 also has an effect of supplementing the lack of insulation strength between the lead conductor tips when the auxiliary resin film in FIG. 2 is not present.

図1〜図4に示したフィルムタイプの薄型温度ヒューズにおいては、可溶合金片2の厚み中心が扁平リード導体1の厚み中心よりも上側に位置された状態で扁平リード導体1,1間に可溶合金片2が接続され、可溶合金片及びその近傍のリード導体部分にフラックス3が付着され、上側樹脂フィルム42がその内面側の出っ張り内容物上で湾曲されるから、反りが発生する。この場合、出っ張り被覆フラックスに湾曲状態で当接された当初の上側樹脂フィルム42の曲げ半径をr’、上側樹脂フィルム42の曲げ剛性を(EI)’、上側樹脂フィルムを除く温度ヒューズボディ部分の曲げ剛性を(EI)とすれば、その温度ヒューズボディ部分に作用する曲げ反力mは、前記したとおり   In the film-type thin thermal fuse shown in FIGS. 1 to 4, the fusible alloy piece 2 is positioned between the flat lead conductors 1, 1 with the thickness center of the fusible alloy piece 2 positioned above the flat lead conductor 1. Since the fusible alloy piece 2 is connected, the flux 3 is attached to the fusible alloy piece and the lead conductor portion in the vicinity thereof, and the upper resin film 42 is curved on the protruding contents on the inner surface side, so that warpage occurs. . In this case, the bending radius of the original upper resin film 42 in contact with the protruding coating flux in a curved state is r ′, the bending rigidity of the upper resin film 42 is (EI) ′, and the temperature fuse body portion excluding the upper resin film If the bending stiffness is (EI), the bending reaction force m acting on the thermal fuse body portion is as described above.

m=1/{r’〔1+(EI)’/(EI)〕}   m = 1 / {r ′ [1+ (EI) ′ / (EI)]}

で与えられる。
而るに、上記フラックス3の塗布に対する堰を扁平リード導体の折り曲げ凸部11,11aまたは11bにより設けてあり、扁平リード導体1の厚みを100μmといった薄肉にしても、単純な曲げ加工で凸部11,11aまたは11bを形成でき、亀裂の発生を排除できる。尤も、図2に示した実施例の凸部11においては、リード導体1を下側樹脂フィルム41の上面にほぼ面一の凸部101に膨出加工する際に同時に加工するが、凸部11が小さく膨出加工代の増加を少にとどめることができるから、この場合も、リード導体の厚みを薄くしても、亀裂の発生を充分に防止できる。
従って、温度ヒューズボディ部分の曲げ剛性(EI)を小にしてその温度ヒューズボディ部分に作用する曲げ反力mを低減でき、曲げ反力mに基づき扁平リード導体と可溶合金片との接合界面に作用する剥離力を軽減でき、その接合界面の安定性を高めることができる。
Given in.
Therefore, the weir for the application of the flux 3 is provided by the bent convex portion 11, 11 a or 11 b of the flat lead conductor, and even if the flat lead conductor 1 is made as thin as 100 μm, the convex portion is simply bent. 11, 11a or 11b can be formed, and the occurrence of cracks can be eliminated. However, in the convex portion 11 of the embodiment shown in FIG. 2, the lead conductor 1 is processed at the same time when the lead resin 1 is bulged to the convex portion 101 on the upper surface of the lower resin film 41. Therefore, even if the lead conductor is made thin, cracks can be sufficiently prevented from occurring.
Therefore, the bending stiffness (EI) of the thermal fuse body portion can be reduced to reduce the bending reaction force m acting on the thermal fuse body portion, and the bonding interface between the flat lead conductor and the fusible alloy piece based on the bending reaction force m. It is possible to reduce the peeling force acting on the film and to increase the stability of the bonding interface.

図1および図2に示したフィルムタイプの薄型温度ヒューズにおいて、上側樹脂フィルム42の厚みを下側樹脂フィルム41の厚みよりも薄くして(EI)’を小さくし、上記曲げ反力mの軽減を図り、その接合界面の安定性を一層に高めることができる。   In the film-type thin thermal fuse shown in FIGS. 1 and 2, the upper resin film 42 is made thinner than the lower resin film 41 to reduce (EI) ′, thereby reducing the bending reaction force m. Therefore, the stability of the bonding interface can be further enhanced.

また、図3および図4に示したフィルムタイプの薄型温度ヒューズにおいては、上側樹脂フィルム42の厚みを下側樹脂フィルム41と補助樹脂フィルム43の総厚みよりも薄くすることにより(EI)’を小さくし、上記曲げ反力mの軽減を図り、その接合界面の安定性を一層に高めることができる。   In the film-type thin thermal fuse shown in FIGS. 3 and 4, (EI) ′ is reduced by making the upper resin film 42 thinner than the total thickness of the lower resin film 41 and the auxiliary resin film 43. It is possible to reduce the bending reaction force m and further improve the stability of the joint interface.

上記何れの実施例においても、樹脂フィルム同士の封着は、高周波溶着、超音波溶着、接着剤により行うことができ、リード導体と樹脂フィルムとの封着は、フィルム外面加圧下でのリード導体の電磁誘導加熱やヒートプレート接触加熱等により行うことができる。   In any of the above embodiments, the sealing between the resin films can be performed by high-frequency welding, ultrasonic welding, or an adhesive, and the sealing between the lead conductor and the resin film is performed by pressing the film outer surface under pressure. It can be performed by electromagnetic induction heating or heat plate contact heating.

図5の(イ)は本発明に係る薄型温度ヒューズの上記とは別の実施例を示す平面図、図5の(ロ)は図5の(イ)におけるローロ断面図である。
図5において、1,1は一対の扁平リード導体であり、先端から所定の距離を隔てた位置に折り曲げ凸部11を設けてある。2は可溶合金片であり、リード導体先端部の間に溶接、例えばスポット抵抗溶接、レーザ溶接等により接続してある。3はフラックスであり、可溶合金片2及び可溶合金片2からリード導体の折り曲げ凸部11に至る部分に付着してあり、凸部11をフラックスの堰として使用し可溶合金片2の端からリード導体の折り曲げ凸部11に至る部分のフラックス被覆厚みを充分に厚くしてある。40は可溶合金片及びフラックス並びにリード導体端部を包囲して設けた樹脂被覆層であり、例えばエポキシ樹脂液等の二液型硬化性樹脂液への浸漬塗装により被覆してある。
FIG. 5 (a) is a plan view showing another embodiment of the thin thermal fuse according to the present invention, and FIG. 5 (b) is a cross-sectional view of FIG. 5 (b).
In FIG. 5, reference numerals 1 and 1 denote a pair of flat lead conductors, which are provided with a bent convex portion 11 at a position separated from the tip by a predetermined distance. Reference numeral 2 denotes a fusible alloy piece, which is connected between the lead conductor tips by welding, for example, spot resistance welding or laser welding. Reference numeral 3 denotes a flux, which is attached to the fusible alloy piece 2 and the portion extending from the fusible alloy piece 2 to the bent convex portion 11 of the lead conductor, and the convex portion 11 is used as a flux weir. The flux coating thickness in the portion from the end to the bent convex portion 11 of the lead conductor is made sufficiently thick. Reference numeral 40 denotes a resin coating layer that surrounds the fusible alloy piece, the flux, and the end portion of the lead conductor, and is coated by immersion coating in a two-component curable resin solution such as an epoxy resin solution.

図5に示した実施例では、力学的にフラックスのヤング率が極めて小さいので、被覆樹脂40と可溶合金片2−リード導体1,1との複合体として取扱うことができ、被覆樹脂側の曲げ剛性を(EI)’、可溶合金片−リード導体側の曲げ剛性を(EI)とし、両者のヤング率や断面積や熱膨張係数の差異のために温度変化時に発生する曲げモーメントをMとすれば、可溶合金片−リード導体側が負担する曲げモーメントmは   In the embodiment shown in FIG. 5, the Young's modulus of the flux is mechanically extremely small, so that it can be handled as a composite of the coating resin 40 and the soluble alloy piece 2-lead conductors 1 and 1, and on the coating resin side. The bending rigidity is (EI) ', the bending rigidity of the fusible alloy piece-lead conductor side is (EI), and the bending moment generated when the temperature changes due to the difference in Young's modulus, cross-sectional area, and thermal expansion coefficient of M Then, the bending moment m borne by the fusible alloy piece-lead conductor side is

m=M/{1+〔(EI)’/(EI)〕}   m = M / {1 + [(EI) '/ (EI)]}

で与えられる。
而るに、上記フラックス3に対する堰を扁平リード導体の折り曲げ凸部11により設けてあり、扁平リード導体1の厚みを100μmといった薄肉にしても凸部の折り曲げが単純な曲げ加工であるために亀裂の発生を排除でき、従って、可溶合金片−リード導体側の曲げ剛性(EI)を小にしてそのリード導体に作用する曲げモーメントmを低減でき、曲げモーメントmに基づき扁平リード導体と可溶合金片との接合界面に作用する剥離力を軽減でき、その接合界面の安定性を高めることができる。
Given in.
Therefore, the weir for the flux 3 is provided by the bent convex portion 11 of the flat lead conductor, and even if the thickness of the flat lead conductor 1 is as thin as 100 μm, the convex portion is bent by a simple bending process. Therefore, the bending moment m acting on the lead conductor can be reduced by reducing the bending rigidity (EI) on the side of the soluble alloy piece-lead conductor, and the flat lead conductor can be dissolved with the flat lead conductor based on the bending moment m. The peeling force acting on the bonding interface with the alloy piece can be reduced, and the stability of the bonding interface can be improved.

上記において、折り曲げ凸部11の両脇上端にアールを付すると、その上端がエッジである場合の上側樹脂フィルムの局所的損傷、被覆樹脂の表面張力減少による局所的薄肉化の懸念を払拭できる。   In the above description, if the upper ends of both sides of the bent convex portion 11 are rounded, it is possible to eliminate concerns about local damage to the upper resin film when the upper end is an edge and local thinning due to a decrease in the surface tension of the coating resin.

図6の(イ)は本発明に係る薄型温度ヒューズの上記とは別の実施例の一部を断面で示す平面図、図6の(ロ)は図6の(イ)におけるローロ断面図である。
図6において、1,1は一対の扁平リード導体であり、先端を上向き折り曲げ凸部110に加工してある。2は両扁平リード導体1,1先端の上向き折り曲げ凸部110の前面間に溶接等により接合したヒューズエレメントであり、レーザ溶接等を使用できる。3はフラックスであり、リード導体先端の上向き折り曲げ凸部110をフラックスの堰として使用しフラックス被覆厚みを充分に厚くしてある。41は下側樹脂フィルム、42は上側樹脂フィルムであり、前記両扁平リード導体1,1の前半部とヒューズエレメント2とをこれらの樹脂フィルム41,42で挾み、上側樹脂フィルム42を出っ張った被覆フラックス3上に湾曲させた状態で周囲部を水平保持の下側樹脂フィルム41に封着してある。
6 (a) is a plan view showing a part of another embodiment of the thin thermal fuse according to the present invention different from the above, and FIG . 6 (b) is a cross-sectional view of FIG. 6 (a). is there.
In FIG. 6, reference numerals 1 and 1 denote a pair of flat lead conductors whose tips are processed into upward bent convex portions 110. Reference numeral 2 denotes a fuse element joined by welding or the like between the front surfaces of the upward bent convex portions 110 of both flat lead conductors 1 and 1, and laser welding or the like can be used. Reference numeral 3 denotes a flux, which uses the upward bent convex portion 110 at the tip of the lead conductor as a flux weir to sufficiently increase the flux coating thickness. 41 is a lower resin film, and 42 is an upper resin film. The upper half of the flat lead conductors 1 and 1 and the fuse element 2 are sandwiched between these resin films 41 and 42, and the upper resin film 42 is projected. The periphery is sealed to the lower resin film 41 that is horizontally held in a state of being curved on the coating flux 3.

図6に示した実施例では、上記フラックス3に対する堰110を扁平リード導体先端の上向き折り曲げにより設けてあり、扁平リード導体の厚みを100μmといった薄肉にしても単純な曲げ加工であるために亀裂の発生を排除できる。従って、図1に示した実施例と同様に、温度ヒューズボディ部分の曲げ剛性(EI)を小にしてその温度ヒューズボディ部分に作用する曲げ反力mを低減でき、曲げ反力mに基づき扁平リード導体と可溶合金片との接合界面に作用する剥離力を軽減でき、その接合界面の安定性を高めることができる。 In the embodiment shown in FIG. 6 , the weir 110 for the flux 3 is provided by upward bending of the tip of the flat lead conductor, and even if the thickness of the flat lead conductor is as thin as 100 μm, it is a simple bending process. Occurrence can be eliminated. Accordingly, similarly to the embodiment shown in FIG. 1, the bending stiffness (EI) of the thermal fuse body portion can be reduced to reduce the bending reaction force m acting on the thermal fuse body portion. The peeling force acting on the joint interface between the lead conductor and the soluble alloy piece can be reduced, and the stability of the joint interface can be enhanced.

図6に示す実施例においても、上側樹脂フィルム42の厚みを下側樹脂フィルム41の厚みよりも薄くすることができる。 Also in the embodiment shown in FIG. 6 , the thickness of the upper resin film 42 can be made thinner than the thickness of the lower resin film 41.

上記において、リード導体先端の上向き折り曲げ凸部110の両脇上端にアールを付すると、その上端がエッジである場合の上側樹脂フィルムの局所的損傷、被覆樹脂の表面張力減少による局所的薄肉化の懸念を払拭できる。   In the above, if the upper ends of both sides of the upward bent convex portion 110 of the lead conductor tip are rounded, local damage to the upper resin film when the upper end is an edge, and local thinning due to a decrease in the surface tension of the coating resin Can dispel concerns.

本発明に係る樹脂モールドタイプの温度ヒューズは、図5に示したもの以外に、可溶合金片端をリード導体先端の上向き折り曲げ凸部の前面に溶接等により接続し、可溶合金片及びフラックス並びにリード導体端部を包囲する樹脂被覆層、例えばエポキシ樹脂被覆層を設けることによって実施することもできる。   In addition to the resin mold type thermal fuse according to the present invention, the fusible alloy piece end is connected to the front surface of the upward bent convex part of the lead conductor tip by welding or the like in addition to the one shown in FIG. It can also be carried out by providing a resin coating layer surrounding the end portion of the lead conductor, for example, an epoxy resin coating layer.

本発明において、温度ヒューズボディの巾を温度ヒューズボディ外部のリード導体部分の巾以下とすることができる。また、温度ヒューズボディの巾両端側では樹脂フィルム同士の封着代や絶縁カバープレートの絶縁基体への封着代を可及的に大きくすることが望ましい。この場合、図14の(イ)に示すように、温度ヒューズボディ内部のリード導体部分の巾w1を温度ヒューズボディ外部のリード導体部分の巾w2よりも狭くすることができる。   In the present invention, the width of the thermal fuse body can be made equal to or smaller than the width of the lead conductor portion outside the thermal fuse body. Further, it is desirable that the sealing allowance between the resin films and the sealing allowance of the insulating cover plate to the insulating base are made as large as possible at the both ends of the temperature fuse body. In this case, as shown in FIG. 14A, the width w1 of the lead conductor portion inside the thermal fuse body can be made narrower than the width w2 of the lead conductor portion outside the thermal fuse body.

本発明において、フラックスを付着するには、フラックスを加熱溶融して可溶合金片を包含する外郭で付着させ、この付着フラックスを表面張力と界面張力との作用下、堰に至るまで流延させて自然冷却により凝固させる。この場合、温度ヒューズボディ内部のリード導体部分の巾を可溶合金片の巾よりも広くすることによりフラックスに対する堰としての凸部の巾を可溶合金片の巾よりも広くし、可溶合金片巾を包含する巾のフラックスを凸部で良好に堰止めるようにしてある。   In the present invention, in order to adhere the flux, the flux is heated and melted to adhere to the outer shell including the soluble alloy piece, and this adhesion flux is cast to reach the weir under the action of surface tension and interfacial tension. And solidify by natural cooling. In this case, the width of the lead conductor portion in the temperature fuse body is made wider than the width of the fusible alloy piece so that the width of the convex portion as a weir against the flux is wider than the width of the fusible alloy piece. The flux having a width including the half width is satisfactorily blocked by the convex portion.

上記扁平リード導体は、温度ヒューズボディ内部のリード導体部分が扁平であればよく、全体が扁平で、図7の(イ)に示すように内側の導体部分の巾をw1、外部の導体部分の巾をw2として、w1<w2としたもの、図7の(ロ)に示すように、w1=w2としたもの、図7の(ハ)に示すように、w1>w2としたものの外、図7の(ニ)に示すように、丸線材の前半部を圧延し、この圧延部分を内側リード導体部分とするものも使用できる。折り曲げにより凸部11を設けるものについても同様である。
扁平リード導体先端の上向き折り曲げ凸部110は、可溶合金片端を接続でき、かつフラックスに対する堰となし得るものであれば、付随的な加工が施されていてもよく、例えば、図7の(ホ)に示すような水平かぎ部1101や図7の(ヘ)に示すような折り返し部1102を付加することもできる。
また、折り曲げ凸部11は、通常図7の(ト)に示すような三角形凸部とされるが、図7の(チ)に示すような方形凸部、図7の(リ)に示すような台形凸部とすることもできる。
また、図7の(ヌ)に示すように、切出し曲げにより凸部1100を設けたものの使用も可能である。
The flat lead conductor only needs to have a flat lead conductor portion inside the thermal fuse body. The flat lead conductor is flat as a whole, and the width of the inner conductor portion is w1, as shown in FIG. The width is w2, w1 <w2, w1 = w2 as shown in FIG. 7B, and w1> w2 as shown in FIG. As shown in 7 (d), it is also possible to use the one in which the first half of the round wire rod is rolled and this rolled portion is used as the inner lead conductor portion. The same applies to the case where the convex portion 11 is provided by bending.
The upward bending convex portion 110 at the tip of the flat lead conductor may be subjected to ancillary processing as long as it can connect one end of a fusible alloy and can serve as a weir against the flux. It is also possible to add a horizontal hook portion 1101 as shown in (e) or a folded portion 1102 as shown in (f) of FIG.
In addition, the bent convex portion 11 is usually a triangular convex portion as shown in FIG. 7G, but a rectangular convex portion as shown in FIG. 7H, as shown in FIG. It can also be a trapezoidal convex part.
In addition, as shown in FIG. 7 (n), it is possible to use one provided with a convex portion 1100 by cutting and bending.

上記リード導体には、Cu、Fe等の使用も可能であるが、溶接、特にスポット抵抗溶接が容易なNiを使用することが好ましい。また、リード導体の少なくとも先端部には、可溶合金片との溶接の容易化、電極との溶接の容易化のために、Sn,Cu,Ag,Auの何れか、またはこれらの金属を主成分とする合金を被覆しておくことが好ましい。特に、Niリード導体の場合、電極への固着をスポット抵抗溶接により行うとき、Sn皮膜がナゲットでの熱的衝撃を熱的、応力的に緩和するから、セラミックス製絶縁基体のクラック防止の保証に有効である。     Although Cu, Fe, or the like can be used for the lead conductor, it is preferable to use Ni which is easy to weld, particularly spot resistance welding. In addition, at least the tip of the lead conductor is mainly made of Sn, Cu, Ag, Au, or a metal thereof for the purpose of facilitating welding with a fusible alloy piece and facilitating welding with an electrode. It is preferable to coat the alloy as a component. In particular, in the case of a Ni lead conductor, the Sn coating relaxes the thermal shock at the nugget in terms of heat and stress when it is fixed to the electrode by spot resistance welding, thus ensuring the prevention of cracks in the ceramic insulating substrate. It is valid.

上記の上側樹脂フィルム、下側樹脂フィルムや補助樹脂フィルムとしては、ポリエチレンテレフタレ−トが好適であるが、ポリエチレンナフタレ−ト、ポリアミド、ポリイミド、ポリブチレンテレフタレ−ト、ポリフェニレンオキシド、ポリエチレンサルファイド、ポリサルホン等のエンジニアリングプラスチック、ポリアセタ−ル、ポリカ−ボネ−ト、ポリフェニレンスルフィド、ポリオキシベンゾイル、ポリエ−テルエ−テルケトン、ポリエ−テルイミド等のエンジニアリングプラスチックやポリプロピレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリメチルメタクリレ−ト、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、エチレンポリテトラフルオロエチレン共重合体、エチレン酢酸ビニル共重合体(EVA)、AS樹脂、ABS樹脂、アイオノマ−、AAS樹脂、ACS樹脂等の熱可塑性樹脂のフィルムも使用できる。   As the above upper resin film, lower resin film and auxiliary resin film, polyethylene terephthalate is suitable, but polyethylene naphthalate, polyamide, polyimide, polybutylene terephthalate, polyphenylene oxide, polyethylene sulfide. Engineering plastics such as polysulfone, polyacetal, polycarbonate, polyphenylene sulfide, polyoxybenzoyl, polyetheretherketone, polyetherimide, etc., polypropylene, polyvinyl chloride, polyvinyl acetate, polymethyl Methacrylate, polyvinylidene chloride, polytetrafluoroethylene, ethylene polytetrafluoroethylene copolymer, ethylene vinyl acetate copolymer (EVA), AS resin, ABS Fat, ionomer -, AAS resins, films of thermoplastic resins such as ACS resins can also be used.

上記電極は、Agペースト、Cuペースト、Auペースト、Ptペースト、Ag−Ptペースト、Ag−Pdペースト等の導電ペーストの塗布・焼き付けの外、金属箔積層絶縁基板の金属箔の印刷・エッチング等により形成することもできる。   The electrode is formed by applying or baking a conductive foil such as Ag paste, Cu paste, Au paste, Pt paste, Ag-Pt paste, Ag-Pd paste, or printing / etching the metal foil of the metal foil laminated insulating substrate. It can also be formed.

上記可溶合金片には、丸線材または圧延線材を使用でき、圧延線材の巾は扁平リード導体の先端の巾にほぼ等しくすることができる。
可溶合金片の融点は機器の保護温度に応じて選定されるが、電池用の場合、固相線温度が80℃〜120℃、液相線温度が90℃〜120℃である合金が使用される。例えばIn50〜55%、Sn25〜40%、残部Biの合金、In30〜75%、Sn5〜50%、Cd0.5〜25%の合金、更にこの合金組成にCu、Ag、Au、Al、Biのうちの1種または2種以上を合計0.1〜5%添加した合金、Bi48〜53%、Pb28〜33%、Sn13〜19%の合金、In0.5〜4%、Bi50〜54%、Pb30〜34%、Sn14〜18%の合金等を例示できる。
可溶合金片は母材の鋳造または押し出しによりロッドを得、このロッドを線引きし、更には圧延する線引き法乃至は線引き圧延法により製造できる。また、ドラム内の冷却液をドラムの回転により層状になし、ノズルからの溶融合金のジェットをこの回転液層中にその回転周速と同速で入射させて冷却凝固させる回転液紡糸法を使用することもできる。
A round wire or a rolled wire can be used for the soluble alloy piece, and the width of the rolled wire can be made substantially equal to the width of the tip of the flat lead conductor.
The melting point of the fusible alloy piece is selected according to the protection temperature of the device, but for batteries, an alloy having a solidus temperature of 80 ° C to 120 ° C and a liquidus temperature of 90 ° C to 120 ° C is used. Is done. For example, In50 to 55%, Sn25 to 40%, remaining Bi alloy, In30 to 75%, Sn5 to 50%, Cd0.5 to 25% alloy, and the alloy composition of Cu, Ag, Au, Al, Bi Alloy in which one or more of them are added in a total of 0.1 to 5%, Bi 48 to 53%, Pb 28 to 33%, Sn 13 to 19% alloy, In 0.5 to 4%, Bi 50 to 54%, Pb 30 An alloy of ˜34% and Sn14˜18% can be exemplified.
The fusible alloy piece can be produced by a drawing method or drawing method in which a rod is obtained by casting or extruding a base material, the rod is drawn, and further rolled. In addition, the rotating liquid spinning method is used in which the cooling liquid in the drum is layered by rotating the drum, and the molten alloy jet from the nozzle enters the rotating liquid layer at the same speed as the peripheral speed of the rotation to cool and solidify. You can also

近来、可溶合金片としては環境衛生上、PbやCd等の生体系に有害金属を含まない組成を使用することが要請されており、この要請を満たして前記線引き法乃至線引き圧延法や回転紡糸法により製線可能な組成としては、[A](1)43%<Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%<Sn≦44%,55%<In≦74%,1%≦Bi<20%、(4)46%<Sn≦70%,18%≦In<48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In<37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%<Sn≦60%,20%≦In<50%,12%<Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn−Bi系合金の組成[B](16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn−Sb系合金の組成[C](18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn系合金の組成[D](20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Bi系合金の組成、[E](22)50%<Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn系合金の組成[F](24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加等のIn系合金の組成等を挙げることができ、これらのうちから温度ヒューズの動作温度に適合した融点の組成を選定することが好ましい。   Recently, as a soluble alloy piece, it has been required to use a composition containing no harmful metal in a biological system such as Pb or Cd for environmental hygiene. The drawing method or the drawing rolling method or the rotation method satisfies this requirement. The composition that can be produced by the spinning method is [A] (1) 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50 % ≦ In ≦ 55%, remaining Bi, (3) 25% <Sn ≦ 44%, 55% <In ≦ 74%, 1% ≦ Bi <20%, (4) 46% <Sn ≦ 70%, 18% ≦ In <48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In <37%, remaining Bi (Bi57.5%, In25.2%, Sn17. Range of Bi ± 2%, In and Sn ± 1% based on 3%, Bi54%, In29.7% and Sn16.3% respectively (6) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, remaining Bi, (7) 25% <Sn ≦ 60%, 20% ≦ In <50%, 12% <Bi ≦ 33 %, (8) One or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P are added to 100 parts by weight of any one of (1) to (7) in a total of 0.01. ˜7 parts by weight added, (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, remaining Bi, (10) 47% ≦ Sn ≦ 49%, 51% ≦ In ≦ 53% 100 3 to 5 parts by weight of Bi is added to parts by weight, (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12%, remaining In, (12) 0.3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, (13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35%, remaining In, (14) any one of (9) to (13) 100 weight In addition, one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P are added in a total of 0.01 to 7 parts by weight, (15) 10% ≦ Sn ≦ 25%, 48 % ≦ In ≦ 60%, adding 100 parts by weight of the remaining Bi to one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P in a total of 0.01 to 7 parts by weight In-Sn-Bi based alloy composition [B] (16) 30% ≦ Sn ≦ 70%, 0.3% ≦ Sb ≦ 20%, remaining Bi, (17) to 100 parts by weight of (16) Composition [C] of Bi—Sn—Sb-based alloy such as Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P or a total of 0.01 to 7 parts by weight of one or more added. 18) 52% ≦ In ≦ 85%, remaining Sn, (19) Ag, Au, Cu, Ni, Pd, Pt, Sb, 100 parts by weight of (18) In-Sn based alloy composition [D] (20) 45% ≦ Bi ≦ 55%, remaining In, (addition of 0.01 to 7 parts by weight in total of one or more of a, Ge, P) 21) A total of 0.01 to 7 parts by weight of one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P is added to 100 parts by weight of the composition of (20), etc. [E] (22) 50% <Bi ≦ 56%, remaining Sn, (23) In 100 parts by weight of (22), Ag, Au, Cu, Ni, Pd, Pt, Ga , Ge, P, or a total of 0.01 to 7 parts by weight of Bi-Sn based alloy composition [F] (24) In 100 parts by weight of In, Au, Bi, Cu, Ni , Pd, Pt, Ga, Ge, P, or a total of 0.01 to 7 parts by weight of one or more of them, (25) 90% ≦ In ≦ 99.9%, Add one or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P to 100 parts by weight of 0.1% ≦ Ag ≦ 10% in total 0.01 to 7 parts by weight, (26) One or two of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P in 100 parts by weight of 95% ≦ In ≦ 99.9% and 0.1% ≦ Sb ≦ 5% The composition of In-based alloys such as a total addition of 0.01 to 7 parts by weight can be mentioned above, and it is preferable to select a composition having a melting point suitable for the operating temperature of the thermal fuse.

上記フラックスには、天然ロジン、変性ロジン(水添ロジン、不均化ロジン、重合ロジン等)及びこれらの精製ロジンにジエチルアミンの塩酸塩、ジエチルアミンの臭化水素酸塩、アジピン酸等の有機酸等を添加したものを使用できる。   The above flux includes natural rosin, modified rosin (hydrogenated rosin, disproportionated rosin, polymerized rosin, etc.) and purified rosin, diethylamine hydrochloride, diethylamine hydrobromide, organic acids such as adipic acid, etc. Can be used.

上記接着剤には、通常エポキシ樹脂が使用されるが、フエノール樹脂やポリウレタン等の硬化性樹脂も使用可能である。   An epoxy resin is usually used for the adhesive, but a curable resin such as a phenol resin or polyurethane can also be used.

上記下側樹脂フィルム、上側樹脂フィルムや補助樹脂フィルムの寸法は、通常長辺が5.0〜15.0mm,短辺が3.0〜5.0mmとされる。下側樹脂フィルムの厚みは0.2〜0.4mmとされ、上側樹脂フィルムの厚みは下側樹脂フィルムの厚みに等しいか、50μm〜80μm薄くされる。
上記リード導体の寸法は、通常外側部分の巾が2.0〜4.0mm,内側部分の巾が1.0〜3.0mmとされる。リード導体の厚みは、基板タイプに対しては0.15〜0.3mmとされ、フィルムタイプや樹脂モールドタイプに対しては、0.07〜0.15mmとされる。
The dimensions of the lower resin film, the upper resin film, and the auxiliary resin film are usually 5.0 to 15.0 mm for the long side and 3.0 to 5.0 mm for the short side. The thickness of the lower resin film is 0.2 to 0.4 mm, and the thickness of the upper resin film is equal to the thickness of the lower resin film or 50 μm to 80 μm.
As for the dimensions of the lead conductor, the width of the outer portion is usually 2.0 to 4.0 mm, and the width of the inner portion is 1.0 to 3.0 mm. The thickness of the lead conductor is 0.15 to 0.3 mm for the substrate type, and 0.07 to 0.15 mm for the film type and the resin mold type.

本発明に係る温度ヒューズは二次電池用として使用できる。例えば、図9に示すように、二次電池パックの扁平ケースの側面に装着して電池と負荷との間に直列に挿入させることができる。従って、電池に異常が生じ、電池の発熱により温度ヒューズの可溶合金片がその融点温度、例えば80℃〜100℃内の所定温度に達すると、可溶合金片が溶断されて電池と負荷との間が電気的に遮断され、以後の電池の温度上昇が停止される。従って、電池の異常発熱を未然に防止できる。   The thermal fuse according to the present invention can be used for a secondary battery. For example, as shown in FIG. 9, it can be mounted on the side surface of the flat case of the secondary battery pack and inserted in series between the battery and the load. Therefore, when an abnormality occurs in the battery and the melting alloy piece of the thermal fuse reaches a melting point temperature, for example, a predetermined temperature within 80 ° C. to 100 ° C. due to the heat generation of the battery, the fusible alloy piece is blown, Is electrically interrupted, and the subsequent temperature rise of the battery is stopped. Therefore, abnormal heat generation of the battery can be prevented in advance.

上記において、可溶合金片のジュール発熱を無視できるときは、電池が許容温度Tmに達したときの可溶合金片の温度TxはTmより2℃〜3℃低くなり、可溶合金片の融点を〔Tm−(2℃〜3℃)〕に設定すればよい。
しかしながら、可溶合金片のジュール発熱を無視できないときは、可溶合金片の電気抵抗をR、通電電流をI、機器とヒューズエレメント間の熱抵抗をHとすれば、
In the above, when the Joule heat generation of the fusible alloy piece can be ignored, the temperature Tx of the fusible alloy piece when the battery reaches the allowable temperature Tm is 2 ° C. to 3 ° C. lower than Tm, and the melting point of the fusible alloy piece May be set to [Tm− (2 ° C. to 3 ° C.)].
However, when the Joule heating of the fusible alloy piece cannot be ignored, if the electric resistance of the fusible alloy piece is R, the energization current is I, and the thermal resistance between the device and the fuse element is H,

Tx=Tm−(2℃〜3℃)+HRI Tx = Tm− (2 ° C. to 3 ° C.) + HRI 2

が成立し、可溶合金片の融点を上式に基づき設定することが有効である。 It is effective to set the melting point of the fusible alloy piece based on the above equation.

本発明に係る温度ヒューズにおいては、通電発熱体を付設し、例えば抵抗ペースト(例えば、酸化ルテニウム等の酸化金属粉のペースト)の塗布・焼き付けにより膜抵抗を付設し、電池の異常発熱の原因となる前兆、例えば過充電時の電池電圧の異常上昇を検出し、この検出信号で膜抵抗を通電して発熱させ、この発熱で可溶合金片を溶断させることもできる。
例えば、上記膜抵抗を絶縁基体の上面に設け、この上に耐熱性・熱伝導性の絶縁膜、例えばガラス焼き付け膜を形成し、更に一対の電極を設け、先端に上向き折り曲げ凸部を設けた扁平リード導体を各電極に接続し、両電極間に可溶合金片を接続し、可溶合金片から前記リード導体の先端凸部にわたってフラックスを被覆し、絶縁カバープレートを前記の絶縁基体上に配設し、該絶縁カバープレート周囲を絶縁基体に接着剤により封着することができる。
In the thermal fuse according to the present invention, an energization heating element is attached, and a film resistance is attached by, for example, applying and baking a resistance paste (for example, a paste of metal oxide powder such as ruthenium oxide), which causes abnormal heat generation of the battery. It is also possible to detect an anomaly such as an abnormal increase in battery voltage during overcharging, and to generate heat by energizing the membrane resistance with this detection signal.
For example, the above-mentioned film resistance is provided on the upper surface of the insulating base, a heat-resistant and heat-conductive insulating film such as a glass baking film is formed thereon, a pair of electrodes is provided, and an upward bending convex portion is provided at the tip. A flat lead conductor is connected to each electrode, a fusible alloy piece is connected between both electrodes, a flux is coated from the fusible alloy piece to the tip convex portion of the lead conductor, and an insulating cover plate is placed on the insulating base. It is possible to dispose and seal the periphery of the insulating cover plate to the insulating substrate with an adhesive.

図8は発熱体付き温度ヒューズの使用状態を示す回路図であり、Pは温度ヒューズを、2は可溶合金片を、Rは抵抗体を、ICは異常電圧検出通電回路を、Dはツエナダイオードを、Trはトランジスターを、Eは電池を、Sは充電機をそれぞれ示し、過充電により電池電圧が上昇すると、ツエナダイオードDが降伏導通され、トランジスターTrが導通して抵抗体Rに電流が流され、その抵抗体Rの通電発熱で可溶合金片2が溶断される。前記異常電圧検出通電回路は電池パックに装着した回路板に形成してある。   FIG. 8 is a circuit diagram showing a use state of a thermal fuse with a heating element, P is a thermal fuse, 2 is a fusible alloy piece, R is a resistor, IC is an abnormal voltage detection energizing circuit, and D is a Zener. A diode, Tr represents a transistor, E represents a battery, and S represents a charger. When the battery voltage rises due to overcharging, Zener diode D is turned on and transistor Tr is turned on to cause current to flow through resistor R. The fusible alloy piece 2 is melted by the heat generated by the resistor R. The abnormal voltage detection energization circuit is formed on a circuit board attached to the battery pack.

図1に示す構成のフィルムタイプ薄型ヒューズである。下側樹脂フィルム41及び上側樹脂フィルム42には、長辺7.3mm,短辺3.4mm,厚み188μmのポリエチレンテレフタレートフィルムを使用した。扁平リード導体1には、厚み100μm、リード導体先端から折り曲げ凸部11までの距離2.3mm,凸部11の高さ0.50mm,内側部巾2.6mm,外側部巾3.5mmで、先端部にCu膜を被覆したNi導体を使用し、リード導体間の間隔を0.8mmとした。可溶合金片2には組成がIn52%−Sn36%−Bi12%で、直径0.3mm,長さ4.4mmの丸線材を使用し、フラックス3には、ロジンを主成分とするものを使用し、加熱溶融させたものを両リード導体1,1の凸部11,11間に流延し、冷却凝固させた。
フィルム同士の封着は超音波溶着により行い、リード導体とフィルム間の融着はセラミックチップ加圧下での電磁誘導加熱により行った。
2 is a film-type thin fuse having the configuration shown in FIG. For the lower resin film 41 and the upper resin film 42, a polyethylene terephthalate film having a long side of 7.3 mm, a short side of 3.4 mm, and a thickness of 188 μm was used. The flat lead conductor 1 has a thickness of 100 μm, a distance of 2.3 mm from the lead conductor tip to the bent convex part 11, a height of the convex part 11 of 0.50 mm, an inner part width of 2.6 mm, and an outer part width of 3.5 mm. A Ni conductor with a Cu film coated on the tip was used, and the distance between the lead conductors was 0.8 mm. The fusible alloy piece 2 is composed of a round wire having a composition of In52% -Sn36% -Bi12%, a diameter of 0.3 mm and a length of 4.4 mm, and the flux 3 is composed mainly of rosin. Then, the heat-melted material was cast between the protrusions 11 and 11 of both lead conductors 1 and 1, and cooled and solidified.
Sealing between the films was performed by ultrasonic welding, and fusion between the lead conductor and the film was performed by electromagnetic induction heating under pressure of a ceramic chip.

〔比較例1〕
実施例1に対しリード導体の凸部折り曲げに代えポンチ加工により凸部を形成することを試みたが、厚み100μmのリード導体では亀裂が発生したので、リード導体厚みを300μmにしてポンチ加工により凸部(高さは、実施例1の折り曲げ凸部高さに同じとした)を設けた。これ以外は実施例1と同じとした。
[Comparative Example 1]
In contrast to Example 1, an attempt was made to form a convex portion by punching instead of bending the convex portion of the lead conductor. However, since a crack occurred in the lead conductor having a thickness of 100 μm, the lead conductor thickness was set to 300 μm and the convex portion was formed by punching. (The height is the same as the height of the bent protrusion in Example 1). The rest was the same as Example 1.

実施例1及び比較例1の各試料数を50箇としてリード導体間の抵抗値を測定し、標準偏差を算出して散布度を評価したところ、実施例1の抵抗値のバラツキが比較例1に較べて著しく小さいことが明かになった。
この結果から、実施例、比較例ともフラックス厚みを高くするために堰を設けた点では共通しているが、実施例ではリード導体の厚みを薄くでき、上側樹脂フィルムの湾曲封着に基づき発生する曲げ反力のリード導体負担分を軽減できるので、リード導体と可溶合金片との接合界面を安定に保持でき、その界面の抵抗値を安定に維持できることが確認できる。
When the resistance value between the lead conductors was measured with the number of samples of Example 1 and Comparative Example 1 being 50, the standard deviation was calculated and the dispersion degree was evaluated. As a result, the variation in the resistance value of Example 1 was Comparative Example 1. It became clear that it was remarkably small compared to.
From this result, both the example and the comparative example are common in that weirs are provided to increase the flux thickness, but in the example, the lead conductor can be made thin and generated based on the curved sealing of the upper resin film. Therefore, it can be confirmed that the joint interface between the lead conductor and the fusible alloy piece can be stably maintained, and the resistance value of the interface can be stably maintained.

実施例1に対し上側樹脂フィルムの厚みを125μmにして薄くした以外、実施例1に同じとした。   The same as Example 1 except that the thickness of the upper resin film was reduced to 125 μm with respect to Example 1.

実施例2の各試料数を50箇としてリード導体間の抵抗値を測定し、標準偏差を算出して散布度を評価したところ、実施例1の抵抗値のバラツキに対して同等以上であることが判明した。
この結果は、上側樹脂フィルムの湾曲封着に基づき発生する反りを実施例1より小さくできたためであり、リード導体と可溶合金片との接合界面の安定化による界面抵抗値のより一層の安定維持が期待できる。
When the resistance value between the lead conductors was measured with 50 samples in Example 2 and the standard deviation was calculated to evaluate the dispersion, it was equal to or greater than the resistance value variation in Example 1. There was found.
This result is because the warp generated based on the curved sealing of the upper resin film can be made smaller than in Example 1, and the interface resistance value is further stabilized by stabilizing the joint interface between the lead conductor and the soluble alloy piece. Maintenance can be expected.

図2に示す構成のフィルムタイプ薄型ヒューズである。下側樹脂フィルム41には、長辺7.3mm,短辺3.4mm,厚み188μmのポリエチレンテレフタレートフィルムを使用し、上側樹脂フィルム42には外郭が下側樹脂フィルムと同じで厚みが125μmのポリエチレンテレフタレートフィルムを使用した。扁平リード導体1には、厚み100μm、下側樹脂フィルム表面に面一の表出部101とリード導体先端から折り曲げ凸部11までの距離2.3mm,凸部11の高さ0.6mm,内側部巾2.6mm,外側部巾3.5mmで、表出部を包含する先端部にCu膜を被覆したNi導体を使用し、両リード導体先端間の間隔を0.8mmとした。可溶合金片2には組成がIn52%−Sn36%−Bi12%で、直径0.3mm,長さ4.4mmの丸線材を使用し、フラックス3には、ロジンを主成分とするものを使用し、加熱溶融させたフラックスを両リード導体の凸部11,11間に流延し、冷却凝固させた。
リード導体と下側樹脂フィルムとの界面は熱溶着し、フィルム同士の封着は超音波溶着により行った。
3 is a film-type thin fuse having the configuration shown in FIG. The lower resin film 41 is a polyethylene terephthalate film having a long side of 7.3 mm, a short side of 3.4 mm, and a thickness of 188 μm. The upper resin film 42 has the same outer shell as the lower resin film and has a thickness of 125 μm. A terephthalate film was used. The flat lead conductor 1 has a thickness of 100 μm, a surface of the lower resin film that is flush with the exposed portion 101 and the distance from the lead conductor tip to the bent convex portion 11, the height of the convex portion 11 is 0.6 mm, the inner side A Ni conductor having a part width of 2.6 mm and an outer part width of 3.5 mm and having a Cu film coated on the tip including the exposed part was used, and the distance between the tips of both lead conductors was set to 0.8 mm. The fusible alloy piece 2 is composed of a round wire having a composition of In52% -Sn36% -Bi12%, a diameter of 0.3 mm and a length of 4.4 mm, and the flux 3 is composed mainly of rosin. Then, the heat-melted flux was cast between the convex portions 11 of both lead conductors and cooled and solidified.
The interface between the lead conductor and the lower resin film was thermally welded, and the films were sealed by ultrasonic welding.

実施例3の試料数を50箇としてリード導体間の抵抗値を測定し、標準偏差を算出して散布度を評価したところ、実施例2の抵抗値のバラツキに対して同等であることが判明した。   When the resistance value between the lead conductors was measured with 50 samples in Example 3, the standard deviation was calculated, and the degree of dispersion was evaluated, it was found to be equivalent to the variation in resistance value in Example 2. did.

図5に示す構成の樹脂モールドタイプ薄型ヒューズである。扁平リード導体1には、厚み100μm、リード導体先端から折り曲げ凸部11までの距離2.3mm,凸部11の高さ0.50mm,内側部巾2.6mm,外側部巾3.5mmで、先端部にCu膜を被覆したNi導体を使用し、リード導体間の間隔を0.8mmとした。可溶合金片2には組成がIn52%−Sn36%−Bi12%で、直径0.3mm,長さ4.4mmの丸線材を使用し、フラックス3には、ロジンを主成分とするmのを使用し、加熱溶融させたフラックスを両リード導体の凸部11,11間に流延し、冷却凝固させた。
樹脂モールド被覆層40は、常温硬化エポキシ樹脂液の浸漬塗装により設けた。
It is a resin mold type thin fuse of the structure shown in FIG. The flat lead conductor 1 has a thickness of 100 μm, a distance of 2.3 mm from the lead conductor tip to the bent convex part 11, a height of the convex part 11 of 0.50 mm, an inner part width of 2.6 mm, and an outer part width of 3.5 mm. A Ni conductor with a Cu film coated on the tip was used, and the distance between the lead conductors was 0.8 mm. The fusible alloy piece 2 is composed of a round wire having a composition of In 52% -Sn 36% -Bi 12%, a diameter of 0.3 mm, and a length of 4.4 mm. The flux that was used and heated and melted was cast between the convex portions 11 and 11 of both lead conductors and cooled and solidified.
The resin mold coating layer 40 was provided by dip coating with a room temperature curing epoxy resin solution.

〔比較例2〕
実施例4に対しリード導体の凸部折り曲げに代えポンチ加工により凸部を形成することを試みたが、厚み100μmのリード導体では亀裂が発生したので、リード導体厚みを300μmにしてポンチ加工により凸部(高さは、実施例4の折り曲げ凸部高さに同じとした)を設けた。これ以外は実施例4と同じとした。
[Comparative Example 2]
In contrast to Example 4, an attempt was made to form a convex portion by punching instead of bending the convex portion of the lead conductor. However, since a crack occurred in the lead conductor having a thickness of 100 μm, the lead conductor thickness was set to 300 μm and the convex portion was formed by punching. (The height is the same as the height of the bent convex portion of Example 4). The rest was the same as in Example 4.

実施例4及び比較例2の各試料数を50箇として所定のヒートサイクル試験ののち、リード導体間の抵抗値を測定し、標準偏差を算出して散布度を評価したところ、実施例4の抵抗値のバラツキが比較例2に較べて著しく小さいことが判明した。
この結果から、実施例4、比較例2ともフラックス厚みを高くするために堰を設けた点では共通しているが、実施例4ではリード導体の厚みを薄くでき、ヒートサイクルに基づき発生する曲げモーメントのリード導体作用分を軽減できるので、リード導体と可溶合金片との接合界面を安定に保持でき、その界面の抵抗値を安定に維持できることが確認できる。
The number of samples in Example 4 and Comparative Example 2 was set to 50, and after a predetermined heat cycle test, the resistance value between the lead conductors was measured, the standard deviation was calculated, and the dispersion degree was evaluated. It was found that the variation in resistance value was significantly smaller than that of Comparative Example 2.
From this result, although Example 4 and Comparative Example 2 are common in that weirs are provided in order to increase the flux thickness, in Example 4, the thickness of the lead conductor can be reduced, and bending caused based on the heat cycle is generated. Since the moment of the lead conductor action can be reduced, it can be confirmed that the joint interface between the lead conductor and the soluble alloy piece can be stably maintained, and the resistance value of the interface can be stably maintained.

上記した温度ヒューズは、通電による自己発熱で可溶合金片を溶断させて通電を遮断する薄型電流ヒューズとしても利用可能である。   The above-described temperature fuse can also be used as a thin current fuse that cuts off energization by fusing a fusible alloy piece by self-heating by energization.

本発明に係る温度ヒューズの一実施例を示す図面である。1 is a view showing an embodiment of a thermal fuse according to the present invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermal fuse which concerns on this invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermal fuse which concerns on this invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermal fuse which concerns on this invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermal fuse which concerns on this invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermal fuse which concerns on this invention. 本発明において使用する扁平リード導体の異なる多数の例を示す図面である。It is drawing which shows many examples from which the flat lead conductor used in this invention differs. 本発明に係る温度ヒューズのうちの発熱体付きの実施例の作動機構を示す回路図である。It is a circuit diagram which shows the action | operation mechanism of the Example with a heat generating body among the thermal fuses which concern on this invention. 本発明に係る温度ヒューズが装着される電池パックを示す図面である。1 is a view showing a battery pack to which a thermal fuse according to the present invention is attached. 従来の薄型温度ヒューズの一例を示す図面である。It is drawing which shows an example of the conventional thin temperature fuse. 従来の薄型温度ヒューズの上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the conventional thin-type thermal fuse. 従来の薄型温度ヒューズの上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the conventional thin-type thermal fuse. 従来の薄型温度ヒューズの上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the conventional thin-type thermal fuse. 従来の薄型温度ヒューズのフラックスの形状を示す図面である。6 is a view showing the shape of a flux of a conventional thin thermal fuse. 従来の温度ヒューズの問題点を説明するために使用した図面である。6 is a diagram used for explaining a problem of a conventional thermal fuse.

符号の説明Explanation of symbols

1 扁平リード導体
11 折り曲げ凸部
110 上向き折り曲げ凸部
2 可溶合金片
3 フラックス
41 下側樹脂フィルム
42 上側樹脂フィルム
43 補助フィルム
51 絶縁基体
52 絶縁カバー
53 水密樹脂被覆
6 電極
7 接着剤
DESCRIPTION OF SYMBOLS 1 Flat lead conductor 11 Bending convex part 110 Upward bending convex part 2 Soluble alloy piece 3 Flux 41 Lower resin film 42 Upper resin film 43 Auxiliary film 51 Insulating base 52 Insulating cover 53 Watertight resin coating 6 Electrode 7 Adhesive

Claims (14)

可溶合金片の厚み中心が扁平リード導体の厚み中心よりも上側に位置された状態で可溶合金片が扁平リード導体間に接続され、可溶合金片及びその近傍のリード導体部分にフラックスが被覆され、これらが下側樹脂フィルムと上側樹脂フィルムとにより前記リード導体を気密に導出して封止され、上側樹脂フィルムがその内面側の出っ張り内容物上で湾曲されてなる温度ヒューズにおいて、可溶合金片端とフィルム封止箇所との間のリード導体部分にその部分の曲げ剛性を低くし、かつ塗布フラックスに対する堰を形成するための折り曲げ凸部が設けられ、この凸部が前記フラックスの塗布に対する堰とされていることを特徴とする薄型温度ヒューズ。 The fusible alloy piece is connected between the flat lead conductors in a state where the thickness center of the fusible alloy piece is located above the flat lead conductor, and flux is applied to the fusible alloy piece and the lead conductor part in the vicinity thereof. In a thermal fuse in which the lead conductor is hermetically led and sealed by a lower resin film and an upper resin film, and the upper resin film is curved on the protruding contents on the inner surface side. The lead conductor portion between the one end of the molten alloy and the film sealing portion is provided with a bending convex portion for reducing the bending rigidity of the portion and forming a weir against the coating flux, and this convex portion is applied with the flux. Thin thermal fuse characterized by being a weir against. 下側樹脂フィルムの下面に一対の扁平リード導体端部が固着されると共に各リード導体の先端から所定の距離を隔てた部分が所定の巾をもつて前記フィルム上面に現出され、この現出部がランド部とこのランド部後方側の曲げ剛性を低くし、かつ塗布フラックスに対する堰を形成するための折り曲げ凸部とに形成され、その現出されたランド部間に可溶合金片が接続され、前記の可溶合金片及前記ランド部のほぼ全面にフラックスが前記折り曲げ凸部を堰としてフラックスが塗布され、上側樹脂フィルムが前記下側樹脂フィルムの周囲に封着されると共に上側樹脂フィルムがその内面側の出っ張り内容物上で湾曲され、下側樹脂フィルムの下面に補助樹脂フィルムが貼着されていることを特徴とする薄型温度ヒューズ。 Lower lower surface portion at a predetermined distance from the tip of the lead conductors with a pair of flat lead conductors end is fixed in the resin film is to appear on the film top surface having a predetermined width, the revealing The part is formed into a land part and a bent convex part for lowering the bending rigidity on the back side of the land part and forming a weir against the coating flux, and a soluble alloy piece is connected between the land parts that appear. The flux is applied to almost the entire surface of the fusible alloy piece and the land portion with the bent convex portion as a weir, and the upper resin film is sealed around the lower resin film and the upper resin film Is a thin thermal fuse characterized in that it is curved on the protruding contents on the inner surface side and an auxiliary resin film is adhered to the lower surface of the lower resin film. 上側樹脂フィルムが下側樹脂フィルムよりも薄くされている請求項1〜2何れか記載の薄型温度ヒューズ。 The thin thermal fuse according to claim 1, wherein the upper resin film is thinner than the lower resin film. 扁平リード導体間に可溶合金片が接続され、可溶合金片及び可溶合金片端から所定の距離を隔てたリード導体箇所までフラックスが付着され、これらを包囲して樹脂層が被覆された温度ヒューズにおいて、可溶合金片端から所定の距離を隔てたリード導体部分にその部分の曲げ剛性を低くし、かつ塗布フラックスに対する堰を形成するための折り曲げ凸部が設けられ、この凸部が前記フラックスの塗布に対する堰とされていることを特徴とする薄型温度ヒューズ。 A temperature at which a fusible alloy piece is connected between the flat lead conductors, the flux is adhered to the fusible alloy piece and the lead conductor portion at a predetermined distance from the end of the fusible alloy piece, and the resin layer is covered by surrounding the flux. In the fuse, a lead convex portion spaced apart from one end of the fusible alloy by a predetermined distance is provided with a bent convex portion for lowering the bending rigidity of the portion and forming a weir against the applied flux. Thin thermal fuse, characterized by being a weir against the application of copper. 折り曲げ凸部の両脇上端にアールが付されている請求項1〜4何れか記載の薄型温度ヒューズ。 The thin thermal fuse according to any one of claims 1 to 4, wherein the upper ends of both sides of the bent convex portion are rounded. 可溶合金片の厚み中心が扁平リード導体の厚み中心よりも上側に位置された状態で扁平リード導体間に可溶合金片が接続され、可溶合金片及びその近傍のリード導体部分にフラックスが付着され、これらが下側樹脂フィルムと上側樹脂フィルムとにより前記リード導体を気密に導出して封止され、上側樹脂フィルムがその内面側の出っ張り内容物上で湾曲されてなる温度ヒューズにおいて、扁平リード導体の先端に上向き折り曲げ部が設けられ、この折り曲げ部前面に可溶合金片端が接続され、同折り曲げ部が前記フラックスの塗布に対する堰とされていることを特徴とする薄型温度ヒューズ。 The fusible alloy piece is connected between the flat lead conductors in a state where the thickness center of the fusible alloy piece is located above the thickness center of the flat lead conductor, and flux is applied to the fusible alloy piece and the lead conductor part in the vicinity thereof. In a thermal fuse in which the lead conductor is hermetically led and sealed by a lower resin film and an upper resin film, and the upper resin film is curved on the protruding contents on the inner surface side thereof, A thin thermal fuse characterized in that an upward bent portion is provided at the tip of the lead conductor, a soluble alloy piece end is connected to the front surface of the bent portion, and the bent portion serves as a weir against the application of the flux. 凸部の両脇上端にアールが付されている請求項6記載の薄型温度ヒューズ。 The thin thermal fuse according to claim 6, wherein the upper ends of both sides of the convex portion are rounded. 上側樹脂フィルムが下側樹脂フィルムよりも薄くされている請求項6または7記載の薄型温度ヒューズ。 The thin thermal fuse according to claim 6 or 7, wherein the upper resin film is thinner than the lower resin film. 扁平リード導体として、温度ヒューズボディ内のリード導体部分の巾が可溶合金片の巾より広くされている導体が用いられている請求項1〜8何れか記載の薄型温度ヒューズ。 The thin thermal fuse according to any one of claims 1 to 8, wherein the flat lead conductor is a conductor in which the width of the lead conductor portion in the temperature fuse body is wider than the width of the fusible alloy piece. 温度ヒューズボディ内のリード導体部分が圧延により形成されている請求項9記載の薄型温度ヒューズ。 The thin thermal fuse according to claim 9, wherein a lead conductor portion in the thermal fuse body is formed by rolling. リード導体がNi製とされ、少なくとも先端部にSn,Cu,Ag,Auの何れか、またはこれらを主成分とする合金が被覆されている請求項1〜10何れか記載の薄型温度ヒューズ。 The thin thermal fuse according to any one of claims 1 to 10, wherein the lead conductor is made of Ni, and at least a tip portion thereof is coated with any one of Sn, Cu, Ag, Au, or an alloy containing these as a main component. 可溶合金片を溶断させるための発熱体が付設されている請求項1〜11何れか記載の薄型温度ヒューズ。 The thin thermal fuse according to any one of claims 1 to 11, further comprising a heating element for fusing the fusible alloy piece. 可溶合金片がIn−Sn−Bi系合金、Bi−Sn−Sb系合金、In−Sn系合金、In−Bi系合金、Bi−Sn系合金、In系合金の何れかであり、In−Sn−Bi系合金の組成が(1)43%<Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%<Sn≦44%,55%<In≦74%,1%≦Bi<20%、(4)46%<Sn≦70%,18%≦In<48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In<37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%<Sn≦60%,20%≦In<50%,12%<Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、Bi−Sn−Sb系合金の組成が(16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、In−Sn系合金の組成が(18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、In−Bi系合金の組成が(20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、Bi−Sn系合金の組成が(22)50%<Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、In系合金の組成が(24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加の何れかであることを特徴とする請求項1〜12何れか記載の薄型温度ヒューズ。 The soluble alloy piece is one of an In—Sn—Bi alloy, a Bi—Sn—Sb alloy, an In—Sn alloy, an In—Bi alloy, a Bi—Sn alloy, and an In alloy, and In— The composition of the Sn—Bi alloy is (1) 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55% , Remaining Bi, (3) 25% <Sn ≦ 44%, 55% <In ≦ 74%, 1% ≦ Bi <20%, (4) 46% <Sn ≦ 70%, 18% ≦ In <48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In <37%, remaining Bi (however, Bi57.5%, In25.2%, Sn17.3% and Bi54%, (Excluding Bi ± 2%, In and Sn ± 1% ranges based on In29.7% and Sn16.3%), (6) 10% ≦ Sn ≦ 18 %, 37% ≦ In ≦ 43%, remaining Bi, (7) 25% <Sn ≦ 60%, 20% ≦ In <50%, 12% <Bi ≦ 33%, (8) (1) to (7) One or two or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge and P are added in a total of 0.01 to 7 parts by weight to any 100 parts by weight of (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, remaining Bi, (10) Add 3 to 5 parts by weight of Bi to 100 parts by weight of 47% ≦ Sn ≦ 49% and 51% ≦ In ≦ 53% (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12%, remaining In, (12) 0.3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, ( 13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35%, remaining In, (14) Ag, Au, Cu, Ni, Pd, 100 parts by weight of any one of (9) to (13) One or more of t, Sb, Ga, Ge, and P are added in a total of 0.01 to 7 parts by weight, (15) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, and the remaining Bi is 100 Add one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P to 0.01 parts by weight in total, and the composition of the Bi-Sn-Sb alloy is (16) 30% ≦ Sn ≦ 70%, 0.3% ≦ Sb ≦ 20%, remaining Bi, (17) Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge in 100 parts by weight of (16) In addition, 0.01 to 7 parts by weight of one or more of P are added, and the composition of the In—Sn alloy is (18) 52% ≦ In ≦ 85%, the remaining Sn, (19) 100 of (18) One or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P in the weight part is a total of 0.01 to Addition of parts by weight, the composition of the In—Bi alloy is (20) 45% ≦ Bi ≦ 55%, the remaining In, (21) and 100 parts by weight of the composition of (20), Ag, Au, Cu, Ni, Pd, Pt , Sb, Ga, Ge, P are added in a total of 0.01 to 7 parts by weight, and the composition of the Bi—Sn alloy is (22) 50% <Bi ≦ 56%, the remaining Sn, (23 ) Addition of one or more of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P to 0.01 to 7 parts by weight to 100 parts by weight of (22), the composition of the In-based alloy is (24) A total of 0.01 to 7 parts by weight of one or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P is added to 100 parts by weight of In, (25) 90% ≦ Au, Bi, Cu, Ni, Pd, Pt, 100 parts by weight of In ≦ 99.9%, 0.1% ≦ Ag ≦ 10% , Ga, Ge, P or one or more of 0.01 to 7 parts by weight in total, (26) 100% by weight of 95% ≦ In ≦ 99.9%, 0.1% ≦ Sb ≦ 5% A total of 0.01 to 7 parts by weight of one or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P is added. Any one of the thin thermal fuses. 請求項1〜11何れかまたは13記載の薄型温度ヒューズを電流ヒューズとして使用することを特徴とする薄型電流ヒューズ。 14. A thin current fuse, wherein the thin temperature fuse according to claim 1 is used as a current fuse.
JP2003274265A 2002-07-22 2003-07-14 Thin thermal fuse Expired - Fee Related JP4269264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274265A JP4269264B2 (en) 2002-07-22 2003-07-14 Thin thermal fuse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002212192 2002-07-22
JP2003274265A JP4269264B2 (en) 2002-07-22 2003-07-14 Thin thermal fuse

Publications (2)

Publication Number Publication Date
JP2004071552A JP2004071552A (en) 2004-03-04
JP4269264B2 true JP4269264B2 (en) 2009-05-27

Family

ID=32032664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274265A Expired - Fee Related JP4269264B2 (en) 2002-07-22 2003-07-14 Thin thermal fuse

Country Status (1)

Country Link
JP (1) JP4269264B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265618A (en) * 2003-02-05 2004-09-24 Sony Chem Corp Protection element
JP4814531B2 (en) * 2005-02-24 2011-11-16 株式会社フェローテック Heating / cooling apparatus and manufacturing method thereof
JP4845011B2 (en) * 2006-03-31 2011-12-28 古河電気工業株式会社 Bus duct
JP2008226796A (en) * 2007-03-16 2008-09-25 Uchihashi Estec Co Ltd Board type temperature fuse, and manufacturing method of board type temperature fuse
DE102007014338A1 (en) * 2007-03-26 2008-10-02 Robert Bosch Gmbh thermal fuse
KR101094039B1 (en) * 2009-10-01 2011-12-19 삼성에스디아이 주식회사 Current interrupting device and Sedcondary battery using the same
JP5867043B2 (en) * 2011-12-12 2016-02-24 パナソニックIpマネジメント株式会社 Thermal fuse and manufacturing method thereof
CN113380591B (en) * 2021-05-11 2022-11-04 国网浙江嘉善县供电有限公司 Anti-external-damage line-connection ceramic tube

Also Published As

Publication number Publication date
JP2004071552A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
US7385474B2 (en) Thermosensor, thermoprotector, and method of producing a thermosensor
US20110068889A1 (en) Thermal fuse element, thermal fuse and battery using the thermal fuse
CN104303255B (en) For protecting the fuse element of device and including the circuit brake of this element
US6445277B1 (en) Safety device of electric circuit and process for producing the same
JP4290426B2 (en) Thermal fuse
JP2004265617A (en) Protective element
JP4269264B2 (en) Thin thermal fuse
EP1465224B1 (en) Thermal fuse having a function of a current fuse
JP3953947B2 (en) Alloy type thermal fuse and material for thermal fuse element
JP4369008B2 (en) Alloy type temperature fuse
JP4297431B2 (en) Alloy-type thermal fuse and protective device using the same
JP6423384B2 (en) Protective element
JP4112297B2 (en) Thermo protector and method of manufacturing thermo protector
JPH0412428A (en) Fuse element
JP2005063792A (en) Heat sensitive element and thermo-protector
JP2000090792A (en) Alloy type thermal fuse
JP2006196189A (en) Thermo-protector, manufacturing and mounting method of the same
JP2000348583A (en) Alloy temperature fuse
JP4610807B2 (en) Thin fuse
JP2004014195A (en) Flat fuse and manufacturing method of the same
JP4097792B2 (en) Thin temperature fuse
JP2001118480A (en) Thin film temperature fuse
JP3358677B2 (en) Thin fuse
JP2003045305A (en) Thin fuse
CN117637411A (en) Fuse assembly and protection assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees