WO2020138325A1 - Fuse element and protective element - Google Patents

Fuse element and protective element Download PDF

Info

Publication number
WO2020138325A1
WO2020138325A1 PCT/JP2019/051212 JP2019051212W WO2020138325A1 WO 2020138325 A1 WO2020138325 A1 WO 2020138325A1 JP 2019051212 W JP2019051212 W JP 2019051212W WO 2020138325 A1 WO2020138325 A1 WO 2020138325A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
metal
temperature
fuse element
fusible metal
Prior art date
Application number
PCT/JP2019/051212
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 中島
剛志 服部
Original Assignee
ショット日本株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019198126A external-priority patent/JP7231527B2/en
Application filed by ショット日本株式会社 filed Critical ショット日本株式会社
Priority to US17/274,280 priority Critical patent/US11640892B2/en
Priority to DE112019004080.4T priority patent/DE112019004080T5/en
Priority to CN201980062459.5A priority patent/CN113169001A/en
Publication of WO2020138325A1 publication Critical patent/WO2020138325A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/06Fusible members characterised by the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/12Two or more separate fusible members in parallel

Definitions

  • the present disclosure relates to a fuse element and a protection element including the fuse element.
  • a chip protection element of a surface mount device (Surface Mount Device) is preferably used for a protection circuit of a secondary battery pack.
  • SMD Surface Mount Device
  • the chip protection element there is a non-recoverable protection element that detects excessive heat generation caused by an overcurrent of a protected device and operates a fuse under a predetermined condition to interrupt an electric circuit.
  • a non-recoverable protection element that senses an abnormal increase in ambient temperature and activates a fuse under a predetermined condition to interrupt an electric circuit.
  • the above protection element causes the resistance element to generate heat by the signal current when the protection circuit detects an abnormality that occurs in the device.
  • the protective element fuses a fuse element made of a fusible alloy material by its heat generation to cut off the circuit, or blows the fuse element due to overcurrent to cut off the circuit, thereby ensuring the safety of the device.
  • Patent Document 1 discloses a protection element in which a resistance element that generates heat in an abnormal state is provided on an insulating substrate such as a ceramic substrate.
  • the low melting point metal material and the high melting point metal material of the fuse element are fixed to each other.
  • the fuse element is protected by the liquid phase low melting point metal material while holding the low melting point metal material which is liquidized by the heat of the soldering work so as not to be blown by the solid phase high melting point metal material at the working temperature. It can be bonded to the electrode pattern. Further, the fuse element is prevented from being blown out at the soldering work temperature when the protective element is surface-mounted on the circuit board.
  • This protection element causes a built-in resistance element to generate heat, and the heat causes the high melting point metal material of the fuse element to diffuse or melt into the low melting point metal material which is a medium to perform a fusing operation.
  • the electric resistance value of the protective element that functions to cut off the current of the power line is as small as possible because electric energy loss is small. In that respect, it is really convenient to have a high melting point metal material made of silver, which is a low electric resistance material, in the fuse element.
  • the silver high melting point metal material does not melt at the operating temperature of the protective element, it may remain in a thick film due to insufficient dissolution or diffusion into the low melting point metal material.
  • the conventional fuse element there is a possibility that it takes an extra time for fusing and, in an extreme case, a fusing failure may occur.
  • the refractory metal material cannot be made sufficiently thick in order to reduce the electric resistance value.
  • the refractory metal material cannot be thickened. Therefore, when the fuse element is bonded to the electrode pattern, the high melting point metal material may be excessively diffused or dissolved in the liquid phase low melting point metal material to be thinned. In this case, the fuse element may be deformed or the surface of the refractory metal material may be corrugated, which may hinder the attachment of the protective element.
  • the present disclosure provides a fuse element capable of more reliably interrupting energization at the time of fuse operation, and a protection element including the protection element, which corresponds to the restriction of chemical substances, the reduction of electric resistance, and the reduction in size and thickness of the protection element.
  • the purpose is to
  • the first fusible metal in which a part of the components melt at the joining working temperature and the melting temperature lower than the melting temperature of the first soluble metal have the joining working temperature.
  • a fuse element including a composite metal material in which a second fusible metal in which at least a part of a component is melted is laminated.
  • the first soluble metal has a predetermined component mixed with the second soluble metal in which a part of the components are melted at the joining operation temperature and a part or all of the components are melted at the same operation temperature, and Gradually approaches the prescribed liquidus temperature.
  • the protection element including the above fuse element. That is, the protection element according to the present disclosure includes an insulating substrate, a plurality of electrodes provided on the insulating substrate, a fuse element electrically connected to any one of the plurality of electrodes, and the fuse element. And a heating element provided on the insulating substrate for heating and melting.
  • the fuse element has a first fusible metal in which a part of the component melts at a joining working temperature and a melting temperature lower than that of the first fusible metal, and at least a part of the component melts at the joining working temperature.
  • the composite metal material in which the second soluble metal is stacked is provided.
  • the fuse element and the protection element of the present disclosure it is possible to more reliably cut off the energization during the operation of the fuse.
  • FIG. 3 is a perspective view showing a fuse element according to an embodiment of the present disclosure. It is an exploded perspective view showing a protection element concerning an embodiment of this indication.
  • the protection element which concerns on embodiment of this indication is shown, (a) is IIIa-IIIa arrow sectional drawing in (b), (b) is IIIb-IIIb arrow sectional drawing in (a), (c) is a bottom view.
  • the protective element which concerns on embodiment of this indication is shown, (a) is IVa-IVa arrow sectional drawing in (b), (b) is IVb-IVb arrow sectional drawing in (a), (c) is a bottom view. Is.
  • the fuse element 10 includes a first fusible metal 11 in which some components are melted at a joining working temperature, and a melting temperature lower than the melting temperature of the first fusible metal 11. It is composed of a composite metal material having a temperature and a second fusible metal 12 in which at least a part of the components melt at the above-mentioned joining operation temperature.
  • the first soluble metal 11 partially dissolves in the second soluble metal 12 at the joining operation temperature.
  • the first fusible metal 11 is diffused or mixed with the second fusible metal 12 in which some or all of the components are melted at the joining operation temperature. By being diffused or mixed, the first soluble metal 11 and the second soluble metal gradually approach the predetermined liquidus temperature.
  • 80Sn-20Ag alloy (liquidus temperature 370°C, solidus temperature 221°C) is an example of the first fusible metal 11 of this fuse element.
  • An example of the second soluble metal 12 is a 60Sn-40Bi alloy (liquidus temperature 175° C., solidus temperature 139° C.).
  • the fuse element 10 is composed of a composite metal material in which the second fusible metal 12 is laminated on the surface of the first fusible metal 11.
  • the solidus temperature and the liquidus temperature depend on Differential Scanning Calorimetry (DSC).
  • the first fusible metal is not particularly limited, but is, for example, above the solidus temperature of the second fusible metal and below the liquidus temperature of the first fusible metal (however, due to the heat resistance of the peripheral parts, Any lead-free tin-based solder material may be used, in which some of the components are melted at a predetermined joining work temperature (peak temperature is preferably less than 300° C.).
  • the second fusible metal may be a tin or lead-free tin-based solder material in which some or all of the components melt at the above-mentioned predetermined joining work temperature.
  • the second soluble metal 12 may be a simple metal having a single melting point, a eutectic alloy, or an alloy having a melting range.
  • Sn-Cu alloy, Sn-Sb alloy, Sn-Zn alloy, Sn-Al alloy can be used as the first soluble metal.
  • Sn, Sn-Ag alloy, Sn-Ag-Cu alloy, Sn-Ag-Cu-Bi alloy, Sn-Cu alloy, Sn-In alloy, Sn-Ag-In are used as the other second soluble metal.
  • Alloys Sn-Bi-Ag alloys, Sn-Ag-Bi-In alloys, Sn-Sb alloys, Sn-Zn alloys, Sn-Zn-Bi alloys, Sn-Al alloys and the like can be used.
  • Both the first soluble metal and the second soluble metal are lead-free metal materials with a high Sn content, and have the drawback of being easily oxidized compared to conventional leaded metal materials. Therefore, at least one of P, Ga, and Ge as an antioxidant trace element is further added to both or either of the first soluble metal and the second soluble metal so as to exceed 3 ppm and less than 300 ppm. What was added to may be used.
  • the fuse element 15 shown in FIG. 1B may be formed by laminating the second fusible metal 12 on both sides of the plate surface of the first fusible metal 11.
  • the means for stacking the second soluble metal 12 on the first soluble metal 11 is not particularly limited as long as the second soluble metal 12 can be stacked on the first soluble metal 11.
  • means such as clad (compression bonding), plating, and melt coating can be used.
  • the fuse element of the present disclosure can be directly placed on an electrode without using a solder paste and bonded to the electrode by a reflow method. Since this fuse element is made of fusible metal, there is no risk of fusing residue. More specifically, a high melting point metal material made of silver has been conventionally used, but the high melting point material made of silver did not melt at the operating temperature of the protective element. In the fuse element of the present embodiment, since the first fusible metal 11 and the second fusible metal 12 are both fusible metals that melt at the operating temperature of the protection element, they are likely to occur in the conventional fuse element. In addition, it is possible to prevent a malfunction in which a part of the fuse element remains without being blown. In this specification, the number before the element symbol in the alloy composition notation of 80Sn-20Ag alloy and the like represents the mass% of the corresponding element.
  • the fuse element according to the present disclosure is melt-bonded to the electrode 24a made of a conductive member provided on the heat-resistant insulating substrate 23 and used as the fuse element 25 of the protection element.
  • the joining work temperature is preferably set to exceed the solidus temperature of the second soluble metal and less than the liquidus temperature of the first soluble metal.
  • the fuse element 25 and the electrode 24a are joined by the following steps. Flux for bonding is applied to at least the surface of the electrode 24a for bonding the fuse element 25 and at least the surface of the second fusible metal 22 of the fuse element 25.
  • the fuse element 25 is placed so that the second fusible metal 22 contacts the electrode 24a.
  • the fuse element 25 and the insulating substrate 23 are heated to the above-mentioned bonding work temperature to melt a part of the first fusible metal 21 and a part or all of the second fusible metal 22 to form the electrode 24a.
  • the fuse element 25 is joined to.
  • the fuse element 25 is coated with the fusing flux for operation, and the fuse element 25 coated with the fusing flux is covered with the insulating substrate 23 by the cap-shaped lid 26 and packaged, and the protection element 20 is assembled.
  • the 80Sn-20Ag alloy (liquidus temperature 370° C., solidus temperature 221° C.) is an example of the first fusible metal 21 of the fuse element 25.
  • An example of the second soluble metal 22 is a 60Sn-40Bi alloy (liquidus temperature 175° C., solidus temperature 139° C.).
  • the fusible metal 22 is diffused or mixed with each other. By being diffusively mixed, the first soluble metal 21 and the second soluble metal 22 gradually approach the predetermined liquidus temperature.
  • the Sn migrates from the side of the second soluble metal 22 due to liquid phase diffusion and approaches an equilibrium state, so the Sn component increases, and the Ag concentration also diffuses to the second soluble metal 22. To decrease. As a result, the Ag concentration in the first soluble metal 21 relatively decreases, and the liquidus temperature decreases from the initial 370° C. toward the solidus temperature 221° C.
  • the second soluble metal 22 Sn moves toward the first soluble metal 21 side due to the dissolution and diffusion of the first soluble metal 21 and approaches the equilibrium state, so the Sn component decreases and the Bi concentration increases. Also moves to the first soluble metal 21 due to diffusion and decreases.
  • the Bi concentration relatively increases and the liquidus temperature decreases toward the solidus temperature of 139°C. That is, the fuse element is joined, the equilibrium movement of the Sn component, which is the common element of the first soluble metal 21 and the second soluble metal 22, and the mutual diffusion of Ag and Bi, which are different elements, on the mutual sides. Is used to reduce the difference between the liquidus temperature and the solidus temperature of each other, and the fuse operating temperature range is self-adjusted.
  • the solid pure silver coating of the conventional fuse element can be melted faster than the Sn-based lead-free solder. Further, since the silver coating is not used, there is no fear of sulfidation corrosion, silver migration, and fusing failure due to the residual silver coating.
  • the protection element 20 uses the above fuse element, and as shown in FIG. 2, includes an insulating substrate 23, a plurality of electrodes 24a and 24b provided on the insulating substrate 23, and electrodes 24a and 24b. Among them, a fuse element 25 electrically connected to a predetermined electrode (24a in FIG. 2) and a heating element (FIG. 2) provided on the insulating substrate 23 for heating and melting the fuse element 25 and electrically connected to the predetermined electrode. Is disposed on the back surface of the insulating substrate 23).
  • the fuse element 25 has a first fusible metal 21 in which a part of the component melts at the joining operation temperature and a melting range of a temperature lower than that of the first fusible metal 21 and has at least the component at the joining operation temperature. It is made of a composite metal material in which a second fusible metal 22 partially melted is laminated.
  • the first fusible metal 21 of the fuse element 25 preferably has a liquidus temperature lower than the peak temperature of the heating element (maximum temperature when the heating element generates heat). Thereby, even if a part of the first fusible metal 21 remains without being dissolved in the second fusible metal 22, the first fusible metal 21 is melted by the heat generating element and the fuse element 25 is removed. Can be blown out.
  • a fuse element 10 of Example 1 is made of an alloy plate of 70Sn-30Ag alloy (liquidus temperature 415° C., solidus temperature 221° C.) having a thickness of 80 ⁇ m.
  • the first fusible metal 11 and the second fusible metal 12 made of an alloy plate of a 60 ⁇ m thick 60Sn-40Bi alloy (liquidus temperature 175° C., solidus temperature 139° C.) are laminated with a clad. It is made of composite metal material.
  • the fuse element 10 shown in FIG. 1A has a first fusible element made of an alloy plate of 67Sn-33Ag alloy (liquidus temperature 416° C., solidus temperature 220° C.) having a thickness of 65 ⁇ m.
  • a composite metal material in which a metal 11 and a second fusible metal 12 made of an alloy plate of 30Sn-70Bi alloy (liquidus temperature 173° C., solidus temperature 139° C.) having a thickness of 25 ⁇ m are laminated by a clad are also available. Available.
  • the fuse element 15 of Example 2 is made of an alloy plate of 80 ⁇ m thick 80Sn-20Ag alloy (liquidus temperature 370° C., solidus temperature 221° C.).
  • a second fusible metal 12 made of an alloy plate of a 60Sn-40Bi alloy (liquidus temperature 175°C, solidus temperature 139°C) having a thickness of 5 ⁇ m is clad. It is composed of three layers of composite metal material laminated by.
  • the fuse element 15 is provided with the second fusible metal 12 on the upper and lower surfaces of the first fusible metal 11, the directionality of the front and back is lost, so that the fuse element plate may not be erroneously placed during the process of assembling the protection element. Can be prevented.
  • Example 1 The fuse element of Example 1 or Example 2 is bonded to an Ag alloy electrode 24a provided on the surface of an alumina/ceramic insulating substrate 23 as shown in FIG. 2, respectively.
  • the protection element of Example 4 is formed.
  • the electrode 24a of the insulating substrate to which the bonding flux is applied in advance and the second fusible metal 22 of the fuse element 25 are placed in contact with each other. It is passed through a reflow furnace so that the temperature profile has a residual heat temperature of 110 to 130° C., a residence time of 70 seconds, a residence time of 150° C. or higher for 30 seconds, and a peak temperature of 170° C. As a result, a part of the first soluble metal 21 is melted, a part or all of the second soluble metal 22 is melted, and the Sn phases of the common elements are mutually diffused to asymptotically approach an equilibrium state.
  • the fuse element 25 is bonded to the electrode 24a by the molten second fusible metal 22.
  • a fusing flux is applied to the fuse element 25.
  • the fuse element 25 together with the insulating substrate 23 is covered with a cap-shaped lid 26 made of heat-resistant plastic, and the cap-shaped lid 26 and the insulating substrate 23 are fixed with an epoxy resin to form the protective element 20.
  • the protection element of Example 3 is a protection element 30 using the fuse element of Example 1 or Example 2.
  • an insulating substrate 33 made of alumina ceramics and an insulating substrate 33 are used.
  • the plurality of Ag alloy pattern electrodes 34 provided on the upper and lower surfaces, the resistance heating element 38 electrically connected to the pattern electrodes 34 and provided on the lower surface of the insulating substrate 33, and the pattern electrode 34 on the upper surface of the insulating substrate 33 are electrically connected.
  • a cap-shaped lid body 36 made of liquid crystal polymer fixed to an insulating substrate so as to cover the upper portion of the fuse element 35.
  • the fuse element 35 includes a first fusible metal 31 made of an alloy plate of 70Sn-30Ag alloy (liquidus temperature 415° C., solidus temperature 221° C.) having a thickness of 80 ⁇ m and 60Sn-40Bi alloy having a thickness of 10 ⁇ m.
  • the second fusible metal 32 made of an alloy plate having a liquidus temperature of 175° C. and a solidus temperature of 139° C. is laminated by a clad to form a composite metal material.
  • the pattern electrode 34 has an Ag alloy half through hole 37 that electrically connects the pattern electrodes 34 on the upper and lower surfaces of the substrate.
  • the surface of the resistance heating element of Example 3 is overglaze made of a glass material.
  • the heating element 38 of the protection element of the third embodiment is provided on a substrate surface (lower surface) different from the substrate surface (upper surface) of the insulating substrate 33 on which the fuse element 35 is provided.
  • the peak temperature of the heating element 38 used in Example 3 is 430° C., for example, the liquidus temperature of the first soluble metal 31 is 415° C. and the liquidus temperature of the second soluble metal 32 is 175° C. Is also high. As a result, even if the first fusible metal 31 remains in the second fusible metal 32 without being melted, the first fusible metal 31 is melted by the heat of the heating element 38. As a result, malfunction of the protection element can be avoided.
  • the protection element 40 of the fourth embodiment is a modification of the protection element of the third embodiment, and is a protection element that uses the fuse element of the first or second embodiment.
  • an insulating substrate 43 of alumina ceramics As shown in FIG. 4, an insulating substrate 43 of alumina ceramics, a plurality of Ag alloy pattern electrodes 44 provided on the upper and lower surfaces of the insulating substrate 43, and an upper surface of the insulating substrate 43 electrically connected to the pattern electrodes 44.
  • the resistance heating element 48, the fuse element 45 which is in contact with the resistance heating element 48 and is electrically connected to the pattern electrode 44 on the upper surface of the insulating substrate 43, and the fuse element 45 is covered and fixed to the insulating substrate 43.
  • a cap-shaped lid 46 made of liquid crystal polymer.
  • the fuse element 45 is composed of an 80 ⁇ m thick 80Sn-20Ag alloy (liquidus temperature 370° C., solidus temperature 221° C.) alloy plate 41 and a 10 ⁇ m thick 60Sn-40Bi alloy. It is composed of a composite metal material in which a second soluble metal 42 made of an alloy plate having a liquidus temperature of 175° C. and a solidus temperature of 139° C. is laminated by a clad.
  • the pattern electrode 44 has a half through hole 47 of Ag alloy that electrically connects the pattern electrodes 44 on the upper and lower surfaces of the substrate.
  • the peak temperature of the heating element 48 used in Example 4 is 400° C.
  • the liquidus temperature of the first soluble metal 41 is 370° C.
  • the liquidus temperature of the second soluble metal 42 is 175° C. Is also high.
  • the first fusible metal 41 does not dissolve in the second fusible metal 42 and remains, for example, the first fusible metal 41 is melted by the heat of the heating element 48.
  • malfunction of the protection element can be avoided.
  • the surface of the resistance heating element 48 of Example 4 is overglaze made of a glass material.
  • the heating element 48 of the protection element of the fourth embodiment is provided on the same substrate surface (upper surface) as the substrate surface (upper surface) of the insulating substrate 43 on which the fuse element 45 is provided.
  • the wiring means for electrically connecting the pattern electrodes on the upper and lower surfaces of the insulating substrate is a conductor through hole penetrating the substrate instead of the half through hole, or a surface wiring by a flat electrode pattern. You may change it.
  • the Sn-Bi alloy forming the second fusible metal of each of Examples 1 to 4 was changed to a Sn-Bi-Ag alloy in which Ag was further added to the Sn-Bi alloy. You may change it.
  • the fuse element made of the composite metal material of the present invention can be incorporated and mounted in the protection element by the entire heating and melting such as reflow.
  • the protective element using this fuse element is soldered and mounted on the electric circuit board by reflow soldering together with other surface mount components, and can be used for a protective device for a secondary battery such as a battery pack.

Abstract

This protective element (30) comprises: an insulation substrate (33); a plurality of electrodes (34) provided to the insulation substrate (33); a fuse element (35) that is electrically connected to any of the electrodes (34) among the plurality of electrodes (34); and a heating element (38) for heating and causing fusing of the fuse element (35), the heating element (38) being provided to the insulation substrate (33). The fuse element (35) comprises a composite metal material in which there are laminated: a first soluble metal (31), some of the components of which dissolve at a bonding operation temperature; and a second soluble metal (32) having a melting temperature that is lower than the melting temperature of the first soluble metal (31), some of the components of the second soluble metal (32) melting at the bonding operation temperature.

Description

ヒューズ素子および保護素子Fuse element and protection element
 本開示は、ヒューズ素子およびそのヒューズ素子を備えた保護素子に関する。 The present disclosure relates to a fuse element and a protection element including the fuse element.
 近年、モバイル機器など小型電子機器の急速な普及に伴い、搭載する電源の保護回路に実装される保護素子も小型薄型のものが使用されている。たとえば、二次電池パックの保護回路には、表面実装部品(SMD(Surface Mount Device))のチップ保護素子が好適に利用される。チップ保護素子には、被保護機器の過電流により生ずる過大発熱を検知し所定条件でヒューズを作動させ電気回路を遮断する非復帰型保護素子がある。異なるタイプのチップ保護素子として、周囲温度の異常上昇に感応して所定条件でヒューズを作動させ電気回路を遮断する非復帰型保護素子がある。 In recent years, with the rapid spread of small electronic devices such as mobile devices, small and thin protective elements have been used for the protective circuit of the power supply to be mounted. For example, a chip protection element of a surface mount device (SMD (Surface Mount Device)) is preferably used for a protection circuit of a secondary battery pack. As the chip protection element, there is a non-recoverable protection element that detects excessive heat generation caused by an overcurrent of a protected device and operates a fuse under a predetermined condition to interrupt an electric circuit. As a different type of chip protection element, there is a non-recoverable protection element that senses an abnormal increase in ambient temperature and activates a fuse under a predetermined condition to interrupt an electric circuit.
 上記保護素子は、保護回路が機器に生ずる異常を検知すると信号電流により抵抗素子を発熱させる。保護素子は、その発熱で可融性の合金材からなるヒューズ素子を溶断させて回路を遮断するか、あるいは過電流によってヒューズ素子を溶断させて回路を遮断することで、機器の安全を図る。 The above protection element causes the resistance element to generate heat by the signal current when the protection circuit detects an abnormality that occurs in the device. The protective element fuses a fuse element made of a fusible alloy material by its heat generation to cut off the circuit, or blows the fuse element due to overcurrent to cut off the circuit, thereby ensuring the safety of the device.
 たとえば、特開2013-239405号公報(特許文献1)には、異常時に発熱する抵抗素子をセラミックス基板などの絶縁基板上に設けた保護素子が開示されている。 For example, Japanese Patent Laying-Open No. 2013-239405 (Patent Document 1) discloses a protection element in which a resistance element that generates heat in an abnormal state is provided on an insulating substrate such as a ceramic substrate.
 近年、上述した保護素子のヒューズ素子を構成する可溶合金は、改正RoHS指令などの化学物質の規制強化により鉛フリー化が進んでいる。たとえば、特開2015-079608号公報(特許文献2)に記載される無鉛金属複合材のヒューズ素子がある。このヒューズ素子は、保護素子を回路基板に表面実装する際のはんだ付け作業温度において、溶融可能な低融点金属材と、上記はんだ付け作業温度で液相の低融点金属材に溶解可能な固相の高融点金属材とから成る。ヒューズ素子の低融点金属材と高融点金属材とは一体成形されている。上記ヒューズ素子においては、液相化した低融点金属材を、固相の高融点金属材ではんだ付け作業が終わるまで保持することができる。 In recent years, the fusible alloys that make up the fuse elements of the protection elements described above are becoming lead-free due to the tightening of regulations on chemical substances such as the revised RoHS Directive. For example, there is a fuse element of a lead-free metal composite material described in JP-A-2005-079608 (Patent Document 2). This fuse element is composed of a low melting point metal material that can be melted at a soldering working temperature when surface-mounting a protective element on a circuit board, and a solid phase that can be dissolved in a liquid phase low melting point metal material at the soldering working temperature. Of high melting point metal material. The low melting point metal material and the high melting point metal material of the fuse element are integrally molded. In the above fuse element, the liquid phase low melting point metal material can be held by the solid phase high melting point metal material until the soldering work is completed.
 上記ヒューズ素子の低融点金属材と高融点金属材とは互いに固着されている。はんだ付け作業の熱で液相化した低融点金属材を、該作業温度で固相の高融点金属材で溶断しないように保持しながら、液相の低融点金属材でヒューズ素子を保護素子の電極パターンに接合することができる。さらに、この保護素子を回路基板に表面実装する際のはんだ付け作業温度において、ヒューズ素子が溶断するのを防止している。この保護素子は内蔵している抵抗素子を発熱させ、その熱でヒューズ素子の高融点金属材を媒質である低融点金属材中に拡散または溶解させることで溶断動作する。 The low melting point metal material and the high melting point metal material of the fuse element are fixed to each other. The fuse element is protected by the liquid phase low melting point metal material while holding the low melting point metal material which is liquidized by the heat of the soldering work so as not to be blown by the solid phase high melting point metal material at the working temperature. It can be bonded to the electrode pattern. Further, the fuse element is prevented from being blown out at the soldering work temperature when the protective element is surface-mounted on the circuit board. This protection element causes a built-in resistance element to generate heat, and the heat causes the high melting point metal material of the fuse element to diffuse or melt into the low melting point metal material which is a medium to perform a fusing operation.
 パワーラインの電流を遮断する働きをする保護素子の電気抵抗値は、できる限り小さい方が電気エネルギーの損失が少なく好ましい。その点、ヒューズ素子に低電気抵抗材である銀製の高融点金属材を有することは実に好都合である。  It is preferable that the electric resistance value of the protective element that functions to cut off the current of the power line is as small as possible because electric energy loss is small. In that respect, it is really convenient to have a high melting point metal material made of silver, which is a low electric resistance material, in the fuse element.
 しかし、銀製の高融点金属材は、保護素子の動作温度で溶融しないので、低融点金属材への溶解または拡散が不充分で厚膜で残留する場合がある。この場合に、従来のヒューズ素子では、溶断に余分な時間を要したり、極端な場合には溶断不良となったりする恐れがあった。これらの理由により、電気抵抗値を下げるために高融点金属材を十分に厚くすることができなかった。 However, since the silver high melting point metal material does not melt at the operating temperature of the protective element, it may remain in a thick film due to insufficient dissolution or diffusion into the low melting point metal material. In this case, in the conventional fuse element, there is a possibility that it takes an extra time for fusing and, in an extreme case, a fusing failure may occur. For these reasons, the refractory metal material cannot be made sufficiently thick in order to reduce the electric resistance value.
 また、保護素子のヒューズ素子や電極および基板などの小型化および薄型化に伴い、より薄いヒューズ素子を用いた場合は、高融点金属材を厚くできない。そのため、ヒューズ素子を電極パターンに接合する際に、高融点金属材が液相の低融点金属材に過度に拡散または溶解されて薄層化してしまう場合があった。この場合には、ヒューズ素子が変形したり、高融点金属材の表面が波打ったりして、保護素子の取り付けに支障を来たす場合があった。 Also, with the downsizing and thinning of fuse elements of protection elements, electrodes, substrates, etc., if a thinner fuse element is used, the refractory metal material cannot be thickened. Therefore, when the fuse element is bonded to the electrode pattern, the high melting point metal material may be excessively diffused or dissolved in the liquid phase low melting point metal material to be thinned. In this case, the fuse element may be deformed or the surface of the refractory metal material may be corrugated, which may hinder the attachment of the protective element.
特開2013-239405号公報JP, 2013-239405, A 特開2015-079608号公報Japanese Unexamined Patent Application Publication No. 2015-079608
 本開示は、保護素子の化学物質規制、電気抵抗低減および小型薄型化に対応し、ヒューズ動作時において通電をより確実に遮断することができるヒューズ素子、および、それを備えた保護素子を提供することを目的とする。 The present disclosure provides a fuse element capable of more reliably interrupting energization at the time of fuse operation, and a protection element including the protection element, which corresponds to the restriction of chemical substances, the reduction of electric resistance, and the reduction in size and thickness of the protection element. The purpose is to
 本開示のヒューズ素子に従うと、接合作業温度で成分の一部が溶解する第1の可溶金属と、上記第1の可溶金属の溶融温度よりも低い溶融温度を有し上記接合作業温度で少なくとも成分の一部が溶融する第2の可溶金属とを積層した複合金属材を備えたヒューズ素子が提供される。 According to the fuse element of the present disclosure, the first fusible metal in which a part of the components melt at the joining working temperature and the melting temperature lower than the melting temperature of the first soluble metal have the joining working temperature. Provided is a fuse element including a composite metal material in which a second fusible metal in which at least a part of a component is melted is laminated.
 第1の可溶金属は、接合作業温度で成分の一部が溶解し、同作業温度で成分の一部または全部が溶融した第2の可溶金属と互いに所定成分同士が混ざり合って、それぞれが所定の液相線温度に漸近してゆく。本開示のヒューズ素子を用いることで、はんだペーストなどの接合材を用いることなくヒューズ素子をリフロー法により接合することができる。ヒューズ素子は、可溶金属で構成されているので溶断残留のおそれがない。また、銀製の高融点金属材を用いることなくヒューズ素子の電気抵抗を低減することができる。ヒューズ素子の変形や表面の波打ちの心配が無く、より経済的な生産に寄与できる。 The first soluble metal has a predetermined component mixed with the second soluble metal in which a part of the components are melted at the joining operation temperature and a part or all of the components are melted at the same operation temperature, and Gradually approaches the prescribed liquidus temperature. By using the fuse element of the present disclosure, the fuse element can be joined by the reflow method without using a joining material such as solder paste. Since the fuse element is made of fusible metal, there is no fear of fusing residue. Further, the electric resistance of the fuse element can be reduced without using a high melting point metal material made of silver. There is no concern about deformation of the fuse element or waviness on the surface, which contributes to more economical production.
 本開示の異なる局面に従うと、上記のヒューズ素子を備えた保護素子が提供される。すなわち、本開示に係る保護素子は、絶縁基板と、該絶縁基板に設けられた複数の電極と、上記複数の電極のうちいずれかの電極に電気的に接続されたヒューズ素子と、上記ヒューズ素子を加熱して溶断させるために上記絶縁基板に設けられた発熱素子とを備えている。ヒューズ素子は、接合作業温度で成分の一部が溶解する第1の可溶金属と、上記第1の可溶金属よりも低い溶融温度を有し上記接合作業温度で少なくとも成分の一部が溶融する第2の可溶金属とを積層した複合金属材を備えている。 According to a different aspect of the present disclosure, there is provided a protection element including the above fuse element. That is, the protection element according to the present disclosure includes an insulating substrate, a plurality of electrodes provided on the insulating substrate, a fuse element electrically connected to any one of the plurality of electrodes, and the fuse element. And a heating element provided on the insulating substrate for heating and melting. The fuse element has a first fusible metal in which a part of the component melts at a joining working temperature and a melting temperature lower than that of the first fusible metal, and at least a part of the component melts at the joining working temperature. The composite metal material in which the second soluble metal is stacked is provided.
 本開示のヒューズ素子および保護素子によれば、ヒューズ動作時において通電をより確実に遮断することができる。 According to the fuse element and the protection element of the present disclosure, it is possible to more reliably cut off the energization during the operation of the fuse.
本開示の実施形態に係るヒューズ素子を示す斜視図である。FIG. 3 is a perspective view showing a fuse element according to an embodiment of the present disclosure. 本開示の実施形態に係る保護素子を示す分解斜視図である。It is an exploded perspective view showing a protection element concerning an embodiment of this indication. 本開示の実施形態に係る保護素子を示し、(a)は(b)におけるIIIa-IIIa矢視断面図、(b)は(a)におけるIIIb-IIIb矢視断面図、(c)は下面図である。The protection element which concerns on embodiment of this indication is shown, (a) is IIIa-IIIa arrow sectional drawing in (b), (b) is IIIb-IIIb arrow sectional drawing in (a), (c) is a bottom view. Is. 本開示の実施形態に係る保護素子を示し、(a)は(b)におけるIVa-IVa矢視断面図、(b)は(a)におけるIVb-IVb矢視断面図、(c)は下面図である。The protective element which concerns on embodiment of this indication is shown, (a) is IVa-IVa arrow sectional drawing in (b), (b) is IVb-IVb arrow sectional drawing in (a), (c) is a bottom view. Is.
 本開示に係るヒューズ素子10は、図1に示すように、接合作業温度で成分の一部が溶解する第1の可溶金属11と、第1の可溶金属11の溶融温度よりも低い溶融温度を有し、上記接合作業温度で少なくとも成分の一部が溶融する第2の可溶金属12とを積層した複合金属材からなる。 As shown in FIG. 1, the fuse element 10 according to the present disclosure includes a first fusible metal 11 in which some components are melted at a joining working temperature, and a melting temperature lower than the melting temperature of the first fusible metal 11. It is composed of a composite metal material having a temperature and a second fusible metal 12 in which at least a part of the components melt at the above-mentioned joining operation temperature.
 第1の可溶金属11は、接合作業温度で成分の一部が第2の可溶金属12に溶解する。第1の可溶金属11は、接合作業温度で成分の一部または全部が溶融した第2の可溶金属12と互いに拡散あるいは混合される。拡散あるいは混合されることで、第1の可溶金属11および第2の可溶金属は所定の液相線温度に漸近してゆく。 The first soluble metal 11 partially dissolves in the second soluble metal 12 at the joining operation temperature. The first fusible metal 11 is diffused or mixed with the second fusible metal 12 in which some or all of the components are melted at the joining operation temperature. By being diffused or mixed, the first soluble metal 11 and the second soluble metal gradually approach the predetermined liquidus temperature.
 このヒューズ素子の第1の可溶金属11の一例として80Sn-20Ag合金(液相線温度370℃、固相線温度221℃)がある。第2の可溶金属12の一例として60Sn-40Bi合金(液相線温度175℃、固相線温度139℃)がある。第1の可溶金属11の表面に第2の可溶金属12を積層した複合金属材によってヒューズ素子10を構成する。固相線温度および液相線温度は、示差走査熱量測定(Differential Scanning Calorimetry(DSC))に依る。 80Sn-20Ag alloy (liquidus temperature 370°C, solidus temperature 221°C) is an example of the first fusible metal 11 of this fuse element. An example of the second soluble metal 12 is a 60Sn-40Bi alloy (liquidus temperature 175° C., solidus temperature 139° C.). The fuse element 10 is composed of a composite metal material in which the second fusible metal 12 is laminated on the surface of the first fusible metal 11. The solidus temperature and the liquidus temperature depend on Differential Scanning Calorimetry (DSC).
 第1の可溶金属は、特に限定されないが、たとえば第2の可溶金属の固相線温度を超え、かつ第1の可溶金属の液相線温度未満(但し、周辺部品の耐熱性からピーク温度が概ね300℃未満であるのが好ましい)の所定の接合作業温度で成分の一部が溶解する無鉛錫系はんだ材であればよい。 The first fusible metal is not particularly limited, but is, for example, above the solidus temperature of the second fusible metal and below the liquidus temperature of the first fusible metal (however, due to the heat resistance of the peripheral parts, Any lead-free tin-based solder material may be used, in which some of the components are melted at a predetermined joining work temperature (peak temperature is preferably less than 300° C.).
 第2の可溶金属は、上記所定の接合作業温度で成分の一部または全部が溶融する錫または無鉛錫系はんだ材であればよい。また、第2の可溶金属12は、単一融点を有する金属単体でもよく、また共晶合金でも溶融範囲を有する合金でもよい。前述の一例の他にも第1の可溶金属として、Sn-Cu合金、Sn-Sb合金、Sn-Zn合金、Sn-Al合金が利用できる。同様に他の第2の可溶金属として、Sn、Sn-Ag合金、Sn-Ag-Cu合金、Sn-Ag-Cu-Bi合金、Sn-Cu合金、Sn-In合金、Sn-Ag-In合金、Sn-Bi-Ag合金、Sn-Ag-Bi-In合金、Sn-Sb合金、Sn-Zn合金、Sn-Zn-Bi合金、Sn-Al合金などが利用できる。 The second fusible metal may be a tin or lead-free tin-based solder material in which some or all of the components melt at the above-mentioned predetermined joining work temperature. The second soluble metal 12 may be a simple metal having a single melting point, a eutectic alloy, or an alloy having a melting range. In addition to the above example, Sn-Cu alloy, Sn-Sb alloy, Sn-Zn alloy, Sn-Al alloy can be used as the first soluble metal. Similarly, as the other second soluble metal, Sn, Sn-Ag alloy, Sn-Ag-Cu alloy, Sn-Ag-Cu-Bi alloy, Sn-Cu alloy, Sn-In alloy, Sn-Ag-In are used. Alloys, Sn-Bi-Ag alloys, Sn-Ag-Bi-In alloys, Sn-Sb alloys, Sn-Zn alloys, Sn-Zn-Bi alloys, Sn-Al alloys and the like can be used.
 第1の可溶金属および第2の可溶金属は、いずれもSnの含有量が多い無鉛金属材であり、従来の有鉛金属材と比べて酸化しやすい欠点がある。このため、さらに第1の可溶金属と第2の可溶金属の両方またはいずれか一方に、酸化防止の微量元素としてP、GaおよびGeの少なくとも1つを、3ppmを超え300ppm未満となるように添加したものを使用してもよい。 Both the first soluble metal and the second soluble metal are lead-free metal materials with a high Sn content, and have the drawback of being easily oxidized compared to conventional leaded metal materials. Therefore, at least one of P, Ga, and Ge as an antioxidant trace element is further added to both or either of the first soluble metal and the second soluble metal so as to exceed 3 ppm and less than 300 ppm. What was added to may be used.
 第1の可溶金属11が平板状の場合は、図1(a)に示す、第1の可溶金属11の板面の片面に第2の可溶金属12を積層したヒューズ素子10のようにするとよい。また図1(b)に示す、第1の可溶金属11の板面の両面に第2の可溶金属12を積層したヒューズ素子15のようにしてもよい。 When the first fusible metal 11 has a flat plate shape, it is like the fuse element 10 shown in FIG. 1A in which the second fusible metal 12 is laminated on one surface of the plate surface of the first fusible metal 11. It should be set to. Alternatively, the fuse element 15 shown in FIG. 1B may be formed by laminating the second fusible metal 12 on both sides of the plate surface of the first fusible metal 11.
 第1の可溶金属11に第2の可溶金属12を積層する手段は、特に限定されず第1の可溶金属11に第2の可溶金属12を積層できればよい。たとえば、クラッド(圧着)、めっき、溶融コートなどの手段が利用できる。 The means for stacking the second soluble metal 12 on the first soluble metal 11 is not particularly limited as long as the second soluble metal 12 can be stacked on the first soluble metal 11. For example, means such as clad (compression bonding), plating, and melt coating can be used.
 本開示のヒューズ素子は、はんだペーストを用いることなく直接電極上に載置してリフロー法により電極に接合させることができる。このヒューズ素子は、可溶金属で構成されているので溶断残留のおそれがない。より詳しくは、従来銀製の高融点金属材を用いていたが、銀製の高融点材料は保護素子の動作温度では溶融しなかった。本実施形態のヒューズ素子においては、第1の可溶金属11および第2の可溶金属12がいずれも保護素子の動作温度で溶融する可溶金属であるので、従来のヒューズ素子で発生したような、ヒューズ素子の一部が溶断せずに残留する動作不良を防止することができる。なお、本明細書において80Sn-20Ag合金等の合金組成表記における元素記号の前の数字は該当元素の質量%を表す。 The fuse element of the present disclosure can be directly placed on an electrode without using a solder paste and bonded to the electrode by a reflow method. Since this fuse element is made of fusible metal, there is no risk of fusing residue. More specifically, a high melting point metal material made of silver has been conventionally used, but the high melting point material made of silver did not melt at the operating temperature of the protective element. In the fuse element of the present embodiment, since the first fusible metal 11 and the second fusible metal 12 are both fusible metals that melt at the operating temperature of the protection element, they are likely to occur in the conventional fuse element. In addition, it is possible to prevent a malfunction in which a part of the fuse element remains without being blown. In this specification, the number before the element symbol in the alloy composition notation of 80Sn-20Ag alloy and the like represents the mass% of the corresponding element.
 本開示に係るヒューズ素子は、図2に示すように、耐熱性の絶縁基板23に設けられた導電部材からなる電極24aに溶融接合され、保護素子のヒューズ素子25として使用される。接合作業温度は、第2の可溶金属の固相線温度を超え、かつ第1の可溶金属の液相線温度未満となるように設定するのがよい。 As shown in FIG. 2, the fuse element according to the present disclosure is melt-bonded to the electrode 24a made of a conductive member provided on the heat-resistant insulating substrate 23 and used as the fuse element 25 of the protection element. The joining work temperature is preferably set to exceed the solidus temperature of the second soluble metal and less than the liquidus temperature of the first soluble metal.
 ヒューズ素子25と電極24aとの接合は以下の工程により行なう。少なくともヒューズ素子25を接合する電極24aの表面と少なくともヒューズ素子25の第2の可溶金属22の表面に接合用のフラックスを塗布する。電極24aに第2の可溶金属22が接触するようにヒューズ素子25を載置する。ヒューズ素子25と絶縁基板23とが上記接合作業温度になるまで加熱して、第1の可溶金属21の一部と第2の可溶金属22の一部または全部を溶融させて、電極24aにヒューズ素子25を接合させる。 The fuse element 25 and the electrode 24a are joined by the following steps. Flux for bonding is applied to at least the surface of the electrode 24a for bonding the fuse element 25 and at least the surface of the second fusible metal 22 of the fuse element 25. The fuse element 25 is placed so that the second fusible metal 22 contacts the electrode 24a. The fuse element 25 and the insulating substrate 23 are heated to the above-mentioned bonding work temperature to melt a part of the first fusible metal 21 and a part or all of the second fusible metal 22 to form the electrode 24a. The fuse element 25 is joined to.
 その後、少なくともヒューズ素子25に動作用の溶断フラックスを塗布し、溶断フラックスを塗布したヒューズ素子25を絶縁基板23ごとキャップ状の蓋体26で覆ってパッケージングし、保護素子20が組み立てられる。 After that, at least the fuse element 25 is coated with the fusing flux for operation, and the fuse element 25 coated with the fusing flux is covered with the insulating substrate 23 by the cap-shaped lid 26 and packaged, and the protection element 20 is assembled.
 ヒューズ素子25の第1の可溶金属21の一例として80Sn-20Ag合金(液相線温度370℃、固相線温度221℃)がある。第2の可溶金属22の一例として60Sn-40Bi合金(液相線温度175℃、固相線温度139℃)がある。この例の場合、上記の接合作業の結果、第1の可溶金属21は、上記の接合作業温度で成分の一部が、同接合作業温度で成分の一部または全部が溶融した第2の可溶金属22と互いに拡散あるいは混合される。拡散混合されることで、第1の可溶金属21および第2の可溶金属22は、所定の液相線温度に漸近してゆく。 The 80Sn-20Ag alloy (liquidus temperature 370° C., solidus temperature 221° C.) is an example of the first fusible metal 21 of the fuse element 25. An example of the second soluble metal 22 is a 60Sn-40Bi alloy (liquidus temperature 175° C., solidus temperature 139° C.). In the case of this example, as a result of the above-mentioned joining work, in the first soluble metal 21, a part of the component is melted at the above-mentioned joining work temperature and a part or all of the component is melted at the same joining work temperature. The fusible metal 22 is diffused or mixed with each other. By being diffusively mixed, the first soluble metal 21 and the second soluble metal 22 gradually approach the predetermined liquidus temperature.
 第1の可溶金属21では、第2の可溶金属22側から液相拡散によりSnが移行して平衡状態に近づくのでSn成分が増加し、Ag濃度も拡散により第2の可溶金属22に移行し減少する。その結果、第1の可溶金属21におけるAg濃度は相対的に低下し、液相線温度が当初の370℃より固相線温度の221℃に向かって低下して行く。 In the first soluble metal 21, Sn migrates from the side of the second soluble metal 22 due to liquid phase diffusion and approaches an equilibrium state, so the Sn component increases, and the Ag concentration also diffuses to the second soluble metal 22. To decrease. As a result, the Ag concentration in the first soluble metal 21 relatively decreases, and the liquidus temperature decreases from the initial 370° C. toward the solidus temperature 221° C.
 一方、第2の可溶金属22では、第1の可溶金属21の溶解および拡散によりSnが第1の可溶金属21側に移動して平衡状態に近づくのでSn成分が減少し、Bi濃度も拡散により第1の可溶金属21に移行し減少する。その結果、第2の可溶金属22においては、相対的にBi濃度が増加し、液相線温度が固相線温度の139℃に向かって低下するようになる。つまり、ヒューズ素子を接合するとともに、第1の可溶金属21と第2の可溶金属22の共通元素であるSn成分の平衡移動と、互いの側に異種元素であるAgとBiの相互拡散とを利用して、互いの液相線温度と固相線温度の差を減少させて、ヒューズ動作温度範囲を自己調節させている。 On the other hand, in the second soluble metal 22, Sn moves toward the first soluble metal 21 side due to the dissolution and diffusion of the first soluble metal 21 and approaches the equilibrium state, so the Sn component decreases and the Bi concentration increases. Also moves to the first soluble metal 21 due to diffusion and decreases. As a result, in the second soluble metal 22, the Bi concentration relatively increases and the liquidus temperature decreases toward the solidus temperature of 139°C. That is, the fuse element is joined, the equilibrium movement of the Sn component, which is the common element of the first soluble metal 21 and the second soluble metal 22, and the mutual diffusion of Ag and Bi, which are different elements, on the mutual sides. Is used to reduce the difference between the liquidus temperature and the solidus temperature of each other, and the fuse operating temperature range is self-adjusted.
 上記のヒューズ素子においては、従来のヒューズ素子の固体純銀被覆をSn系の無鉛はんだで溶食させるより、速やかに溶断させることができる。また、銀被覆を使用しないため、硫化腐食や銀マイグレーション、銀被覆の残留による溶断不良の心配がない。 In the above fuse element, the solid pure silver coating of the conventional fuse element can be melted faster than the Sn-based lead-free solder. Further, since the silver coating is not used, there is no fear of sulfidation corrosion, silver migration, and fusing failure due to the residual silver coating.
 本開示に係る保護素子20は、上記ヒューズ素子を利用したものであり、図2に示すように、絶縁基板23と、絶縁基板23に設けた複数の電極24a,24bと、電極24a,24bのうち所定の電極(図2では24a)に電気的に接続したヒューズ素子25と、ヒューズ素子25を加熱して溶断させるために絶縁基板23に設けられ所定の電極に電気接続した発熱素子(図2では絶縁基板23の裏面に配置)とを備えている。ヒューズ素子25は、接合作業温度で成分の一部が溶解する第1の可溶金属21と、第1の可溶金属21よりも低い温度の溶融範囲を有し上記接合作業温度で少なくとも成分の一部が溶融する第2の可溶金属22とを積層した複合金属材からなる。 The protection element 20 according to the present disclosure uses the above fuse element, and as shown in FIG. 2, includes an insulating substrate 23, a plurality of electrodes 24a and 24b provided on the insulating substrate 23, and electrodes 24a and 24b. Among them, a fuse element 25 electrically connected to a predetermined electrode (24a in FIG. 2) and a heating element (FIG. 2) provided on the insulating substrate 23 for heating and melting the fuse element 25 and electrically connected to the predetermined electrode. Is disposed on the back surface of the insulating substrate 23). The fuse element 25 has a first fusible metal 21 in which a part of the component melts at the joining operation temperature and a melting range of a temperature lower than that of the first fusible metal 21 and has at least the component at the joining operation temperature. It is made of a composite metal material in which a second fusible metal 22 partially melted is laminated.
 ヒューズ素子25の第1の可溶金属21は、発熱素子のピーク温度(発熱素子が発熱した際の最高温度)よりも低い液相線温度を有することが好ましい。それにより、たとえば第1の可溶金属21の一部が第2の可溶金属22に溶解せずに残留したとしても、発熱素子により第1の可溶金属21を溶融させてヒューズ素子25を溶断させることができる。 The first fusible metal 21 of the fuse element 25 preferably has a liquidus temperature lower than the peak temperature of the heating element (maximum temperature when the heating element generates heat). Thereby, even if a part of the first fusible metal 21 remains without being dissolved in the second fusible metal 22, the first fusible metal 21 is melted by the heat generating element and the fuse element 25 is removed. Can be blown out.
 本開示に係る実施例1のヒューズ素子10は、図1(a)に示すように、厚さ80μmの70Sn-30Ag合金(液相線温度415℃、固相線温度221℃)の合金板からなる第1の可溶金属11と、厚さ10μmの60Sn-40Bi合金(液相線温度175℃、固相線温度139℃)の合金板からなる第2の可溶金属12とをクラッドにより積層した複合金属材で構成される。 As shown in FIG. 1A, a fuse element 10 of Example 1 according to the present disclosure is made of an alloy plate of 70Sn-30Ag alloy (liquidus temperature 415° C., solidus temperature 221° C.) having a thickness of 80 μm. The first fusible metal 11 and the second fusible metal 12 made of an alloy plate of a 60 μm thick 60Sn-40Bi alloy (liquidus temperature 175° C., solidus temperature 139° C.) are laminated with a clad. It is made of composite metal material.
 この他にも図1(a)に示すヒューズ素子10には、厚さ65μmの67Sn-33Ag合金(液相線温度416℃、固相線温度220℃)の合金板からなる第1の可溶金属11と、厚さ25μmの30Sn-70Bi合金(液相線温度173℃、固相線温度139℃)の合金板からなる第2の可溶金属12とをクラッドにより積層した複合金属材なども利用できる。 In addition to this, the fuse element 10 shown in FIG. 1A has a first fusible element made of an alloy plate of 67Sn-33Ag alloy (liquidus temperature 416° C., solidus temperature 220° C.) having a thickness of 65 μm. A composite metal material in which a metal 11 and a second fusible metal 12 made of an alloy plate of 30Sn-70Bi alloy (liquidus temperature 173° C., solidus temperature 139° C.) having a thickness of 25 μm are laminated by a clad are also available. Available.
 本開示に係る実施例2のヒューズ素子15は、図1(b)に示すように、厚さ80μmの80Sn-20Ag合金(液相線温度370℃、固相線温度221℃)の合金板からなる第1の可溶金属11の上下面に、厚さ5μmの60Sn-40Bi合金(液相線温度175℃、固相線温度139℃)の合金板からなる第2の可溶金属12をクラッドにより積層した3層の複合金属材で構成される。ヒューズ素子15は、第1の可溶金属11の上下面に第2の可溶金属12を設けることで表裏の方向性が無くなるので、保護素子の組立工程おいてヒューズ素子板の誤載置を防止することができる。 As shown in FIG. 1B, the fuse element 15 of Example 2 according to the present disclosure is made of an alloy plate of 80 μm thick 80Sn-20Ag alloy (liquidus temperature 370° C., solidus temperature 221° C.). On the upper and lower surfaces of the first fusible metal 11, which is made of clad, a second fusible metal 12 made of an alloy plate of a 60Sn-40Bi alloy (liquidus temperature 175°C, solidus temperature 139°C) having a thickness of 5 μm is clad. It is composed of three layers of composite metal material laminated by. Since the fuse element 15 is provided with the second fusible metal 12 on the upper and lower surfaces of the first fusible metal 11, the directionality of the front and back is lost, so that the fuse element plate may not be erroneously placed during the process of assembling the protection element. Can be prevented.
 実施例1または実施例2のヒューズ素子は、それぞれ、図2に示すようなアルミナ・セラミックスの絶縁基板23の表面に設けたAg合金の電極24aに接合されて、以下に示す実施例3または実施例4の保護素子を形成する。 The fuse element of Example 1 or Example 2 is bonded to an Ag alloy electrode 24a provided on the surface of an alumina/ceramic insulating substrate 23 as shown in FIG. 2, respectively. The protection element of Example 4 is formed.
 該保護素子においては、予め接合フラックスを塗布した絶縁基板の電極24aとヒューズ素子25の第2の可溶金属22とを互いに接触させて載置する。温度プロファイルが余熱温度110~130℃で滞留時間70秒、150℃以上の滞留時間が30秒、ピーク温度が170℃となるようにリフロー炉に通す。これにより第1の可溶金属21の一部を溶解させ、第2の可溶金属22の一部または全部を溶融させて互いの共通元素のSn相を相互拡散させ平衡状態に漸近させる。同時に、溶融した第2の可溶金属22によりヒューズ素子25を電極24aに接合させる。ヒューズ素子25を電極24aに接合させた後、ヒューズ素子25に溶断フラックスを塗布する。絶縁基板23ごとヒューズ素子25を耐熱プラスチック製のキャップ状蓋体26で覆って、キャップ状蓋体26と絶縁基板23とをエポキシ系樹脂で固定して保護素子20とする。 In the protection element, the electrode 24a of the insulating substrate to which the bonding flux is applied in advance and the second fusible metal 22 of the fuse element 25 are placed in contact with each other. It is passed through a reflow furnace so that the temperature profile has a residual heat temperature of 110 to 130° C., a residence time of 70 seconds, a residence time of 150° C. or higher for 30 seconds, and a peak temperature of 170° C. As a result, a part of the first soluble metal 21 is melted, a part or all of the second soluble metal 22 is melted, and the Sn phases of the common elements are mutually diffused to asymptotically approach an equilibrium state. At the same time, the fuse element 25 is bonded to the electrode 24a by the molten second fusible metal 22. After the fuse element 25 is bonded to the electrode 24a, a fusing flux is applied to the fuse element 25. The fuse element 25 together with the insulating substrate 23 is covered with a cap-shaped lid 26 made of heat-resistant plastic, and the cap-shaped lid 26 and the insulating substrate 23 are fixed with an epoxy resin to form the protective element 20.
 本開示に係る実施例3の保護素子は、実施例1または実施例2のヒューズ素子を利用した保護素子30であり、図3に示すように、アルミナセラミックスの絶縁基板33と、絶縁基板33の上下面に設けた複数のAg合金製パターン電極34と、パターン電極34と電気的に接続され絶縁基板33の下面に設けられた抵抗発熱素子38と、絶縁基板33の上面のパターン電極34に電気的に接続したヒューズ素子35と、ヒューズ素子35の上部を覆って絶縁基板に固着した液晶ポリマー製のキャップ状蓋体36とを備えている。ヒューズ素子35は、厚さ80μmの70Sn-30Ag合金(液相線温度415℃、固相線温度221℃)の合金板からなる第1の可溶金属31と、厚さ10μmの60Sn-40Bi合金(液相線温度175℃、固相線温度139℃)の合金板からなる第2の可溶金属32とをクラッドにより積層した複合金属材からなる。パターン電極34は、基板上下面のパターン電極34を電気的に接続するAg合金のハーフスルーホール37を有する。 The protection element of Example 3 according to the present disclosure is a protection element 30 using the fuse element of Example 1 or Example 2. As shown in FIG. 3, an insulating substrate 33 made of alumina ceramics and an insulating substrate 33 are used. The plurality of Ag alloy pattern electrodes 34 provided on the upper and lower surfaces, the resistance heating element 38 electrically connected to the pattern electrodes 34 and provided on the lower surface of the insulating substrate 33, and the pattern electrode 34 on the upper surface of the insulating substrate 33 are electrically connected. And a cap-shaped lid body 36 made of liquid crystal polymer fixed to an insulating substrate so as to cover the upper portion of the fuse element 35. The fuse element 35 includes a first fusible metal 31 made of an alloy plate of 70Sn-30Ag alloy (liquidus temperature 415° C., solidus temperature 221° C.) having a thickness of 80 μm and 60Sn-40Bi alloy having a thickness of 10 μm. The second fusible metal 32 made of an alloy plate having a liquidus temperature of 175° C. and a solidus temperature of 139° C. is laminated by a clad to form a composite metal material. The pattern electrode 34 has an Ag alloy half through hole 37 that electrically connects the pattern electrodes 34 on the upper and lower surfaces of the substrate.
 特に図示しないが、実施例3の抵抗発熱素子の表面はガラス材のオーバーグレーズを施している。実施例3の保護素子の発熱素子38は、ヒューズ素子35が設けられた絶縁基板33の基板面(上面)とは異なる基板面(下面)に設けられている。 Although not particularly shown, the surface of the resistance heating element of Example 3 is overglaze made of a glass material. The heating element 38 of the protection element of the third embodiment is provided on a substrate surface (lower surface) different from the substrate surface (upper surface) of the insulating substrate 33 on which the fuse element 35 is provided.
 実施例3で用いられる発熱素子38のピーク温度はたとえば430℃であるので、第1の可溶金属31の液相線温度415℃および第2の可溶金属32の液相線温度175℃よりも高い。これにより、たとえば第1の可溶金属31が第2の可溶金属32に溶解せずに残留したとしても、第1の可溶金属31は発熱素子38の熱により溶融する。その結果、保護素子の動作不良を回避することができる。 Since the peak temperature of the heating element 38 used in Example 3 is 430° C., for example, the liquidus temperature of the first soluble metal 31 is 415° C. and the liquidus temperature of the second soluble metal 32 is 175° C. Is also high. As a result, even if the first fusible metal 31 remains in the second fusible metal 32 without being melted, the first fusible metal 31 is melted by the heat of the heating element 38. As a result, malfunction of the protection element can be avoided.
 本開示に係る実施例4の保護素子40は、実施例3の保護素子を変形したもので、実施例1または実施例2のヒューズ素子を利用した保護素子である。図4に示すように、アルミナセラミックスの絶縁基板43と、絶縁基板43の上下面に設けた複数のAg合金製パターン電極44と、パターン電極44と電気的に接続され絶縁基板43の上面に設けられた抵抗発熱素子48と、抵抗発熱素子48に当接して絶縁基板43の上面のパターン電極44に電気的に接続したヒューズ素子45と、ヒューズ素子45の上部を覆って絶縁基板43に固着した液晶ポリマー製のキャップ状蓋体46とを備えている。 The protection element 40 of the fourth embodiment according to the present disclosure is a modification of the protection element of the third embodiment, and is a protection element that uses the fuse element of the first or second embodiment. As shown in FIG. 4, an insulating substrate 43 of alumina ceramics, a plurality of Ag alloy pattern electrodes 44 provided on the upper and lower surfaces of the insulating substrate 43, and an upper surface of the insulating substrate 43 electrically connected to the pattern electrodes 44. The resistance heating element 48, the fuse element 45 which is in contact with the resistance heating element 48 and is electrically connected to the pattern electrode 44 on the upper surface of the insulating substrate 43, and the fuse element 45 is covered and fixed to the insulating substrate 43. And a cap-shaped lid 46 made of liquid crystal polymer.
 ヒューズ素子45は、厚さ80μmの80Sn-20Ag合金(液相線温度370℃、固相線温度221℃)の合金板からなる第1の可溶金属41と、厚さ10μmの60Sn-40Bi合金(液相線温度175℃、固相線温度139℃)の合金板からなる第2の可溶金属42とをクラッドにより積層した複合金属材からなる。パターン電極44は、基板上下面のパターン電極44を電気的に接続するAg合金のハーフスルーホール47を有する。 The fuse element 45 is composed of an 80 μm thick 80Sn-20Ag alloy (liquidus temperature 370° C., solidus temperature 221° C.) alloy plate 41 and a 10 μm thick 60Sn-40Bi alloy. It is composed of a composite metal material in which a second soluble metal 42 made of an alloy plate having a liquidus temperature of 175° C. and a solidus temperature of 139° C. is laminated by a clad. The pattern electrode 44 has a half through hole 47 of Ag alloy that electrically connects the pattern electrodes 44 on the upper and lower surfaces of the substrate.
 実施例4で用いられる発熱素子48のピーク温度はたとえば400℃であるので、第1の可溶金属41の液相線温度370℃および第2の可溶金属42の液相線温度175℃よりも高い。これにより、たとえば第1の可溶金属41が第2の可溶金属42に溶解せずに残留したとしても、第1の可溶金属41は発熱素子48の熱により溶融する。その結果、保護素子の動作不良を回避することができる。 Since the peak temperature of the heating element 48 used in Example 4 is 400° C., for example, the liquidus temperature of the first soluble metal 41 is 370° C. and the liquidus temperature of the second soluble metal 42 is 175° C. Is also high. As a result, even if the first fusible metal 41 does not dissolve in the second fusible metal 42 and remains, for example, the first fusible metal 41 is melted by the heat of the heating element 48. As a result, malfunction of the protection element can be avoided.
 特に図示しないが、実施例4の抵抗発熱素子48の表面はガラス材のオーバーグレーズを施している。実施例4の保護素子の発熱素子48は、ヒューズ素子45が設けられた絶縁基板43の基板面(上面)と同一の基板面(上面)に設けられている。 Although not particularly shown, the surface of the resistance heating element 48 of Example 4 is overglaze made of a glass material. The heating element 48 of the protection element of the fourth embodiment is provided on the same substrate surface (upper surface) as the substrate surface (upper surface) of the insulating substrate 43 on which the fuse element 45 is provided.
 実施例3および実施例4の保護素子において、絶縁基板上下面のパターン電極を電気接続する配線手段は、ハーフスルーホールに代えて該基板を貫通した導体スルーホールや、平面電極パターンによる表面配線に変更してもよい。 In the protection elements of Examples 3 and 4, the wiring means for electrically connecting the pattern electrodes on the upper and lower surfaces of the insulating substrate is a conductor through hole penetrating the substrate instead of the half through hole, or a surface wiring by a flat electrode pattern. You may change it.
 実施例1から実施例4の第2の可溶金属を構成するSn-Bi合金を、電極に対する濡れ性を向上させるため、上記Sn-Bi合金にさらにAgを添加したSn-Bi-Ag合金に変更してもよい。 In order to improve the wettability to the electrode, the Sn-Bi alloy forming the second fusible metal of each of Examples 1 to 4 was changed to a Sn-Bi-Ag alloy in which Ag was further added to the Sn-Bi alloy. You may change it.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description but by the scope of the claims, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
 本発明の複合金属材からなるヒューズ素子は、リフローなど全体加熱溶融により保護素子に組込み搭載できる。このヒューズ素子を用いた保護素子は、他の表面実装部品と共に再びリフロー・ソルダリングにより電気回路基板にはんだ付け実装されて、電池パックなど2次電池の保護装置に利用できる。 The fuse element made of the composite metal material of the present invention can be incorporated and mounted in the protection element by the entire heating and melting such as reflow. The protective element using this fuse element is soldered and mounted on the electric circuit board by reflow soldering together with other surface mount components, and can be used for a protective device for a secondary battery such as a battery pack.
 10,15,25,35,45 ヒューズ素子、11,21,31,41 第1の可溶金属、12,22,32,42 第2の可溶金属、20,30,40 保護素子、23,33,43 絶縁基板、24a,24b,34,44 電極、26,36,46 蓋体、37,47 ハーフスルーホール、38,48 発熱素子。 10, 15, 25, 35, 45 fuse elements, 11, 21, 31, 41 first fusible metal, 12, 22, 32, 42 second fusible metal, 20, 30, 40 protection element, 23, 33, 43 insulating substrate, 24a, 24b, 34, 44 electrode, 26, 36, 46 lid, 37, 47 half through hole, 38, 48 heating element.

Claims (21)

  1.  接合作業温度で成分の一部が溶解する第1の可溶金属と、前記第1の可溶金属の溶融温度よりも低い溶融温度を有し前記接合作業温度で少なくとも成分の一部が溶融する第2の可溶金属とを積層した複合金属材を備えた、ヒューズ素子。 A first fusible metal in which a part of the component melts at the joining work temperature and a melting temperature lower than the melting temperature of the first fusible metal, and at least a part of the component melts at the joining work temperature A fuse element comprising a composite metal material in which a second fusible metal is laminated.
  2.  前記第1の可溶金属は、前記第2の可溶金属の固相線温度を超え、かつ、前記第1の可溶金属の液相線温度未満の接合作業温度で成分の一部が溶解する無鉛錫系はんだ材である、請求項1に記載のヒューズ素子。 Part of the components of the first fusible metal melts at a joining working temperature that is higher than the solidus temperature of the second fusible metal and lower than the liquidus temperature of the first fusible metal. The fuse element according to claim 1, which is a lead-free tin-based solder material.
  3.  前記第2の可溶金属は、前記第2の可溶金属の固相線温度を超え、かつ、前記第1の可溶金属の液相線温度未満の接合作業温度で成分の一部または全部が溶融する錫または無鉛錫系はんだ材である、請求項1または請求項2に記載のヒューズ素子。 A part or all of the components of the second soluble metal exceed the solidus temperature of the second soluble metal and are less than the liquidus temperature of the first soluble metal at a bonding operation temperature. The fuse element according to claim 1 or 2, wherein is a molten tin or lead-free tin-based solder material.
  4.  前記第1の可溶金属は、Sn-Ag合金、Sn-Cu合金、Sn-Sb合金、Sn-Zn合金およびSn-Al合金の群から選択されたいずれかの金属である、請求項1から請求項3のいずれか1項に記載のヒューズ素子。 The first fusible metal is any metal selected from the group of Sn-Ag alloy, Sn-Cu alloy, Sn-Sb alloy, Sn-Zn alloy and Sn-Al alloy. The fuse element according to claim 3.
  5.  前記第2の可溶金属は、Sn、Sn-Ag合金、Sn-Ag-Cu合金、Sn-Ag-Cu-Bi合金、Sn-Cu合金、Sn-Bi合金、Sn-In合金、Sn-Ag-In合金、Sn-Bi-Ag合金、Sn-Ag-Bi-In合金、Sn-Sb合金、Sn-Zn合金、Sn-Zn-Bi合金およびSn-Al合金の群から選択されたいずれかの金属である、請求項1から請求項4のいずれか1項に記載のヒューズ素子。 The second soluble metal is Sn, Sn-Ag alloy, Sn-Ag-Cu alloy, Sn-Ag-Cu-Bi alloy, Sn-Cu alloy, Sn-Bi alloy, Sn-In alloy, Sn-Ag. --In alloy, Sn--Bi--Ag alloy, Sn--Ag--Bi--In alloy, Sn--Sb alloy, Sn--Zn alloy, Sn--Zn--Bi alloy, and Sn--Al alloy The fuse element according to any one of claims 1 to 4, which is a metal.
  6.  前記第1の可溶金属は、Sn-Ag合金であり、前記Sn-Ag合金のAg含有量が20質量%以上、30質量%以下である、請求項4に記載のヒューズ素子。 The fuse element according to claim 4, wherein the first fusible metal is a Sn-Ag alloy, and the Ag content of the Sn-Ag alloy is 20% by mass or more and 30% by mass or less.
  7.  前記第1の可溶金属は、80Sn-20Ag合金または70Sn-30Ag合金である、請求項4に記載のヒューズ素子。 The fuse element according to claim 4, wherein the first fusible metal is an 80Sn-20Ag alloy or a 70Sn-30Ag alloy.
  8.  前記第2の可溶金属は、Sn-Bi合金であり、前記Sn-Bi合金のBi含有量が40質量%以上、70質量%以下である、請求項5に記載のヒューズ素子。 The fuse element according to claim 5, wherein the second fusible metal is a Sn-Bi alloy, and a Bi content of the Sn-Bi alloy is 40% by mass or more and 70% by mass or less.
  9.  前記第2の可溶金属は、60Sn-40Bi合金または30Sn-70Bi合金である、請求項5に記載のヒューズ素子。 The fuse element according to claim 5, wherein the second fusible metal is a 60Sn-40Bi alloy or a 30Sn-70Bi alloy.
  10.  絶縁基板と、
     前記絶縁基板に設けられた複数の電極と、
     前記複数の電極のうちいずれかの電極に電気的に接続されたヒューズ素子と、
     前記ヒューズ素子を加熱して溶断させるために前記絶縁基板に設けられた発熱素子と、を備え、
     前記ヒューズ素子は、接合作業温度で成分の一部が溶解する第1の可溶金属と、前記第1の可溶金属の溶融温度よりも低い溶融温度を有し前記接合作業温度で少なくとも成分の一部が溶融する第2の可溶金属とを積層した複合金属材を備えた、保護素子。
    An insulating substrate,
    A plurality of electrodes provided on the insulating substrate,
    A fuse element electrically connected to any one of the plurality of electrodes,
    A heating element provided on the insulating substrate to heat and fuse the fuse element;
    The fuse element has a first fusible metal in which a part of the component melts at a joining working temperature and a melting temperature lower than a melting temperature of the first fusible metal, and at least the component at a joining working temperature. A protective element comprising a composite metal material in which a second fusible metal part of which melts is laminated.
  11.  前記発熱素子は、前記ヒューズ素子が設けられた前記絶縁基板の基板面とは異なる基板面に設けられた、請求項10に記載の保護素子。 The protection element according to claim 10, wherein the heating element is provided on a substrate surface different from the substrate surface of the insulating substrate on which the fuse element is provided.
  12.  前記発熱素子は、前記ヒューズ素子が設けられた前記絶縁基板の基板面と同一の基板面に設けられた、請求項10に記載の保護素子。 The protection element according to claim 10, wherein the heating element is provided on the same substrate surface as the substrate surface of the insulating substrate on which the fuse element is provided.
  13.  前記第1の可溶金属は、前記第2の可溶金属の固相線温度を超え、かつ、前記第1の可溶金属の液相線温度未満の接合作業温度で成分の一部が溶解する無鉛錫系はんだ材である、請求項10から請求項12のいずれか1項に記載の保護素子。 Part of the components of the first fusible metal melts at a joining working temperature that is higher than the solidus temperature of the second fusible metal and lower than the liquidus temperature of the first fusible metal. 13. The protective element according to claim 10, which is a lead-free tin-based solder material.
  14.  前記第2の可溶金属は、前記第2の可溶金属の固相線温度を超え、かつ、前記第1の可溶金属の液相線温度未満の接合作業温度で成分の一部または全部が溶融する錫または無鉛錫系はんだ材である、請求項10から請求項13のいずれか1項に記載の保護素子。 A part or all of the components of the second soluble metal exceed the solidus temperature of the second soluble metal and are less than the liquidus temperature of the first soluble metal at a bonding operation temperature. The protective element according to any one of claims 10 to 13, wherein is a molten tin or lead-free tin-based solder material.
  15.  前記第1の可溶金属は、Sn-Ag合金、Sn-Cu合金、Sn-Sb合金、Sn-Zn合金およびSn-Al合金の群から選択されたいずれかの金属である、請求項10から請求項14のいずれか1項に記載の保護素子。 11. The first soluble metal is any metal selected from the group consisting of Sn—Ag alloy, Sn—Cu alloy, Sn—Sb alloy, Sn—Zn alloy and Sn—Al alloy. The protection element according to claim 14.
  16.  前記第2の可溶金属は、Sn、Sn-Ag合金、Sn-Ag-Cu合金、Sn-Ag-Cu-Bi合金、Sn-Cu合金、Sn-Bi合金、Sn-In合金、Sn-Ag-In合金、Sn-Bi-Ag合金、Sn-Ag-Bi-In合金、Sn-Sb合金、Sn-Zn合金、Sn-Zn-Bi合金およびSn-Al合金の群から選択されたいずれかの金属である、請求項10から請求項15のいずれか1項に記載の保護素子。 The second soluble metal is Sn, Sn-Ag alloy, Sn-Ag-Cu alloy, Sn-Ag-Cu-Bi alloy, Sn-Cu alloy, Sn-Bi alloy, Sn-In alloy, Sn-Ag. --In alloy, Sn--Bi--Ag alloy, Sn--Ag--Bi--In alloy, Sn--Sb alloy, Sn--Zn alloy, Sn--Zn--Bi alloy, and Sn--Al alloy The protection element according to any one of claims 10 to 15, which is a metal.
  17.  前記第1の可溶金属は、Sn-Ag合金であり、前記Sn-Ag合金のAg含有量が20質量%以上、30質量%以下である、請求項15に記載の保護素子。 The protection element according to claim 15, wherein the first fusible metal is a Sn-Ag alloy, and the Ag content of the Sn-Ag alloy is 20% by mass or more and 30% by mass or less.
  18.  前記第1の可溶金属は、80Sn-20Ag合金または70Sn-30Ag合金である、請求項15に記載の保護素子。 The protection element according to claim 15, wherein the first fusible metal is an 80Sn-20Ag alloy or a 70Sn-30Ag alloy.
  19.  前記第2の可溶金属は、Sn-Bi合金であり、前記Sn-Bi合金のBi含有量が40質量%以上、70質量%以下である、請求項16に記載の保護素子。 The protective element according to claim 16, wherein the second fusible metal is a Sn-Bi alloy, and the Bi content of the Sn-Bi alloy is 40% by mass or more and 70% by mass or less.
  20.  前記第2の可溶金属は、60Sn-40Bi合金または30Sn-70Bi合金である、請求項16に記載の保護素子。 The protection element according to claim 16, wherein the second fusible metal is a 60Sn-40Bi alloy or a 30Sn-70Bi alloy.
  21.  前記第1の可溶金属の液相線温度は、前記発熱素子のピーク温度よりも低い、請求項10から請求項20のいずれか1項に記載の保護素子。 The protective element according to any one of claims 10 to 20, wherein the liquidus temperature of the first fusible metal is lower than the peak temperature of the heating element.
PCT/JP2019/051212 2018-12-28 2019-12-26 Fuse element and protective element WO2020138325A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/274,280 US11640892B2 (en) 2018-12-28 2019-12-26 Fuse element and protective element
DE112019004080.4T DE112019004080T5 (en) 2018-12-28 2019-12-26 Fuse element and protective element
CN201980062459.5A CN113169001A (en) 2018-12-28 2019-12-26 Fuse element and protection element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018247934 2018-12-28
JP2018-247934 2018-12-28
JP2019-198126 2019-10-31
JP2019198126A JP7231527B2 (en) 2018-12-28 2019-10-31 Fuse element for protection element and protection element using the same

Publications (1)

Publication Number Publication Date
WO2020138325A1 true WO2020138325A1 (en) 2020-07-02

Family

ID=71129519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051212 WO2020138325A1 (en) 2018-12-28 2019-12-26 Fuse element and protective element

Country Status (1)

Country Link
WO (1) WO2020138325A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11151591A (en) * 1997-11-19 1999-06-08 Tdk Corp High-temperature lead-free solder alloy
JP2008130697A (en) * 2006-11-17 2008-06-05 Sharp Corp Solder bonding structure and manufacturing method thereof
JP2012099307A (en) * 2010-11-01 2012-05-24 Sony Corp Battery pack and power consumption equipment
JP2013239405A (en) * 2012-05-17 2013-11-28 Nec Schott Components Corp Fuse element for protective element and circuit protection element utilizing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11151591A (en) * 1997-11-19 1999-06-08 Tdk Corp High-temperature lead-free solder alloy
JP2008130697A (en) * 2006-11-17 2008-06-05 Sharp Corp Solder bonding structure and manufacturing method thereof
JP2012099307A (en) * 2010-11-01 2012-05-24 Sony Corp Battery pack and power consumption equipment
JP2013239405A (en) * 2012-05-17 2013-11-28 Nec Schott Components Corp Fuse element for protective element and circuit protection element utilizing the same

Similar Documents

Publication Publication Date Title
JP7231527B2 (en) Fuse element for protection element and protection element using the same
TWI557765B (en) A fuse element for a protective element, a circuit protection element, and a method of manufacturing the same
JP2008311161A (en) Protective element
JP2016071972A (en) Fuse element, fuse device and heating element-containing fuse device
JP7050019B2 (en) Protective element
JP2007059295A (en) Circuit protective element and protection method of circuit
CN114762070A (en) Protective element
JP2007243118A (en) Semiconductor device
WO2017163766A1 (en) Protection element
WO2020138325A1 (en) Fuse element and protective element
KR102373602B1 (en) protection element
JP4297431B2 (en) Alloy-type thermal fuse and protective device using the same
JP6423384B2 (en) Protective element
JP2005167257A (en) Soldering method
JP6711704B2 (en) Protective device with bypass electrode
CN117637411A (en) Fuse assembly and protection assembly
JP2024035140A (en) Fuse alloys and protection elements
JP7433783B2 (en) Fuse elements, fuse elements and protection elements
KR20230034380A (en) Fuse Elements, Fuse Elements and Protection Elements
JP6842982B2 (en) Protective element
TW202412035A (en) Fuse component and protection element
JP2021018983A (en) Protection element
JP2020126821A (en) Protection element
JP7040886B2 (en) Protective element
JP2005125408A (en) Solder composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905822

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19905822

Country of ref document: EP

Kind code of ref document: A1