JP6423384B2 - Protective element - Google Patents

Protective element Download PDF

Info

Publication number
JP6423384B2
JP6423384B2 JP2016076279A JP2016076279A JP6423384B2 JP 6423384 B2 JP6423384 B2 JP 6423384B2 JP 2016076279 A JP2016076279 A JP 2016076279A JP 2016076279 A JP2016076279 A JP 2016076279A JP 6423384 B2 JP6423384 B2 JP 6423384B2
Authority
JP
Japan
Prior art keywords
alloy
fuse element
bonding
melting temperature
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016076279A
Other languages
Japanese (ja)
Other versions
JP2017188310A (en
Inventor
慎太郎 中島
慎太郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott Japan Corp
Original Assignee
Schott Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60045743&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6423384(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schott Japan Corp filed Critical Schott Japan Corp
Priority to JP2016076279A priority Critical patent/JP6423384B2/en
Publication of JP2017188310A publication Critical patent/JP2017188310A/en
Application granted granted Critical
Publication of JP6423384B2 publication Critical patent/JP6423384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複合金属材からなる保護素子用のヒューズエレメントおよびそれを利用した電気・電子機器の保護素子に関する。   The present invention relates to a fuse element for a protective element made of a composite metal material, and a protective element for an electric / electronic device using the fuse element.

近年、モバイル機器など小型電子機器の急速な普及に伴い、搭載する電源の保護回路に実装される保護素子も小型薄型のものが使用されている。例えば、二次電池パックの保護回路には、表面実装部品(SMD)のチップ保護素子が好適に利用される。これらチップ保護素子には、被保護機器の過電流により生ずる過大発熱を検知し、または周囲温度の異常過熱に感応して、所定条件で内蔵するヒータ等の加熱によって強制的にヒューズを作動させ電気回路を遮断する非復帰型保護素子がある。該保護素子は、機器の安全を図るために、保護回路が機器に生ずる異常を検知すると信号電流により抵抗素子を発熱させ、その発熱で可溶合金からなるヒューズ素子(ヒューズエレメントとも言う)を溶断させて回路を遮断するか、あるいは過電流によってヒューズ素子を溶断させて回路を遮断できる。   In recent years, with the rapid spread of small electronic devices such as mobile devices, small and thin protective elements mounted on a protection circuit for a power supply to be mounted are used. For example, a surface protection component (SMD) chip protection element is preferably used for the protection circuit of the secondary battery pack. These chip protection elements detect excessive heat generated by the overcurrent of the protected device, or respond to abnormal overheating of the ambient temperature, forcibly actuate the fuse by heating the built-in heater etc. under specified conditions. There are non-recoverable protection elements that interrupt the circuit. In order to protect the safety of the device, the protection element heats the resistance element by a signal current when an abnormality occurring in the device is detected, and the heat generation blows a fuse element (also called a fuse element) made of a soluble alloy. The circuit can be shut off by cutting the fuse element by overcurrent or the circuit can be cut off.

このような保護素子に適用されるヒューズ素子には、例えば、特許文献1に記載されるように、無鉛金属複合材のヒューズエレメントであって、この保護素子を外部回路板に表面実装する際のはんだ付け作業温度において、溶融可能な易融性の低融点金属材と、液相の低融点金属材に溶解可能な難融性の金属構造材とから成り、低融点金属材と金属構造材とを一体成形することで、はんだ付け作業で液相化した低融点金属材を固相の金属構造材ではんだ付け作業が終わるまで支えて保持することを特徴とするヒューズエレメントがある。このヒューズエレメントの低融点金属材と金属構造材とは互いに固着成形され、はんだ付け作業の熱で液相化した低融点金属材を該作業温度で固相の金属構造材で、一定時間溶断しないように界面張力を利用して付着させ支えて保持しながら、液相の低融点金属材でヒューズエレメントを保護素子の電極パターンに接合できるように工夫されている。そして、少なくともはんだ付け作業の間、ヒューズエレメントの形状を維持してヒューズエレメントがはんだ付け作業温度で誤動作するのを防止する。この保護素子は、被保護装置に実装されるとヒューズエレメントの金属構造材が、はんだ付けの熱で媒質である低融点金属材中に拡散または溶解され希薄化しているので、設置環境の異常過熱や内蔵する抵抗発熱素子のヒータ加熱により容易に消失し、以後溶断を妨げることなく動作できるようになっている。   The fuse element applied to such a protection element is, for example, as described in Patent Document 1, a lead element of a lead-free metal composite material, which is used when the protection element is surface-mounted on an external circuit board. It consists of an easily meltable low melting point metal material that can be melted at a soldering operation temperature, and a hardly fusible metal structure material that can be dissolved in a liquid phase low melting point metal material. There is a fuse element characterized in that a low-melting-point metal material that has been made into a liquid phase by a soldering operation is supported and held by a solid-phase metal structure material until the soldering operation is completed. The low melting point metal material and the metal structure material of the fuse element are fixed to each other, and the low melting point metal material that has become liquid phase by the heat of the soldering operation is not melted for a certain period of time with the solid phase metal structure material at the operation temperature. In this way, the fuse element is devised so that the fuse element can be joined to the electrode pattern of the protective element with a low-melting-point metal material in a liquid phase while adhering to and supporting by using interfacial tension. At least during the soldering operation, the shape of the fuse element is maintained to prevent the fuse element from malfunctioning at the soldering operation temperature. When this protective element is mounted on a protected device, the metal structure material of the fuse element is diffused or dissolved in the low-melting-point metal material, which is the medium, due to the heat of soldering. Or disappears easily by heating the heater of the built-in resistance heating element, and can be operated without interfering with fusing thereafter.

従来、上述した保護素子のヒューズエレメントを構成する可溶合金は、Ag、CuまたはAg合金、Cu合金からなる金属構造材の露出面を片面に有するので、硫黄ガスに弱く硫化腐食しやすく、例えば、梱包材の微量アウトガスなどにより、極端な場合には保管輸送中にヒューズエレメントが断線したり、保護素子の電極パターンの間に銀または銅硫化物などの腐食生成物が延びて隣接パターンとつながりショートしたりし易いという課題があった。   Conventionally, the fusible alloy constituting the fuse element of the protection element described above has an exposed surface of a metal structural material made of Ag, Cu or an Ag alloy, Cu alloy on one side, and thus is susceptible to sulfur corrosion due to weakness to sulfur gas. In extreme cases, the fuse element may break during storage and transportation due to a small amount of outgassing from the packing material, or corrosion products such as silver or copper sulfide may extend between the electrode patterns of the protective element and connect to adjacent patterns. There was a problem that it was easy to short-circuit.

パワーラインの電流を遮断する働きをする保護素子の電気抵抗値は、できる限り小さい方が電気エネルギーの損失が少なく好ましい。その点、ヒューズエレメントに低電気抵抗材のAg、CuまたはAg合金、Cu合金の金属構造材を有することは、実に好都合である。しかし、Ag材やCu材などの金属構造材は、比較的溶融温度が高く保護素子の動作温度で可融しないので、低融点金属材への溶解または拡散が不充分で厚膜で残留した場合に、従来のヒューズエレメントでは、溶断に余分な時間を要したり極端な場合に溶断不良となったりする恐れがあり、電気抵抗値を下げるために金属構造材を十分に厚く設けることができなかった。また、保護素子のヒューズエレメントや電極基板などの小型化・薄型化の進展に伴い、より薄板のヒューズエレメントを用いた場合は、金属構造材を厚くできないため、金属構造材が液相の低融点金属材に過度に拡散または溶解されて薄層化してしまい、ヒューズエレメントを電極パターンに接合する際に、ヒューズエレメントが変形したり、金属構造材表面が波打ってしまったりしてエレメント取付の出来ばえが悪くなる欠点があった。このため後工程でヒューズエレメントをキャップ状の蓋体で覆って被覆する際、ヒューズエレメントの変形が著しい場合には、蓋体を水平に取り付けることができなかったり、所定の取り付け位置からずれたりして蓋体の載置作業が妨げられ組立不良の原因となっていた。   The electrical resistance value of the protective element that functions to cut off the current of the power line is preferably as small as possible because there is less loss of electrical energy. In that respect, it is very convenient to have a low electric resistance material Ag, Cu or an Ag alloy, or a Cu alloy metal structure material in the fuse element. However, since metal structure materials such as Ag material and Cu material have a relatively high melting temperature and are not meltable at the operating temperature of the protective element, when they are not sufficiently melted or diffused into the low melting point metal material and remain in a thick film In addition, conventional fuse elements may require extra time for fusing or may cause fusing failure in extreme cases, and metal structures cannot be provided thick enough to reduce electrical resistance. It was. In addition, with the progress of miniaturization and thinning of protective element fuse elements and electrode substrates, when using thinner fuse elements, the metal structure material cannot be thickened, so the metal structure material has a low melting point in the liquid phase. When the fuse element is excessively diffused or dissolved in the metal material and thinned, and the fuse element is joined to the electrode pattern, the fuse element may be deformed, or the surface of the metal structure may be undulated. There was a drawback that would worsen. For this reason, when the fuse element is covered and covered with a cap-shaped lid in a later process, if the fuse element is significantly deformed, the lid cannot be mounted horizontally or may be displaced from the predetermined mounting position. This hinders the mounting work of the lid and causes assembly failure.

特開2015−079608号公報Japanese Patent Laying-Open No. 2015-079608

したがって、本発明の目的は、上述の問題点を解消するために提案されたものであり、保護素子のヒューズエレメントの硫化腐食を防止し、かつ、Ag材やCu材などで構成された金属構造材を厚膜化でき、しかも溶断時間を短縮できるヒューズエレメントを実現し、もってそれを用いた保護素子を提供することにある。また、併せて保護素子の小型薄型化にさらに適応したヒューズエレメントを実現する。   Accordingly, an object of the present invention is proposed to solve the above-mentioned problems, and prevents the sulfidation corrosion of the fuse element of the protective element, and is a metal structure composed of Ag material, Cu material, or the like. An object of the present invention is to provide a fuse element that can increase the thickness of the material and reduce the fusing time, and to provide a protection element using the fuse element. In addition, a fuse element that is further adapted to the reduction in size and thickness of the protective element is realized.

本発明によると、金属に拡散または溶解し易い固体金属からなる中間構造材と、この中間構造材の少なくとも片面に可溶性の金属からなる被覆材と、さらに中間構造材のもう一方の面に可溶金属からなる接合材とを備え、中間構造材は、接合作業温度を超える第1の溶融温度を有し、被覆材は、中間構造材より溶融温度が低い第2の溶融温度を有し、接合材は、接合作業温度で溶融し、かつ、第2の溶融温度以下の第3の溶融温度を有するヒューズエレメントが提供される。中間構造材、被覆材および接合材の溶融温度は、高い温度の順に、第1の溶融温度>第2の溶融温度≧第3の溶融温度の順となる。   According to the present invention, an intermediate structure material made of a solid metal that easily diffuses or dissolves in a metal, a covering material made of a soluble metal on at least one surface of the intermediate structure material, and further soluble on the other surface of the intermediate structure material The intermediate structure material has a first melting temperature that exceeds the bonding operation temperature, the covering material has a second melting temperature that is lower than the intermediate structure material, A fuse element is provided in which the material melts at the joining operating temperature and has a third melting temperature that is less than or equal to the second melting temperature. The melting temperatures of the intermediate structural material, the covering material, and the bonding material are in the order of the first melting temperature> the second melting temperature> the third melting temperature in the order of higher temperatures.

本発明の別の観点によると、上記ヒューズエレメントを用いた保護素子が提供される。本発明に係る保護素子は、該ヒューズエレメントとパターン電極を有する絶縁基板とを準備する準備工程、絶縁基板に接合フラックスを塗布する接合フラックス塗布工程、接合フラックスを塗布した絶縁基板またはヒューズエレメントのパターン電極と接合材とを互いに接触させて絶縁基板に載置するマウント工程、ヒューズエレメントを載置した絶縁基板を183℃以上400℃未満の接合作業温度で接合材を溶融させてパターン電極に一括接合させる接合工程、接合したヒューズエレメントに動作用の溶断フラックスを塗布する溶断フラックス塗布工程、溶断フラックスを塗布した絶縁基板上のヒューズエレメントをキャップ状蓋体で覆ってパッケージングするパッケージング工程により組み立てられる。本発明に係るヒューズエレメントは、絶縁基板の表面に設けたパターン電極に接合され、保護素子のヒューズエレメントとして使用される。このヒューズエレメントは、予め接合フラックスを塗布したヒューズエレメントの接合材と絶縁基板のパターン電極とを互いに接触させて絶縁基板に載置し、前述の接合作業温度で接合材を溶融させることによりパターン電極に一括接合される。その際、溶融した接合材はヒューズエレメントとパターン電極とを接合させる。中間構造材は、接合作業温度で固体を維持するのでヒューズエレメントの形状を保ったまま被覆材および接合材中に一部を拡散または溶解させながら、液相の接合材によってパターン電極に固着される。その後、ヒューズエレメントに溶断フラックスを塗布し、その上をキャップ状蓋体で覆ってパッケージングし保護素子とする。その後、この保護素子は、例えば二次電池などの保護回路等に実装され、最高温度が183℃以上300℃以下程度の温度ではんだ付けされることとなる。このはんだ付けの熱で、保護素子に内蔵されたヒューズエレメントの中間構造材は、被覆材および接合材に、再び拡散または溶解されるが、溶断誤動作することなくヒューズエレメントの形状を保ったまま実装できる。   According to another aspect of the present invention, a protection element using the fuse element is provided. The protective element according to the present invention is a preparatory step of preparing the fuse element and an insulating substrate having a pattern electrode, a bonding flux applying step of applying a bonding flux to the insulating substrate, an insulating substrate coated with the bonding flux, or a pattern of the fuse element A mounting process in which an electrode and a bonding material are brought into contact with each other and placed on an insulating substrate, and an insulating substrate on which a fuse element is placed is melted at a bonding operation temperature of 183 ° C. or higher and lower than 400 ° C. A fusing flux applying process for applying a fusing flux for operation to the joined fuse element, and a packaging process for covering the fuse element on the insulating substrate coated with the fusing flux with a cap-like lid and packaging. . The fuse element according to the present invention is joined to a pattern electrode provided on the surface of an insulating substrate and used as a fuse element of a protection element. This fuse element is placed on an insulating substrate by bringing the bonding material of the fuse element to which a bonding flux has been applied in advance and the pattern electrode of the insulating substrate into contact with each other, and the patterning electrode is melted at the above-described bonding operation temperature. Are joined together. At that time, the molten bonding material bonds the fuse element and the pattern electrode. Since the intermediate structural material is kept solid at the bonding operation temperature, it is fixed to the pattern electrode by the liquid phase bonding material while partially diffusing or dissolving in the covering material and the bonding material while maintaining the shape of the fuse element. . Thereafter, a fusing flux is applied to the fuse element, and the top is covered with a cap-shaped lid and packaged to form a protective element. Thereafter, the protection element is mounted on a protection circuit such as a secondary battery, and is soldered at a maximum temperature of about 183 ° C. or more and 300 ° C. or less. With this soldering heat, the intermediate structure material of the fuse element built in the protective element is diffused or melted again into the coating material and bonding material, but it is mounted with the fuse element shape maintained without malfunction. it can.

本発明に係る保護素子は、絶縁基板と、該絶縁基板の表面に設けた複数のパターン電極と、このパターン電極に電気接続したヒューズエレメントとを備え、ヒューズエレメントは、金属に拡散または溶解し易い固体金属からなる中間構造材と、この中間構造材の少なくとも片面に可溶性の金属からなる被覆材と、該中間構造材のもう一方の面に可溶金属からなる接合材とをさらに備え、中間構造材は、接合作業温度を超える第1の溶融温度を有し、被覆材は、中間構造材より溶融温度が低い第2の溶融温度を有し、接合材は、接合作業温度で溶融し、かつ、第2の溶融温度以下の第3の溶融温度を有することを特徴とする保護素子が提供される。この保護素子は、その絶縁基板に必要に応じて抵抗発熱素子を設けてもよい。   The protection element according to the present invention includes an insulating substrate, a plurality of pattern electrodes provided on the surface of the insulating substrate, and a fuse element electrically connected to the pattern electrode, and the fuse element is easily diffused or dissolved in metal. An intermediate structure material further comprising an intermediate structure material made of a solid metal, a covering material made of a soluble metal on at least one surface of the intermediate structure material, and a bonding material made of a soluble metal on the other surface of the intermediate structure material The material has a first melting temperature that exceeds the joining operation temperature, the covering material has a second melting temperature that is lower than the intermediate structural material, the joining material melts at the joining operation temperature, and A protective element having a third melting temperature equal to or lower than the second melting temperature is provided. This protective element may be provided with a resistance heating element on its insulating substrate as required.

本発明のヒューズエレメントは、Ag、Cuまたはその合金から構成された中間構造材の少なくとも上下面を、硫化し難い被覆材と接合材で覆っているのでヒューズエレメントの変色や硫化腐食を防止できる。また、中間構造材の上下を、溶食性の接合材と拡散媒質の被覆材でサンドイッチ状に挟んであるので、金属構造材が厚膜で残留しても中間構造材の両面から溶融拡散を助長して確実に溶断させることができる。従って、ヒューズエレメントの中間構造材の膜厚を従来よりも厚くすることができるので、保護素子の低電気抵抗化に寄与する。中間構造材は、互いに異なる被覆材と接合材とに挟まれており、しかも、被覆材の溶融温度を、接合材の溶融温度以上にした構成を採っているため、接合材が被覆材より先に溶けて絶縁基板のパターン電極と接合し始め、その後で被覆材が溶けてゆくので、ヒューズエレメントを薄板化しても接合材の接合温度でヒューズエレメント板が波打ったりカールしたりするのを防ぎ、より一層の保護素子の小型薄型化に寄与できる。この被覆材は、ヒューズエレメントの動作温度で溶融すれば、必ずしも接合作業で溶融しなくてもよい。接合作業で溶融しない被覆材にすると、さらにヒューズエレメント板面は変形し難くなる。   Since the fuse element of the present invention covers at least the upper and lower surfaces of an intermediate structural material made of Ag, Cu or an alloy thereof with a coating material and a bonding material that are difficult to sulfidize, discoloration and sulfidation corrosion of the fuse element can be prevented. In addition, since the upper and lower sides of the intermediate structural material are sandwiched between the erodible bonding material and the diffusion medium coating material, even if the metal structural material remains as a thick film, it promotes melt diffusion from both sides of the intermediate structural material And can be surely melted. Therefore, since the film thickness of the intermediate structure material of the fuse element can be made thicker than before, it contributes to lowering the electrical resistance of the protection element. The intermediate structural material is sandwiched between different coating materials and bonding materials, and the melting temperature of the coating material is set to be equal to or higher than the melting temperature of the bonding material. Since it melts into the pattern electrode of the insulating substrate and then the coating material melts, it prevents the fuse element plate from wavy or curled at the joining temperature of the bonding material even if the fuse element is thinned. This can contribute to further downsizing and thinning of the protective element. If this covering material is melted at the operating temperature of the fuse element, it does not necessarily have to be melted in the joining operation. If a coating material that does not melt in the joining operation is used, the fuse element plate surface is further difficult to deform.

本発明のヒューズエレメントは、予め接合フラックスを塗布した絶縁基板またはヒューズエレメントのパターン電極と接合材とを互いに接触させて絶縁基板に載置され、前述の接合作業温度で接合材を溶融させることによりパターン電極に一括接合される。溶融した接合材はヒューズエレメント自身とパターン電極とを接合させる。中間構造材は、接合工程において接合作業温度で固体を維持するので、ヒューズエレメントの板状を保ったまま溶融した接合材と、拡散媒質である被覆材とに溶融または拡散しながら、液相の接合材によってパターン電極に固着され、所定の動作温度で溶断する。   The fuse element of the present invention is placed on the insulating substrate by contacting the insulating substrate to which the bonding flux has been applied in advance or the pattern electrode of the fuse element and the bonding material, and melting the bonding material at the above-described bonding operation temperature. Bonded to the pattern electrode at once. The molten joining material joins the fuse element itself and the pattern electrode. Since the intermediate structural material maintains a solid state at the bonding operation temperature in the bonding process, the intermediate structure material melts or diffuses into the bonding material that is melted while maintaining the plate shape of the fuse element and the covering material that is the diffusion medium, while the liquid phase is in the liquid phase. It is fixed to the pattern electrode by the bonding material and melts at a predetermined operating temperature.

本発明に係るヒューズエレメント10を表し、このヒューズエレメント10は、中間構造材の上面に被覆材、下面に接合材を積層した三層複合金属材からなる。A fuse element 10 according to the present invention is represented, and the fuse element 10 is made of a three-layer composite metal material in which a covering material is laminated on an upper surface of an intermediate structural material and a bonding material is laminated on a lower surface. 本発明に係る保護素子の部品部材を分解した斜視図を示す。The perspective view which decomposed | disassembled the component member of the protection element which concerns on this invention is shown. 本発明の実施例2の保護素子20であり、(a)は(b)のd−d線に沿ってキャップ状蓋体を切断した平面図を示し、(b)は(a)のD−D線に沿った断面図を示し、(c)はその下面図を示す。It is the protection element 20 of Example 2 of this invention, (a) shows the top view which cut | disconnected the cap-shaped cover body along the dd line | wire of (b), (b) is D- of (a). A sectional view along line D is shown, and (c) shows a bottom view thereof. 本発明の実施例3の保護素子30であり、(a)は(b)のd−d線に沿ってキャップ状蓋体を切断した平面図を示し、(b)は(a)のD−D線に沿った断面図を示し、(c)はその下面図を示す。It is the protection element 30 of Example 3 of this invention, (a) shows the top view which cut | disconnected the cap-shaped cover body along the dd line | wire of (b), (b) is D- of (a). A sectional view along line D is shown, and (c) shows a bottom view thereof. 本発明の実施例4の保護素子40であり、(a)は(b)のd−d線に沿ってキャップ状蓋体を切断した平面図を示し、(b)は(a)のD−D線に沿った断面図を示し、(c)はその下面図を示す。It is the protection element 40 of Example 4 of this invention, (a) shows the top view which cut | disconnected the cap-shaped cover body along the dd line | wire of (b), (b) is D- of (a). A sectional view along line D is shown, and (c) shows a bottom view thereof.

本発明に係るヒューズエレメント10は、図1に示すように、金属に拡散または溶解し易い固体金属からなる中間構造材11と、この中間構造材11の少なくとも片面に可溶性の金属からなる被覆材12と、さらに中間構造材11のもう一方の面に可溶金属からなる接合材13とを備え、中間構造材11は、接合作業温度を超える第1の溶融温度を有し、被覆材12は、中間構造材11より溶融温度が低い第2の溶融温度を有し、接合材13は、接合作業温度で溶融し、かつ、第2の溶融温度以下の第3の溶融温度を有することを特徴とする。   As shown in FIG. 1, a fuse element 10 according to the present invention includes an intermediate structural member 11 made of a solid metal that easily diffuses or dissolves in a metal, and a covering material 12 made of a soluble metal on at least one side of the intermediate structural member 11. And a joining material 13 made of a fusible metal on the other surface of the intermediate structural material 11, the intermediate structural material 11 has a first melting temperature exceeding the joining operation temperature, and the covering material 12 is The second melting temperature is lower than that of the intermediate structural material 11, and the bonding material 13 is melted at the bonding operation temperature and has a third melting temperature lower than the second melting temperature. To do.

このヒューズエレメント10の中間構造材11は、接合作業温度で被覆材12および接合材13の固相または液相に拡散若しくは溶解しやすい金属材からなるが、少なくとも接合作業の間、ヒューズエレメント10が溶断しないよう形状を支えて保持する構造材として機能する。ヒューズエレメント10の被覆材12は、中間構造材11の露出面を覆って腐食性ガスや水分から遮蔽するとともに、第2の溶融温度未満の温度においては、中間構造材11と共にヒューズエレメント10が溶断しないよう保持する構造材の機能し、第2の溶融温度以上の温度においては、液相と成って中間構造材11を溶食してヒューズエレメント10が動作可能な状態にする機能を有する。被覆材12は、このヒューズエレメント10の所定の溶断温度で溶融できれば、接合作業では必ずしも溶融せずともよい。ヒューズエレメント10の接合材13は、このヒューズエレメント10を保護素子の絶縁基板に設けたパターン電極に接合するロウ材またははんだ材として機能するとともに、第3の溶融温度以上の温度で中間構造材11を溶食してヒューズエレメント10を動作可能の状態にする機能を有する。接合材13は、接合作業時に溶融することはもとより、ヒューズエレメント10の所定の溶断温度においても溶融する。   The intermediate structural material 11 of the fuse element 10 is made of a metal material that easily diffuses or dissolves into the solid phase or liquid phase of the covering material 12 and the bonding material 13 at the bonding operation temperature. At least during the bonding operation, the fuse element 10 It functions as a structural material that supports and holds the shape so as not to melt. The covering material 12 of the fuse element 10 covers the exposed surface of the intermediate structural material 11 and shields it from corrosive gas and moisture, and the fuse element 10 is blown together with the intermediate structural material 11 at a temperature lower than the second melting temperature. It functions as a structural material that holds it, and at a temperature equal to or higher than the second melting temperature, it has a function of forming a liquid phase and eroding the intermediate structural material 11 to make the fuse element 10 operable. As long as the covering material 12 can be melted at a predetermined fusing temperature of the fuse element 10, it does not necessarily have to be melted in the joining operation. The bonding material 13 of the fuse element 10 functions as a brazing material or a solder material for bonding the fuse element 10 to the pattern electrode provided on the insulating substrate of the protection element, and at the temperature equal to or higher than the third melting temperature 11. Has a function of allowing the fuse element 10 to operate. The bonding material 13 is melted at the predetermined fusing temperature of the fuse element 10 as well as being melted during the bonding operation.

中間構造材11には、183℃以上400℃未満の接合作業温度において固体を維持できる拡散性の溶質金属、例えばAg、Cuまたはこれらを50質量%以上含む合金が好適に利用できる。そして、中間構造材11の片面に設ける被覆材12は、例えばSnまたはSn合金(一例を挙げるとSn−Ag合金、Sn−Bi合金、Sn−Cu合金、Sn−Zn合金、Sn−Sb合金など)が好適である。さらに、中間構造材11のもう一方の面に設ける接合材13は、例えばSn−Ag合金、Sn−Bi合金、Sn−Cu合金、Sn−Zn合金、Sn−Sb合金、Sn−Ag−Bi合金、Sn−Ag−Cu合金、Sn−Ag−In合金、Sn−Zn−Al合金、Sn−Zn−Bi合金、Zn−Al合金または前記合金にAu、Ni、Ge、Ga、Mg、Pをさらに添加した合金などが利用できる。中間構造材11の表面に被覆材12および接合材13を設ける手段は、特に限定されず中間構造材11に被覆材12および接合材13を固着できればよい。例えば、被覆材12および接合材13はクラッド、めっき、溶融コート、圧着、ロジンなどの可融性樹脂による接着などの手段で中間構造材11の表面に固着できる。また、本発明に係るヒューズエレメントは、接合材12の積層界面に予め接合フラックスを内蔵させた複合金属材としてもよい。   As the intermediate structural member 11, a diffusible solute metal capable of maintaining a solid at a joining operation temperature of 183 ° C. or higher and lower than 400 ° C., for example, Ag, Cu, or an alloy containing 50% by mass or more thereof can be suitably used. The covering material 12 provided on one surface of the intermediate structural material 11 is, for example, Sn or Sn alloy (for example, Sn—Ag alloy, Sn—Bi alloy, Sn—Cu alloy, Sn—Zn alloy, Sn—Sb alloy, etc. ) Is preferred. Furthermore, the bonding material 13 provided on the other surface of the intermediate structural material 11 is, for example, a Sn—Ag alloy, a Sn—Bi alloy, a Sn—Cu alloy, a Sn—Zn alloy, a Sn—Sb alloy, a Sn—Ag—Bi alloy. , Sn-Ag-Cu alloy, Sn-Ag-In alloy, Sn-Zn-Al alloy, Sn-Zn-Bi alloy, Zn-Al alloy, or Au, Ni, Ge, Ga, Mg, P Added alloys can be used. The means for providing the covering material 12 and the bonding material 13 on the surface of the intermediate structural material 11 is not particularly limited as long as the covering material 12 and the bonding material 13 can be fixed to the intermediate structural material 11. For example, the covering material 12 and the bonding material 13 can be fixed to the surface of the intermediate structural material 11 by means such as cladding, plating, melt coating, pressure bonding, and adhesion with a fusible resin such as rosin. In addition, the fuse element according to the present invention may be a composite metal material in which a bonding flux is previously incorporated in the laminated interface of the bonding material 12.

本発明に係る保護素子は、上述したヒューズエレメント10を用いて製造される。図2ないし図5の保護素子を製造できれば、その製造方法は特定の工法に限定されない。例えば、上記ヒューズエレメント10と、パターン電極を有する絶縁基板とを準備する準備工程、ヒューズエレメントまたは絶縁基板に接合フラックスを塗布する接合フラックス塗布工程、接合フラックスを適用した絶縁基板のパターン電極とヒューズエレメントの接合材とを互いに接触させて絶縁基板に載置するマウント工程、ヒューズエレメントを載置した絶縁基板を183℃以上400℃未満の接合作業温度で接合材を溶融させてパターン電極に一括接合させる接合工程、接合したヒューズエレメントに動作用の溶断フラックスを塗布する溶断フラックス塗布工程、溶断フラックスを塗布した絶縁基板上のヒューズエレメントをキャップ状の蓋体で覆ってパッケージングするパッケージング工程により組み立てられる。例えば、予め接合フラックスを塗布したヒューズエレメント10は、その接合材13と、絶縁基板のパターン電極22とを互いに接触させて絶縁基板21に載置され、最高温度が183℃以上400℃未満の温度プロファイルに設定されたリフロー炉に通し接合材13を溶融させることによりパターン電極22に一括接合される。このとき溶融した接合材13は、中間構造材11およびパターン電極22に相互拡散され中間構造材11とパターン電極22とを接合させる。中間構造材11は、リフロー温度で固体を維持するので形状を保ったままパターン電極22に接合される。その後、接合したヒューズエレメント10に動作用の溶断フラックスを塗布し、絶縁基板上のヒューズエレメント10をキャップ状蓋体25で覆ってパッケージングして保護素子とする。   The protection element according to the present invention is manufactured using the fuse element 10 described above. As long as the protective element of FIGS. 2 to 5 can be manufactured, the manufacturing method is not limited to a specific method. For example, a preparation step of preparing the fuse element 10 and an insulating substrate having a pattern electrode, a bonding flux applying step of applying a bonding flux to the fuse element or the insulating substrate, a pattern electrode of the insulating substrate to which the bonding flux is applied, and the fuse element A mounting step in which the bonding material is placed in contact with each other and placed on the insulating substrate, and the insulating substrate on which the fuse element is placed is melted at a bonding work temperature of 183 ° C. or more and less than 400 ° C. to collectively join the pattern electrodes. It is assembled by a bonding process, a fusing flux application process for applying an operating fusing flux to the joined fuse elements, and a packaging process for covering the fuse element on the insulating substrate coated with the fusing flux with a cap-shaped lid and packaging. . For example, the fuse element 10 to which the bonding flux is applied in advance is placed on the insulating substrate 21 with the bonding material 13 and the pattern electrode 22 of the insulating substrate in contact with each other, and the maximum temperature is a temperature of 183 ° C. or higher and lower than 400 ° C. The bonding material 13 is melted through a reflow furnace set in a profile, thereby being collectively bonded to the pattern electrode 22. The bonding material 13 melted at this time is interdiffused into the intermediate structure material 11 and the pattern electrode 22 to bond the intermediate structure material 11 and the pattern electrode 22 together. Since the intermediate structural member 11 maintains a solid at the reflow temperature, the intermediate structural member 11 is bonded to the pattern electrode 22 while maintaining its shape. Thereafter, a fusing flux for operation is applied to the joined fuse element 10, and the fuse element 10 on the insulating substrate is covered with a cap-like lid 25 and packaged to form a protective element.

上述の接合工程に適用される加熱手段は、絶縁基板に載置したヒューズエレメントを該作業温度に一括加熱できれば、どのような方法、装置を用いても差し支えない。例えば、高温バッチ炉を用いた加熱、ホットプレートを用いた加熱、リフロー炉を用いた加熱などが好適に利用できる。また、接合フラックス塗布工程は、接合工程の加熱下においてパターン電極とヒューズエレメントの金属材表面の酸化膜等を除去し接合表面を活性化する目的で予め接合フラックスを塗布するもので、パターン電極とヒューズエレメントの金属材表面を活性化できるのであれば、他の活性化手段を代替使用でき、接合フラックス塗布工程を省略または代替することができる。例えば、水素還元炉、蟻酸還元炉など活性化ガスを用いたリフロー炉を用いる場合には、接合フラックス塗布工程を省略しても差し支えない。また、ヒューズエレメントの積層面に予め接合フラックスを内蔵させた場合も、接合フラックス塗布工程を省略して差し支えない。   As the heating means applied to the above-described bonding process, any method and apparatus may be used as long as the fuse elements placed on the insulating substrate can be collectively heated to the working temperature. For example, heating using a high-temperature batch furnace, heating using a hot plate, heating using a reflow furnace, and the like can be suitably used. In addition, the bonding flux application process applies the bonding flux in advance for the purpose of activating the bonding surface by removing the oxide film on the surface of the metal material of the pattern electrode and the fuse element under the heating of the bonding process. As long as the metal surface of the fuse element can be activated, other activation means can be used instead, and the bonding flux application step can be omitted or replaced. For example, when a reflow furnace using an activated gas such as a hydrogen reduction furnace or a formic acid reduction furnace is used, the bonding flux application step may be omitted. Also, when the bonding flux is built in the laminated surface of the fuse element in advance, the bonding flux application process may be omitted.

本発明に係る保護素子は、該ヒューズエレメントを利用した保護素子であり、図2に示すように、絶縁基板21と、この絶縁基板21の表面に設けた複数のパターン電極22と、このパターン電極22に電気接続したヒューズエレメント10と、このヒューズエレメント10の上部を覆ったキャップ状蓋体25とを備え、ヒューズエレメント10は、金属に拡散または溶解し易い固体金属からなる中間構造材11と、この中間構造材11の少なくとも片面に可溶性の金属からなる被覆材12と、さらに中間構造材11のもう一方の面に可溶金属からなる接合材13を備え、中間構造材11は、接合作業温度を超える第1の溶融温度を有し、被覆材12は、中間構造材11より溶融温度が低い第2の溶融温度を有し、接合材13は、接合作業温度で溶融し、かつ、第2の溶融温度以下の第3の溶融温度を有することを特徴とする。   The protection element according to the present invention is a protection element using the fuse element. As shown in FIG. 2, the insulating substrate 21, a plurality of pattern electrodes 22 provided on the surface of the insulating substrate 21, and the pattern electrodes 22 and a cap-like lid 25 covering the top of the fuse element 10, and the fuse element 10 includes an intermediate structural member 11 made of a solid metal that easily diffuses or dissolves in metal, The intermediate structural member 11 is provided with a covering material 12 made of a soluble metal on at least one surface and a bonding material 13 made of a soluble metal on the other surface of the intermediate structural member 11, and the intermediate structural member 11 has a bonding work temperature. The covering material 12 has a second melting temperature lower than that of the intermediate structural material 11, and the bonding material 13 has a bonding work temperature. In it melted, and characterized by having a third melting temperature below the second melting temperature.

本発明の保護素子の絶縁基板は、耐熱性の絶縁基板、例えば、ガラスエポキシ基板、BT(Bismaleimide Triazine)基板、テフロン(登録商標)基板、セラミック基板、ガラス基板などからなり、絶縁基板の片面に必要に応じて抵抗発熱素子を設けてもよい。この抵抗発熱素子は必要に応じて絶縁コーティングを施す。キャップ状蓋体は、絶縁基板およびヒューズエレメントの上部を覆って所望のキャビティ空間を保持できればよく、形状、材質を制限するものではないが、例えば、キャップ状蓋体には、ドーム状樹脂フイルム材、プラスチック材、セラミック材などが好適に利用できる。   The insulating substrate of the protection element of the present invention is made of a heat-resistant insulating substrate, for example, a glass epoxy substrate, a BT (Bismaleimide Triazine) substrate, a Teflon (registered trademark) substrate, a ceramic substrate, a glass substrate, etc., on one side of the insulating substrate. A resistance heating element may be provided as necessary. This resistance heating element is provided with an insulating coating as required. The cap-shaped lid is only required to cover the insulating substrate and the upper part of the fuse element and hold a desired cavity space, and is not limited in shape and material. For example, the cap-shaped lid includes a dome-shaped resin film material. Plastic materials, ceramic materials, etc. can be suitably used.

本発明のヒューズエレメント10は、その接合材13と、保護素子の絶縁基板に設けたパターン電極とを互いに接触させて所定の接合作業温度で接合材を溶融させ保護素子に接合される。本発明の保護素子は、その後、電気装置等の回路上に、再度、任意の温度ではんだ付け実装される。この間の加熱によってヒューズエレメントの中間構造材11と、被覆材12または接合材13との界面に、互いの金属材が拡散あるいは溶解した拡散層が形成されるが、生成した拡散層はヒューズエレメントの溶断動作に影響しない。   The fuse element 10 of the present invention is bonded to the protective element by bringing the bonding material 13 and the pattern electrode provided on the insulating substrate of the protective element into contact with each other to melt the bonding material at a predetermined bonding operation temperature. The protective element of the present invention is then soldered and mounted again at an arbitrary temperature on a circuit such as an electric device. During this time, a diffusion layer in which the respective metal materials are diffused or dissolved is formed at the interface between the intermediate structural material 11 of the fuse element and the covering material 12 or the bonding material 13. Does not affect the fusing operation.

本発明に係る実施例1のヒューズエレメント10は、図1に示すように、厚さ5μmのAgからなる第1の溶融温度が962℃の中間構造材11と、この中間構造材11の上面に厚さ3μmのSnからなる第2の溶融温度が232℃の被覆材12と、さらに中間構造材11の下面に、厚さ87μmのSn−3Ag−0.5Cu合金からなる第3の溶融温度が219℃の接合材13とを電気めっきにより設けた複合材で構成される。   As shown in FIG. 1, the fuse element 10 according to the first embodiment of the present invention includes an intermediate structural member 11 made of Ag having a thickness of 5 μm and a first melting temperature of 962 ° C., and an upper surface of the intermediate structural member 11. A coating material 12 having a second melting temperature of 232 ° C. made of Sn having a thickness of 3 μm and a third melting temperature made of an Sn-3Ag-0.5Cu alloy having a thickness of 87 μm are further formed on the lower surface of the intermediate structural material 11. It is comprised with the composite material which provided the joining material 13 of 219 degreeC by electroplating.

本発明に係る保護素子は、実施例1のヒューズエレメント10を利用した保護素子であり、図2に示すように、ヒューズエレメント10は、予め接合フラックス(図示せず)を塗布したヒューズエレメント10の接合材13と、絶縁基板21のパターン電極22とを互いに接触させて絶縁基板21に載置され、温度プロファイルを余熱温度180〜190℃で滞留時間45秒、225℃以上の滞留時間30秒ピーク温度235℃に設定したリフロー炉に通し接合材13を溶融させることによりパターン電極22に一括接合した後、接合したヒューズエレメント10に溶断フラックスを塗布し、絶縁基板上のヒューズエレメントを耐熱プラスチック製の蓋体25で覆って、このキャップ状の蓋体25と絶縁基板21とをエポキシ系樹脂で固定して保護素子とする。   The protection element according to the present invention is a protection element using the fuse element 10 of the first embodiment. As shown in FIG. 2, the fuse element 10 is composed of the fuse element 10 previously applied with a bonding flux (not shown). The bonding material 13 and the pattern electrode 22 of the insulating substrate 21 are placed in contact with each other and placed on the insulating substrate 21, and the temperature profile is peaked at a preheating temperature of 180 to 190 ° C. for a residence time of 45 seconds and a residence time of 225 ° C. or higher for 30 seconds. After the joining material 13 is melted through a reflow furnace set at a temperature of 235 ° C. and joined together to the pattern electrode 22, a fusing flux is applied to the joined fuse element 10, and the fuse element on the insulating substrate is made of a heat-resistant plastic. Covered with a lid 25, the cap-shaped lid 25 and the insulating substrate 21 are fixed with an epoxy resin. As a protective element.

本発明に係る実施例2の保護素子30は、図3に示すように、アルミナ・セラミック製の絶縁基板21と、この絶縁基板21の上下面に設けた複数のAg合金製パターン電極22と、絶縁基板21の上面のパターン電極22に電気接続したヒューズエレメント10と、このヒューズエレメント10の上部を覆って絶縁基板21に固着した液晶ポリマー製のキャップ状蓋体25とを備え、ヒューズエレメント10は、厚さ5μmのAgからなる第1の溶融温度が962℃の中間構造材11と、この中間構造材11の上面に厚さ3μmのSnからなる第2の溶融温度が232℃の被覆材12と、さらに中間構造材11の下面に、厚さ87μmのSn−3Ag−0.5Cu合金からなる第3の溶融温度が219℃の接合材13とを設けた複合金属材からなり、接合材13を溶融してパターン電極22に接合してある。パターン電極22は、基板上下面のパターン電極22を電気接続するAg合金のハーフ・スルーホール23を有する。   As shown in FIG. 3, the protection element 30 of Example 2 according to the present invention includes an insulating substrate 21 made of alumina / ceramic, and a plurality of Ag alloy pattern electrodes 22 provided on the upper and lower surfaces of the insulating substrate 21, A fuse element 10 electrically connected to the pattern electrode 22 on the upper surface of the insulating substrate 21 and a cap-shaped lid 25 made of a liquid crystal polymer covering the upper portion of the fuse element 10 and fixed to the insulating substrate 21 are provided. The intermediate structural member 11 having a first melting temperature of 962 ° C. made of Ag having a thickness of 5 μm, and the covering member 12 having a second melting temperature of 232 ° C. made of Sn having a thickness of 3 μm on the upper surface of the intermediate structural member 11. And a composite metal material provided with a bonding material 13 having a third melting temperature of 219 ° C. made of an Sn-3Ag-0.5Cu alloy having a thickness of 87 μm on the lower surface of the intermediate structural material 11. Becomes, are bonded to the pattern electrode 22 by melting the bonding material 13. The pattern electrode 22 has a half through hole 23 of Ag alloy that electrically connects the pattern electrodes 22 on the upper and lower surfaces of the substrate.

本発明に係る実施例3の保護素子30は、実施例1のヒューズエレメント10を利用した保護素子であり、図4に示すように、アルミナ・セラミック製の絶縁基板31と、この絶縁基板31の上下面に設けた複数のAg合金製パターン電極32と、このパターン電極32と電気接続され絶縁基板31の下面に設けた抵抗発熱素子34と、該絶縁基板31の上面のパターン電極32に電気接続したヒューズエレメント10と、このヒューズエレメント10の上部を覆って絶縁基板31に固着した液晶ポリマー製のキャップ状蓋体35とを備え、ヒューズエレメント10は、厚さ5μmのAgからなる第1の溶融温度が962℃の中間構造材11と、この中間構造材11の上面に厚さ3μmのSnからなる第2の溶融温度が232℃の被覆材12と、さらに中間構造材11の下面に、厚さ87μmのSn−3Ag−0.5Cu合金からなる第3の溶融温度が219℃の接合材13とを設けた複合金属材からなり、接合材13を溶融してパターン電極32に接合してある。パターン電極32は、基板上下面のパターン電極32を電気接続するAg合金のハーフ・スルーホール33を有する。図示しないが、抵抗発熱素子34の表面はガラス・オーバーグレーズを施している。   The protection element 30 according to the third embodiment of the present invention is a protection element using the fuse element 10 according to the first embodiment. As shown in FIG. 4, an insulating substrate 31 made of alumina / ceramic and the insulating substrate 31 A plurality of Ag alloy pattern electrodes 32 provided on the upper and lower surfaces, a resistance heating element 34 electrically connected to the pattern electrodes 32 and provided on the lower surface of the insulating substrate 31, and an electric connection to the pattern electrodes 32 on the upper surface of the insulating substrate 31 The fuse element 10 and a cap-shaped lid 35 made of a liquid crystal polymer that covers the upper portion of the fuse element 10 and is fixed to the insulating substrate 31. The fuse element 10 is a first melt made of Ag having a thickness of 5 μm. An intermediate structural member 11 having a temperature of 962 ° C., and a covering member 12 having a second melting temperature of 232 ° C. made of Sn having a thickness of 3 μm on the upper surface of the intermediate structural member 11; Further, the intermediate structure material 11 is made of a composite metal material provided with a bonding material 13 having a third melting temperature of 219 ° C. made of an Sn-3Ag-0.5Cu alloy having a thickness of 87 μm. It is melted and joined to the pattern electrode 32. The pattern electrode 32 has a half through hole 33 of Ag alloy that electrically connects the pattern electrodes 32 on the upper and lower surfaces of the substrate. Although not shown, the surface of the resistance heating element 34 is subjected to glass overglazing.

本発明に係る実施例4の保護素子40は、保護素子30を変形した保護素子である。図5に示すように、アルミナ・セラミック製の絶縁基板41と、この絶縁基板41の上下面に設けた複数のAg合金製パターン電極42と、このパターン電極42と電気接続され絶縁基板41の上面に設けた抵抗発熱素子44と、この抵抗発熱素子44に当接して絶縁基板41の上面のパターン電極42に電気接続したヒューズエレメント10と、このヒューズエレメント10の上部を覆って絶縁基板41に固着した液晶ポリマー製の蓋体45とを備え、ヒューズエレメント10は、厚さ5μmのAgからなる第1の溶融温度が962℃の中間構造材11と、この中間構造材11の上面に厚さ3μmのSnからなる第2の溶融温度が232℃の被覆材12と、さらに中間構造材11の下面に、厚さ87μmのSn−3Ag−0.5Cu合金からなる第3の溶融温度が219℃の接合材13とを設けた複合金属材からなり、接合材13を溶融してパターン電極42に接合してある。パターン電極42は、基板上下面のパターン電極42を電気接続するAg合金のハーフ・スルーホール43を有する。図示しないが、実施例4の抵抗発熱素子44の表面はガラス・オーバーグレーズを施している。   The protection element 40 according to the fourth embodiment of the present invention is a protection element obtained by modifying the protection element 30. As shown in FIG. 5, an insulating substrate 41 made of alumina / ceramic, a plurality of Ag alloy pattern electrodes 42 provided on the upper and lower surfaces of the insulating substrate 41, and the upper surface of the insulating substrate 41 electrically connected to the pattern electrode 42. A resistance heating element 44 provided on the insulating substrate 41; a fuse element 10 that is in contact with the resistance heating element 44 and electrically connected to the pattern electrode 42 on the upper surface of the insulating substrate 41; The fuse element 10 includes an intermediate structural member 11 having a first melting temperature of 962 ° C. made of Ag having a thickness of 5 μm, and a thickness of 3 μm on the upper surface of the intermediate structural member 11. From the Sn-3Ag-0.5Cu alloy having a thickness of 87 μm on the lower surface of the intermediate material 11 and the covering material 12 having a second melting temperature of 232 ° C. made of Sn That the third melting temperature is a composite metal material provided with the bonding material 13 of 219 ° C., it is bonded to the pattern electrode 42 by melting the bonding material 13. The pattern electrode 42 has a half through hole 43 of Ag alloy that electrically connects the pattern electrodes 42 on the upper and lower surfaces of the substrate. Although not shown, the surface of the resistance heating element 44 of Example 4 is glass overglazed.

なお、実施例2ないし実施例4の保護素子は、絶縁基板上下面のパターン電極を電気接続する配線手段は、ハーフ・スルーホール23、33および43に替えて該基板を貫通した導体スルーホールや、平面電極パターンによる表面配線に変更してもよい。   In the protective elements of Examples 2 to 4, the wiring means for electrically connecting the pattern electrodes on the upper and lower surfaces of the insulating substrate is replaced with conductor through holes penetrating the substrate instead of the half through holes 23, 33 and 43. The surface wiring may be changed to a planar electrode pattern.

本発明のヒューズエレメントは、リフローなど全体加熱溶融により保護素子に組込み搭載できる。さらに、このヒューズエレメントを用いた本発明の保護素子は、他の表面実装部品と共に再びリフロー・ソルダリングにより電気回路基板にはんだ付け実装されて、電池パックなど2次電池の保護装置に利用できる。   The fuse element of the present invention can be incorporated and mounted in a protective element by whole heating and melting such as reflow. Furthermore, the protection element of the present invention using this fuse element is soldered and mounted on an electric circuit board by reflow soldering together with other surface mount components, and can be used for a protection device for a secondary battery such as a battery pack.

10・・・ヒューズエレメント、
11・・・中間構造材、
12・・・被覆材、
13・・・接合材、
20、30、40・・・保護素子、
21、31、41・・・絶縁基板、
22、32、42・・・パターン電極、
23、33、43・・・ハーフ・スルーホール、
34、44・・・抵抗発熱素子、
25、35、45・・・蓋体。
10 ... fuse element,
11: Intermediate structural material,
12 ... covering material,
13: bonding material,
20, 30, 40 ... protection element,
21, 31, 41 ... insulating substrate,
22, 32, 42 ... pattern electrodes,
23, 33, 43 ... Half through hole,
34, 44... Resistance heating element,
25, 35, 45... Lid.

Claims (9)

金属に拡散または溶解し易い固体金属からなる中間構造材と、この中間構造材の少なくとも片面に可溶性の金属からなる被覆材と、さらに前記中間構造材のもう一方の面に可溶金属からなる接合材とを備え、前記中間構造材は、Ag、Cuまたはこれらを50質量%以上含む合金からなり、接合作業温度を超える第1の溶融温度を有し、前記被覆材は、前記中間構造材より溶融温度が低い第2の溶融温度を有し、前記接合材は、前記接合作業温度で溶融し、かつ、前記第2の溶融温度以下の第3の溶融温度を有することを特徴とするヒューズエレメント。 An intermediate structure material made of a solid metal that easily diffuses or dissolves in a metal, a covering material made of a soluble metal on at least one side of the intermediate structure material, and a joint made of a soluble metal on the other surface of the intermediate structure material The intermediate structure material is made of Ag, Cu or an alloy containing 50 mass% or more of these, and has a first melting temperature exceeding a joining operation temperature, and the covering material is more than the intermediate structure material. A fuse element having a second melting temperature having a low melting temperature, the bonding material being melted at the bonding operation temperature and having a third melting temperature equal to or lower than the second melting temperature. . 前記被覆材は、SnまたはSn合金を用いたことを特徴とする請求項1に記載のヒューズエレメント。 The fuse element according to claim 1, wherein the covering material is made of Sn or an Sn alloy. 前記接合材は、Sn−Ag合金、Sn−Bi合金、Sn−Cu合金、Sn−Zn合金、Sn−Sb合金、Sn−Ag−Bi合金、Sn−Ag−Cu合金、Sn−Ag−In合金、Sn−Zn−Al合金、Sn−Zn−Bi合金、Zn−Al合金または前記合金にAu、Ni、Ge、Ga、Mg、Pをさらに添加した合金の群から選択された少なくとも1つの金属材を用いたことを特徴とする請求項1または請求項2に記載のヒューズエレメント。 The bonding material is Sn—Ag alloy, Sn—Bi alloy, Sn—Cu alloy, Sn—Zn alloy, Sn—Sb alloy, Sn—Ag—Bi alloy, Sn—Ag—Cu alloy, Sn—Ag—In alloy. , Sn—Zn—Al alloy, Sn—Zn—Bi alloy, Zn—Al alloy or at least one metal material selected from the group of alloys obtained by further adding Au, Ni, Ge, Ga, Mg, P to the alloy The fuse element according to claim 1 or 2 , wherein the fuse element is used. 前記接合作業温度が183℃以上400℃未満の請求項1ないし請求項の何れか1つに記載のヒューズエレメント。 The fuse element according to any one of claims 1 to 3 , wherein the joining operation temperature is 183 ° C or higher and lower than 400 ° C. 絶縁基板と、この絶縁基板の表面に設けた複数のパターン電極と、このパターン電極に電気接続したヒューズエレメントと、このヒューズエレメントの上部を覆った蓋体とを備え、前記ヒューズエレメントは、Ag、Cuまたはこれらを50質量%以上含む合金からなる中間構造材と、この中間構造材の少なくとも片面に可溶性の金属からなる被覆材と、さらに前記中間構造材のもう一方の面に可溶金属からなる接合材とを備え、前記中間構造材は、接合作業温度を超える第1の溶融温度を有し、前記被覆材は、前記中間構造材より溶融温度が低い第2の溶融温度を有し、前記接合材は、前記接合作業温度で溶融し、かつ、前記第2の溶融温度以下の第3の溶融温度を有することを特徴とする保護素子。 An insulating substrate; a plurality of pattern electrodes provided on a surface of the insulating substrate; a fuse element electrically connected to the pattern electrode; and a lid that covers an upper portion of the fuse element, wherein the fuse element includes Ag, An intermediate structure material made of Cu or an alloy containing 50% by mass or more of these, a covering material made of a soluble metal on at least one surface of the intermediate structure material, and a soluble metal on the other surface of the intermediate structure material The intermediate structure material has a first melting temperature that exceeds a bonding operation temperature, the covering material has a second melting temperature lower than the intermediate structure material, The bonding material is melted at the bonding work temperature and has a third melting temperature equal to or lower than the second melting temperature. 前記絶縁基板は、さらに抵抗発熱素子を設けたことを特徴とする請求項に記載の保護素子。 The protection element according to claim 5 , wherein the insulating substrate further includes a resistance heating element. 前記被覆材は、SnまたはSn合金を用いたことを特徴とする請求項6または請求項7に記載の保護素子。 The protection element according to claim 6 or 7 , wherein the covering material is made of Sn or an Sn alloy. 前記接合材は、Sn−Ag合金、Sn−Bi合金、Sn−Cu合金、Sn−Zn合金、Sn−Sb合金、Sn−Ag−Bi合金、Sn−Ag−Cu合金、Sn−Ag−In合金、Sn−Zn−Al合金、Sn−Zn−Bi合金、Zn−Al合金または前記合金にAu、Ni、Ge、Ga、Mg、Pをさらに添加した合金の群から選択された少なくとも1つの金属材を用いたことを特徴とする請求項ないし請求項の何れか一つに記載の保護素子。 The bonding material is Sn—Ag alloy, Sn—Bi alloy, Sn—Cu alloy, Sn—Zn alloy, Sn—Sb alloy, Sn—Ag—Bi alloy, Sn—Ag—Cu alloy, Sn—Ag—In alloy. , Sn—Zn—Al alloy, Sn—Zn—Bi alloy, Zn—Al alloy or at least one metal material selected from the group of alloys obtained by further adding Au, Ni, Ge, Ga, Mg, P to the alloy protection device according to any one of claims 5 to 7, characterized in that with. 前記接合作業温度が183℃以上400℃未満の請求項ないし請求項の何れか一つに記載の保護素子。 The protective element according to any one of claims 5 to 8 , wherein the joining operation temperature is 183 ° C or higher and lower than 400 ° C.
JP2016076279A 2016-04-06 2016-04-06 Protective element Active JP6423384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076279A JP6423384B2 (en) 2016-04-06 2016-04-06 Protective element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076279A JP6423384B2 (en) 2016-04-06 2016-04-06 Protective element

Publications (2)

Publication Number Publication Date
JP2017188310A JP2017188310A (en) 2017-10-12
JP6423384B2 true JP6423384B2 (en) 2018-11-14

Family

ID=60045743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076279A Active JP6423384B2 (en) 2016-04-06 2016-04-06 Protective element

Country Status (1)

Country Link
JP (1) JP6423384B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231527B2 (en) * 2018-12-28 2023-03-01 ショット日本株式会社 Fuse element for protection element and protection element using the same
JP7349954B2 (en) * 2020-04-13 2023-09-25 ショット日本株式会社 protection element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166454A (en) * 1991-12-11 1993-07-02 Hitachi Chem Co Ltd Chip type fuse
JP5896412B2 (en) * 2012-05-17 2016-03-30 エヌイーシー ショット コンポーネンツ株式会社 Fuse element for protection element and circuit protection element using the same

Also Published As

Publication number Publication date
JP2017188310A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
TWI557765B (en) A fuse element for a protective element, a circuit protection element, and a method of manufacturing the same
JP7231527B2 (en) Fuse element for protection element and protection element using the same
TWI683336B (en) Manufacturing method of structural body, structural method of temperature fuse element and temperature fuse element
JP2015079608A (en) Fuse element material for protection element and circuit protection element using the same
JP7050019B2 (en) Protective element
JP6423384B2 (en) Protective element
CA2214130C (en) Assemblies of substrates and electronic components
JP7349954B2 (en) protection element
JP2007243118A (en) Semiconductor device
TWI676202B (en) Protective component
JP2008258353A (en) Package for electronic component, and brazing construction thereof
JP2009158725A (en) Semiconductor device and die bonding material
JP6711704B2 (en) Protective device with bypass electrode
JP4735874B2 (en) Protective element
WO2020138325A1 (en) Fuse element and protective element
JP2004363630A (en) Packaging method of protective element
TW202412035A (en) Fuse component and protection element
JP2024035140A (en) Fuse alloys and protection elements
JP7040886B2 (en) Protective element
JP2894172B2 (en) Semiconductor device
CN117637411A (en) Fuse assembly and protection assembly
JP2020126821A (en) Protection element
JPH02244530A (en) Base board type thermo-fuse and manufacture thereof
JP5817893B1 (en) Component mounting wiring board and manufacturing method thereof
JP4735873B2 (en) Protective element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181018

R150 Certificate of patent or registration of utility model

Ref document number: 6423384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250