JP2000090792A - Alloy type thermal fuse - Google Patents

Alloy type thermal fuse

Info

Publication number
JP2000090792A
JP2000090792A JP10222280A JP22228098A JP2000090792A JP 2000090792 A JP2000090792 A JP 2000090792A JP 10222280 A JP10222280 A JP 10222280A JP 22228098 A JP22228098 A JP 22228098A JP 2000090792 A JP2000090792 A JP 2000090792A
Authority
JP
Japan
Prior art keywords
fuse
fuse element
temperature
weight
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10222280A
Other languages
Japanese (ja)
Inventor
Tomokuni Mitsui
朋晋 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP10222280A priority Critical patent/JP2000090792A/en
Publication of JP2000090792A publication Critical patent/JP2000090792A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H2037/768Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material characterised by the composition of the fusible material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/761Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit

Abstract

PROBLEM TO BE SOLVED: To provide an alloy type thermal fuse excellently usable for a micro- miniaturized and extremely thin thermal fuse having an actuating temperature of 80-120 deg.C such as a thermal fuse for a battery. SOLUTION: This thermal fuse has a resin base film 11 and a strip lead conductor 2, and the tip part of each strip lead conductor 2, 2 is adhered to the one side of the resin base film 11 by heat pressing, ultrasonic fusing or an adhesive. A fuse element 3 connected between the strip lead conductors 2, 2 by welding has an alloy composition containing 30-75 wt.% of In, 5-50 wt.% of Sn and 0.5-25 wt.% of Cd, preferably 40-60 wt.% of In, 25-50 wt.% of Sn and 10-15 wt.% of Cd, or more preferably 40-55 wt.% of In, 30-46 wt.% of Sn and 14-15 wt.% of Cd. This fuse has flux 4 applied on the fuse element and a resin cover film 12 placed on the surface of the resin base film 11, and a space between the films around the resin cover film and a space between the resin cover film and the strip lead conductor are sealed by ultrasonic fusing or an adhesive.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超薄型・超小型の合
金型温度ヒュ−ズ、例えばリチウムイオン2次電池等の
電池の昇温防止に有用な合金型温度ヒュ−ズに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-thin and ultra-compact alloy-type temperature fuse, for example, an alloy-type temperature fuse useful for preventing temperature rise of batteries such as lithium ion secondary batteries. .

【0002】[0002]

【従来の技術】合金型温度ヒュ−ズにおいては、機器の
過電流に基づく発熱で低融点可溶合金のヒュ−ズエレメ
ントを溶断させて機器の通電を遮断し機器の異常発熱ひ
いては火災の発生を未然に防止している。従来の合金型
温度ヒュ−ズを形式面から大別すると、一直線配置の
リ−ド導体間にヒュ−ズエレメントを接続し、該ヒュ−
ズエレメントにフラックスを塗布し、該フラックス塗布
ヒュ−ズエレメント上に絶縁筒を挿入しこの絶縁筒各端
と各リ−ド導体との間を封止材で封止した筒型アクシャ
ルタイプ、並行リ−ド導体の先端間にヒュ−ズエレメ
ントを接続し、該ヒュ−ズエレメントにフラックスを塗
布し、該フラックス塗布ヒュ−ズエレメント上にキャツ
プ型の絶縁ケ−ス筒を被せ、該ケ−スの開口と並行リ−
ド導体との間を封止材で封止したケ−ス型ラジアルタイ
プ、並行リ−ド導体の先端間にヒュ−ズエレメントを
接続し、該ヒュ−ズエレメントにフラックスを塗布し、
該フラックス塗布ヒュ−ズエレメントを直接封止材で包
囲した直接封止型ラジアルタイプ、絶縁基板に一対の
膜電極を設け、各膜電極にリ−ド導体を接続しこれらの
膜電極間にヒュ−ズエレメントを接続し、該ヒュ−ズエ
レメントにフラックスを塗布し、このフラックス塗布ヒ
ュ−ズエレメントを覆うように封止材を被覆した基板タ
イプ等に分けることができる。
2. Description of the Related Art In an alloy type temperature fuse, a fuse element of a low melting point fusible alloy is blown off by heat generated due to an overcurrent of the device to cut off the power supply to the device, thereby causing abnormal heat generation of the device and a fire. Is prevented beforehand. A conventional alloy-type temperature fuse can be roughly classified according to the type of the fuse. A fuse element is connected between lead conductors arranged in a straight line, and the fuse is connected to the fuse element.
A cylindrical axial type in which a flux is applied to the fuse element, an insulating cylinder is inserted on the flux-applied fuse element, and the gap between each end of the insulating cylinder and each lead conductor is sealed with a sealing material; A fuse element is connected between the ends of the parallel lead conductors, a flux is applied to the fuse element, and a cap-type insulating case cylinder is placed on the flux-coated fuse element. −Single opening and parallel release−
A case type radial type in which the space between the lead element and the parallel lead conductor is sealed with a sealing material, a fuse element is connected between the tips of the parallel lead conductors, and a flux is applied to the fuse element;
A direct sealing radial type in which the flux-coated fuse element is directly surrounded by a sealing material, a pair of membrane electrodes are provided on an insulating substrate, and a lead conductor is connected to each membrane electrode, and a fuse is provided between these membrane electrodes. The fuse element is connected, a flux is applied to the fuse element, and the fuse element can be divided into a substrate type and the like in which a sealing material is coated so as to cover the fuse element.

【0003】従来、作動温度が80〜120℃の合金型
温度ヒュ−ズのヒュ−ズエレメントには、BiやPb等
の添加によって溶融特性を当該作動温度に調整したSn
−Pb−Bi系合金やSn−Pb−Bi−In系合金が
使用されている。
Conventionally, a fuse element of an alloy type temperature fuse having an operating temperature of 80 to 120 ° C. has a melting characteristic adjusted to the operating temperature by adding Bi, Pb, or the like.
-Pb-Bi-based alloys and Sn-Pb-Bi-In-based alloys are used.

【0004】[0004]

【発明が解決しようとする課題】近来、携帯電話、ノ−
トブックパソコン、ビデオカメラ等のパ−ソナルユ−ス
電子機器の小型化・薄型化に伴い、その電源である2次
電池(リチウムイオン電池、ニッケル水素電池等)が小
型化され、その2次電池の昇温防止用に使用される合金
型温度ヒュ−ズにおいても、超小型化・超薄型化が要請
されている。すなわち、リチウムイオン2次電池等で
は、エネルギ−密度が高く放電時や充電時に相当に大き
な電流が流れて昇温する可能性があるので、2次電池の
底面または側面に合金型温度ヒュ−ズを配設して所定の
昇温温度(80〜120℃)でヒュ−ズエレメントを溶
断させて通電遮断することが検討されているが、この合
金型温度ヒュ−ズの寸法としては、本体部厚み1mm以
下、本体部(リ−ド線を含まない部分)の平面寸法5m
m×12mm以下が要求されている。この電池用温度ヒ
ュ−ズに要求される作動温度は80〜120℃であり、
この作動温度を充足し得るヒュ−ズエレメント用合金の
溶融特性は液相線温度80〜120℃の範囲、固相線温
度80〜120℃の範囲である。
In recent years, portable telephones and notebooks have been developed.
With the miniaturization and thinning of personal use electronic devices such as notebook personal computers and video cameras, secondary batteries (lithium-ion batteries, nickel-metal hydride batteries, etc.) as their power sources have been miniaturized. Ultra-small and ultra-thin alloy-type temperature fuses used for preventing temperature rise are also required. That is, in a lithium ion secondary battery or the like, since the energy density is high and a considerably large current flows during discharging or charging, there is a possibility that the temperature will rise. It has been considered that the fuse element is melted at a predetermined temperature rise (80 to 120 ° C.) to cut off the current supply. However, the dimensions of the alloy type temperature fuse are as follows. 1 mm or less in thickness, 5 m in plane dimension of main body (portion not including lead wire)
m × 12 mm or less is required. The operating temperature required for the battery temperature fuse is 80 to 120 ° C,
The melting characteristics of the alloy for a fuse element that can satisfy this operating temperature are in the range of liquidus temperature of 80 to 120 ° C and in the range of solidus temperature of 80 to 120 ° C.

【0005】かかる溶融特性に属する代表的な合金型温
度ヒュ−ズエレメント用合金としては、例えばSn16
重量%−Pb32重量%−Bi52重量%が知られてい
るが、この合金で前記超薄型・超小型の電池用温度ヒュ
−ズのヒュ−ズエレメントを形成すると、ヒュ−ズエレ
メントの単位長さあたりの抵抗値が高くなり温度ヒュ−
ズの誤作動が惹起され易い。
A typical alloy type temperature fuse element alloy having such melting characteristics is, for example, Sn16.
However, if the fuse element of the ultra-thin and ultra-small battery temperature fuse is formed of this alloy, the unit length of the fuse element is known. The resistance value per unit becomes high and the temperature
Malfunction is likely to occur.

【0006】すなわち、ヒュ−ズエレメントが負荷電流
によるジュ−ル発熱のために昇温され、その昇温度をΔ
T、ヒュ−ズエレメントの融点をT、常温をT0とすれ
ば、(T−ΔT−T0)の電池昇温で温度ヒュ−ズが作
動されることになるが、ΔTが大になると、電池の昇温
度が安全範囲内の低いものであっても温度ヒュ−ズが作
動するから、上記ΔTを所定の限度内(通常10℃以
内)に抑えることが必要である。しかしながら、上記電
池用温度ヒュ−ズの作動温度80〜120℃を溶融特性
からは満たす従来のヒュ−ズエレメント用合金を電池用
温度ヒュ−ズのヒュ−ズエレメントとして使用すると、
上記ΔTを所定の限度内(通常10℃以内)に抑えるこ
とが難しく、満足な作動特性を保証することは困難であ
る。
That is, the fuse element is heated due to Joule heat due to the load current, and the temperature is reduced by Δ
Assuming that T and the melting point of the fuse element are T and normal temperature is T 0 , the temperature fuse is activated when the battery temperature rises by (T−ΔT−T 0 ). Since the temperature fuse operates even if the temperature of the battery rises within a safe range, it is necessary to keep the above ΔT within a predetermined limit (usually within 10 ° C.). However, when a conventional fuse element alloy that satisfies the operating temperature of the battery temperature fuse of 80 to 120 ° C. from the viewpoint of melting characteristics is used as the fuse element of the battery temperature fuse,
It is difficult to keep ΔT within a predetermined limit (usually within 10 ° C.), and it is difficult to guarantee satisfactory operating characteristics.

【0007】本発明の目的は、作動温度が80〜120
℃の超小型・超薄型温度ヒュ−ズ、例えば電池用温度ヒ
ュ−ズに使用しても良好な作動性を保証できる合金型温
度ヒュ−ズを提供することにある。
[0007] It is an object of the present invention to operate at an operating temperature of 80-120.
It is an object of the present invention to provide an alloy type temperature fuse that can guarantee good operability even when used in a temperature fuse of a very small and ultra-thin temperature of, for example, a battery temperature fuse.

【0008】[0008]

【課題を解決するための手段】本発明に係る合金型温度
ヒュ−ズは、ヒュ−ズエレメントの合金組成をIn30
〜75重量%、Sn5〜50重量%、Cd0.5〜25
重量%、好ましくはIn40〜60重量%、Sn25〜
50重量%、Cd10〜15重量%、特に好ましくはI
n40〜55重量%、Sn30〜46重量%、Cd14
〜15重量%、としたことを特徴とする構成であり、合
金組成にAu、Ag、Cu、Alのうちの1種または2
種以上を合計0.1〜5重量%添加することができる。
また、ヒュ−ズエレメントの断面積を0.03〜0.1
3mm2として電池の昇温防止用に好適に使用できる。
According to the present invention, there is provided an alloy type temperature fuse having an alloy composition of In30.
~ 75 wt%, Sn5 ~ 50 wt%, Cd0.5 ~ 25
Wt%, preferably 40-60 wt% In, Sn25-
50% by weight, 10 to 15% by weight of Cd, particularly preferably Id
n 40 to 55% by weight, Sn 30 to 46% by weight, Cd14
-15% by weight, and one or two of Au, Ag, Cu, and Al in the alloy composition.
More than 0.1% by weight of seeds can be added.
Further, the sectional area of the fuse element is set to 0.03 to 0.1.
The thickness of 3 mm 2 can be suitably used to prevent the temperature of the battery from rising.

【0009】[0009]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1の(イ)は本発明に
係る温度ヒュ−ズの一例を示している。図1の(イ)に
おいて、11は樹脂ベ−スフィルムである、2は帯状リ
−ド導体であり、図1の(ロ)に示すように、各帯状リ
−ド導体2,2の先端部を樹脂ベ−スフィルム11の片
面に熱プレスや超音波融着或いは接着剤等で固着してあ
る。図1の(イ)において、3は帯状リ−ド導体2,2
間に溶接により接続したヒュ−ズエレメントであり、I
n30〜75重量%、Sn5〜50重量%、Cd0.5
〜25重量%、好ましくはIn40〜60重量%、Sn
25〜50重量%、Cd10〜15重量%、特に好まし
くはIn40〜55重量%、Sn30〜46重量%、C
d14〜15重量%の合金組成としてある、4はヒュ−
ズエレメントに塗布したフラックス、12は樹脂ベ−ス
フィルム11の表面上に配した樹脂カバ−フィルムであ
り、樹脂カバ−フィルムの周辺のフィルム間及び樹脂カ
バ−フィルムと帯状リ−ド導体との間を熱プレスや超音
波融着或いは接着剤等で封止してある。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A shows an example of a temperature fuse according to the present invention. In FIG. 1A, reference numeral 11 denotes a resin base film, and reference numeral 2 denotes a strip-shaped lead conductor. As shown in FIG. The portion is fixed to one surface of the resin base film 11 by hot pressing, ultrasonic fusion, an adhesive or the like. In FIG. 1A, reference numeral 3 denotes a strip-shaped lead conductor 2, 2.
A fuse element connected by welding between
n 30 to 75% by weight, Sn 5 to 50% by weight, Cd 0.5
-25% by weight, preferably 40-60% by weight of In, Sn
25 to 50% by weight, Cd 10 to 15% by weight, particularly preferably In 40 to 55% by weight, Sn 30 to 46% by weight, C
d is an alloy composition of 14 to 15% by weight.
The flux 12 applied to the closing element is a resin cover film disposed on the surface of the resin base film 11, and is provided between the films around the resin cover film and between the resin cover film and the strip-shaped lead conductor. The space is sealed with a hot press, ultrasonic fusion, an adhesive or the like.

【0010】上記ヒュ−ズエレメント3の合金組成は、
温度ヒュ−ズの作動温度を80〜120℃とするこ
と、温度ヒュ−ズの超薄型化・超小型化のためにヒュ
−ズエレメントの断面積を0.03〜0.13mm2
てしても負荷電流のもとでのジュ−ル発熱を実質上排除
できる低比抵抗とすることの要件を満たしており、固相
線温度が80〜120℃、液相線温度が80〜120
℃、比抵抗が(10〜30μΩcm)である。
The alloy composition of the fuse element 3 is as follows:
The operating temperature of the temperature fuse is set to 80 to 120 ° C., and the cross-sectional area of the fuse element is set to 0.03 to 0.13 mm 2 to make the temperature fuse ultra-thin and ultra-compact. However, it meets the requirement of low specific resistance which can substantially eliminate Joule heat under load current, and has a solidus temperature of 80 to 120 ° C and a liquidus temperature of 80 to 120 ° C.
° C., the specific resistance is (10 to 30 μΩcm).

【0011】この比抵抗をさらに低くするために、合金
組成にAu、Ag、Cu、Alのうちの1種または2種
以上を合計0.1〜5重量%添加することができる。
In order to further reduce the specific resistance, one or more of Au, Ag, Cu and Al can be added to the alloy composition in a total amount of 0.1 to 5% by weight.

【0012】本発明に係る合金型温度ヒュ−ズによれ
ば、後述の実施例と比較例との対比からも明らかなよう
に、ヒュ−ズエレメントの断面積を0.03〜0.13
mm2と小さくしても負荷電流によるヒュ−ズエレメン
トの発熱を実質上排除でき、ヒュ−ズエレメントの幅を
1.4mmとする場合、ヒュ−ズエレメントの厚みを
0.02mm〜0.93mmの超薄型にでき、温度ヒュ
−ズ本体の厚み(1mm以下)中、ヒュ−ズエレメント
が占める部分を僅少にとどめることができる(これに対
し、従来のヒュ−ズエレメント合金を使用すると、ヒュ
−ズエレメントの断面積を0.2〜0.23mm2にす
る必要があり、ヒュ−ズエレメントの厚みが温度ヒュ−
ズ本体の厚み(1mm以下)中、ヒュ−ズエレメントが
占める部分が20%程度近くになる)。また、本発明に
係る温度ヒュ−ズではヒュ−ズエレメントの体積が少量
であるために、溶融合金の電極との濡れによる分断を迅
速に行なわしめ得、その分断間距離を絶縁遮断に必要な
距離(ア−ク遮断距離)に速く到達させ得るので、迅速
な遮断作動を保障できる。従って、本発明によれば、作
動温度が80〜120℃の電池用の超薄型・超小型で、
優れた作動性の合金型温度ヒュ−ズを提供できる。
According to the alloy type temperature fuse according to the present invention, the cross-sectional area of the fuse element is set to 0.03 to 0.13, as is clear from the comparison between the embodiment and the comparative example described later.
Even when the fuse element is made as small as 2 mm, the heat generation of the fuse element due to the load current can be substantially eliminated. When the width of the fuse element is set to 1.4 mm, the thickness of the fuse element is set to 0.02 mm to 0.93 mm. The fuse element can be made very thin, and the portion occupied by the fuse element in the thickness of the temperature fuse body (1 mm or less) can be kept very small. (On the other hand, if a conventional fuse element alloy is used, The fuse element needs to have a cross-sectional area of 0.2 to 0.23 mm 2 , and the thickness of the fuse element is set to the temperature fuse.
The portion occupied by the fuse element in the thickness of the fuse body (1 mm or less) is about 20%). Further, in the temperature fuse according to the present invention, since the volume of the fuse element is small, the molten alloy can be quickly separated by wetting of the electrode with the electrode, and the distance between the divided parts is necessary for insulation break. Since the distance (arc blocking distance) can be quickly reached, a quick breaking operation can be guaranteed. Therefore, according to the present invention, the operating temperature is 80-120 ℃ ultra-thin and ultra-small for batteries,
An alloy-type temperature fuse having excellent operability can be provided.

【0013】上記帯状リ−ド導体2には、例えば銅線、
アルミニウム線、ニッケル線、銅メッキ鉄線等の圧延
体、この圧延体に錫めっきを施したもの等を使用でき、
厚みは通常50μm〜200μm、好ましくは100μ
m、巾は通常2〜5mm、好ましくは3mmとされる。
For example, a copper wire,
Rolled products such as aluminum wire, nickel wire, copper-plated iron wire, etc., and those obtained by applying tin plating to this rolled product can be used.
The thickness is usually 50 μm to 200 μm, preferably 100 μm
m and the width are usually 2 to 5 mm, preferably 3 mm.

【0014】上記の樹脂ベ−スフィルム11や樹脂カバ
−フィルム12には、例えばポリエチレンテレフタレ−
ト、ポリアミド、ポリイミド、ポリブチレンテレフタレ
−ト、ポリフェニレンオキシド、ポリエチレンサルファ
イド、ポリサルホン等のエンジニアリングプラスチック
を使用でき、両フィルムには通常同種フィルムが使用さ
れるが、異種のものを使用することも可能である。これ
らの個々のフィルムの厚みは、通常50〜400μm、
好ましくは188μmとされる。
The resin base film 11 and the resin cover film 12 are made of, for example, polyethylene terephthalate.
Engineering plastics such as polystyrene, polyamide, polyimide, polybutylene terephthalate, polyphenylene oxide, polyethylene sulfide, and polysulfone can be used. It is. The thickness of these individual films is usually 50-400 μm,
Preferably, it is 188 μm.

【0013】図2の(イ)は、本発明に係る温度ヒュ−
ズの別例を示し、図2の(ロ)のように一対の帯状リ−
ド導体2,2の先端部を熱プレス等で樹脂ベ−スフィル
ム11にその裏面側から表面側に表出させて固着し、次
いで、これらの固着帯状リ−ド導体2,2の表出部間に
ヒュ−ズエレメント3を抵抗溶接等で接合し、他の構成
は図1に示したものと実質的に同じとしてある。図2に
おいて、図1と同一の符号は同一の構成要素を示してい
る。
FIG. 2A shows a temperature hue according to the present invention.
FIG. 2B shows another example of a pair of band-shaped leads.
The front ends of the lead conductors 2 and 2 are exposed and fixed to the resin base film 11 from the back side to the front side by a hot press or the like, and then these fixed strip-shaped lead conductors 2 and 2 are exposed. The fuse element 3 is joined between the parts by resistance welding or the like, and the other configuration is substantially the same as that shown in FIG. 2, the same reference numerals as those in FIG. 1 indicate the same components.

【0014】図3の(イ)は、本発明に係る温度ヒュ−
ズの他の別例を示し、図3の(ロ)のように一方の帯状
リ−ド導体21の先端部を熱プレス等で樹脂ベ−スフィ
ルム11にその裏面側から表面側に表出させて固着し、
他方の帯状リ−ド導体2の先端部を樹脂ベ−スフィルム
11の表面に熱プレス等で固着し、更に、図3の(イ)
において、両帯状リ−ド導体2,21の先端間にヒュ−
ズエレメント3を抵抗溶接等で接合し、更にヒュ−ズエ
レメント3上にフラックス4を塗布し、次いで、樹脂ベ
−スフィルム11の片面上に樹脂カバ−フィルム12を
配し、樹脂カバ−フィルム12の周辺と樹脂ベ−スフィ
ルム11との間及び成形樹脂カバ−フィルム12と他方
の帯状リ−ド導体2との間をヒ−トシ−ルまたは超音波
融着或いはレ−ザ照射により封止してある。
FIG. 3A shows a temperature hue according to the present invention.
As shown in FIG. 3B, the tip of one of the strip-shaped lead conductors 21 is exposed to the resin base film 11 from the back side to the front side by hot pressing or the like. Let it stick,
The other end of the strip-shaped lead conductor 2 is fixed to the surface of the resin base film 11 by a hot press or the like.
In the above, a fuse is provided between the tip ends of both strip-shaped lead conductors 2 and 21.
The fuse element 3 is joined by resistance welding or the like, and a flux 4 is applied on the fuse element 3. Then, a resin cover film 12 is disposed on one side of the resin base film 11. 12 and the resin base film 11, and between the molded resin cover film 12 and the other strip-shaped lead conductor 2 are sealed by heat sealing, ultrasonic fusion or laser irradiation. It has stopped.

【0015】本発明に係る薄型温度ヒュ−ズは、例えば
リチウムイオン二次電池を異常発熱から保護するために
使用できる。
The thin temperature fuse according to the present invention can be used, for example, to protect a lithium ion secondary battery from abnormal heat generation.

【0016】図4はリチウムイオン二次電池を示し、セ
パレ−タ51を介在させた正極52と負極53とのスパ
イラル巻回体ヒュ−ズエレメントを負極缶54に収容し
て負極53と負極缶54の底面とを電気的に導通し、負
極缶54内の上端に正極集電極55を配設して正極52
をこの集電極55に電気的に導通し、負極缶54の上端
部541を防爆弁板外56の外周端部及び正極蓋57の
外周端部にパッキング58を介してかしめ加工し、防爆
弁板56の中央凹部を正極集電極59に電気的に導通し
てある。
FIG. 4 shows a lithium ion secondary battery, in which a spiral wound fuse element of a positive electrode 52 and a negative electrode 53 with a separator 51 interposed is accommodated in a negative electrode can 54, and the negative electrode 53 and the negative electrode can 54 is electrically connected to the bottom surface of the positive electrode 52, and a positive electrode collecting electrode 55
Is electrically connected to the collector electrode 55, and the upper end 541 of the negative electrode can 54 is caulked to the outer peripheral end of the outer side 56 of the explosion-proof valve plate and the outer peripheral end of the positive electrode cover 57 via the packing 58, and the explosion-proof The central concave portion of 56 is electrically connected to the positive electrode collecting electrode 59.

【0017】本発明に係る係る温度ヒュ−ズを上記電池
に取付けるには、電池の負極缶に一方の帯状リ−ド導体
及び温度ヒュ−ズ本体を密接させると共にその一方の帯
状リ−ド導体と負極缶との間を電気的に接続し、他方の
帯状リ−ド導体を負極缶から離隔や絶縁フィルムの介在
により絶縁して当該電池に直列に挿入することができ
る。
In order to attach the temperature fuse according to the present invention to the battery, one of the band-shaped lead conductors and the temperature-fused body are brought into close contact with the negative electrode can of the battery, and the other of the band-shaped lead conductors. And the negative electrode can is electrically connected, and the other strip-shaped lead conductor is insulated from the negative electrode can by separating or interposing an insulating film, and can be inserted in series into the battery.

【0018】また、温度ヒュ−ズをリチウムイオン二次
電池の防爆弁板56と正極蓋57との間の空間に配し、
防爆弁板56の外周端部と正極蓋57の外周端部との間
に絶縁スペ−サリングrを介在させ、一方の帯状リ−ド
導体2を防爆弁板56の外周端部と絶縁スペ−サリング
rとで挾持し、他方の帯状リ−ド導体2を正極蓋57の
外周端部と絶縁スペ−サリングrとで挾持して電池内に
直列に組み込むこともできる。
A temperature fuse is disposed in a space between the explosion-proof valve plate 56 and the positive electrode cover 57 of the lithium ion secondary battery,
An insulating spacer r is interposed between the outer peripheral end of the explosion-proof valve plate 56 and the outer peripheral end of the positive electrode cover 57, and one of the strip-shaped lead conductors 2 is insulated from the outer peripheral end of the explosion-proof valve plate 56 by the insulating space. Alternatively, the other strip-shaped lead conductor 2 may be sandwiched between the outer peripheral end of the positive electrode cover 57 and the insulating spacer r and incorporated in the battery in series.

【0019】図5の(イ)及び図5の(ロ)〔図5の
(イ)におけるロ−ロ断面図〕は、本発明に係る温度ヒ
ュ−ズの上記とは別の実施例を示している。図5におい
て、合金型温度ヒュ−ズはフレ−ムを示し、図6の
(イ)に示す環状部201の内周に一方の帯状リ−ド導
体21を有する一方の箔状電極f1と、図6の(ロ)に
示す環状の樹脂スペ−サフィルムsと、図6の(ハ)に
示す環状部200の内周に他方の帯状リ−ド導体2を有
する箔状電極f2とをリ−ド部2,21を180°互い
違いにして重畳してあり、これらの箔状電極f1,f2
樹脂スペ−サフィルムsの界面の接着には熱融着等を使
用できる。
FIGS. 5 (a) and 5 (b) (a cross-sectional view taken along a line in FIG. 5 (a)) show another embodiment of the temperature fuse according to the present invention. ing. 5, the alloy type thermal fuse - figure frame - indicates the beam, strip Li inner periphery to one of the annular portion 201 shown in (a) 6 - and foil electrode f 1 of one with de conductor 21 the resin space of annular shown in (b) of FIG. 6 - and foil electrode f 2 having a de conductor 2 - and support the film s, strip Li inner periphery to the other of the annular portion 200 shown in (c) of FIG. 6 Are superposed with the lead portions 2 and 21 staggered by 180 °, and the interface between the foil electrodes f 1 and f 2 and the resin spacer film s can be bonded by heat fusion or the like.

【0020】図5において、Aはフレ−ム合金型温度ヒ
ュ−ズの中央空間に配した温度ヒュ−ズ本体であり、一
方の帯状リ−ド導体21の先端部を樹脂ベ−スフィルム
11の一面に固着すると共に該フィルム11の一面より
他面に局部的に表出させ、他方の帯状リ−ド導体2の先
端部を前記樹脂ベ−スフィルム11の他面に固着し、該
先端部と前記局部的に表出された一方の帯状リ−ド導体
21先端部分との間にヒュ−ズエレメント3を溶接等で
接続し、該ヒュ−ズエレメント3にフラックス4を塗布
し、このフラックス塗布ヒュ−ズエレメント上に樹脂カ
バ−フィルム12を配し、樹脂カバ−フィルム12周辺
の樹脂ベ−スフィルム11と樹脂カバ−フィルム12と
の間及び樹脂カバ−フィルム12と他方の帯状リ−ド導
体2との間をヒ−トシ−ルまたは超音波融着或いはレ−
ザ照射により封止してある。
In FIG. 5, A is a temperature fuse body disposed in the central space of the frame alloy type temperature fuse, and one end of one strip-shaped lead conductor 21 is attached to a resin base film 11. And the other end of the strip-shaped lead conductor 2 is fixed to the other surface of the resin-based film 11 and is locally exposed from one surface of the film 11 to the other surface. The fuse element 3 is connected by welding or the like between the portion and the tip end of one of the strip-shaped lead conductors 21 which is locally exposed, and a flux 4 is applied to the fuse element 3. A resin cover film 12 is disposed on the fuse-coated fuse element, and is disposed between the resin base film 11 and the resin cover film 12 around the resin cover film 12 and between the resin cover film 12 and the other strip-shaped resin. Between the lead conductor 2 and Sheet - le or ultrasonic welding or Le -
Sealed by irradiation.

【0021】この温度ヒュ−ズを図4に示す電池に組み
込むには、前記絶縁スペ−サリングrを介することなく
防爆弁板56の外周端部と正極蓋57の外周端部との間
に挾持して防爆弁板56とフレ−ム合金型温度ヒュ−ズ
の箔状電極f1との電気的接触→箔状電極f1のリ−ド導
体21→ヒュ−ズエレメント3→箔状電極f0のリ−ド
導体2→フレ−ム合金型温度ヒュ−ズの箔状電極f0
正極蓋57との電気的接触により、電池に温度ヒュ−ズ
を電気的に直列に接続することができる。
In order to incorporate this temperature fuse into the battery shown in FIG. 4, the temperature fuse is sandwiched between the outer peripheral end of the explosion-proof valve plate 56 and the outer peripheral end of the positive electrode cover 57 without the interposition of the insulating spacer r. to explosion-proof valve plate 56 and the frame - arm alloy type thermal fuse - electrical contact between foil electrodes f 1 of's → foil electrodes f 1 of the Li - de conductor 21 → fuse -'s element 3 → foil electrodes f 0 lead conductor 2 → frame alloy type temperature fuse foil electrode f 0 and the positive electrode cover 57 make it possible to electrically connect the temperature fuse in series to the battery. it can.

【0022】[0022]

【実施例】〔実施例1〕ヒュ−ズエレメントの合金組成
は表1に示すようにIn40重量%−Sn46重量%−
Cd14重量%とした。この合金組成の比抵抗は16μ
Ωcmである。使用した温度ヒュ−ズの構成は図1の通り
とし、ヒュ−ズエレメントのリ−ド導体間部分の長さを
2.5mm、ヒュ−ズエレメントの幅(W)を1.4m
mとし、定格電流2Aに対し実質的にジュ−ル発熱を排
除し得るように上記2.5mmでのヒュ−ズエレメント
の抵抗値を6mΩとするようにヒュ−ズエレメントの断
面積(S)を0.067mm2とした。従って、ヒュ−
ズエレメントの厚み(t)は、S/W=0.048mm
である。
EXAMPLES Example 1 The alloy composition of the fuse element was as shown in Table 1 in which 40% by weight of In-46% by weight of Sn-
Cd was 14% by weight. The specific resistance of this alloy composition is 16μ
Ωcm. The structure of the temperature fuse used was as shown in FIG. 1, the length between the lead conductors of the fuse element was 2.5 mm, and the width (W) of the fuse element was 1.4 m.
m and the cross-sectional area (S) of the fuse element so that the resistance value of the fuse element at 2.5 mm is 6 mΩ so as to substantially eliminate Joule heat at a rated current of 2 A. Was set to 0.067 mm 2 . Therefore,
The thickness (t) of the element is S / W = 0.048 mm
It is.

【0023】〔実施例2〕ヒュ−ズエレメントの合金組
成は表1に示すようにIn55重量%−Sn30重量%
−Cd15重量%とした。この合金組成の比抵抗は13
μΩcmである。実施例1と同様にヒュ−ズエレメントの
抵抗値を6mΩとするようにヒュ−ズエレメントの断面
積(S)を0.054mm2とした。従って、ヒュ−ズ
エレメントの厚み(t)は、S/W=0.039mmで
ある。
Example 2 The alloy composition of the fuse element was as shown in Table 1 in which 55% by weight of In and 30% by weight of Sn were used.
-Cd was 15% by weight. The specific resistance of this alloy composition is 13
μΩcm. As in Example 1, the fuse element had a cross-sectional area (S) of 0.054 mm 2 so that the resistance of the fuse element was 6 mΩ. Therefore, the thickness (t) of the fuse element is S / W = 0.039 mm.

【0024】〔実施例3〕ヒュ−ズエレメントの合金組
成は表1に示すようにIn44重量%−Sn42重量%
−Cd14重量%とした。この合金組成の比抵抗は16
μΩcmである。実施例1と同様にヒュ−ズエレメントの
抵抗値を6mΩとするようにヒュ−ズエレメントの断面
積(S)を0.067mm2とした。従って、ヒュ−ズ
エレメントの厚み(t)は、S/W=0.048mmで
ある。
Example 3 As shown in Table 1, the alloy composition of the fuse element was In 44% by weight-Sn 42% by weight.
-Cd was 14% by weight. The specific resistance of this alloy composition is 16
μΩcm. The cross-sectional area (S) of the fuse element was set to 0.067 mm 2 so that the resistance value of the fuse element was 6 mΩ as in the first embodiment. Therefore, the thickness (t) of the fuse element is S / W = 0.048 mm.

【0025】〔実施例4〕ヒュ−ズエレメントの合金組
成は表1に示すようにIn44重量%−Sn41重量%
−Cd14重量%−Ag1重量%とした。この合金組成
の比抵抗は15μΩcmである。実施例1と同様にヒュ−
ズエレメントの抵抗値を6mΩとするようにヒュ−ズエ
レメントの断面積(S)を0.063mm2とした。従
って、ヒュ−ズエレメントの厚み(t)は、S/W=
0.045mmである。
Example 4 The alloy composition of the fuse element was as shown in Table 1 in which 44% by weight of In-41% by weight of Sn.
-Cd 14% by weight-Ag 1% by weight. The specific resistance of this alloy composition is 15 μΩcm. In the same manner as in the first embodiment,
The fuse element had a cross-sectional area (S) of 0.063 mm 2 so that the resistance value of the fuse element was 6 mΩ. Therefore, the thickness (t) of the fuse element is S / W =
0.045 mm.

【0026】〔実施例5〕ヒュ−ズエレメントの合金組
成は表1に示すようにIn43.5重量%−Sn41重
量%−Cd14重量%−Cu0.5重量%とした。この
合金組成の比抵抗は16μΩcmである。実施例1と同様
にヒュ−ズエレメントの抵抗値を6mΩとするようにヒ
ュ−ズエレメントの断面積(S)を0.067mm2
した。従って、ヒュ−ズエレメントの厚み(t)は、S
/W=0.048mmである。
Example 5 As shown in Table 1, the alloy composition of the fuse element was In 43.5 wt% -Sn 41 wt% -Cd 14 wt% -Cu 0.5 wt%. The specific resistance of this alloy composition is 16 μΩcm. The cross-sectional area (S) of the fuse element was set to 0.067 mm 2 so that the resistance value of the fuse element was 6 mΩ as in the first embodiment. Therefore, the thickness (t) of the fuse element is S
/W=0.048 mm.

【0027】〔比較例1〕ヒュ−ズエレメントの合金組
成は表1に示すようにSn16重量%−Bi52重量%
−Pb32重量%とした。この合金組成の比抵抗は50
μΩcmである。実施例1と同様にヒュ−ズエレメントの
抵抗値を6mΩとするようにヒュ−ズエレメントの断面
積(S)を0.208mm2とした。従って、ヒュ−ズ
エレメントの厚み(t)は、S/W=0.149mmで
ある。
Comparative Example 1 As shown in Table 1, the alloy composition of the fuse element was as follows: Sn 16% by weight-Bi 52% by weight.
-Pb was 32% by weight. The specific resistance of this alloy composition is 50
μΩcm. As in Example 1, the fuse element had a cross-sectional area (S) of 0.208 mm 2 so that the resistance of the fuse element was 6 mΩ. Therefore, the thickness (t) of the fuse element is S / W = 0.149 mm.

【0028】〔比較例2〕ヒュ−ズエレメントの合金組
成は表1に示すようにIn1重量%−Sn15.3重量
%−Bi52重量%−Pb31.7重量%とした。この
合金組成の比抵抗は49μΩcmである。実施例1と同様
にヒュ−ズエレメントの抵抗値を6mΩとするようにヒ
ュ−ズエレメントの断面積(S)を0.204mm2
した。従って、ヒュ−ズエレメントの厚み(t)は、S
/W=0.146mmである。
Comparative Example 2 As shown in Table 1, the alloy composition of the fuse element was 1% by weight of In—15.3% by weight of Sn—52% by weight of Bi—31.7% by weight of Pb. The specific resistance of this alloy composition is 49 μΩcm. As in Example 1, the fuse element had a cross-sectional area (S) of 0.204 mm 2 so that the resistance of the fuse element was 6 mΩ. Therefore, the thickness (t) of the fuse element is S
/W=0.146 mm.

【0029】〔比較例3〕ヒュ−ズエレメントの合金組
成は表1に示すようにIn1重量%−Sn1.5重量%
−Cd8重量%−Bi50.5重量%−Pb39重量%
とした。この合金組成の比抵抗は55μΩcmである。実
施例1と同様にヒュ−ズエレメントの抵抗値を6mΩと
するようにヒュ−ズエレメントの断面積(S)を0.2
29mm2とした。従って、ヒュ−ズエレメントの厚み
(t)は、S/W=0.164mmである。
Comparative Example 3 As shown in Table 1, the alloy composition of the fuse element was 1% by weight of In—1.5% by weight of Sn.
-Cd 8% by weight-Bi 50.5% by weight-Pb 39% by weight
And The specific resistance of this alloy composition is 55 μΩcm. As in the first embodiment, the fuse element has a sectional area (S) of 0.2 so that the resistance value of the fuse element is 6 mΩ.
29 mm 2 . Therefore, the thickness (t) of the fuse element is S / W = 0.164 mm.

【0030】これらの実施例品及び比較例品のそれぞれ
につき(各試料数は25個)、オイルバスに浸漬し、1
℃/分の速度でオイル温度を昇温して温度ヒュ−ズの作
動温度を測定したところ表1の通りであった
Each of these examples and comparative examples (the number of each sample was 25) was immersed in an oil bath.
The operating temperature of the temperature fuse was measured by raising the oil temperature at a rate of ° C./min.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかな通り、実施例、比較例と
もに作動温度80〜120℃の温度ヒュ−ズとして使用
できるが、実施例品では比較例品に較べヒュ−ズエレメ
ントの厚みを著しく薄くでき、ベ−スフィルム、カバ−
フィルム、帯状リ−ド導体の好適な各厚み100μmに
対しヒュ−ズエレメントの厚みを39〜48μm程度に
して実質的にベ−スフィルム、カバ−フィルム及び帯状
リ−ド導体の合計厚みの超薄型合金型温度ヒュ−ズを提
供できる。しかしながら、比較例品ではヒュ−ズエレメ
ントの厚みがベ−スフィルム、カバ−フィルム及び帯状
リ−ド導体の各厚みにほぼ等しくなり、超薄型合金型温
度ヒュ−ズの提供は困難である。
As is apparent from Table 1, both the working example and the comparative example can be used as a temperature fuse having an operating temperature of 80 to 120 ° C. However, the thickness of the fuse element in the working example is significantly smaller than that in the comparative example. Yes, base film, cover
When the fuse element has a thickness of about 39 to 48 μm with respect to the preferred thickness of the film and the strip-shaped lead conductor of 100 μm, the total thickness of the base film, the cover film and the strip-shaped lead conductor substantially exceeds the total thickness. A thin alloy type temperature fuse can be provided. However, in the comparative example, the thickness of the fuse element is almost equal to the thickness of each of the base film, the cover film and the strip-shaped lead conductor, and it is difficult to provide an ultra-thin alloy type temperature fuse. .

【0033】[0033]

【発明の効果】本発明に係る温度ヒュ−ズは、作動温度
が80〜120℃の合金型温度ヒュ−ズにおいて、良好
な作動性を保証しつつヒュ−ズエレメントの小断面積化
による薄厚化を可能としたものであり、2次電池の昇温
防止用温度ヒュ−ズとしての超薄型・超小型合金型温度
ヒュ−ズを提供できる。
The temperature fuse according to the present invention has a small thickness by reducing the cross-sectional area of the fuse element while ensuring good operability in an alloy type temperature fuse having an operating temperature of 80 to 120 ° C. It is possible to provide an ultra-thin and ultra-compact alloy-type temperature fuse as a temperature fuse for preventing a temperature rise of a secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る温度ヒュ−ズの一例を示す図面で
ある。
FIG. 1 is a drawing showing an example of a temperature fuse according to the present invention.

【図2】本発明に係る温度ヒュ−ズの上記とは異な一例
を示す図面である。
FIG. 2 is a drawing showing a different example of the temperature fuse according to the present invention from the above.

【図3】本発明に係る温度ヒュ−ズの上記とは異な一例
を示す図面である。
FIG. 3 is a drawing showing another example of the temperature fuse according to the present invention.

【図4】本発明に係る温度ヒュ−ズの使用状態の一例を
示す図面である。
FIG. 4 is a view showing an example of a use state of the temperature fuse according to the present invention.

【図5】本発明に係る温度ヒュ−ズの上記とは異な一例
を示す図面である。
FIG. 5 is a drawing showing another example of the temperature fuse according to the present invention.

【図6】図5に示す温度ヒュ−ズに使用されるフレ−ム
を示す図面である。
FIG. 6 is a view showing a frame used for the temperature fuse shown in FIG. 5;

【符号の説明】[Explanation of symbols]

11 樹脂ベ−スフィルム 12 樹脂カバ−フィルム 2 帯状リ−ド導体 21 帯状リ−ド導体 3 ヒュ−ズエレメント 4 フラックス DESCRIPTION OF SYMBOLS 11 Resin base film 12 Resin cover film 2 Strip-shaped lead conductor 21 Strip-shaped lead conductor 3 Fuse element 4 Flux

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ヒュ−ズエレメントの合金組成をIn30
〜75重量%、Sn5〜50重量%、Cd0.5〜25
重量%としたことを特徴とする合金型温度ヒュ−ズ。
An alloy composition of a fuse element is In30.
~ 75 wt%, Sn5 ~ 50 wt%, Cd0.5 ~ 25
An alloy-type temperature fuse characterized in that the weight is%.
【請求項2】ヒュ−ズエレメントの合金組成をIn40
〜60重量%、Sn25〜50重量%、Cd10〜15
重量%としたことを特徴とする請求項1記載の合金型温
度ヒュ−ズ。
2. The alloy composition of the fuse element is In40.
-60% by weight, Sn 25-50% by weight, Cd10-15
2. The alloy-type temperature fuse according to claim 1, wherein the temperature is set to% by weight.
【請求項3】合金組成にAu、Ag、Cu、Alのうち
の1種または2種以上を合計0.1〜5重量%添加した
請求項1または2記載の合金型温度ヒュ−ズ。
3. The alloy type temperature fuse according to claim 1, wherein one or more of Au, Ag, Cu, and Al are added to the alloy composition in a total amount of 0.1 to 5% by weight.
【請求項4】ヒュ−ズエレメントの断面積が0.03〜
0.13mm2である請求項1〜3何れか記載の合金型
温度ヒュ−ズ。
4. The fuse element has a sectional area of 0.03 to 0.03.
0.13 mm 2 and a claims 1 to 3 or according alloy type thermal fuse -'s.
【請求項5】電池の昇温防止用に用いる請求項1〜4何
れか記載の合金型温度ヒュ−ズ。
5. The alloy type temperature fuse according to claim 1, which is used for preventing temperature rise of the battery.
JP10222280A 1998-07-15 1998-07-22 Alloy type thermal fuse Pending JP2000090792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10222280A JP2000090792A (en) 1998-07-15 1998-07-22 Alloy type thermal fuse

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-216437 1998-07-15
JP21643798 1998-07-15
JP10222280A JP2000090792A (en) 1998-07-15 1998-07-22 Alloy type thermal fuse

Publications (1)

Publication Number Publication Date
JP2000090792A true JP2000090792A (en) 2000-03-31

Family

ID=26521433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10222280A Pending JP2000090792A (en) 1998-07-15 1998-07-22 Alloy type thermal fuse

Country Status (1)

Country Link
JP (1) JP2000090792A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279878A (en) * 2001-01-15 2002-09-27 Matsushita Electric Ind Co Ltd Temperature fuse and manufacturing method
WO2004031426A1 (en) 2002-10-07 2004-04-15 Matsushita Electric Industrial Co., Ltd. Element for thermal fuse, thermal fuse and battery including the same
JP2007035280A (en) * 2005-07-22 2007-02-08 Uchihashi Estec Co Ltd Laser welding method of copper lead wire and fuse element
EP2306485A1 (en) * 2009-10-01 2011-04-06 Samsung SDI Co., Ltd. Current interrupting device and secondary battery including current interrupting device
CN105428722A (en) * 2015-12-11 2016-03-23 超威电源有限公司 High safety performance lithium ion battery and battery pack

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279878A (en) * 2001-01-15 2002-09-27 Matsushita Electric Ind Co Ltd Temperature fuse and manufacturing method
WO2004031426A1 (en) 2002-10-07 2004-04-15 Matsushita Electric Industrial Co., Ltd. Element for thermal fuse, thermal fuse and battery including the same
JP2007035280A (en) * 2005-07-22 2007-02-08 Uchihashi Estec Co Ltd Laser welding method of copper lead wire and fuse element
EP2306485A1 (en) * 2009-10-01 2011-04-06 Samsung SDI Co., Ltd. Current interrupting device and secondary battery including current interrupting device
CN102035186A (en) * 2009-10-01 2011-04-27 三星Sdi株式会社 Current interrupting device and secondary battery including current interrupting device
US8741453B2 (en) 2009-10-01 2014-06-03 Samsung Sdi Co., Ltd. Current interrupting device and secondary battery including current interrupting device
CN105428722A (en) * 2015-12-11 2016-03-23 超威电源有限公司 High safety performance lithium ion battery and battery pack

Similar Documents

Publication Publication Date Title
JP3692042B2 (en) Secondary battery with protection circuit
JPH11353996A (en) Thin thermal fuse and its manufacture
US20040085178A1 (en) Alloy type thermal fuse and wire member for a thermal fuse element
JP3470694B2 (en) Protection element
CN106463312B (en) Protection element and battery component
US7142088B2 (en) Alloy type thermal fuse and material for a thermal fuse element
CN101494134A (en) Protective element
JP3618635B2 (en) Battery protector
JP4341085B2 (en) Temperature fuse with resistor
EP1465224B1 (en) Thermal fuse having a function of a current fuse
US20040184947A1 (en) Alloy type thermal fuse and material for a thermal fuse element
JP2000090792A (en) Alloy type thermal fuse
JP4297431B2 (en) Alloy-type thermal fuse and protective device using the same
JP4269264B2 (en) Thin thermal fuse
JP7390825B2 (en) Protection element, battery pack
JP4097792B2 (en) Thin temperature fuse
JP4112297B2 (en) Thermo protector and method of manufacturing thermo protector
JP4209552B2 (en) Alloy type temperature fuse
JP3754795B2 (en) Temperature fuse mounting structure for secondary battery and temperature fuse with insulating spacer
JP4097791B2 (en) Thin temperature fuse
WO2023248787A1 (en) Protective element, and protective element manufacturing method
WO2024070418A1 (en) Protective element and method for manufacturing protective element
WO2022181652A1 (en) Protection element and battery pack
JPH1154005A (en) Current-temperature composite fuse, and secondary battery protecting element using it
TW202244969A (en) Protection element and battery pack