JP2004071552A - Thin thermal fuse - Google Patents

Thin thermal fuse Download PDF

Info

Publication number
JP2004071552A
JP2004071552A JP2003274265A JP2003274265A JP2004071552A JP 2004071552 A JP2004071552 A JP 2004071552A JP 2003274265 A JP2003274265 A JP 2003274265A JP 2003274265 A JP2003274265 A JP 2003274265A JP 2004071552 A JP2004071552 A JP 2004071552A
Authority
JP
Japan
Prior art keywords
lead conductor
fusible alloy
thermal fuse
resin film
alloy piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003274265A
Other languages
Japanese (ja)
Other versions
JP4269264B2 (en
Inventor
Takashi Okamoto
岡本 尚
Izumi Sakai
酒井 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2003274265A priority Critical patent/JP4269264B2/en
Publication of JP2004071552A publication Critical patent/JP2004071552A/en
Application granted granted Critical
Publication of JP4269264B2 publication Critical patent/JP4269264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin thermal fuse capable of fully increasing the flux coating thickness of a portion from a fusible alloy piece to a flat lead conductor tip; to enable a film type and a resin mold type thin thermal fuses to resolve well an unstable problem at a connecting portion between the alloy piece and the lead conductor due to a bending reaction force; and to ensure an even partitioning and forming in a spherical shape of the alloy piece to prompt a smooth action for a substrate type thin thermal fuse. <P>SOLUTION: Bending projecting parts 11 are provided at lead conductor parts between ends of a fusible alloy piece 2 and film sealing portions, where the projecting parts 11 are made to serve as weirs for coating of a flux 3. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は薄型温度ヒューズに関するものである。 The present invention relates to a thin thermal fuse.

 近来、携帯電話、ノート型パソコン等の携帯電子機器の二次電源として、リチウムイオン2次電池やリチウムポリマー二次電池等のエネルギー密度の大きい二次電池が使用されている。
 これらの二次電池においては、異常時に生じる発熱温度がその大なるエネルギー密度のために高温である。
 そこで、薄型温度ヒューズを装着し、その高温に達するまえに電池の通電回路を遮断して重大な事故に至るのを未然に防止することが知られている。
 例えば、図16に示す電池パックのように、二次電池を収納する扁平ケース8の側面に薄型温度ヒューズP’を装着し、温度ヒューズの作動で二次電池を負荷から遮断させ得るように所定の回路板81を介して二次電池に回路接続している。
 図16において、1’,1’は薄型温度ヒューズの扁平リード導体、82a,82bは電池パックの外部電極であり、リード導体と電極との間をスポット抵抗溶接等により接続してある。
 この薄型温度ヒューズとしては、フィルムタイプ、基板タイプ、樹脂モールドタイプ等が知られている。
 図17の(イ)は従来公知のフィルムタイプの一例を一部を断面で示す平面図、図17の(ロ)は図17の(イ)におけるロ−ロ断面図である。
 図17において、41’は下側樹脂フィルム、1’,1’は下側樹脂フィルム上に配設された一対の扁平リード導体、2’はリード導体1’,1’間に接続された可溶合金片、3’は可溶合金片上及び可溶合金片近傍のリード導体部分に塗布されたフラックスである。42’は上側樹脂フィルムであり、出っ張った被覆フラックス3’上に湾曲された状態で周囲が下側樹脂フィルム及41’び扁平リード導体1’に封着されている。
2. Description of the Related Art Recently, secondary batteries having a high energy density such as lithium ion secondary batteries and lithium polymer secondary batteries have been used as secondary power sources for portable electronic devices such as mobile phones and notebook computers.
In these secondary batteries, the temperature of heat generated at the time of abnormality is high due to its large energy density.
Therefore, it is known to mount a thin thermal fuse and cut off a current-carrying circuit of the battery before the high temperature is reached to prevent a serious accident from occurring.
For example, as in the battery pack shown in FIG. 16, a thin thermal fuse P ′ is mounted on the side of a flat case 8 for storing a secondary battery, and a predetermined temperature is set so that the secondary battery can be disconnected from the load by operating the thermal fuse. The circuit board 81 is connected to the secondary battery.
In FIG. 16, reference numerals 1 'and 1' denote flat lead conductors of a thin thermal fuse, and reference numerals 82a and 82b denote external electrodes of a battery pack. The lead conductors and the electrodes are connected by spot resistance welding or the like.
As the thin thermal fuse, a film type, a substrate type, a resin mold type and the like are known.
FIG. 17A is a plan view partially showing a cross section of an example of a conventionally known film type, and FIG. 17B is a roll cross-sectional view of FIG. 17A.
In FIG. 17, reference numeral 41 'denotes a lower resin film, 1' and 1 'denote a pair of flat lead conductors disposed on the lower resin film, and 2' denotes a pair connected between the lead conductors 1 'and 1'. The molten alloy pieces, 3 ', are fluxes applied on the fusible alloy pieces and on the lead conductor portions near the fusible alloy pieces. Reference numeral 42 'denotes an upper resin film, and its periphery is sealed to the lower resin film 41' and the flat lead conductor 1 'while being curved on the projecting coating flux 3'.

 図18の(イ)は従来公知のフィルムタイプの別例を一部を断面で示す平面図、図18の(ロ)は図18の(イ)におけるロ−ロ断面図である。
 図18において、41’は下側樹脂フィルム、1’,1’は一対の扁平リード導体であり、前記フィルム41’の下面に前半部が固着されると共に先端部101’が絞り出されて前記フィルムの上面に現出されている。2’はリード導体現出部101’,101’間に接続された可溶合金片、3’は可溶合金片2’及び導体現出部101’の可溶合金片端近傍部分に塗布されたフラックスである。42’は上側樹脂フィルムであり、出っ張った被覆フラックス3’上に湾曲された状態で周囲が下側樹脂フィルム41’及び扁平リード導体1’に封着されている。
FIG. 18A is a plan view partially showing another example of a conventionally known film type in a cross-sectional view, and FIG. 18B is a cross-sectional view of FIG.
In FIG. 18, reference numeral 41 'denotes a lower resin film, and reference numerals 1' and 1 'denote a pair of flat lead conductors. The front half is fixed to the lower surface of the film 41', and the front end 101 'is squeezed out. Appears on the top of the film. 2 'is a fusible alloy piece connected between the lead conductor exposed portions 101', 101 ', and 3' is applied to the fusible alloy piece 2 'and a portion of the conductor exposed portion 101' near the fusible alloy end. Flux. Reference numeral 42 'denotes an upper resin film whose periphery is sealed to the lower resin film 41' and the flat lead conductor 1 'while being curved on the projecting covering flux 3'.

 図19の(イ)は従来公知の樹脂モールドタイプを示す平面図、図19の(ロ)は図19の(イ)におけるロ−ロ断面図である。
 図19において、1’,1’は扁平リード導体、2’は扁平リード導体間に接続された可溶合金片、3’は可溶合金片及び可溶合金片端近傍のリード導体部分に塗布されたフラックスである。40’は樹脂モールド被覆であり、エポキシ樹脂等の硬化型樹脂液の浸漬塗装により設けられている。
FIG. 19A is a plan view showing a conventionally-known resin mold type, and FIG. 19B is a cross-sectional view taken along a line in FIG.
In FIG. 19, 1 'and 1' are flat lead conductors, 2 'is a fusible alloy piece connected between the flat lead conductors, and 3' is applied to the fusible alloy piece and a lead conductor portion near one end of the fusible alloy. Flux. Numeral 40 'denotes a resin mold coating, which is provided by dip coating of a curable resin liquid such as an epoxy resin.

 図20の(イ)は従来公知の基板タイプの一例を一部を断面で示す平面図、図20の(ロ)は図20の(イ)におけるロ−ロ断面図である。
 図20において、51’はセラミックス板のような絶縁基体、6’,6’は絶縁基体上に設けられた一対の電極、1’,1’は各電極6’,6’に接続された扁平リード導体、2’は電極6’,6’間に接続された可溶合金片、3’は可溶合金片及び可溶合金片端からリード導体先端部にわたり塗布されたフラックスである。52’はセラミックス板のようなカバープレート、7’はカバープレート52’の周囲を絶縁基体51’及び扁平リード導体1’に封着するための接着剤であり、出っ張った被覆フラックス3’上にカバープレート52’が載置され、そのプレート周囲にエポキシ樹脂等の二液型接着剤7’が塗着されている。
FIG. 20A is a plan view partially showing a cross section of an example of a conventionally known substrate type, and FIG. 20B is a cross-sectional view taken along the line B in FIG.
In FIG. 20, 51 'is an insulating base such as a ceramic plate, 6' and 6 'are a pair of electrodes provided on the insulating base, 1' and 1 'are flat connected to the electrodes 6' and 6 '. The lead conductor 2 'is a fusible alloy piece connected between the electrodes 6' and 6 ', and 3' is a fusible alloy piece and a flux applied from one end of the fusible alloy to the tip of the lead conductor. 52 'is a cover plate such as a ceramic plate, and 7' is an adhesive for sealing the periphery of the cover plate 52 'to the insulating base 51' and the flat lead conductor 1 '. A cover plate 52 'is placed, and a two-part adhesive 7' such as an epoxy resin is applied around the plate.

 上記温度ヒューズの作動機構は次ぎの通りである。
 上記二次電池の異常発熱に対し異常発熱温度よりも充分に低い温度で可溶合金片を溶断させ得るように可溶合金片2’の融点を設定してある。
 而して、可溶合金片が溶融されると、溶融合金が既溶融のフラックスとの共存下、電極やリード導体端部に濡れて引っ張られ、その濡れが球状化により拡大されて溶融合金の分断が促進され、その分断により通電が遮断されて前記電池の発熱が停止されると、分断溶融合金が凝固されて非復帰のカットオフが終結される。
 前記フラックスは、易酸化性の可溶合金片の酸化を防止すること、可溶合金片に不可避的に含有されている酸化物を加熱によるフラックスの活性化で溶解すること等により、可溶合金片を所定の融点で正確に溶融させると共に表面エネルギー面から溶融合金の前記電極やリード導体端部に対する濡れを促進させる作用を奏し、更に、溶融合金を球状化させる際の空間の確保に不可欠であり、電極やリード導体端部にも充分な量のフラックスを存在させることが必要である。
The operating mechanism of the thermal fuse is as follows.
The melting point of the fusible alloy piece 2 'is set so that the fusible alloy piece can be blown at a temperature sufficiently lower than the abnormal heat generation temperature with respect to the abnormal heat generation of the secondary battery.
Thus, when the fusible alloy piece is melted, the molten alloy is wetted and pulled to the electrode or the end of the lead conductor under the coexistence with the already-melted flux, and the wetting is enlarged by spheroidization to form the molten alloy. When the splitting is promoted and the split cuts off the current and stops the heat generation of the battery, the split molten alloy is solidified and the non-return cutoff is terminated.
The flux is intended to prevent oxidation of the easily oxidizable fusible alloy piece, and to dissolve the oxide unavoidably contained in the fusible alloy piece by activating the flux by heating. In addition to accurately melting the piece at a predetermined melting point, it has the effect of promoting the wetting of the molten alloy from the surface energy surface to the electrodes and the ends of the lead conductors, and is indispensable for securing a space when the molten alloy is spheroidized. Therefore, it is necessary to allow a sufficient amount of flux to exist also at the electrode and the end of the lead conductor.

 上記温度ヒューズのフラックスの塗布においては、通常、加熱溶融させた液状フラックスを所定の外郭で付着させ、図21の(イ)に示すように冷却凝固させている。この場合、塗布フラックスの縦断面形状を考察すると、図21の(ロ)に示すように、電極等の表面張力をr、凝固直前のフラックスの表面張力をr、同フラックスと電極等表面との間の界面張力をrmL、接触角をαとすると、 In the application of the flux of the thermal fuse, a liquid flux that is heated and melted is usually adhered at a predetermined outer shape, and is cooled and solidified as shown in FIG. In this case, when considering the longitudinal section of the coating flux, as shown in (b) of FIG. 21, the surface tension r m of the electrode or the like, the surface tension of the r L coagulation immediately preceding flux, the flux and the electrode such as surface Assuming that the interfacial tension between and is r mL and the contact angle is α,

 r=rcosα+rmL r m = r L cosα + r mL

の関係があり、接触端から中央に至るほど角度が次第に小さくなっていき、中央で角度0となり、中央から接触端までの距離xが大きくなるほど、中央の高さyが大となる。従って、前記フラックスをリード導体端部にまで被覆させるには、中央高さyを相当に高くする必要がある。 The angle gradually decreases from the contact end to the center, becomes 0 at the center, and the center height y increases as the distance x from the center to the contact end increases. Therefore, in order to cover the end of the lead conductor with the flux, it is necessary to considerably increase the center height y.

 上記フィルムタイプの薄型温度ヒューズでは、上側樹脂フィルムが出っ張った被覆フラックス上にかなり湾曲されて封着されるために、温度ヒューズボディが反り曲げられ、可溶合金片と扁平リード導体との接続箇所の損傷が問題となる。
 すなわち、出っ張り被覆フラックスに湾曲状態で当接された当初の上側樹脂フィルムの曲げ半径をr’、上側樹脂フィルムの曲げ剛性を(EI)’、上側樹脂フィルムを除く温度ヒューズボディ部分の曲げ剛性を(EI)とすれば、その温度ヒューズボディ部分に作用する曲げ反力mが
In the above film type thin thermal fuse, since the upper resin film is considerably curved and sealed on the projecting coating flux, the thermal fuse body is warped and bent, and the connection point between the fusible alloy piece and the flat lead conductor Damage is a problem.
That is, the bending radius of the initial upper resin film abutted on the projecting coating flux in a curved state is r ′, the bending rigidity of the upper resin film is (EI) ′, and the bending rigidity of the thermal fuse body portion excluding the upper resin film is r ′. (EI), the bending reaction force m acting on the thermal fuse body is

 m=1/{r’〔1+(EI)’/(EI)〕} {M = 1 / {r "[1+ (EI) '/ (EI)]}

で与えられ、この曲げ反力mがリード導体の大なる曲げ剛性のために大となり、扁平リード導体と可溶合金片との接続界面にそれだけ大きな剥離力が作用し、接続界面の安全性が阻害される。 The bending reaction force m becomes large due to the large bending rigidity of the lead conductor, and a large peeling force acts on the connection interface between the flat lead conductor and the fusible alloy piece, thereby reducing the safety of the connection interface. Be inhibited.

 上記樹脂モールドタイプの薄型温度ヒューズでは、可溶合金片の上面側にフラックスが多量に塗布されているために、曲げ中立面が扁平リード導体の厚み中心面より外れることが避けられず、樹脂とリード導体との線膨張係数や断面積やヤング率の差に基づき温度変化のために温度ヒューズボディが曲げ変形されるが、曲げ剛性の大なるリード導体に作用する曲げ反力が大きくなり、この場合も、扁平リード導体と可溶合金片との接続界面に剥離力が作用し、接続界面の安全性が阻害される。 In the above-mentioned resin molded thin thermal fuse, since a large amount of flux is applied to the upper surface side of the fusible alloy piece, it is inevitable that the bending neutral surface will deviate from the thickness center surface of the flat lead conductor, The temperature fuse body is bent and deformed due to the temperature change based on the difference in linear expansion coefficient, cross-sectional area and Young's modulus between the lead conductor and the lead conductor, but the bending reaction force acting on the lead conductor having high bending rigidity increases, Also in this case, a peeling force acts on the connection interface between the flat lead conductor and the fusible alloy piece, and the safety of the connection interface is impaired.

 これらのフィルムタイプ薄型温度ヒューズや樹脂モールドタイプ薄型温度ヒューズに対し、基板型薄型温度ヒューズでは、全体の曲げ剛性(EI)が大であるために、例え曲げモーメント(M)が作用しても、その曲げの曲率半径(r=EI/M)を充分に大きく保持でき、実質的に曲げ変形を排除でき、前記した可溶合金片−リード導体間接続箇所の不安定化を回避できる。
 しかしながら、温度ヒューズのフラックス塗布では、冷却凝固後のフラックスの立体形状が背の高いドーム状曲面になるため、図22の(イ)に示すように、かかるドーム状曲面の被覆フラックス3’上にカバープレート52’を載置する以上、曲面と平面との接触のためにカバープレート52’の支持状態が不安定性が避けられず、カバープレート52’が長軸中心線に対し振れてバランスを崩し傾動を免れ得ない。而して、可溶合金片の前記した分断球状化が図22の(ロ)に示すように、可溶合金片が両側に分断球状化する際の分断溶融合金23a’、23b’に対するフラックス量に異同を来し、フラックス量の少ない側の溶融合金の球状化が他側の溶融合金の球状化よりも鈍化されれて分断作動に遅れが生じるようになる。この際、前記絶縁カバープレート52’の傾き角が製品ごとに異なるために分断作動のバラツキが惹起される。
In contrast to these film-type thin thermal fuses and resin-mold-type thin thermal fuses, the substrate-type thin thermal fuse has a large overall bending stiffness (EI). Therefore, even if the bending moment (M) acts, The bending radius of curvature (r = EI / M) can be kept sufficiently large, bending deformation can be substantially eliminated, and instability of the above-mentioned connection point between the fusible alloy piece and the lead conductor can be avoided.
However, when the flux of the thermal fuse is applied, the three-dimensional shape of the flux after cooling and solidification becomes a tall dome-shaped curved surface. Therefore, as shown in FIG. As long as the cover plate 52 'is placed, the support state of the cover plate 52' is unavoidably unstable due to the contact between the curved surface and the flat surface, and the cover plate 52 'swings with respect to the long axis center line to break the balance. I can't escape tilting. Thus, as shown in FIG. 22 (b), the above-mentioned spheroidizing of the fusible alloy piece causes the flux amount for the divided molten alloys 23a ′ and 23b ′ when the fusible alloy piece divides and spheroidizes on both sides. In this case, the spheroidization of the molten alloy on the side with a smaller amount of flux is slowed down more than the spheroidization of the molten alloy on the other side, resulting in a delay in the cutting operation. At this time, since the inclination angle of the insulating cover plate 52 'is different for each product, variation in the dividing operation is caused.

 上記した通り、温度ヒューズにおける電極乃至はリード導体端部にも充分な量のフラックスを存在させることが必要である。
従来、可溶合金片端近傍の扁平リード導体部分をポンチにより突出させ、この突出部を塗布フラックスに対する堰として用い、可溶合金片端近傍のリード導体部分のフラックス被覆厚みを厚くすることが公知である(特許文献1参照)。
As described above, it is necessary that a sufficient amount of flux be present at the electrode or the end of the lead conductor in the thermal fuse.
Conventionally, it has been known that a flat lead conductor portion near one end of a fusible alloy is protruded by a punch, and this protrusion is used as a weir for a coating flux to increase the flux coating thickness of the lead conductor portion near one end of the fusible alloy. (See Patent Document 1).

特開2001−52582号JP-A-2001-52582

 しかしながら、ポンチ加工では亀裂防止のために扁平リード導体の厚みをある程度厚くする必要があり、これでは扁平リード導体の曲げ剛性を低くし難く、前記したフィルムタイプや樹脂モールドタイプでの曲げ反力に基づく可溶合金片−リード導体間接続箇所の不安定化回避に適合しない。
 また、ポンチ加工では突出巾が扁平リード導体巾に較べて狭く、しかも突出外面の角にアールが付き易く、而して、前記基板タイプでのカバープレートの支持状態の不安定性を解消し難いために、カバープレートの傾き固定に起因する前記した分断作動性の低下の問題も解決できない。
However, in punching, it is necessary to increase the thickness of the flat lead conductor to some extent in order to prevent cracking, which makes it difficult to lower the bending rigidity of the flat lead conductor, and reduces the bending reaction force of the film type and resin mold type described above. It is not suitable for avoiding instability of the connection point between the fusible alloy piece and the lead conductor.
In addition, in the punching process, the protrusion width is narrower than the flat lead conductor width, and furthermore, it is easy to have a radius at the corner of the protrusion outer surface, and therefore, it is difficult to eliminate the instability of the support state of the cover plate in the substrate type. In addition, the above-described problem of the decrease in the cutting operability due to the fixed inclination of the cover plate cannot be solved.

 本発明の目的は、薄型温度ヒューズにおいて、可溶合金片端から扁平リード導体先端部に至る部分のフラックス被覆厚みを充分に厚くし得ると共にフィルムタイプや樹脂モールドタイプ薄型温度ヒューズに対しては、曲げ反力に基づく可溶合金片−リード導体間接続箇所の不安定化問題を良好に解決でき、基板タイプ薄型温度ヒューズに対しては、可溶合金片の一様な分断球状化を保証して円滑な作動を図ることにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a thin type thermal fuse in which a flux covering thickness from one end of a fusible alloy to a tip of a flat lead conductor can be sufficiently increased and a thin type thermal fuse of a film type or a resin mold type is bent. It can solve the problem of instability of the connection point between the fusible alloy piece and the lead conductor based on the reaction force well, and for the board type thin thermal fuse, guarantee the uniform spheroidization of the fusible alloy piece evenly. The point is to ensure smooth operation.

 請求項1に係る薄型温度ヒューズは、可溶合金片の厚み中心が扁平リード導体の厚み中心よりも上側に位置された状態で扁平リード導体間に可溶合金片が接続され、可溶合金片及びその近傍のリード導体部分にフラックスが付着され、これらが下側樹脂フィルムと上側樹脂フィルムとにより前記リード導体を気密に導出して封止され、上側樹脂フィルムがその内面側の出っ張り内容物上に湾曲されてなる温度ヒューズにおいて、可溶合金片端とフィルム封止箇所との間のリード導体部分に折り曲げ凸部が設けられ、この凸部が前記フラックスの塗布に対する堰とされていることを特徴とする。 The thin thermal fuse according to claim 1, wherein the fusible alloy piece is connected between the flat lead conductors in a state where the thickness center of the fusible alloy piece is positioned above the thickness center of the flat lead conductor. And flux is adhered to the lead conductor portion in the vicinity thereof, and these are air-tightly led out of the lead conductor by the lower resin film and the upper resin film and sealed, and the upper resin film is formed on the protruding contents on the inner surface thereof. In the thermal fuse formed by bending, a bent convex portion is provided on a lead conductor portion between one end of a fusible alloy and a film sealing portion, and the convex portion serves as a weir for application of the flux. And

 請求項2に係る薄型温度ヒューズは、下側樹脂フィルムの下面に一対の扁平リード導体端部が固着されると共に各リード導体の先端から所定の距離を隔てた部分が膨出加工されて前記フィルムの上面に現出され、その現出部間に可溶合金片が接続され、前記の可溶合金片及前記表出部のび可溶合金片端近傍部分にフラックスが付着され、上側樹脂フィルムが前記下側樹脂フィルムの周囲に封着されると共に上側樹脂フィルムがその内面側の出っ張り内容物上で湾曲されてなる温度ヒューズにおいて、前記リード導体現出部の可溶合金片端近傍部分に凸部が設けられ、この凸部が前記フラックス塗布に対する堰とされていることを特徴とする。 3. The thin thermal fuse according to claim 2, wherein a pair of flat lead conductor ends are fixed to the lower surface of the lower resin film, and a portion separated from the tip of each lead conductor by a predetermined distance is swelled. A fusible alloy piece is connected between the exposed portions, and a flux is attached to the fusible alloy piece and the exposed portion near the end of the fusible alloy piece, and the upper resin film is In the thermal fuse, which is sealed around the lower resin film and the upper resin film is curved on the protruding contents on the inner surface side, the convex portion is formed in the vicinity of one end of the fusible alloy at the lead conductor exposed portion. The convex portion is provided as a weir for the flux application.

 請求項3に係る薄型温度ヒューズは、下側樹脂フィルムの下面に一対の扁平リード導体端部が固着されると共に各リード導体の先端から所定の距離を隔てた部分が所定の巾をもって前記フィルム上面にほぼ面一上面のランド部とこのランド部後方端側の折り曲げ凸部とに曲げ加工されて前記フィルム上面に現出され、その現出されたランド部間に可溶合金片が接続され、前記の可溶合金片及前記ランド部のほぼ全面にフラックスが前記折り曲げ凸部を堰としてフラックスが付着され、上側樹脂フィルムが前記下側樹脂フィルムの周囲に封着されると共に上側樹脂フィルムがその内面側の出っ張り内容物上に湾曲され、下側樹脂フィルムの下面に補助樹脂フィルムが貼着されていることを特徴とする。 4. The thin thermal fuse according to claim 3, wherein a pair of flat lead conductor ends are fixed to a lower surface of the lower resin film, and a portion separated by a predetermined distance from a tip of each lead conductor has a predetermined width and has a predetermined width. It is bent into a land portion on the substantially flat upper surface and a bent convex portion on the rear end side of the land portion and is exposed on the film upper surface, and a fusible alloy piece is connected between the exposed land portions, Flux is applied to almost the entire surface of the fusible alloy piece and the land portion with the bent convex portion as a weir, and the upper resin film is sealed around the lower resin film while the upper resin film is It is characterized by being curved on the protruding contents on the inner surface side, and an auxiliary resin film is adhered to the lower surface of the lower resin film.

 請求項4では、請求項1〜3何れかの薄型温度ヒューズにおいて、上側樹脂フィルムが下側樹脂フィルムよりも薄くされている。 According to claim 4, in the thin thermal fuse according to any one of claims 1 to 3, the upper resin film is thinner than the lower resin film.

 請求項5に係る薄型温度ヒューズは、扁平リード導体間に可溶合金片が接続され、可溶合金片及び可溶合金片から所定の距離を隔てたリード導体箇所までフラックスが付着され、これらを包囲して樹脂層が被覆された温度ヒューズにおいて、可溶合金片端から所定の距離を隔てたリード導体部分に折り曲げ凸部が設けられ、この凸部が前記フラックスの塗布に対する堰とされていることを特徴とする。 In the thin thermal fuse according to claim 5, a fusible alloy piece is connected between the flat lead conductors, and a flux is adhered to the fusible alloy piece and a lead conductor portion at a predetermined distance from the fusible alloy piece. In the thermal fuse in which the resin layer is surrounded and surrounded, a bent convex portion is provided on a lead conductor portion at a predetermined distance from one end of the fusible alloy, and the convex portion serves as a weir for the application of the flux. It is characterized by.

 請求項6では、請求項1〜5何れかの薄型温度ヒューズにおいて、折り曲げ凸部の両脇上端にアールが付されている。 According to claim 6, in the thin thermal fuse according to any one of claims 1 to 5, a rounded upper end on both sides of the bent convex portion is provided.

 請求項7に係る薄型温度ヒューズは、絶縁基体上に一対の電極が設けられ、各電極に扁平リード導体が接続され、これら電極間に可溶合金片が接続され、可溶合金片及び可溶合金片端から扁平リード導体先端部にわたりフラックスが付着され、前記絶縁基体上に水密絶縁被覆体が設けられた温度ヒューズにおいて、扁平リード導体の先端または可溶合金片から所定の距離を隔てた扁平リード導体部分に折り曲げ凸部が設けられ、この凸部が前記フラックスの塗布に対する堰とされていることを特徴とする。 The thin thermal fuse according to claim 7, wherein a pair of electrodes are provided on the insulating base, a flat lead conductor is connected to each electrode, and a fusible alloy piece is connected between these electrodes. In a temperature fuse in which a flux is applied from one end of the alloy to the tip of the flat lead conductor and a watertight insulating coating is provided on the insulating base, the flat lead is separated from the tip of the flat lead conductor or the fusible alloy piece by a predetermined distance. A bent projection is provided on the conductor portion, and the projection serves as a weir for the application of the flux.

 請求項9に係る薄型温度ヒューズは、絶縁基体上に一対の扁平リード導体が設けられ、これら扁平リード導体間に可溶合金片が接続され、可溶合金片及び可溶合金片端から扁平リード導体先端部にわたりフラックスが付着され、前記絶縁基体上に水密絶縁被覆体が設けられた温度ヒューズにおいて、扁平リード導体の先端または可溶合金片端から所定の距離を隔てたリード導体部分に折り曲げ凸部が設けられ、この凸部が前記フラックスの塗布に対する堰とされていることを特徴とする。 The thin thermal fuse according to claim 9, wherein a pair of flat lead conductors is provided on the insulating base, a fusible alloy piece is connected between the flat lead conductors, and the fusible alloy piece and the flat lead conductor from one end of the fusible alloy. In the thermal fuse in which the flux is attached over the tip portion and the water-tight insulating cover is provided on the insulating base, a bent convex portion is formed on the lead conductor portion at a predetermined distance from the tip of the flat lead conductor or one end of the fusible alloy. The convex portion is provided as a weir for the application of the flux.

 請求項8では、請求項7の薄型温度ヒューズにおいて、可溶合金片端が扁平リード導体にも接続されており、請求項10では、請求項7〜9何れかの薄型温度ヒューズにおいて、水密絶縁被覆体が両扁平リード導体先端の折り曲げ凸部に当接されたカバープレートと、該カバープレート周囲を絶縁基体に封着した接着剤により構成されている。 According to claim 8, in the thin thermal fuse of claim 7, one end of the fusible alloy is also connected to the flat lead conductor, and according to claim 10, in the thin thermal fuse of any of claims 7 to 9, the watertight insulating coating is provided. The body is composed of a cover plate in contact with the bent projections at the tips of the two flat lead conductors, and an adhesive sealing around the cover plate to an insulating base.

 請求項11に係る薄型温度ヒューズは、可溶合金片の厚み中心が扁平リード導体の厚み中心よりも上側に位置された状態で扁平リード導体間に可溶合金片が接続され、可溶合金片及びその近傍のリード導体部分にフラックスが付着され、これらが下側樹脂フィルムと上側樹脂フィルムとにより前記リード導体を気密に導出して封止され、上側樹脂フィルムがその内面側の出っ張り内容物上で湾曲されてなる温度ヒューズにおいて、扁平リード導体の先端に折り曲げ凸部が設けられ、この凸部前面に可溶合金片端が接続され、同凸部が前記フラックスの塗布に対する堰とされていることを特徴とする。 The thin thermal fuse according to claim 11, wherein the fusible alloy piece is connected between the flat lead conductors in a state where the thickness center of the fusible alloy piece is positioned above the thickness center of the flat lead conductor. And flux is adhered to the lead conductor portion in the vicinity thereof, and these are air-tightly led out of the lead conductor by the lower resin film and the upper resin film and sealed, and the upper resin film is formed on the protruding contents on the inner surface thereof. In the thermal fuse formed by bending, a bent convex portion is provided at the tip of the flat lead conductor, one end of a fusible alloy is connected to the front surface of the convex portion, and the convex portion serves as a weir for the application of the flux. It is characterized by.

 請求項12では、請求項7〜11何れかの薄型温度ヒューズにおいて、凸部の両脇上端にアールが付されており、請求項13では請求項11または12の薄型温度ヒューズにおいて、上側樹脂フィルムが下側樹脂フィルムよりも薄くされており、請求項14では、請求項1〜13何れかの薄型温度ヒューズにおいて、温度ヒューズボディ内のリード導体部分の巾が可溶合金片の巾より広くされ、請求項15では、請求項14の薄型温度ヒューズにおいて、温度ヒューズボディ内のリード導体部分が圧延により形成されている。 According to a twelfth aspect, in the thin thermal fuse according to any one of the seventh to eleventh aspects, a radius is attached to both upper ends on both sides of the convex portion. Is thinner than the lower resin film. In the fourteenth aspect, in the thin thermal fuse according to any one of the first to thirteenth aspects, the width of the lead conductor portion in the thermal fuse body is wider than the width of the fusible alloy piece. According to a fifteenth aspect, in the thin thermal fuse of the fourteenth aspect, the lead conductor portion in the thermal fuse body is formed by rolling.

 請求項16では、請求項1〜15何れかの薄型温度ヒューズにおいて、リード導体がNi製とされ、少なくとも先端部にSn,Cu,Ag,Auの何れか、またはこれらを主成分とする合金が被覆されており、請求項17では、請求項1〜16何れかの薄型温度ヒューズにおいて、可溶合金片を溶断させるための発熱体が付設されている。 According to a sixteenth aspect, in the thin thermal fuse according to any one of the first to fifteenth aspects, the lead conductor is made of Ni, and at least the tip portion is made of one of Sn, Cu, Ag, and Au, or an alloy containing these as a main component. In the thin thermal fuse according to any one of the first to sixteenth aspects, the heating element for blowing the fusible alloy piece is provided.

請求項18では、請求項1〜17何れかの薄型温度ヒューズにおいて、可溶合金片にIn−Sn−Bi系合金、Bi−Sn−Sb系合金、In−Sn系合金、In−Bi系合金、Bi−Sn系合金、In系合金の何れかであり、In−Sn−Bi系合金の組成が(1)43%<Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%<Sn≦44%,55%<In≦74%,1%≦Bi<20%、(4)46%<Sn≦70%,18%≦In<48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In<37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%<Sn≦60%,20%≦In<50%,12%<Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、Bi−Sn−Sb系合金の組成が(16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、In−Sn系合金の組成が(18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、In−Bi系合金の組成が(20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、Bi−Sn系合金の組成が(22)50%<Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、In系合金の組成が(24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加の何れかを使用している。 According to Claim 18, in the thin thermal fuse according to any one of Claims 1 to 17, the fusible alloy piece has an In-Sn-Bi-based alloy, a Bi-Sn-Sb-based alloy, an In-Sn-based alloy, or an In-Bi-based alloy. , Bi-Sn-based alloy or In-based alloy, wherein the composition of the In-Sn-Bi-based alloy is (1) 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, the remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55%, remaining Bi, (3) 25% <Sn ≦ 44%, 55% <In ≦ 74%, 1% ≦ Bi <20%, ( 4) 46% <Sn ≦ 70%, 18% ≦ In <48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In <37%, remaining Bi (however, Bi 57.5%, In 25.2%, Sn 17.3%, Bi 54%, In 29.7%, Sn 16.3% (6%) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, residual Bi, (7) 25% <Sn ≦ 60%, 20% ≦ In <50%, 12% <Bi ≦ 33%, (8) Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in 100 parts by weight of any of (1) to (7) (7) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, residual Bi, (10) 47% ≦ Sn ≦ Add 3 to 5 parts by weight of Bi to 100 parts by weight of 49%, 51% ≦ In ≦ 53%, (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12%, remaining In, (12) 0.3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, (13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35%, remaining In, (14) (9 (1) Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P or a total of 0.01 to 7 parts by weight were added to 100 parts by weight of any of (13) to (15). ) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, 100% by weight of remaining Bi, one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P 0.01 to 7 parts by weight in total, and the composition of the Bi-Sn-Sb-based alloy is (16) 30% ≦ Sn ≦ 70%, 0.3% ≦ Sb ≦ 20%, the remaining Bi, (17) (16) ), 100 or more parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P, or a total of 0.01 to 7 parts by weight are added, and the composition of the In-Sn alloy is ( 18) 52% ≦ In ≦ 85%, residual Sn, (19) Ag, Au, Cu, Ni, Pd in 100 parts by weight of (18) One or more of Pt, Sb, Ga, Ge, and P are added in a total amount of 0.01 to 7 parts by weight, and the composition of the In-Bi alloy is (20) 45% ≦ Bi ≦ 55%, the remaining In, ( 21) One or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge and P are added to 100 parts by weight of the composition of (20) in a total amount of 0.01 to 7 parts by weight, Bi The composition of the Sn-based alloy is (22) 50% <Bi ≦ 56%, the remaining Sn, (23) 100 parts by weight of (22) are Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P One or two or more kinds are added in a total of 0.01 to 7 parts by weight, and the composition of the In-based alloy is (24) 100 parts by weight of In, Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P. One or two or more kinds are added in a total amount of 0.01 to 7 parts by weight, (25) 90% ≦ In ≦ 99.9%, 0.1% ≦ One or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge and P are added to 100 parts by weight of Ag ≦ 10% in a total amount of 0.01 to 7 parts by weight, (26) 95% One or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P are added to 100 parts by weight of ≦ In ≦ 99.9% and 0.1% ≦ Sb ≦ 5% in a total amount of 0.1%. Any one of the additions of 01 to 7 parts by weight is used.

 請求項19では上記請求項1〜16の何れかまたは18の薄型温度ヒューズを電流ヒューズとして使用している。 In claim 19, the thin thermal fuse according to any one of claims 1 to 16 or 18 is used as a current fuse.

 本発明に係る温度ヒューズでは、リード導体の先端部に設けた折り曲げ凸部またはリード導体先端に設けた折り曲げ凸部を堰とし可溶合金片端近傍にもフラックスを充分な厚みで付着させることができるから、溶融合金の両側への分断球状化を迅速に生じさせ得、迅速な作動を保証できる。
 この場合、リード導体を薄くしても前記の堰を良好に設けることができ、特に、フィルムタイプ薄型温度ヒューズに対しては、上側樹脂フィルムの湾曲封着に基づき発生する曲げ反力のリード導体負担分をリード導体の薄肉化・曲げ剛性の低減により軽減できるので、リード導体と可溶合金片との接合界面を安定に保持でき、安定な作動性を保証できる。
 また、樹脂モールドタイプ薄型温度ヒューズに対しては、ヒートサイクルに基づき発生する曲げモーメントのリード導体作用分をリード導体の薄肉化・曲げ剛性の低減により軽減できるので、リード導体と可溶合金片との接合界面を安定に保持でき、安定な作動性を保証できる。
 更にまた、絶縁カバープレートを使用する薄型温度ヒューズに対しては、リード導体の先端部に設けた折り曲げ凸部またはリード導体先端に設けた折り曲げ凸部により絶縁カバープレートを安定に支持でき、絶縁基体に対し絶縁カバープレートの傾きのない平行な保持を保証でき、溶融された可溶合金片の分断球状化に対する両側の空間スペースを同等に確保でき、分断球状化のバラツキをよく低減できるから、分断作動性を充分に向上できる。
In the thermal fuse according to the present invention, the bent protrusion provided at the leading end of the lead conductor or the bent protrusion provided at the leading end of the lead conductor is used as a weir to allow the flux to adhere to the vicinity of one end of the fusible alloy with a sufficient thickness. Therefore, the split spheroidization of the molten alloy on both sides can be quickly caused, and quick operation can be guaranteed.
In this case, the weir can be favorably provided even if the lead conductor is made thin. Particularly, for a film type thin thermal fuse, the lead conductor of bending reaction force generated due to the curved sealing of the upper resin film. Since the burden can be reduced by reducing the thickness of the lead conductor and reducing the bending rigidity, the bonding interface between the lead conductor and the fusible alloy piece can be stably maintained, and stable operability can be guaranteed.
In addition, for resin molded thin thermal fuses, the action of the lead conductor of the bending moment generated due to the heat cycle can be reduced by thinning the lead conductor and reducing the bending rigidity. Can be stably maintained, and stable operability can be guaranteed.
Still further, for a thin thermal fuse using an insulating cover plate, the insulating cover plate can be stably supported by the bent protrusion provided at the tip of the lead conductor or the bent protrusion provided at the tip of the lead conductor. In contrast, it is possible to guarantee the parallel holding of the insulating cover plate without tilting, to secure the same space on both sides for the spheroidization of the molten fusible alloy piece, and to reduce the variation in the spheroidization. Operability can be sufficiently improved.

 以下、図面を参照しつつ本発明の実施の形態について説明する。
 図1の(イ)は本発明に係る薄型温度ヒューズの一実施例の一部を断面で示す平面図、図1の(ロ)は図1の(イ)におけるローロ断面図である。
 図1において、1,1は一対の扁平リード導体であり、先端から所定の距離を隔てた箇所に折り曲げにより凸部11を設けてある。2は両扁平リード導体1,1の先端部の上面間に溶接等により接合した可溶合金片であり、溶接にはスポット抵抗溶接、レーザ溶接等を使用できる。3はフラックスであり、可溶合金片2及び可溶合金片端からリード導体の折り曲げ凸部11に至る部分に付着してあり、凸部11をフラックスの塗布に対する堰として使用し可溶合金片12からリード導体の折り曲げ凸部11に至る部分のフラックス被覆厚みを充分に厚くしてある。41は下側樹脂フィルム、42は上側樹脂フィルムであり、前記両扁平リード導体1,1の前半部と可溶合金片2とをこれらの樹脂フィルム41,42で挾み、上側樹脂フィルム42を出っ張った被覆フラックス3上で湾曲させた状態で周囲部を水平保持の下側樹脂フィルム41に封着してある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1A is a plan view showing a cross section of a part of one embodiment of the thin thermal fuse according to the present invention, and FIG. 1B is a cross-sectional view taken along the line R in FIG.
In FIG. 1, reference numerals 1 and 1 denote a pair of flat lead conductors, each of which is provided with a convex portion 11 at a position separated by a predetermined distance from the tip. Numeral 2 is a fusible alloy piece joined by welding or the like between the upper surfaces of the tip portions of the flat lead conductors 1 and 1, and spot welding, laser welding or the like can be used for welding. Numeral 3 denotes a flux, which is adhered to the fusible alloy piece 2 and a portion extending from one end of the fusible alloy to the bent convex portion 11 of the lead conductor. The convex portion 11 is used as a weir for flux application, and the fusible alloy piece 12 is used. The thickness of the flux coating from the portion of the lead conductor to the bent projection 11 of the lead conductor is made sufficiently thick. Reference numeral 41 denotes a lower resin film, and reference numeral 42 denotes an upper resin film. The front half of the flat lead conductors 1, 1 and the fusible alloy piece 2 are sandwiched between these resin films 41, 42, and the upper resin film 42 is formed. The periphery is sealed to the lower resin film 41 which is horizontally held while being curved on the projecting coating flux 3.

 図2の(イ)は本発明に係る薄型温度ヒューズの上記とは別の実施例の一部を断面で示す平面図、図2の(ロ)は図2の(イ)におけるローロ断面図である。
 図2において、41は下側樹脂フィルムである。1,1は一対の扁平リード導体であり、前半部を下側樹脂フィルム41の下面に固着すると共にリード導体先端から所定の距離を隔てた位置において上面が下側樹脂フィルム面にほぼ面一の凸部101に、この凸部101の後端部を凸部11に一挙に膨出加工して下側樹脂フィルム41の上面側に現出させ、下側樹脂フィルム41と扁平リード導体1との全界面を融着や接着剤により接合してある。2は可溶合金片であり、リード導体現出部のうちの下側樹脂フィルム上面と実質的に面一の部分101に溶接、例えばスポット抵抗溶接、レーザ溶接等により接続してある。3はフラックスであり、可溶合金片2及び可溶合金片からリード導体の凸部11に至る部分に付着してあり、凸部11をフラックスの堰として使用し、可溶合金片2からリード導体の凸部11に至る部分のフラックス被覆厚みを充分に厚くしてある。42は上側樹脂フィルムであり、出っ張った被覆フラックス2上に湾曲させた状態で周囲部を水平保持の下側樹脂フィルム41に封着してある。
FIG. 2A is a plan view showing a cross section of a part of another embodiment of the thin thermal fuse according to the present invention, and FIG. 2B is a cross-sectional view taken along a roll line in FIG. is there.
In FIG. 2, reference numeral 41 denotes a lower resin film. Reference numerals 1 and 1 denote a pair of flat lead conductors whose first half is fixed to the lower surface of the lower resin film 41 and whose upper surface is substantially flush with the lower resin film surface at a position separated by a predetermined distance from the lead conductor tip. The rear end portion of the convex portion 101 is bulged at once to the convex portion 11 so as to appear on the upper surface side of the lower resin film 41, so that the lower resin film 41 and the flat lead conductor 1 All interfaces are joined by fusion or adhesive. Reference numeral 2 denotes a fusible alloy piece, which is connected to a portion 101 of the lead conductor exposed portion substantially flush with the upper surface of the lower resin film by welding, for example, spot resistance welding, laser welding, or the like. Numeral 3 denotes a flux, which is attached to the fusible alloy piece 2 and to the portion from the fusible alloy piece to the convex portion 11 of the lead conductor. The flux coating thickness of the portion reaching the convex portion 11 of the conductor is made sufficiently thick. Reference numeral 42 denotes an upper resin film, the periphery of which is curved on the projecting coating flux 2 and the periphery of which is sealed to the lower resin film 41 which is horizontally held.

 図2に示した実施例では、リード導体1の下側樹脂フィルム上面への部分的な現出を膨出加工ににより行い、その現出箇所の両サイドを不加工としているが、図3の(イ)(平面図)及び(ロ)〔図3の(イ)におけるロ−ロ断面図〕に示すように、リード導体先端の近傍位置から所定の距離を隔てた位置までを上面が下側樹脂フィルム41の上面とほぼ面一のランド部101aに、この後方側を凸部11aに一挙に膨出加工し、水密性確保のために下側樹脂フィルム41の裏面に補助樹脂フィルム43を融着や接着剤により貼着することもできる。あるいは、図4の(イ)(平面図)及び(ロ)〔図4の(イ)におけるロ−ロ断面図〕に示すように、リード導体先端から所定の距離を隔てた位置までを上面が下側樹脂フィルム41の上面とほぼ面一のリード導体全巾にわたるランド部101bに、この後方側をリード導体全巾にわたる折り曲げ凸部11bに一挙に曲げ加工し、水密性確保のために下側樹脂フィルム41の裏面に補助樹脂フィルム43を融着や接着剤により貼着することもできる。 In the embodiment shown in FIG. 2, a part of the lead conductor 1 on the upper surface of the lower resin film is exposed by swelling, and both sides of the exposed part are left unprocessed. (B) As shown in (b) (plan view) and (b) [cross-sectional view taken along the roll in (a) of FIG. 3], the upper surface is located at a predetermined distance from the position near the tip of the lead conductor. The land portion 101a, which is substantially flush with the upper surface of the resin film 41, is bulged at a time to form a convex portion 11a on the rear side, and the auxiliary resin film 43 is fused on the back surface of the lower resin film 41 to ensure watertightness. It can also be adhered by wearing or an adhesive. Alternatively, as shown in (a) (a plan view) and (b) (a cross-sectional view taken along a roll in (a) of FIG. 4) of FIG. 4, the upper surface extends up to a position at a predetermined distance from the tip of the lead conductor. The land portion 101b, which is substantially flush with the upper surface of the lower resin film 41, is bent all at once to form a bent projection 11b, which extends over the entire width of the lead conductor. An auxiliary resin film 43 can be attached to the back surface of the resin film 41 by fusion or an adhesive.

 この補助樹脂フィルム43は、図2における補助樹脂フィルムが存在しない場合のリード導体先端間の絶縁強度の不足を補完する効果も奏する。 補助 The auxiliary resin film 43 also has an effect of complementing the lack of insulation strength between the lead conductor tips when the auxiliary resin film in FIG. 2 does not exist.

 図1〜図4に示したフィルムタイプの薄型温度ヒューズにおいては、可溶合金片2の厚み中心が扁平リード導体1の厚み中心よりも上側に位置された状態で扁平リード導体1,1間に可溶合金片2が接続され、可溶合金片及びその近傍のリード導体部分にフラックス3が付着され、上側樹脂フィルム42がその内面側の出っ張り内容物上で湾曲されるから、反りが発生する。この場合、出っ張り被覆フラックスに湾曲状態で当接された当初の上側樹脂フィルム42の曲げ半径をr’、上側樹脂フィルム42の曲げ剛性を(EI)’、上側樹脂フィルムを除く温度ヒューズボディ部分の曲げ剛性を(EI)とすれば、その温度ヒューズボディ部分に作用する曲げ反力mは、前記したとおり In the film type thin thermal fuse shown in FIGS. 1 to 4, the thickness center of the fusible alloy piece 2 is located above the thickness center of the flat lead conductor 1 and between the flat lead conductors 1 and 1. Since the fusible alloy piece 2 is connected, the flux 3 is attached to the fusible alloy piece and the lead conductor portion near the fusible alloy piece, and the upper resin film 42 is curved on the protruding contents on the inner surface side, warpage occurs. . In this case, the initial bending radius of the upper resin film 42 abutted on the projecting coating flux in a curved state is r ′, the bending rigidity of the upper resin film 42 is (EI) ′, and the temperature fuse body portion excluding the upper resin film is Assuming that the bending rigidity is (EI), the bending reaction force m acting on the thermal fuse body portion is as described above.

 m=1/{r’〔1+(EI)’/(EI)〕} {M = 1 / {r "[1+ (EI) '/ (EI)]}

で与えられる。
 而るに、上記フラックス3の塗布に対する堰を扁平リード導体の折り曲げ凸部11,11aまたは11bにより設けてあり、扁平リード導体1の厚みを100μmといった薄肉にしても、単純な曲げ加工で凸部11,11aまたは11bを形成でき、亀裂の発生を排除できる。尤も、図2に示した実施例の凸部11においては、リード導体1を下側樹脂フィルム41の上面にほぼ面一の凸部101に膨出加工する際に同時に加工するが、凸部11が小さく膨出加工代の増加を少にとどめることができるから、この場合も、リード導体の厚みを薄くしても、亀裂の発生を充分に防止できる。
 従って、温度ヒューズボディ部分の曲げ剛性(EI)を小にしてその温度ヒューズボディ部分に作用する曲げ反力mを低減でき、曲げ反力mに基づき扁平リード導体と可溶合金片との接合界面に作用する剥離力を軽減でき、その接合界面の安定性を高めることができる。
Given by
The weir for the application of the flux 3 is provided by the bent protruding portion 11, 11a or 11b of the flat lead conductor. Even if the flat lead conductor 1 is made as thin as 100 μm, the protrusion is formed by a simple bending process. 11, 11a or 11b can be formed, and the occurrence of cracks can be eliminated. However, in the projection 11 of the embodiment shown in FIG. 2, the lead conductor 1 is simultaneously processed on the upper surface of the lower resin film 41 at the time of bulging into the substantially flat projection 101. In this case, even if the thickness of the lead conductor is reduced, the occurrence of cracks can be sufficiently prevented.
Therefore, it is possible to reduce the bending stiffness (EI) of the thermal fuse body portion and to reduce the bending reaction force m acting on the thermal fuse body portion, and the bonding interface between the flat lead conductor and the fusible alloy piece based on the bending reaction force m. Can be reduced, and the stability of the bonding interface can be increased.

 図1および図2に示したフィルムタイプの薄型温度ヒューズにおいて、上側樹脂フィルム42の厚みを下側樹脂フィルム41の厚みよりも薄くして(EI)’を小さくし、上記曲げ反力mの軽減を図り、その接合界面の安定性を一層に高めることができる。 In the thin-film thermal fuse of the film type shown in FIGS. 1 and 2, the thickness of the upper resin film 42 is made smaller than the thickness of the lower resin film 41 to reduce (EI) ′, thereby reducing the bending reaction force m. Therefore, the stability of the bonding interface can be further enhanced.

 また、図3および図4に示したフィルムタイプの薄型温度ヒューズにおいては、上側樹脂フィルム42の厚みを下側樹脂フィルム41と補助樹脂フィルム43の総厚みよりも薄くすることにより(EI)’を小さくし、上記曲げ反力mの軽減を図り、その接合界面の安定性を一層に高めることができる。 In the thin thermal fuse of the film type shown in FIGS. 3 and 4, (EI) ′ is reduced by making the thickness of the upper resin film 42 smaller than the total thickness of the lower resin film 41 and the auxiliary resin film 43. By reducing the size, the bending reaction force m can be reduced, and the stability of the bonding interface can be further enhanced.

 上記何れの実施例においても、樹脂フィルム同士の封着は、高周波溶着、超音波溶着、接着剤により行うことができ、リード導体と樹脂フィルムとの封着は、フィルム外面加圧下でのリード導体の電磁誘導加熱やヒートプレート接触加熱等により行うことができる。 In any of the above embodiments, sealing between the resin films can be performed by high frequency welding, ultrasonic welding, or an adhesive, and the sealing between the lead conductor and the resin film can be performed by pressing the lead conductor under pressure on the outer surface of the film. Can be performed by electromagnetic induction heating or heat plate contact heating.

 図5の(イ)は本発明に係る薄型温度ヒューズの上記とは別の実施例を示す平面図、図5の(ロ)は図5の(イ)におけるローロ断面図である。
 図5において、1,1は一対の扁平リード導体であり、先端から所定の距離を隔てた位置に折り曲げ凸部11を設けてある。2は可溶合金片であり、リード導体先端部の間に溶接、例えばスポット抵抗溶接、レーザ溶接等により接続してある。3はフラックスであり、可溶合金片2及び可溶合金片2からリード導体の折り曲げ凸部11に至る部分に付着してあり、凸部11をフラックスの堰として使用し可溶合金片2の端からリード導体の折り曲げ凸部11に至る部分のフラックス被覆厚みを充分に厚くしてある。40は可溶合金片及びフラックス並びにリード導体端部を包囲して設けた樹脂被覆層であり、例えばエポキシ樹脂液等の二液型硬化性樹脂液への浸漬塗装により被覆してある。
FIG. 5A is a plan view showing another embodiment of the thin thermal fuse according to the present invention, and FIG. 5B is a cross-sectional view of the thin thermal fuse shown in FIG.
In FIG. 5, reference numerals 1 and 1 denote a pair of flat lead conductors, each of which is provided with a bent convex portion 11 at a position separated by a predetermined distance from the tip. Reference numeral 2 denotes a fusible alloy piece, which is connected between the lead conductor tip portions by welding, for example, spot resistance welding, laser welding, or the like. Reference numeral 3 denotes a flux, which is adhered to the fusible alloy piece 2 and a portion extending from the fusible alloy piece 2 to the bent convex portion 11 of the lead conductor. The thickness of the flux coating from the end to the bent protrusion 11 of the lead conductor is sufficiently thick. Reference numeral 40 denotes a resin coating layer provided so as to surround the fusible alloy pieces, the flux, and the end portions of the lead conductor, and is coated by, for example, immersion coating in a two-part curable resin liquid such as an epoxy resin liquid.

 図5に示した実施例では、力学的にフラックスのヤング率が極めて小さいので、被覆樹脂40と可溶合金片2−リード導体1,1との複合体として取扱うことができ、被覆樹脂側の曲げ剛性を(EI)’、可溶合金片−リード導体側の曲げ剛性を(EI)とし、両者のヤング率や断面積や熱膨張係数の差異のために温度変化時に発生する曲げモーメントをMとすれば、可溶合金片−リード導体側が負担する曲げモーメントmは In the embodiment shown in FIG. 5, since the Young's modulus of the flux is extremely small mechanically, it can be handled as a composite of the coating resin 40 and the fusible alloy pieces 2-lead conductors 1, 1, and the coating resin side The bending stiffness is (EI) ′, the bending stiffness on the fusible alloy piece-lead conductor side is (EI), and the bending moment generated when the temperature changes due to the difference in Young's modulus, cross-sectional area and thermal expansion coefficient is M Then, the bending moment m borne by the fusible alloy piece-lead conductor side is

 m=M/{1+〔(EI)’/(EI)〕} {M = M / {1 + [(EI) '/ (EI)]}

で与えられる。
 而るに、上記フラックス3に対する堰を扁平リード導体の折り曲げ凸部11により設けてあり、扁平リード導体1の厚みを100μmといった薄肉にしても凸部の折り曲げが単純な曲げ加工であるために亀裂の発生を排除でき、従って、可溶合金片−リード導体側の曲げ剛性(EI)を小にしてそのリード導体に作用する曲げモーメントmを低減でき、曲げモーメントmに基づき扁平リード導体と可溶合金片との接合界面に作用する剥離力を軽減でき、その接合界面の安定性を高めることができる。
Given by
The weir for the flux 3 is provided by the bent protruding portion 11 of the flat lead conductor. Even when the flat lead conductor 1 has a thin thickness of 100 μm, the bending of the protruding portion is a simple bending process. Therefore, the bending moment (m) acting on the lead conductor can be reduced by reducing the bending stiffness (EI) on the fusible alloy piece-lead conductor side, and the flat lead conductor can be melted based on the bending moment m. The peeling force acting on the joint interface with the alloy piece can be reduced, and the stability of the joint interface can be enhanced.

 上記において、折り曲げ凸部11の両脇上端にアールを付すると、その上端がエッジである場合の上側樹脂フィルムの局所的損傷、被覆樹脂の表面張力減少による局所的薄肉化の懸念を払拭できる。 In the above description, if the upper ends of both sides of the bent convex portion 11 are rounded, it is possible to eliminate local damage to the upper resin film when the upper end is an edge and local thinning due to a decrease in surface tension of the coating resin.

 図6の(イ)は本発明に係る薄型温度ヒューズの上記とは別の実施例を一部断面で示す平面図、図6の(ロ)は図6の(イ)におけるロ−ロ断面図である。
 図6において、51は耐熱性、熱伝導性に優れた絶縁基体、例えばアルミナセラミックスのようなセラミックス板である。6,6は絶縁基体51の片面の長手方向両側に設けた一対の電極であり、導電ペーストの塗布・焼き付けにより設けることができる。1,1は各電極6,6に溶接等例えばスポット抵抗溶接やレーザ溶接やはんだ付けにより接続した扁平リード導体であり、先端全巾にわたり上向き折り曲げ凸部110を設けてある。2は電極6,6間に溶接等により接続した可溶合金片であり、溶接にはスポット抵抗溶接やレーザ溶接等を用いることができる。3は可溶合金片2の全体及び可溶合金片端からリード導体先端凸部110にわたり被覆したフラックスであり、リード導体先端の上向き折り曲げ凸部110を堰として塗布してある。
 52はセラミックスプレート等の絶縁カバープレートであり、絶縁基体51より小さい外郭としてある。7は接着剤、例えばエポキシ樹脂等の二液常温硬化型接着剤であり、前記絶縁カバープレート52をリード導体先端の上向き折り曲げ凸部110,110で支持した状態で絶縁カバープレート52の周囲と絶縁基体51との間を接着剤7で封着してある。
FIG. 6A is a plan view showing a part of another embodiment of the thin thermal fuse according to the present invention, which is different from the above, and FIG. 6B is a cross-sectional view taken along the line B in FIG. It is.
In FIG. 6, reference numeral 51 denotes an insulating base having excellent heat resistance and thermal conductivity, for example, a ceramic plate such as alumina ceramics. Reference numerals 6 and 6 denote a pair of electrodes provided on both sides in the longitudinal direction of one surface of the insulating base 51, which can be provided by applying and baking a conductive paste. Reference numerals 1 and 1 denote flat lead conductors connected to the electrodes 6 and 6 by welding or the like, for example, spot resistance welding, laser welding, or soldering, and are provided with upwardly bent convex portions 110 over the entire width of the tip. Reference numeral 2 denotes a fusible alloy piece connected between the electrodes 6 and 6 by welding or the like, and spot welding, laser welding, or the like can be used for welding. Numeral 3 denotes a flux which covers the entire fusible alloy piece 2 and one end of the fusible alloy from the one end of the fusible alloy, and covers the upwardly bent convex part 110 of the lead conductor tip as a weir.
Reference numeral 52 denotes an insulating cover plate such as a ceramic plate, which is smaller than the insulating base 51. Reference numeral 7 denotes an adhesive, for example, a two-part cold curing adhesive such as an epoxy resin, which is insulated from the periphery of the insulating cover plate 52 in a state where the insulating cover plate 52 is supported by the upwardly bent projections 110, 110 of the lead conductor tips. The space between the substrate 51 and the base 51 is sealed with an adhesive 7.

 図6に示した実施例においては、リード導体先端の上向き折り曲げ凸部110をリード導体先端にある所定の巾をもって設けてるために、絶縁基体51に対し絶縁カバープレート52の傾きのない平行な保持を保証でき、溶融合金(溶融された可溶合金片)の分断球状化に対する空間スペースを一定にできる結果、バラツキのない円滑な分断作動を促すことができる。 In the embodiment shown in FIG. 6, since the upwardly bent convex portion 110 at the tip of the lead conductor is provided with a predetermined width at the tip of the lead conductor, the insulating cover plate 52 is held parallel to the insulating base 51 without inclination. As a result, the space and space for the spheroidization of the molten alloy (melted fusible alloy piece) can be made constant, and as a result, a smooth and smooth dividing operation can be promoted.

 図6の実施例において、接着剤7の使用量を少なくして接着剤の内側への拡がりを防止するために、図7の(イ)及び図7の(ロ)〔図7の(イ)におげるロ−ロ断面図〕に示すように、絶縁カバープレート52の裏面の周囲に凸条521を設け、凸条521とリード導体1との間のギャップ及び凸条521と絶縁基体51との間のギャップを接着剤7で封着することができる。
 この場合、凸条521の高さをリード導体先端凸部110の高さよりも小として絶縁カバー52を両リード導体先端の折り曲げ凸部110,110で支持しても、前記と同様に絶縁基体51に対し絶縁カバー52の傾きのない平行な保持を保証でき、溶融合金(溶融された可溶合金片)の分断球状化に対する空間スペースを一定にできる結果、バラツキのない円滑な分断作動を促すことができる。従って、温度ヒューズ本体部の厚みを充分に薄く保持しつつバラツキのない円滑な分断作動を保証できる。
In the embodiment of FIG. 6, in order to reduce the amount of the adhesive 7 to be used and to prevent the adhesive from spreading inward, FIGS. 7 (A) and 7 (B) [FIG. As shown in FIG. 2, a ridge 521 is provided around the back surface of the insulating cover plate 52, the gap between the ridge 521 and the lead conductor 1, and the ridge 521 and the insulating base 51 are provided. Can be sealed with the adhesive 7.
In this case, even if the height of the protrusion 521 is smaller than the height of the lead conductor tip 110, and the insulating cover 52 is supported by the bent protrusions 110, 110 at the both lead conductor tips, the insulating base 51 is formed in the same manner as described above. As a result, the parallel holding of the insulating cover 52 without inclination can be guaranteed, and the space for the spheroidization of the molten alloy (melted fusible alloy piece) can be made constant, thereby promoting smooth and smooth dividing operation. Can be. Accordingly, a smooth disconnection operation without variation can be guaranteed while keeping the thickness of the thermal fuse main body portion sufficiently thin.

 図8の(イ)は本発明に係る薄型温度ヒューズの上記とは別の実施例を一部断面で示す平面図、図8の(ロ)は図8の(イ)におけるロ−ロ断面図である。
 図8において、51は絶縁基体である。1,1は一対の扁平リード導体であり、先端から所定の距離を隔てた箇所に折り曲げ凸部11を設け、この凸部11を含む先端部を絶縁基体51に固着してある。2はリード導体1,1間に溶接等により接続した可溶合金片であり、溶接にはスポット抵抗溶接やレーザ溶接等を用いることができる。3は可溶合金片2の全体及び可溶合金片端からリード導体凸部11にわたり被覆したフラックスであり、折り曲げ凸部11を堰として塗布してある。
 52はセラミックスプレート等の絶縁カバープレートであり、図6に示す実施例と同様、絶縁基体51より小さい外郭としてある。7は接着剤、例えばエポキシ樹脂等の二液常温硬化型接着剤であり、前記絶縁カバープレート52をリード導体1,1の折り曲げ凸部11,11で支持した状態で絶縁カバープレート52の周囲と絶縁基体51との間を接着剤7で封着してある。
FIG. 8A is a plan view showing, in partial cross section, another embodiment of the thin thermal fuse according to the present invention which is different from the above, and FIG. 8B is a cross-sectional view of FIG. It is.
In FIG. 8, reference numeral 51 denotes an insulating base. Reference numerals 1 and 1 denote a pair of flat lead conductors. A bent convex portion 11 is provided at a position separated from the distal end by a predetermined distance, and the distal end portion including the convex portion 11 is fixed to the insulating base 51. Reference numeral 2 denotes a fusible alloy piece connected between the lead conductors 1 and 1 by welding or the like. For the welding, spot resistance welding, laser welding, or the like can be used. Numeral 3 denotes a flux that covers the entire fusible alloy piece 2 and the end of the fusible alloy from the end of the fusible alloy, and is coated with the bent convex part 11 as a weir.
Reference numeral 52 denotes an insulating cover plate such as a ceramic plate, which is smaller than the insulating base 51 as in the embodiment shown in FIG. Reference numeral 7 denotes an adhesive, for example, a two-part cold-setting adhesive such as an epoxy resin. The adhesive 7 covers the periphery of the insulating cover plate 52 in a state where the insulating cover plate 52 is supported by the bent protrusions 11 of the lead conductors 1, 1. The space between the insulating substrate 51 and the insulating substrate 51 is sealed with an adhesive 7.

 図8に示した実施例においても、接着剤7の使用量を少なくして接着剤の内側への拡がりを防止するために、図9の(イ)及び図9の(ロ)〔図9の(イ)におげるロ−ロ断面図〕に示すように、絶縁カバープレート52の裏面の周囲に凸条521を設け、凸条521とリード導体1との間のギャップ及び凸条521と絶縁基体51との間のギャップを接着剤7で封着することができ、この場合も、凸条521の高さをリード導体1の先端部の折り曲げ凸部11の高さよりも小として絶縁カバープレート52を両リード導体1,1の折り曲げ凸部11,11で支持するようにしても、前記と同様に絶縁基体51に対し絶縁カバープレート52の傾きのない平行な保持を保証でき、溶融合金(溶融された可溶合金片)の分断球状化に対する空間スペースを一定にできる結果、バラツキのない円滑な分断作動を促すことができ、従って、温度ヒューズ本体部の厚みを充分に薄く保持しつつバラツキのない円滑な分断作動を保証できる。 Also in the embodiment shown in FIG. 8, in order to reduce the amount of the adhesive 7 used and to prevent the adhesive from spreading to the inside, FIG. 9A and FIG. (A), a ridge 521 is provided around the back surface of the insulating cover plate 52, and a gap between the ridge 521 and the lead conductor 1 and the ridge 521 are formed. The gap between the insulating base 51 and the insulating substrate 51 can be sealed with the adhesive 7. In this case, too, the height of the protruding ridge 521 is smaller than the height of the bent protruding portion 11 at the tip of the lead conductor 1. Even if the plate 52 is supported by the bent protruding portions 11 of the lead conductors 1, 1, the holding of the insulating cover plate 52 without inclination relative to the insulating base 51 can be assured in the same manner as described above. (Empty for spheroidization of (melted fusible alloy pieces)) Results that can space constant, it is possible to promote a smooth cutting operation with no unevenness, thus ensure a smooth cutting operation with no unevenness while retaining sufficiently reduce the thickness of the temperature fuse body part.

 図6〜図9に示す実施例においても、折り曲げ凸部11や110の両脇上端にアールを付すると、その上端がエッジである場合の絶縁カバープレートの局所的損傷の懸念を排除できる。 In the embodiment shown in FIGS. 6 to 9 as well, if the upper ends on both sides of the bent protrusions 11 and 110 are rounded, it is possible to eliminate the possibility of local damage to the insulating cover plate when the upper ends are edges.

 図8や図9に示す薄型温度ヒューズを製造する場合、通常、絶縁基体51にリード導体1,1の先端部を固着し、リード導体1,1間に可溶合金片2を接続し、フラックス3を塗布し、両リード導体1,1の折り曲げ凸部11,11上に絶縁カバープレート52を載置し、絶縁基体51と絶縁カバープレート52との周囲を接着剤7で封着するようにし、絶縁基体51へのリード導体1,1の折り曲げ凸部を有する先端部の固着には、接着剤や熱融着を使用できる。
 熱融着による場合、絶縁基体51に熱可塑性樹脂製基体を使用し、扁平リード導体1の先端部をその厚みの深さで絶縁基体51に食い込ませても絶縁を充分に保証できるように、熱可塑性樹脂絶縁基体51の厚みを扁平リード1の厚みの2〜3倍程度とすることが望ましい。
 また、扁平リード導体1の先端部を嵌合するための溝を絶縁基体51の上面に設けておき、扁平リード導体1の先端部を嵌着することも可能である。
When manufacturing the thin thermal fuse shown in FIGS. 8 and 9, usually, the tip portions of the lead conductors 1 and 1 are fixed to the insulating base 51, and the fusible alloy piece 2 is connected between the lead conductors 1 and 1. The insulating cover plate 52 is placed on the bent protrusions 11 of the two lead conductors 1, 1, and the periphery of the insulating base 51 and the insulating cover plate 52 is sealed with the adhesive 7. An adhesive or heat fusion can be used for fixing the leading end portions of the lead conductors 1 and 1 having the bent convex portions to the insulating base 51.
In the case of heat fusion, a thermoplastic resin base is used as the insulating base 51, and insulation can be sufficiently ensured even if the tip of the flat lead conductor 1 is cut into the insulating base 51 at the depth of its thickness. It is desirable that the thickness of the thermoplastic resin insulating substrate 51 be about two to three times the thickness of the flat lead 1.
Further, a groove for fitting the tip of the flat lead conductor 1 may be provided on the upper surface of the insulating base 51, and the tip of the flat lead conductor 1 may be fitted.

 図10の(イ)は本発明に係る薄型温度ヒューズの上記とは別の実施例の一部を断面で示す平面図、図10の(ロ)は図10の(イ)におけるローロ断面図である。
 図10において、51は前記した絶縁基体、6,6は前記と同様に絶縁基体51の片面の長手方向両側に設けた一対の電極である。1,1は前記と同様に各電極6,6に溶接等例えばスポット抵抗溶接やレーザ溶接やはんだ付けにより接続した扁平リード導体であり、先端全巾にわたり上向き折り曲げ凸部110を設けてある。2は前記と同様に電極6,6間に溶接等により接続した可溶合金片である。3は前記と同様に可溶合金片2の全体及び可溶合金片端からリード導体先端凸部110にわたり被覆したフラックスであり、リード導体先端の上向き折り曲げ凸部110を堰として塗布してある。
 53は水密な樹脂モールド層であり、例えばエポキシ樹脂等の二液常温硬化樹脂液への浸漬塗装により設けることができる。
FIG. 10A is a plan view showing a cross section of a part of another embodiment of the thin thermal fuse according to the present invention, which is different from the above, and FIG. is there.
In FIG. 10, reference numeral 51 denotes the above-described insulating base; Reference numerals 1 and 1 denote flat lead conductors connected to the electrodes 6 and 6 by welding or the like, for example, spot resistance welding, laser welding, or soldering, as described above. Reference numeral 2 denotes a fusible alloy piece connected between the electrodes 6 and 6 by welding or the like as described above. Reference numeral 3 denotes a flux which covers the entire fusible alloy piece 2 and the end of the fusible alloy from the one end of the fusible alloy to the lead conductor tip convex part 110 as described above, and is coated with the upward bent convex part 110 of the lead conductor tip as a weir.
Reference numeral 53 denotes a water-tight resin mold layer, which can be provided, for example, by immersion coating in a two-part, room-temperature curing resin liquid such as an epoxy resin.

 図6、図7、図10に示す実施例では、電極前端と導体先端との間隔の調整により、電極の所望の位置にフラックスに対する堰を設けることができ、溶融合金を電極6によく濡らさせて分断球状化を効果的に促進できる。 In the embodiment shown in FIGS. 6, 7 and 10, by adjusting the distance between the front end of the electrode and the front end of the conductor, a weir for the flux can be provided at a desired position of the electrode, so that the molten alloy is sufficiently wetted on the electrode 6. To effectively promote the division and spheroidization.

 図6、図7、図10に示す実施例に対し、図11や図12に示すように、可溶合金片2の端をリード導体先端の上向き折り曲げ凸部110の前面にも溶接等により接続したり、上向き折り曲げ凸部110の前面のみに接続したりすることができる。
 図6、図7、図10に示す実施例においては、折り曲げ凸部110を図8、9に示されている折り曲げ凸部11とすることもできる。また、図8、9に示す実施例においては、折り曲げ凸部11を図6、図7、図10に示されている折り曲げ凸部110とすることもできる。
As shown in FIGS. 11 and 12, the end of the fusible alloy piece 2 is also connected to the front surface of the upwardly bent convex portion 110 of the lead conductor by welding or the like, as shown in FIGS. Or can be connected only to the front surface of the upwardly bent convex portion 110.
In the embodiment shown in FIGS. 6, 7, and 10, the bent protrusion 110 may be the bent protrusion 11 shown in FIGS. Further, in the embodiment shown in FIGS. 8 and 9, the bent protrusion 11 may be the bent protrusion 110 shown in FIGS. 6, 7 and 10.

 図13の(イ)は本発明に係る薄型温度ヒューズの上記とは別の実施例の一部を断面で示す平面図、図13の(ロ)は図13の(イ)におけるローロ断面図である。
 図13において、1,1は一対の扁平リード導体であり、先端を上向き折り曲げ凸部110に加工してある。2は両扁平リード導体1,1先端の上向き折り曲げ凸部110の前面間に溶接等により接合したヒューズエレメントであり、レーザ溶接等を使用できる。3はフラックスであり、リード導体先端の上向き折り曲げ凸部110をフラックスの堰として使用しフラックス被覆厚みを充分に厚くしてある。41は下側樹脂フィルム、42は上側樹脂フィルムであり、前記両扁平リード導体1,1の前半部とヒューズエレメント2とをこれらの樹脂フィルム41,42で挾み、上側樹脂フィルム42を出っ張った被覆フラックス3上に湾曲させた状態で周囲部を水平保持の下側樹脂フィルム41に封着してある。
FIG. 13A is a plan view showing a cross section of a part of another embodiment of the thin thermal fuse according to the present invention, and FIG. 13B is a cross-sectional view taken along a roll line in FIG. is there.
In FIG. 13, reference numerals 1 and 1 denote a pair of flat lead conductors, the ends of which are bent upward to form convex portions 110. Numeral 2 denotes a fuse element joined by welding or the like between the front faces of the upwardly bent convex portions 110 at the ends of the two flat lead conductors 1 and 1, and laser welding or the like can be used. Numeral 3 denotes a flux, in which the upwardly bent protruding portion 110 of the lead conductor is used as a weir of the flux, and the thickness of the flux coating is sufficiently large. 41 is a lower resin film, 42 is an upper resin film, and the front half of the flat lead conductors 1, 1 and the fuse element 2 are sandwiched between these resin films 41, 42, and the upper resin film 42 protrudes. The periphery is sealed to the lower resin film 41 which is kept horizontally while being curved on the coating flux 3.

 図13に示した実施例では、上記フラックス3に対する堰110を扁平リード導体先端の上向き折り曲げにより設けてあり、扁平リード導体の厚みを100μmといった薄肉にしても単純な曲げ加工であるために亀裂の発生を排除できる。従って、図1に示した実施例と同様に、温度ヒューズボディ部分の曲げ剛性(EI)を小にしてその温度ヒューズボディ部分に作用する曲げ反力mを低減でき、曲げ反力mに基づき扁平リード導体と可溶合金片との接合界面に作用する剥離力を軽減でき、その接合界面の安定性を高めることができる。 In the embodiment shown in FIG. 13, the weir 110 for the flux 3 is provided by upward bending of the tip of the flat lead conductor. Occurrence can be eliminated. Therefore, similarly to the embodiment shown in FIG. 1, the bending stiffness (EI) of the thermal fuse body portion can be reduced to reduce the bending reaction force m acting on the thermal fuse body portion. The peeling force acting on the joint interface between the lead conductor and the fusible alloy piece can be reduced, and the stability of the joint interface can be enhanced.

 図13に示す実施例においても、上側樹脂フィルム42の厚みを下側樹脂フィルム41の厚みよりも薄くすることができる。 も Also in the embodiment shown in FIG. 13, the thickness of the upper resin film 42 can be made smaller than the thickness of the lower resin film 41.

 上記において、リード導体先端の上向き折り曲げ凸部110の両脇上端にアールを付すると、その上端がエッジである場合の上側樹脂フィルムの局所的損傷、被覆樹脂の表面張力減少による局所的薄肉化の懸念を払拭できる。 In the above description, if the upper end of each of the upwardly bent protrusions 110 of the lead conductor is provided with a radius, local damage to the upper resin film when the upper end is an edge, and local thinning due to a decrease in the surface tension of the coating resin. Can dispel concerns.

 本発明に係る樹脂モールドタイプの温度ヒューズは、図5に示したもの以外に、図11や図12に示すように、可溶合金片端をリード導体先端の上向き折り曲げ凸部の前面に溶接等により接続し、可溶合金片及びフラックス並びにリード導体端部を包囲する樹脂被覆層、例えばエポキシ樹脂被覆層を設けることによって実施することもできる。 As shown in FIGS. 11 and 12, in addition to the one shown in FIG. 5, the resin-molded type thermal fuse according to the present invention has one end of a fusible alloy welded to the front surface of an upwardly bent convex portion of the lead conductor tip by welding or the like. It can also be implemented by providing a resin coating layer, for example, an epoxy resin coating layer, which is connected and surrounds the fusible alloy pieces and the flux and the end portions of the lead conductors.

 本発明において、温度ヒューズボディの巾を温度ヒューズボディ外部のリード導体部分の巾以下とすることができる。また、温度ヒューズボディの巾両端側では樹脂フィルム同士の封着代や絶縁カバープレートの絶縁基体への封着代を可及的に大きくすることが望ましい。この場合、図14の(イ)に示すように、温度ヒューズボディ内部のリード導体部分の巾w1を温度ヒューズボディ外部のリード導体部分の巾w2よりも狭くすることができる。 (4) In the present invention, the width of the thermal fuse body can be made smaller than the width of the lead conductor portion outside the thermal fuse body. In addition, it is desirable to increase the margin for sealing the resin films and the margin for sealing the insulating cover plate to the insulating substrate as much as possible at both ends of the width of the thermal fuse body. In this case, as shown in FIG. 14A, the width w1 of the lead conductor portion inside the thermal fuse body can be made smaller than the width w2 of the lead conductor portion outside the thermal fuse body.

 本発明において、フラックスを付着するには、フラックスを加熱溶融して可溶合金片を包含する外郭で付着させ、この付着フラックスを表面張力と界面張力との作用下、堰に至るまで流延させて自然冷却により凝固させる。この場合、温度ヒューズボディ内部のリード導体部分の巾を可溶合金片の巾よりも広くすることによりフラックスに対する堰としての凸部の巾を可溶合金片の巾よりも広くし、可溶合金片巾を包含する巾のフラックスを凸部で良好に堰止めるようにしてある。 In the present invention, in order to adhere the flux, the flux is heated and melted and adhered to the outer surface including the fusible alloy piece, and the adhered flux is cast to the weir under the action of surface tension and interfacial tension. And solidify by natural cooling. In this case, the width of the lead conductor portion inside the thermal fuse body is made wider than the width of the fusible alloy piece, so that the width of the protrusion as a weir to the flux is made wider than the width of the fusible alloy piece. The flux having a width including one width is favorably blocked by the convex portion.

 上記扁平リード導体は、温度ヒューズボディ内部のリード導体部分が扁平であればよく、全体が扁平で、図14の(イ)に示すように内側の導体部分の巾をw1、外部の導体部分の巾をw2として、w1<w2としたもの、図14の(ロ)に示すように、w1=w2としたもの、図14の(ハ)に示すように、w1>w2としたものの外、図14の(ニ)に示すように、丸線材の前半部を圧延し、この圧延部分を内側リード導体部分とするものも使用できる。折り曲げにより凸部11を設けるものについても同様である。
 扁平リード導体先端の上向き折り曲げ凸部110は、可溶合金片端を接続でき、かつフラックスに対する堰となし得るものであれば、付随的な加工が施されていてもよく、例えば、図14の(ホ)に示すような水平かぎ部1101や図14の(ヘ)に示すような折り返し部1102を付加することもできる。
 また、折り曲げ凸部11は、通常図14の(ト)に示すような三角形凸部とされるが、図14の(チ)に示すような方形凸部、図14の(リ)に示すような台形凸部とすることもできる。
 また、図14の(ヌ)に示すように、切出し曲げにより凸部1100を設けたものの使用も可能である。
The flat lead conductor only needs to have a flat lead conductor portion inside the thermal fuse body. The entire flat conductor is flat, and as shown in FIG. 14A, the width of the inner conductor portion is w1, and the width of the outer conductor portion is w1. The width w2, w1 <w2, w1 = w2 as shown in (b) of FIG. 14, and w1> w2 as shown in (c) of FIG. As shown in FIG. 14 (d), a material in which the first half of a round wire is rolled and the rolled portion is used as an inner lead conductor portion can also be used. The same applies to the case where the convex portion 11 is provided by bending.
The upwardly bent convex portion 110 of the flat lead conductor tip may be subjected to additional processing as long as it can connect one end of the fusible alloy and can serve as a weir for the flux. For example, FIG. A horizontal key portion 1101 as shown in FIG. 14E and a folded portion 1102 as shown in FIG. 14F can also be added.
The bent convex portion 11 is usually a triangular convex portion as shown in FIG. 14 (g), but a rectangular convex portion as shown in FIG. 14 (h). It may be a trapezoidal convex part.
In addition, as shown in FIG. 14 (N), it is also possible to use one provided with a convex portion 1100 by cut-out bending.

 本発明において、前記被覆フラックスの最大高さが前記折り曲げ凸部や扁平リード導体先端の上向き折り曲げ凸部の高さより高い場合は、絶縁カバープレートを押圧して被覆フラックスを圧潰した状態で前記接着剤による封着を行うことができる。あるいは、封着作業中、絶縁カバープレートを押圧しつづけ、絶縁カバープレートを押圧しつつ前記接着剤による封着を行うことができる。
 上記絶縁基体とリード導体との界面の封止は、その界面を接着剤で接着するか、絶縁基体端面とリード導体上面との境界のコーナを接着剤で充填することにより行うことができる。
In the present invention, when the maximum height of the coating flux is higher than the height of the bending protrusion or the upward bending protrusion of the flat lead conductor tip, the adhesive is pressed in a state where the coating flux is crushed by pressing an insulating cover plate. Sealing can be performed. Alternatively, during the sealing operation, the insulating cover plate can be continuously pressed, and the sealing with the adhesive can be performed while pressing the insulating cover plate.
The interface between the insulating substrate and the lead conductor can be sealed by bonding the interface with an adhesive or by filling the corner at the boundary between the end surface of the insulating substrate and the upper surface of the lead conductor with an adhesive.

 上記リード導体には、Cu、Fe等の使用も可能であるが、溶接、特にスポット抵抗溶接が容易なNiを使用することが好ましい。また、リード導体の少なくとも先端部には、可溶合金片との溶接の容易化、電極との溶接の容易化のために、Sn,Cu,Ag,Auの何れか、またはこれらの金属を主成分とする合金を被覆しておくことが好ましい。特に、Niリード導体の場合、電極への固着をスポット抵抗溶接により行うとき、Sn皮膜がナゲットでの熱的衝撃を熱的、応力的に緩和するから、セラミックス製絶縁基体のクラック防止の保証に有効である。 CuCu, Fe or the like can be used for the lead conductor, but it is preferable to use Ni, which is easy to weld, especially spot resistance weld. In order to facilitate welding with a fusible alloy piece and welding with an electrode, at least the tip of the lead conductor is mainly made of Sn, Cu, Ag, or Au, or a metal of these metals. It is preferable to coat an alloy as a component. In particular, in the case of a Ni lead conductor, when the electrode is fixed to the electrode by spot resistance welding, the Sn film thermally and stress-relaxes the thermal shock at the nugget, so that it is possible to guarantee the prevention of cracking of the ceramic insulating substrate. It is valid.

 上記の上側樹脂フィルム、下側樹脂フィルムや補助樹脂フィルムとしては、ポリエチレンテレフタレ−トが好適であるが、ポリエチレンナフタレ−ト、ポリアミド、ポリイミド、ポリブチレンテレフタレ−ト、ポリフェニレンオキシド、ポリエチレンサルファイド、ポリサルホン等のエンジニアリングプラスチック、ポリアセタ−ル、ポリカ−ボネ−ト、ポリフェニレンスルフィド、ポリオキシベンゾイル、ポリエ−テルエ−テルケトン、ポリエ−テルイミド等のエンジニアリングプラスチックやポリプロピレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリメチルメタクリレ−ト、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、エチレンポリテトラフルオロエチレン共重合体、エチレン酢酸ビニル共重合体(EVA)、AS樹脂、ABS樹脂、アイオノマ−、AAS樹脂、ACS樹脂等の熱可塑性樹脂のフィルムも使用できる。 As the above upper resin film, lower resin film and auxiliary resin film, polyethylene terephthalate is preferable, but polyethylene naphthalate, polyamide, polyimide, polybutylene terephthalate, polyphenylene oxide, polyethylene sulfide Engineering plastics, such as polysulfone, engineering plastics such as polyacetal, polycarbonate, polyphenylene sulfide, polyoxybenzoyl, polyetheretherketone, and polyetherimide; and polypropylene, polyvinyl chloride, polyvinyl acetate, and polymethyl. Methacrylate, polyvinylidene chloride, polytetrafluoroethylene, ethylene polytetrafluoroethylene copolymer, ethylene vinyl acetate copolymer (EVA), AS resin, AB Resins, ionomer -, AAS resins, films of thermoplastic resins such as ACS resins can also be used.

 上記の絶縁基体や絶縁カバープレートとしては、セラミックス、特にアルミナセラミックス板が好適であるが、前記した熱可塑性樹脂の板、繊維強化エポキシ樹脂板、繊維強化フエノール樹脂板、絶縁被覆金属板等の使用も可能である。
 図8〜図9に示した温度ヒューズの絶縁基体や絶縁カバープレートとしては、前記したポリエチレンテレフタレ−トをはじめとする熱可塑性樹脂の板を好適に使用できる。
As the above-mentioned insulating substrate and insulating cover plate, ceramics, particularly alumina ceramics plate, are preferable, but use of the above-mentioned thermoplastic resin plate, fiber reinforced epoxy resin plate, fiber reinforced phenol resin plate, insulating coated metal plate, etc. Is also possible.
As the insulating base and the insulating cover plate of the thermal fuse shown in FIGS. 8 and 9, a thermoplastic resin plate such as the polyethylene terephthalate described above can be suitably used.

 上記電極は、Agペースト、Cuペースト、Auペースト、Ptペースト、Ag−Ptペースト、Ag−Pdペースト等の導電ペーストの塗布・焼き付けの外、金属箔積層絶縁基板の金属箔の印刷・エッチング等により形成することもできる。 The above-mentioned electrodes are formed by applying / baking a conductive paste such as an Ag paste, a Cu paste, an Au paste, a Pt paste, an Ag-Pt paste, an Ag-Pd paste, and printing / etching a metal foil of a metal foil laminated insulating substrate. It can also be formed.

 上記可溶合金片には、丸線材または圧延線材を使用でき、圧延線材の巾は扁平リード導体の先端の巾にほぼ等しくすることができる。
 可溶合金片の融点は機器の保護温度に応じて選定されるが、電池用の場合、固相線温度が80℃〜120℃、液相線温度が90℃〜120℃である合金が使用される。例えばIn50〜55%、Sn25〜40%、残部Biの合金、In30〜75%、Sn5〜50%、Cd0.5〜25%の合金、更にこの合金組成にCu、Ag、Au、Al、Biのうちの1種または2種以上を合計0.1〜5%添加した合金、Bi48〜53%、Pb28〜33%、Sn13〜19%の合金、In0.5〜4%、Bi50〜54%、Pb30〜34%、Sn14〜18%の合金等を例示できる。
 可溶合金片は母材の鋳造または押し出しによりロッドを得、このロッドを線引きし、更には圧延する線引き法乃至は線引き圧延法により製造できる。また、ドラム内の冷却液をドラムの回転により層状になし、ノズルからの溶融合金のジェットをこの回転液層中にその回転周速と同速で入射させて冷却凝固させる回転液紡糸法を使用することもできる。
As the fusible alloy piece, a round wire or a rolled wire can be used, and the width of the rolled wire can be made substantially equal to the width of the tip of the flat lead conductor.
The melting point of the fusible alloy piece is selected according to the protection temperature of the equipment. For batteries, an alloy with a solidus temperature of 80 to 120 ° C and a liquidus temperature of 90 to 120 ° C is used. Is done. For example, an alloy of 50 to 55% of In, 25 to 40% of Sn, and the balance of Bi, an alloy of 30 to 75% of In, 5 to 50% of Sn, and 0.5 to 25% of Cd, and further, the alloy composition of Cu, Ag, Au, Al, Bi Alloys containing one or more of them in total of 0.1 to 5%, Bi 48 to 53%, Pb 28 to 33%, Sn 13 to 19% alloys, In 0.5 to 4%, Bi 50 to 54%, Pb30 To 34% and Sn 14 to 18%.
The fusible alloy piece can be manufactured by casting or extruding a base material to obtain a rod, drawing the rod, and further rolling by a drawing method or a drawing rolling method. In addition, a rotating liquid spinning method is used, in which the cooling liquid in the drum is formed into a layer by rotating the drum, and a jet of molten alloy from a nozzle is injected into this rotating liquid layer at the same speed as its rotational speed to cool and solidify. You can also.

 近来、可溶合金片としては環境衛生上、PbやCd等の生体系に有害金属を含まない組成を使用することが要請されており、この要請を満たして前記線引き法乃至線引き圧延法や回転紡糸法により製線可能な組成としては、[A](1)43%<Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%<Sn≦44%,55%<In≦74%,1%≦Bi<20%、(4)46%<Sn≦70%,18%≦In<48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In<37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%<Sn≦60%,20%≦In<50%,12%<Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn−Bi系合金の組成[B](16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn−Sb系合金の組成[C](18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn系合金の組成[D](20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Bi系合金の組成、[E](22)50%<Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn系合金の組成[F](24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加等のIn系合金の組成等を挙げることができ、これらのうちから温度ヒューズの動作温度に適合した融点の組成を選定することが好ましい。 Recently, it has been required to use a composition that does not contain harmful metals in biological systems such as Pb and Cd from the viewpoint of environmental health as a fusible alloy piece. The composition that can be formed by the spinning method is [A] (1) 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, residual Bi, (2) 25% ≦ Sn ≦ 40%, 50 % ≦ In ≦ 55%, residual Bi, (3) 25% <Sn ≦ 44%, 55% <In ≦ 74%, 1% ≦ Bi <20%, (4) 46% <Sn ≦ 70%, 18% ≦ In <48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In <37%, residual Bi (however, Bi57.5%, In25.2%, Sn17. Bi ± 2%, In and Sn ± 1% based on 3%, Bi 54%, In 29.7% and Sn 16.3%, respectively. (6) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, remaining Bi, (7) 25% <Sn ≦ 60%, 20% ≦ In <50%, 12% <Bi ≦ 33%, (8) One or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P are added to 100 parts by weight of any of (1) to (7) in a total amount of 0.1%. (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, residual Bi, (10) 47% ≦ Sn ≦ 49%, 51% ≦ In ≦ 53% Add 3-5 parts by weight of Bi to 100 parts by weight, (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12%, residual In, (12) 0.3% ≦ Sn ≦ 1.5% , 51% ≦ In ≦ 54%, residual Bi, (13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35%, residual In, (14) Any one of (9) to (13) 100 Heavy Part, one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P in a total amount of 0.01 to 7 parts by weight, (15) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, with 100% by weight of the remaining Bi being one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P in a total amount of 0.01 to 7 parts by weight. Composition of In-Sn-Bi alloy such as addition [B] (16) 30% ≦ Sn ≦ 70%, 0.3% ≦ Sb ≦ 20%, balance Bi, 100 parts by weight of (17) (16) One or two or more of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge and P are added in a total amount of 0.01 to 7 parts by weight. (18) 52% ≦ In ≦ 85%, residual Sn, (19) Ag, Au, Cu, Ni, Pd, Pt, Sb in 100 parts by weight of (18) One or more of Ga, Ge, and P are added in a total amount of 0.01 to 7 parts by weight. In-Sn based alloy composition [D] (20) 45% ≦ Bi ≦ 55%, remaining In, ( 21) One or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge and P are added to 100 parts by weight of the composition of (20) in a total amount of 0.01 to 7 parts by weight, etc. Ag, Au, Cu, Ni, Pd, Pt, Ga in 100 parts by weight of [E] (22) 50% <Bi ≦ 56%, balance Sn, (23) (22) One or two or more of Ge, P, and a total of 0.01 to 7 parts by weight are added. Au, Bi, Cu, Ni is added to 100 parts by weight of the composition [F] (24) In of the Bi-Sn based alloy. , Pd, Pt, Ga, Ge, P or a total of 0.01 to 7 parts by weight of a total of (25) 90% ≦ In ≦ 99.9% , 0.1% ≦ Ag ≦ 10%, 100% by weight of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, P or more in total of 0.01 to 7 parts by weight (26) One or two of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P are added to 100 parts by weight of 95% ≦ In ≦ 99.9%, 0.1% ≦ Sb ≦ 5%. There may be mentioned the composition of an In-based alloy in which 0.01 to 7 parts by weight of a total of the species or more are added, and from these, it is preferable to select a composition having a melting point suitable for the operating temperature of the thermal fuse.

 上記フラックスには、天然ロジン、変性ロジン(水添ロジン、不均化ロジン、重合ロジン等)及びこれらの精製ロジンにジエチルアミンの塩酸塩、ジエチルアミンの臭化水素酸塩、アジピン酸等の有機酸等を添加したものを使用できる。 The above flux includes natural rosin, modified rosin (hydrogenated rosin, disproportionated rosin, polymerized rosin, etc.) and these purified rosins, and organic acids such as hydrochloride of diethylamine, hydrobromide of diethylamine, adipic acid, etc. Can be used.

 上記接着剤には、通常エポキシ樹脂が使用されるが、フエノール樹脂やポリウレタン等の硬化性樹脂も使用可能である。 通常 Epoxy resin is usually used as the adhesive, but a curable resin such as phenol resin or polyurethane can also be used.

 上記絶縁基体の寸法は、通常長辺が5.0〜15.0mm,短辺が2.0〜4.0mm,厚みが0.2〜0.5mmとされる。
 上記絶縁カバープレートの寸法は、通常長辺が3.0〜12.0mm,短辺が1.5〜3.0mm,厚みが0.2〜0.5mmとされる。
 上記下側樹脂フィルム、上側樹脂フィルムや補助樹脂フィルムの寸法は、通常長辺が5.0〜15.0mm,短辺が3.0〜5.0mmとされる。下側樹脂フィルムの厚みは0.2〜0.4mmとされ、上側樹脂フィルムの厚みは下側樹脂フィルムの厚みに等しいか、50μm〜80μm薄くされる。
 上記リード導体の寸法は、通常外側部分の巾が2.0〜4.0mm,内側部分の巾が1.0〜3.0mmとされる。リード導体の厚みは、基板タイプに対しては0.15〜0.3mmとされ、フィルムタイプや樹脂モールドタイプに対しては、0.07〜0.15mmとされる。
The dimensions of the insulating base are usually 5.0 to 15.0 mm on the long side, 2.0 to 4.0 mm on the short side, and 0.2 to 0.5 mm in thickness.
The dimensions of the insulating cover plate are usually such that the long side is 3.0 to 12.0 mm, the short side is 1.5 to 3.0 mm, and the thickness is 0.2 to 0.5 mm.
The dimensions of the lower resin film, the upper resin film and the auxiliary resin film are usually such that the long side is 5.0 to 15.0 mm and the short side is 3.0 to 5.0 mm. The thickness of the lower resin film is set to 0.2 to 0.4 mm, and the thickness of the upper resin film is equal to the thickness of the lower resin film or is reduced by 50 μm to 80 μm.
The dimensions of the lead conductor are generally such that the width of the outer portion is 2.0 to 4.0 mm and the width of the inner portion is 1.0 to 3.0 mm. The thickness of the lead conductor is 0.15 to 0.3 mm for the substrate type, and 0.07 to 0.15 mm for the film type or the resin mold type.

 本発明に係る温度ヒューズは二次電池用として使用できる。例えば、図16に示すように、二次電池パックの扁平ケースの側面に装着して電池と負荷との間に直列に挿入させることができる。従って、電池に異常が生じ、電池の発熱により温度ヒューズの可溶合金片がその融点温度、例えば80℃〜100℃内の所定温度に達すると、可溶合金片が溶断されて電池と負荷との間が電気的に遮断され、以後の電池の温度上昇が停止される。従って、電池の異常発熱を未然に防止できる。 温度 The thermal fuse according to the present invention can be used for a secondary battery. For example, as shown in FIG. 16, the secondary battery pack can be mounted on a side surface of a flat case and inserted in series between a battery and a load. Therefore, when an abnormality occurs in the battery and the fusible alloy piece of the thermal fuse reaches its melting point temperature, for example, a predetermined temperature in the range of 80 ° C. to 100 ° C. due to heat generation of the battery, the fusible alloy piece is melted and the battery and the load are disconnected. Is electrically cut off, and the subsequent temperature rise of the battery is stopped. Therefore, abnormal heat generation of the battery can be prevented.

 上記において、可溶合金片のジュール発熱を無視できるときは、電池が許容温度Tmに達したときの可溶合金片の温度TxはTmより2℃〜3℃低くなり、可溶合金片の融点を〔Tm−(2℃〜3℃)〕に設定すればよい。
 しかしながら、可溶合金片のジュール発熱を無視できないときは、可溶合金片の電気抵抗をR、通電電流をI、機器とヒューズエレメント間の熱抵抗をHとすれば、
In the above, when the Joule heat of the fusible alloy piece can be ignored, the temperature Tx of the fusible alloy piece when the battery reaches the allowable temperature Tm becomes lower by 2 ° C. to 3 ° C. than Tm, and the melting point of the fusible alloy piece May be set to [Tm− (2 ° C. to 3 ° C.)].
However, when the Joule heat generation of the fusible alloy piece cannot be ignored, if the electric resistance of the fusible alloy piece is R, the conduction current is I, and the thermal resistance between the device and the fuse element is H,

 Tx=Tm−(2℃〜3℃)+HRI Tx = Tm− (2 ° C. to 3 ° C.) + HRI 2

が成立し、可溶合金片の融点を上式に基づき設定することが有効である。 Holds, and it is effective to set the melting point of the fusible alloy piece based on the above equation.

 本発明に係る温度ヒューズにおいては、通電発熱体を付設し、例えば抵抗ペースト(例えば、酸化ルテニウム等の酸化金属粉のペースト)の塗布・焼き付けにより膜抵抗を付設し、電池の異常発熱の原因となる前兆、例えば過充電時の電池電圧の異常上昇を検出し、この検出信号で膜抵抗を通電して発熱させ、この発熱で可溶合金片を溶断させることもできる。
 例えば、上記膜抵抗を絶縁基体の上面に設け、この上に耐熱性・熱伝導性の絶縁膜、例えばガラス焼き付け膜を形成し、更に一対の電極を設け、先端に上向き折り曲げ凸部を設けた扁平リード導体を各電極に接続し、両電極間に可溶合金片を接続し、可溶合金片から前記リード導体の先端凸部にわたってフラックスを被覆し、絶縁カバープレートを前記の絶縁基体上に配設し、該絶縁カバープレート周囲を絶縁基体に接着剤により封着することができる。
In the thermal fuse according to the present invention, a current-carrying heating element is provided, and a film resistor is provided by, for example, applying and baking a resistive paste (for example, a paste of a metal oxide powder such as ruthenium oxide). A precursor, for example, an abnormal rise in the battery voltage at the time of overcharging is detected, and the detection signal is applied to the film resistor to generate heat, and the heat is generated to melt the fusible alloy piece.
For example, the above-mentioned film resistance is provided on the upper surface of an insulating base, a heat-resistant and heat-conductive insulating film, for example, a glass-baked film is formed thereon, a pair of electrodes is further provided, and an upwardly bent convex portion is provided at the tip. A flat lead conductor is connected to each electrode, a fusible alloy piece is connected between both electrodes, a flux is coated from the fusible alloy piece to the tip convex portion of the lead conductor, and an insulating cover plate is placed on the insulating base. The insulating cover plate can be disposed and sealed around the insulating cover plate to the insulating base with an adhesive.

 図15は発熱体付き温度ヒューズの使用状態を示す回路図であり、Pは温度ヒューズを、2は可溶合金片を、Rは抵抗体を、ICは異常電圧検出通電回路を、Dはツエナダイオードを、Trはトランジスターを、Eは電池を、Sは充電機をそれぞれ示し、過充電により電池電圧が上昇すると、ツエナダイオードDが降伏導通され、トランジスターTrが導通して抵抗体Rに電流が流され、その抵抗体Rの通電発熱で可溶合金片2が溶断される。前記異常電圧検出通電回路は電池パックに装着した回路板に形成してある。 FIG. 15 is a circuit diagram showing a use state of a thermal fuse with a heating element, where P is a thermal fuse, 2 is a fusible alloy piece, R is a resistor, IC is an abnormal voltage detection energizing circuit, and D is a Zener. A diode, Tr indicates a transistor, E indicates a battery, and S indicates a charger. When the battery voltage increases due to overcharging, the Zener diode D is turned on and the transistor Tr is turned on, and a current flows through the resistor R. The fusible alloy piece 2 is blown off by the heat generated by the current flowing through the resistor R. The abnormal voltage detection energizing circuit is formed on a circuit board mounted on the battery pack.

 図1に示す構成のフィルムタイプ薄型ヒューズである。下側樹脂フィルム41及び上側樹脂フィルム42には、長辺7.3mm,短辺3.4mm,厚み188μmのポリエチレンテレフタレートフィルムを使用した。扁平リード導体1には、厚み100μm、リード導体先端から折り曲げ凸部11までの距離2.3mm,凸部11の高さ0.50mm,内側部巾2.6mm,外側部巾3.5mmで、先端部にCu膜を被覆したNi導体を使用し、リード導体間の間隔を0.8mmとした。可溶合金片2には組成がIn52%−Sn36%−Bi12%で、直径0.3mm,長さ4.4mmの丸線材を使用し、フラックス3には、ロジンを主成分とするものを使用し、加熱溶融させたものを両リード導体1,1の凸部11,11間に流延し、冷却凝固させた。
 フィルム同士の封着は超音波溶着により行い、リード導体とフィルム間の融着はセラミックチップ加圧下での電磁誘導加熱により行った。
2 is a film type thin fuse having a configuration shown in FIG. 1. As the lower resin film 41 and the upper resin film 42, a polyethylene terephthalate film having a long side of 7.3 mm, a short side of 3.4 mm, and a thickness of 188 μm was used. The flat lead conductor 1 has a thickness of 100 μm, a distance of 2.3 mm from the tip of the lead conductor to the bent protrusion 11, a height of the protrusion 11 of 0.50 mm, an inner width of 2.6 mm, and an outer width of 3.5 mm. A Ni conductor coated with a Cu film at the tip was used, and the distance between the lead conductors was 0.8 mm. For the fusible alloy piece 2, a round wire having a composition of In52% -Sn36% -Bi12%, a diameter of 0.3 mm and a length of 4.4 mm is used, and the flux 3 mainly composed of rosin is used. The heated and melted product was cast between the protruding portions 11 of the lead conductors 1 and 1 and solidified by cooling.
Sealing of the films was performed by ultrasonic welding, and fusion between the lead conductor and the film was performed by electromagnetic induction heating under pressure of a ceramic chip.

 〔比較例1〕
 実施例1に対しリード導体の凸部折り曲げに代えポンチ加工により凸部を形成することを試みたが、厚み100μmのリード導体では亀裂が発生したので、リード導体厚みを300μmにしてポンチ加工により凸部(高さは、実施例1の折り曲げ凸部高さに同じとした)を設けた。これ以外は実施例1と同じとした。
[Comparative Example 1]
An attempt was made to form a convex portion by punching instead of bending the convex portion of the lead conductor in Example 1. However, a crack was generated in the lead conductor having a thickness of 100 μm. (The height was the same as the height of the bent protrusion of Example 1). Except for this, it was the same as Example 1.

 実施例1及び比較例1の各試料数を50箇としてリード導体間の抵抗値を測定し、標準偏差を算出して散布度を評価したところ、実施例1の抵抗値のバラツキが比較例1に較べて著しく小さいことが明かになった。
 この結果から、実施例、比較例ともフラックス厚みを高くするために堰を設けた点では共通しているが、実施例ではリード導体の厚みを薄くでき、上側樹脂フィルムの湾曲封着に基づき発生する曲げ反力のリード導体負担分を軽減できるので、リード導体と可溶合金片との接合界面を安定に保持でき、その界面の抵抗値を安定に維持できることが確認できる。
When the number of samples in each of Example 1 and Comparative Example 1 was 50, the resistance between the lead conductors was measured, and the standard deviation was calculated to evaluate the degree of dispersion. It became clear that it was significantly smaller than
From these results, the embodiment and the comparative example are common in that a weir is provided in order to increase the flux thickness.However, in the embodiment, the thickness of the lead conductor can be reduced, and this occurs due to the curved sealing of the upper resin film. Since it is possible to reduce the burden of the bending reaction force on the lead conductor, it can be confirmed that the bonding interface between the lead conductor and the fusible alloy piece can be stably maintained, and the resistance value of the interface can be maintained stably.

 実施例1に対し上側樹脂フィルムの厚みを125μmにして薄くした以外、実施例1に同じとした。 同 じ Same as Example 1 except that the thickness of the upper resin film was reduced to 125 μm to make it thinner.

 実施例2の各試料数を50箇としてリード導体間の抵抗値を測定し、標準偏差を算出して散布度を評価したところ、実施例1の抵抗値のバラツキに対して同等以上であることが判明した。
 この結果は、上側樹脂フィルムの湾曲封着に基づき発生する反りを実施例1より小さくできたためであり、リード導体と可溶合金片との接合界面の安定化による界面抵抗値のより一層の安定維持が期待できる。
The resistance value between the lead conductors was measured with the number of each sample of Example 2 being 50, the standard deviation was calculated, and the degree of dispersion was evaluated. There was found.
This result is because the warpage generated due to the curved sealing of the upper resin film could be made smaller than in Example 1, and the interface resistance value was further stabilized by stabilizing the bonding interface between the lead conductor and the fusible alloy piece. Maintenance can be expected.

 図2に示す構成のフィルムタイプ薄型ヒューズである。下側樹脂フィルム41には、長辺7.3mm,短辺3.4mm,厚み188μmのポリエチレンテレフタレートフィルムを使用し、上側樹脂フィルム42には外郭が下側樹脂フィルムと同じで厚みが125μmのポリエチレンテレフタレートフィルムを使用した。扁平リード導体1には、厚み100μm、下側樹脂フィルム表面に面一の表出部101とリード導体先端から折り曲げ凸部11までの距離2.3mm,凸部11の高さ0.6mm,内側部巾2.6mm,外側部巾3.5mmで、表出部を包含する先端部にCu膜を被覆したNi導体を使用し、両リード導体先端間の間隔を0.8mmとした。可溶合金片2には組成がIn52%−Sn36%−Bi12%で、直径0.3mm,長さ4.4mmの丸線材を使用し、フラックス3には、ロジンを主成分とするものを使用し、加熱溶融させたフラックスを両リード導体の凸部11,11間に流延し、冷却凝固させた。
 リード導体と下側樹脂フィルムとの界面は熱溶着し、フィルム同士の封着は超音波溶着により行った。
3 is a film type thin fuse having a configuration shown in FIG. 2. A polyethylene terephthalate film having a long side of 7.3 mm, a short side of 3.4 mm and a thickness of 188 μm is used for the lower resin film 41, and a 125 μm thick polyethylene having the same outer shell as the lower resin film is used for the upper resin film 42. A terephthalate film was used. The flat lead conductor 1 has a thickness of 100 μm, a flat surface 101 on the lower resin film surface, a distance from the lead conductor tip to the bent protrusion 11 of 2.3 mm, a height of the protrusion 11 of 0.6 mm, and an inner side. A Ni conductor having a width of 2.6 mm, an outer width of 3.5 mm, and a Cu film coated on the front end including the exposed portion was used, and the distance between both ends of the lead conductor was 0.8 mm. For the fusible alloy piece 2, a round wire having a composition of In52% -Sn36% -Bi12%, a diameter of 0.3 mm and a length of 4.4 mm is used, and the flux 3 mainly composed of rosin is used. Then, the heat-fused flux was cast between the projections 11 of the two lead conductors, and was cooled and solidified.
The interface between the lead conductor and the lower resin film was thermally welded, and the films were sealed by ultrasonic welding.

 実施例3の試料数を50箇としてリード導体間の抵抗値を測定し、標準偏差を算出して散布度を評価したところ、実施例2の抵抗値のバラツキに対して同等であることが判明した。 The resistance value between the lead conductors was measured with 50 samples in Example 3, and the standard deviation was calculated to evaluate the degree of dispersion. As a result, it was found that the dispersion was equivalent to the variation in resistance value in Example 2. did.

 図5に示す構成の樹脂モールドタイプ薄型ヒューズである。扁平リード導体1には、厚み100μm、リード導体先端から折り曲げ凸部11までの距離2.3mm,凸部11の高さ0.50mm,内側部巾2.6mm,外側部巾3.5mmで、先端部にCu膜を被覆したNi導体を使用し、リード導体間の間隔を0.8mmとした。可溶合金片2には組成がIn52%−Sn36%−Bi12%で、直径0.3mm,長さ4.4mmの丸線材を使用し、フラックス3には、ロジンを主成分とするmのを使用し、加熱溶融させたフラックスを両リード導体の凸部11,11間に流延し、冷却凝固させた。
 樹脂モールド被覆層40は、常温硬化エポキシ樹脂液の浸漬塗装により設けた。
6 is a resin mold type thin fuse having a configuration shown in FIG. 5. The flat lead conductor 1 has a thickness of 100 μm, a distance of 2.3 mm from the tip of the lead conductor to the bent protrusion 11, a height of the protrusion 11 of 0.50 mm, an inner width of 2.6 mm, and an outer width of 3.5 mm. A Ni conductor coated with a Cu film at the tip was used, and the distance between the lead conductors was 0.8 mm. For the fusible alloy piece 2, a round wire having a composition of In52% -Sn36% -Bi12%, a diameter of 0.3 mm and a length of 4.4 mm is used. The used and melted flux was cast between the protruding portions 11 of the two lead conductors, and was cooled and solidified.
The resin mold coating layer 40 was provided by dip coating of a room temperature-cured epoxy resin liquid.

 〔比較例2〕
 実施例4に対しリード導体の凸部折り曲げに代えポンチ加工により凸部を形成することを試みたが、厚み100μmのリード導体では亀裂が発生したので、リード導体厚みを300μmにしてポンチ加工により凸部(高さは、実施例4の折り曲げ凸部高さに同じとした)を設けた。これ以外は実施例4と同じとした。
[Comparative Example 2]
An attempt was made to form a convex portion by punching instead of bending the convex portion of the lead conductor in Example 4. However, a crack was generated in the lead conductor having a thickness of 100 μm. (The height was the same as the height of the bent convex portion in Example 4). Except for this, it was the same as Example 4.

 実施例4及び比較例2の各試料数を50箇として所定のヒートサイクル試験ののち、リード導体間の抵抗値を測定し、標準偏差を算出して散布度を評価したところ、実施例4の抵抗値のバラツキが比較例2に較べて著しく小さいことが判明した。
 この結果から、実施例4、比較例2ともフラックス厚みを高くするために堰を設けた点では共通しているが、実施例4ではリード導体の厚みを薄くでき、ヒートサイクルに基づき発生する曲げモーメントのリード導体作用分を軽減できるので、リード導体と可溶合金片との接合界面を安定に保持でき、その界面の抵抗値を安定に維持できることが確認できる。
After performing a predetermined heat cycle test with 50 samples in each of Example 4 and Comparative Example 2, the resistance value between the lead conductors was measured, the standard deviation was calculated, and the degree of dispersion was evaluated. It was found that the variation in the resistance value was significantly smaller than that in Comparative Example 2.
From this result, it is common in Example 4 and Comparative Example 2 that a weir is provided to increase the flux thickness. However, in Example 4, the thickness of the lead conductor can be reduced, and the bending generated based on the heat cycle can be achieved. Since the amount of the moment acting on the lead conductor can be reduced, it can be confirmed that the joint interface between the lead conductor and the fusible alloy piece can be stably maintained, and the resistance value of the interface can be stably maintained.

 図6に示す構成の基板タイプ薄型ヒューズである。絶縁基体51には、長辺7.0mm,短辺2.6mm,厚み0.3mmの長方形アルミナセラミックス板を使用した。電極6はAgペーストの塗布焼き付けにより形成し、長辺2.8mm,短辺1.8mm,厚み35μmとし、電極間隔を0.9mmとした。扁平リード導体1には、内側部分の巾1.2mm,外側部分の巾3.0mm,厚み0.2mmでリード導体先端の折り曲げ凸部110の高さ0.5mmの錫メッキNiリード導体を使用した。可溶合金片2には、組成がIn52%−Sn36%−Bi12%であり、長辺2.5mm,短辺0.85mm,厚みが0.23mmの圧延線材を使用し、各電極前端とリード導体先端との間隔を1.2mmにした。フラックス3には、ロジンを主成分とするものを使用し、加熱溶融させて可溶合金片全長及び電極並びにリード導体先端にわたり付着させた。絶縁カバープレート52には、長辺4.5mm,短辺1.6mm,厚み0.2mmの長方形アルミナセラミックス板を使用し、絶縁カバープレート52の周囲を絶縁基体51及び扁平リード導体1にエポキシ樹脂接着剤7で封着し、かつリード導体と絶縁基体端面との間を同じエポキシ樹脂接着剤で封止した。 基板 A board type thin fuse having the configuration shown in FIG. As the insulating base 51, a rectangular alumina ceramic plate having a long side of 7.0 mm, a short side of 2.6 mm, and a thickness of 0.3 mm was used. The electrode 6 was formed by applying and baking an Ag paste, the long side was 2.8 mm, the short side was 1.8 mm, the thickness was 35 μm, and the electrode interval was 0.9 mm. As the flat lead conductor 1, a tin-plated Ni lead conductor having a width of 1.2 mm at the inner portion, a width of 3.0 mm at the outer portion, a thickness of 0.2 mm, and a height of the bent protrusion 110 at the tip of the lead conductor of 0.5 mm is used. did. For the fusible alloy piece 2, a rolled wire having a composition of In52% -Sn36% -Bi12%, a long side of 2.5 mm, a short side of 0.85 mm, and a thickness of 0.23 mm is used. The distance from the conductor tip was 1.2 mm. A flux containing rosin as a main component was used as the flux 3, and was heated and melted to adhere over the entire length of the fusible alloy piece, the electrode, and the tip of the lead conductor. A rectangular alumina ceramic plate having a long side of 4.5 mm, a short side of 1.6 mm, and a thickness of 0.2 mm is used for the insulating cover plate 52, and the periphery of the insulating cover plate 52 is formed of an epoxy resin on the insulating base 51 and the flat lead conductor 1. It was sealed with an adhesive 7, and the space between the lead conductor and the end face of the insulating substrate was sealed with the same epoxy resin adhesive.

 〔比較例3〕
 実施例5に対し、リード導体先端の上向き折り曲げ凸部に代え、リード導体先端から0.6mm位置にポンチ加工により高さ0.5mmの凸部を形成し、各電極前端とリード導体先端との間隔を0.6mmにした。これ以外は実施例5に同じとした。
[Comparative Example 3]
In contrast to the fifth embodiment, instead of the upwardly bent protruding portion of the lead conductor tip, a projection having a height of 0.5 mm is formed by punching at a position 0.6 mm from the tip of the lead conductor. The spacing was 0.6 mm. Other than this, it was the same as Example 5.

 実施例5及び比較例3のそれぞれの試料数を30箇とし、0.1アンペア通電下でシリコンオイル中に浸漬し、シリコンオイルを1分間に1℃の割合で昇温し、試料が分断作動したときのシリコンオイル温度を測定したところ、実施例5では93.0〜95.9℃であったが、比較例3では93.0〜98.0℃であった。
 この結果は、比較例3では、絶縁基体に対し絶縁カバープレートの傾きが避けられず、溶融された可溶合金片の分断球状化に対する空間スペースが一定せず、分断球状化のバラツキが大きいのに対し、実施例5では、両リード導体先端のある所定の巾をもって上向き折り曲げ凸部により絶縁カバープレートを傾きなく保持でき、溶融された可溶合金片の分断球状化に対する空間スペースの一様性を保証でき、分断球状化のバラツキを充分に小さくし得るためと推定できる。
The number of samples in each of Example 5 and Comparative Example 3 was 30, and the sample was immersed in silicon oil under a current of 0.1 amperes, and the temperature of the silicon oil was raised at a rate of 1 ° C. per minute, and the sample was split. When the silicon oil temperature was measured, the temperature was 93.0 to 95.9 ° C. in Example 5, but was 93.0 to 98.0 ° C. in Comparative Example 3.
This result indicates that, in Comparative Example 3, the inclination of the insulating cover plate with respect to the insulating substrate was unavoidable, the space space for the spheroidization of the molten fusible alloy piece was not constant, and the spheroidization variability was large. On the other hand, in the fifth embodiment, the insulating cover plate can be held without inclination by the upwardly-bent convex portion having a predetermined width at both ends of the lead conductors, and the uniformity of the spatial space with respect to the spheroidization of the molten fusible alloy piece is improved. Can be guaranteed, and the dispersion of the divided spheroids can be sufficiently reduced.

 図9に示す構成の薄型ヒューズである。絶縁基体51には、長辺7.0mm,短辺2.6mm,厚み0.5mmのポリエチレンテレフタレート板を使用した。扁平リード導体1には、内側部分の巾1.2mm,外側部分の巾3.0mm,厚み0.2mm、リード導体先端から距離1.2mmの位置に全巾にわたる高さ0.5mmの折り曲げ凸部11を設け、先端部にAgをめっきしたNiリード導体を使用し、リード導体1、1間の間隔を0.9mmとするように絶縁基体51の表面に加熱下で埋着した。可溶合金片2には、組成がIn52%−Sn36%−Bi12%であり、長辺2.5mm,短辺0.85mm,厚みが0.23mmの圧延線材を使用した。フラックス3には、ロジンを主成分とするものを使用し、加熱溶融させて両リード導体の凸部11,11間に流延し、冷却凝固させた。絶縁カバープレート52には、絶縁基体51と同一の外郭寸法でで下面周囲に0.3mmの凸条を設けた厚み0.5mmのポリエチレンテレフタレート板を使用し、凸条と絶縁基体との間をエポキシ樹脂接着剤で封止した。 薄型 A thin fuse having the configuration shown in FIG. As the insulating base 51, a polyethylene terephthalate plate having a long side of 7.0 mm, a short side of 2.6 mm, and a thickness of 0.5 mm was used. The flat lead conductor 1 has an inner portion having a width of 1.2 mm, an outer portion having a width of 3.0 mm, a thickness of 0.2 mm, and a bent protrusion having a height of 0.5 mm over the entire width at a distance of 1.2 mm from the tip of the lead conductor. A portion 11 was provided, and a Ni lead conductor plated with Ag was used at the tip, and was embedded under heating on the surface of the insulating substrate 51 so that the interval between the lead conductors 1 and 1 was 0.9 mm. As the fusible alloy piece 2, a rolled wire having a composition of In52% -Sn36% -Bi12%, a long side of 2.5 mm, a short side of 0.85 mm, and a thickness of 0.23 mm was used. The flux 3 was mainly composed of rosin, and was heated and melted, cast between the projections 11 of the two lead conductors, and solidified by cooling. For the insulating cover plate 52, a 0.5 mm thick polyethylene terephthalate plate having the same outer dimensions as the insulating substrate 51 and having a 0.3 mm convex line around the lower surface is used, and a gap between the convex line and the insulating substrate is used. Sealed with epoxy resin adhesive.

 〔比較例4〕
 実施例6に対し、高さ0.5mmの折り曲げ凸部11に代え、ポンチ加工により巾0.7mm、高さ0.5mmの凸部を形成した。これ以外は実施例6に同じとした。
[Comparative Example 4]
In contrast to Example 6, instead of the bent convex portion 11 having a height of 0.5 mm, a convex portion having a width of 0.7 mm and a height of 0.5 mm was formed by punching. Except for this, it was the same as Example 6.

 実施例6及び比較例4のそれぞれの試料数を30箇とし、0.1アンペア通電下でシリコンオイル中に浸漬し、シリコンオイルを1分間に1℃の割合で昇温し、試料が分断作動したときのシリコンオイル温度を測定したところ、実施例6では93.0〜95.9℃であったが、比較例4では93.0〜98.1℃であった。
 この結果は、比較例4では、絶縁基体に対し絶縁カバープレートの傾きが避けられず、溶融された可溶合金片の分断球状化に対する空間スペースが一定せず、分断球状化のバラツキが大きいのに対し、実施例6では、両リード導体のある所定の巾をもって曲げ凸部により絶縁カバープレートを傾きなく保持でき、溶融された可溶合金片の分断球状化に対する空間スペースの一様性を保証でき、分断球状化のバラツキを充分に小さくし得るためと推定できる。
The number of samples in each of Example 6 and Comparative Example 4 was 30. The sample was immersed in silicon oil under a current of 0.1 amperes, and the temperature of the silicon oil was raised at a rate of 1 ° C. per minute, and the sample was split. When the silicon oil temperature at that time was measured, it was 93.0 to 95.9 ° C. in Example 6, but was 93.0 to 98.1 ° C. in Comparative Example 4.
This result indicates that, in Comparative Example 4, the inclination of the insulating cover plate with respect to the insulating base was inevitable, the spatial space for the spheroidization of the molten fusible alloy piece was not constant, and the spheroidization variation was large. On the other hand, in Example 6, the insulating cover plate can be held by the bent convex portion with a predetermined width of both lead conductors without inclination, and the uniformity of the space for the spheroidization of the molten fusible alloy piece is assured. It can be presumed that the dispersion of the divided spheroids can be sufficiently reduced.

 図10に示す構成の基板−樹脂モールドタイプ薄型ヒューズである。絶縁基体51には、長辺7.0mm,短辺2.6mm,厚み0.3mmの長方形アルミナセラミックス板を使用した。電極6は、Agペーストの塗布焼き付けにより形成し、長辺2.8mm,短辺1.8mm,厚み35μmとし、電極間隔を0.9mmとした。扁平リード導体1には、内側部分の巾1.2mm,外側部分の巾3.0mm,厚み0.2mmで、リード導体先端の折り曲げ凸部110の高さ0.5mmの錫メッキNiリード導体を使用した。可溶合金片2には、組成がIn52%−Sn36%−Bi12%であり、長辺2.5mm,短辺0.85mm,厚み0.23mmの圧延線材を使用し、各電極前端とリード導体先端との間隔を1.2mmにした。フラックス3には、ロジンを主成分とするものを使用し、加熱溶融させて可溶合金片全長及び電極並びにリード導体先端にわたり流延付着させた。
 樹脂モールド被覆層53は、常温硬化エポキシ樹脂液の滴下塗装により設けた。
It is a board-resin mold type thin fuse having the configuration shown in FIG. As the insulating base 51, a rectangular alumina ceramic plate having a long side of 7.0 mm, a short side of 2.6 mm, and a thickness of 0.3 mm was used. The electrode 6 was formed by applying and baking an Ag paste, having a long side of 2.8 mm, a short side of 1.8 mm, a thickness of 35 μm, and an electrode interval of 0.9 mm. For the flat lead conductor 1, a tin-plated Ni lead conductor having a width of 1.2 mm at the inner portion, a width of 3.0 mm at the outer portion, a thickness of 0.2 mm, and a height of 0.5 mm at the bent convex portion 110 at the tip of the lead conductor is used. used. The fusible alloy piece 2 has a composition of In52% -Sn36% -Bi12%, and uses a rolled wire having a long side of 2.5 mm, a short side of 0.85 mm, and a thickness of 0.23 mm. The distance from the tip was 1.2 mm. A flux containing rosin as a main component was used as the flux 3, and was heated and melted and cast and attached over the entire length of the fusible alloy piece, the electrode, and the tip of the lead conductor.
The resin mold coating layer 53 was provided by drop coating of a cold-setting epoxy resin liquid.

 〔比較例5〕
 実施例7に対し、リード導体先端の上向き折り曲げ凸部を省略した以外、実施例7に同じとした。
[Comparative Example 5]
Example 7 was the same as Example 7 except that the upwardly bent convex portion of the lead conductor tip was omitted.

 実施例7及び比較例5のそれぞれの試料数を30箇とし、0.1アンペア通電下でシリコンオイル中に浸漬し、シリコンオイルを1分間に1℃の割合で昇温し、試料が分断作動したときのシリコンオイル温度を測定したところ、実施例7に対し比較例5では相当の作動遅延が認められた。
 この結果は、実施例7では、リード導体先端の上向き折り曲げ凸部を堰としフラックスを可溶合金片近傍にも充分な量で付着させ得、溶融合金の両側への分断球状化を迅速に生じさせ得るのに対し、比較例5では溶融合金の両側への迅速な分断球状化がフラックス量の不足のために保証し難いためであると推定できる。
The number of samples in each of Example 7 and Comparative Example 5 was 30. The sample was immersed in silicon oil under a current of 0.1 amperes, and the temperature of the silicon oil was raised at a rate of 1 ° C. per minute, and the sample was split. When the temperature of the silicone oil was measured, the operation delay was considerably delayed in Comparative Example 5 as compared with Example 7.
This result indicates that, in Example 7, the flux was allowed to adhere to the vicinity of the fusible alloy piece in a sufficient amount by using the upwardly bent protruding portion of the lead conductor tip as a weir, and the molten alloy was quickly divided and spheroidized on both sides. On the other hand, in Comparative Example 5, it can be presumed that rapid spheroidization of the molten alloy to both sides of the molten alloy is difficult to guarantee due to insufficient flux.

 上記した温度ヒューズは、通電による自己発熱で可溶合金片を溶断させて通電を遮断する薄型電流ヒューズとしても利用可能である。 The above-mentioned thermal fuse can also be used as a thin current fuse that cuts off the fusible alloy piece by self-heating due to energization and interrupts energization.

本発明に係る温度ヒューズの一実施例を示す図面である。3 is a view illustrating an embodiment of a thermal fuse according to the present invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is a drawing showing another embodiment of the thermal fuse according to the present invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is a drawing showing another embodiment of the thermal fuse according to the present invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is a drawing showing another embodiment of the thermal fuse according to the present invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is a drawing showing another embodiment of the thermal fuse according to the present invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is a drawing showing another embodiment of the thermal fuse according to the present invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is a drawing showing another embodiment of the thermal fuse according to the present invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is a drawing showing another embodiment of the thermal fuse according to the present invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is a drawing showing another embodiment of the thermal fuse according to the present invention. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is a drawing showing another embodiment of the thermal fuse according to the present invention. 本発明に係る温度ヒューズの上記とは別の実施例の要部を示す図面である。It is a drawing which shows the principal part of another Example of the thermal fuse which concerns on this invention from the above. 本発明に係る温度ヒューズの上記とは別の実施例の要部を示す図面である。It is a drawing which shows the principal part of another Example of the thermal fuse which concerns on this invention from the above. 本発明に係る温度ヒューズの上記とは別の実施例を示す図面である。It is a drawing showing another embodiment of the thermal fuse according to the present invention. 本発明において使用する扁平リード導体の異なる多数の例を示す図面である。It is a drawing showing many examples of different flat lead conductors used in the present invention. 本発明に係る温度ヒューズのうちの発熱体付きの実施例の作動機構を示す回路図である。FIG. 4 is a circuit diagram showing an operation mechanism of an embodiment with a heating element in the thermal fuse according to the present invention. 本発明に係る温度ヒューズが装着される電池パックを示す図面である。3 is a view illustrating a battery pack to which a thermal fuse according to the present invention is mounted. 従来の薄型温度ヒューズの一例を示す図面である。1 is a drawing showing an example of a conventional thin thermal fuse. 従来の薄型温度ヒューズの上記とは別の例を示す図面である。It is a drawing which shows another example of the above-mentioned conventional thin thermal fuse. 従来の薄型温度ヒューズの上記とは別の例を示す図面である。It is a drawing which shows another example of the above-mentioned conventional thin thermal fuse. 従来の薄型温度ヒューズの上記とは別の例を示す図面である。It is a drawing which shows another example of the above-mentioned conventional thin thermal fuse. 従来の薄型温度ヒューズのフラックスの形状を示す図面である。4 is a view showing a shape of a flux of a conventional thin thermal fuse. 従来の温度ヒューズの問題点を説明するために使用した図面である。6 is a diagram used to explain a problem of a conventional thermal fuse.

符号の説明Explanation of reference numerals

 1      扁平リード導体
 11     折り曲げ凸部
 110    上向き折り曲げ凸部
 2      可溶合金片
 3      フラックス
 41     下側樹脂フィルム
 42     上側樹脂フィルム
 43     補助フィルム
 51     絶縁基体
 52     絶縁カバー
 53     水密樹脂被覆
 6      電極
 7      接着剤
REFERENCE SIGNS LIST 1 flat lead conductor 11 bent protrusion 110 upward bent protrusion 2 fusible alloy piece 3 flux 41 lower resin film 42 upper resin film 43 auxiliary film 51 insulating base 52 insulating cover 53 watertight resin coating 6 electrode 7 adhesive

Claims (19)

可溶合金片の厚み中心が扁平リード導体の厚み中心よりも上側に位置された状態で可溶合金片が扁平リード導体間に接続され、可溶合金片及びその近傍のリード導体部分にフラックスが被覆され、これらが下側樹脂フィルムと上側樹脂フィルムとにより前記リード導体を気密に導出して封止され、上側樹脂フィルムがその内面側の出っ張り内容物上で湾曲されてなる温度ヒューズにおいて、可溶合金片端とフィルム封止箇所との間のリード導体部分に折り曲げ凸部が設けられ、この凸部が前記フラックスの塗布に対する堰とされていることを特徴とする薄型温度ヒューズ。 The fusible alloy piece is connected between the flat lead conductors in a state where the thickness center of the fusible alloy piece is located above the thickness center of the flat lead conductor, and flux is applied to the fusible alloy piece and the lead conductor portion in the vicinity thereof. These are covered with a lower resin film and an upper resin film, and the lead conductor is air-tightly drawn out and sealed, and the upper resin film is bent on the protruding contents on the inner surface side. A thin thermal fuse, wherein a bent convex portion is provided on a lead conductor portion between one end of a molten alloy and a film sealing portion, and the convex portion serves as a weir for application of the flux. 下側樹脂フィルムの下面に一対の扁平リード導体端部が固着されると共に各リード導体の先端から所定の距離を隔てた部分が膨出加工されて前記フィルムの上面に現出され、その現出部間に可溶合金片が接続され、前記の可溶合金片及び前記表出部の可溶合金片端近傍部分にフラックスが被覆され、上側樹脂フィルムが前記下側樹脂フィルムの周囲に封着されると共に上側樹脂フィルムがその内面側の出っ張り内容物上で湾曲されてなる温度ヒューズにおいて、前記リード導体現出部の可溶合金片端近傍部分に凸部が設けられ、この凸部が前記フラックスの塗布に対する堰とされていることを特徴とする薄型温度ヒューズ。 A pair of flat lead conductor ends are fixed to the lower surface of the lower resin film, and a portion separated by a predetermined distance from the tip of each lead conductor is bulged to appear on the upper surface of the film. The fusible alloy piece is connected between the portions, the fusible alloy piece and a portion of the exposed portion near the fusible alloy piece end are coated with flux, and the upper resin film is sealed around the lower resin film. In addition, in the thermal fuse in which the upper resin film is curved on the projecting contents on the inner surface side, a convex portion is provided in the vicinity of one end of the fusible alloy at the lead conductor exposed portion, and the convex portion is formed of the flux. A thin thermal fuse characterized by being a weir for coating. 下側樹脂フィルムの下面に一対の扁平リード導体端部が固着されると共に各リード導体の先端から所定の距離を隔てた部分が所定の巾をもつて前記フィルム上面にほぼ面一上面のランド部とこのランド部後方端側の折り曲げ凸部とに曲げ加工されて前記フィルム上面に現出され、その現出されたランド部間に可溶合金片が接続され、前記の可溶合金片及前記ランド部のほぼ全面にフラックスが前記折り曲げ凸部を堰としてフラックスが塗布され、上側樹脂フィルムが前記下側樹脂フィルムの周囲に封着されると共に上側樹脂フィルムがその内面側の出っ張り内容物上で湾曲され、下側樹脂フィルムの下面に補助樹脂フィルムが貼着されていることを特徴とする薄型温度ヒューズ。 A pair of flat lead conductor ends is fixed to the lower surface of the lower resin film, and a portion separated by a predetermined distance from the tip of each lead conductor has a predetermined width and a land portion substantially flush with the upper surface of the film. And a bent convex portion on the rear end side of the land portion is bent and exposed on the upper surface of the film, and a fusible alloy piece is connected between the exposed land portions, and the fusible alloy piece and the Flux is applied to almost the entire land portion using the bent convex portion as a weir, the upper resin film is sealed around the lower resin film, and the upper resin film is formed on the protruding contents on the inner surface thereof. A thin thermal fuse characterized by being curved and having an auxiliary resin film adhered to a lower surface of a lower resin film. 上側樹脂フィルムが下側樹脂フィルムよりも薄くされている請求項1〜3何れか記載の薄型温度ヒューズ。 The thin thermal fuse according to claim 1, wherein the upper resin film is thinner than the lower resin film. 扁平リード導体間に可溶合金片が接続され、可溶合金片及び可溶合金片端から所定の距離を隔てたリード導体箇所までフラックスが付着され、これらを包囲して樹脂層が被覆された温度ヒューズにおいて、可溶合金片端から所定の距離を隔てたリード導体部分に折り曲げ凸部が設けられ、この凸部が前記フラックスの塗布に対する堰とされていることを特徴とする薄型温度ヒューズ。 The temperature at which the fusible alloy piece is connected between the flat lead conductors, the flux is attached to the fusible alloy piece and the lead conductor at a predetermined distance from one end of the fusible alloy piece, and the resin layer is coated surrounding these. A thin thermal fuse, wherein a bent convex portion is provided on a lead conductor portion at a predetermined distance from one end of a fusible alloy, and the convex portion serves as a weir for application of the flux. 折り曲げ凸部の両脇上端にアールが付されている請求項1〜5何れか記載の薄型温度ヒューズ。 The thin thermal fuse according to any one of claims 1 to 5, wherein a radius is provided at upper ends on both sides of the bent convex portion. 絶縁基体上に一対の電極が設けられ、各電極に扁平リード導体が接続され、これらの電極間に可溶合金片が接続され、可溶合金片及び可溶合金片端から扁平リード導体先端部にわたりフラックスが付着され、前記絶縁基体上に水密絶縁被覆体が設けられた温度ヒューズにおいて、扁平リード導体の先端または可溶合金片から所定の距離を隔てた扁平リード導体部分に折り曲げ凸部が設けられ、この凸部が前記フラックスの塗布に対する堰とされていることを特徴とする薄型温度ヒューズ。 A pair of electrodes are provided on the insulating base, a flat lead conductor is connected to each electrode, a fusible alloy piece is connected between these electrodes, and the fusible alloy piece and the fusible alloy piece end to the flat lead conductor tip end. In a thermal fuse to which a flux is attached and a watertight insulating cover is provided on the insulating base, a bent convex portion is provided at a flat lead conductor portion at a predetermined distance from the tip of the flat lead conductor or a fusible alloy piece. A thin thermal fuse, wherein the convex portion serves as a weir against the application of the flux. 可溶合金片端が扁平リード導体にも接続されている請求項7記載の薄型温度ヒューズ。 The thin thermal fuse according to claim 7, wherein one end of the fusible alloy is also connected to the flat lead conductor. 絶縁基体上に一対の扁平リード導体が設けられ、これらの扁平リード導体間に可溶合金片が接続され、可溶合金片及び可溶合金片端から扁平リード導体先端部にわたりフラックスが付着され、前記絶縁基体上に水密絶縁被覆体が設けられた温度ヒューズにおいて、扁平リード導体の先端または可溶合金片から所定の距離を隔てた扁平リード導体部分に折り曲げ凸部が設けられ、この凸部が前記フラックスの塗布に対する堰とされていることを特徴とする薄型温度ヒューズ。 A pair of flat lead conductors are provided on the insulating base, a fusible alloy piece is connected between these flat lead conductors, and flux is attached from the fusible alloy piece and one end of the fusible alloy to the flat lead conductor tip. In a thermal fuse in which a water-tight insulating cover is provided on an insulating substrate, a bent convex portion is provided on a flat lead conductor portion at a predetermined distance from the tip of the flat lead conductor or a fusible alloy piece, and the convex portion is A thin thermal fuse characterized by being a weir against flux application. 水密絶縁被覆体が両扁平リード導体の折り曲げ凸部に当接されたカバープレートと、該カバープレート周囲を絶縁基体に封着した接着剤により構成されている請求項7〜9何れか記載の薄型温度ヒューズ。 The thin type according to any one of claims 7 to 9, wherein the water-tight insulating cover is constituted by a cover plate in contact with the bent projections of both flat lead conductors, and an adhesive sealing the periphery of the cover plate to an insulating base. Thermal fuse. 可溶合金片の厚み中心が扁平リード導体の厚み中心よりも上側に位置された状態で扁平リード導体間に可溶合金片が接続され、可溶合金片及びその近傍のリード導体部分にフラックスが付着され、これらが下側樹脂フィルムと上側樹脂フィルムとにより前記リード導体を気密に導出して封止され、上側樹脂フィルムがその内面側の出っ張り内容物上で湾曲されてなる温度ヒューズにおいて、扁平リード導体の先端に折り曲げ凸部が設けられ、この凸部前面に可溶合金片端が接続され、同凸部が前記フラックスの塗布に対する堰とされていることを特徴とする薄型温度ヒューズ。 The fusible alloy piece is connected between the flat lead conductors in a state where the thickness center of the fusible alloy piece is located above the thickness center of the flat lead conductor, and flux is applied to the fusible alloy piece and the lead conductor portion in the vicinity thereof. In a thermal fuse in which the lead conductor is airtightly led out and sealed by a lower resin film and an upper resin film, and the upper resin film is curved on a protruding content on the inner surface side thereof, A thin thermal fuse, wherein a bent convex portion is provided at the tip of a lead conductor, one end of a fusible alloy is connected to the front surface of the convex portion, and the convex portion serves as a weir for application of the flux. 凸部の両脇上端にアールが付されている請求項7〜11何れか記載の薄型温度ヒューズ。 The thin thermal fuse according to any one of claims 7 to 11, wherein the upper end of each side of the projection is rounded. 上側樹脂フィルムが下側樹脂フィルムよりも薄くされている請求項11または12記載の薄型温度ヒューズ。 13. The thin thermal fuse according to claim 11, wherein the upper resin film is thinner than the lower resin film. 扁平リード導体として、温度ヒューズボディ内のリード導体部分の巾が可溶合金片の巾より広くされている導体が用いられている請求項1〜13何れか記載の薄型温度ヒューズ。 The thin thermal fuse according to any one of claims 1 to 13, wherein a conductor in which a width of a lead conductor portion in the thermal fuse body is wider than a width of the fusible alloy piece is used as the flat lead conductor. 温度ヒューズボディ内のリード導体部分が圧延により形成されている請求項14記載の薄型温度ヒューズ。 15. The thin thermal fuse according to claim 14, wherein a lead conductor portion in the thermal fuse body is formed by rolling. リード導体がNi製とされ、少なくとも先端部にSn,Cu,Ag,Auの何れか、またはこれらを主成分とする合金が被覆されている請求項1〜15何れか記載の薄型温度ヒューズ。 The thin thermal fuse according to any one of claims 1 to 15, wherein the lead conductor is made of Ni, and at least a tip portion is coated with one of Sn, Cu, Ag, and Au, or an alloy containing these as main components. 可溶合金片を溶断させるための発熱体が付設されている請求項1〜16何れか記載の薄型温度ヒューズ。 17. The thin thermal fuse according to claim 1, further comprising a heating element for fusing the fusible alloy piece. 可溶合金片がIn−Sn−Bi系合金、Bi−Sn−Sb系合金、In−Sn系合金、In−Bi系合金、Bi−Sn系合金、In系合金の何れかであり、In−Sn−Bi系合金の組成が(1)43%<Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%<Sn≦44%,55%<In≦74%,1%≦Bi<20%、(4)46%<Sn≦70%,18%≦In<48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In<37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%<Sn≦60%,20%≦In<50%,12%<Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、Bi−Sn−Sb系合金の組成が(16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、In−Sn系合金の組成が(18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、In−Bi系合金の組成が(20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、Bi−Sn系合金の組成が(22)50%<Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、In系合金の組成が(24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加の何れかであることを特徴とする請求項1〜17何れか記載の薄型温度ヒューズ。 The fusible alloy piece is any one of an In-Sn-Bi-based alloy, a Bi-Sn-Sb-based alloy, an In-Sn-based alloy, an In-Bi-based alloy, a Bi-Sn-based alloy, and an In-based alloy. The composition of the Sn—Bi alloy is (1) 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55% (3) 25% <Sn ≦ 44%, 55% <In ≦ 74%, 1% ≦ Bi <20%, (4) 46% <Sn ≦ 70%, 18% ≦ In <48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In <37%, remaining Bi (however, Bi57.5%, In25.2%, Sn17.3% and Bi54%, (Excluding the ranges of Bi ± 2%, In and Sn ± 1% based on In29.7% and Sn16.3%), (6) 10% ≦ Sn ≦ 18 %, 37% ≦ In ≦ 43%, residual Bi, (7) 25% <Sn ≦ 60%, 20% ≦ In <50%, 12% <Bi ≦ 33%, (8) (1) to (7) To 100 parts by weight of any one of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P, in a total amount of 0.01 to 7 parts by weight, (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, residual Bi, (10) Add 3 to 5 parts by weight of Bi to 100 parts by weight of 47% ≦ Sn ≦ 49%, 51% ≦ In ≦ 53%. (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12%, remaining In, (12) 0.3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, ( 13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35%, residual In, (14) Ag, Au, Cu, Ni, Pd, 100 parts by weight of any of (9) to (13) One or more of t, Sb, Ga, Ge, and P are added in a total amount of 0.01 to 7 parts by weight, (15) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, and the remaining Bi is 100. A total of 0.01 to 7 parts by weight of one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P is added to parts by weight, and the composition of the Bi-Sn-Sb-based alloy is (16) 30% ≦ Sn ≦ 70%, 0.3% ≦ Sb ≦ 20%, residual Bi, (17) Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge in 100 parts by weight of (16) , P is added in an amount of 0.01 to 7 parts by weight in total, and the composition of the In—Sn alloy is (18) 52% ≦ In ≦ 85%, the remaining Sn is (100) of (19) and (18). One part or two or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P are added in a weight part in a total of 0.01 to 0.01%. By weight, Ag, Au, Cu, Ni, Pd, Pt are added to 100 parts by weight of the composition of (20) 45% ≦ Bi ≦ 55%, the balance of In, (21) and (20). , Sb, Ga, Ge, P, or a total of 0.01 to 7 parts by weight of a Bi-Sn based alloy having a composition of (22) 50% <Bi ≦ 56%, residual Sn, (23) ) (22) 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P or a total of 0.01 to 7 parts by weight, and the composition of the In-based alloy is (24) A total of 0.01 to 7 parts by weight of one or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P is added to 100 parts by weight of In. (25) 90% ≦ In 100 parts by weight of In ≦ 99.9%, 0.1% ≦ Ag ≦ 10%, Au, Bi, Cu, Ni, Pd, Pt, , Ga, Ge, P, one or more of 0.01 to 7 parts by weight in total, (26) 100 parts by weight of 95% ≦ In ≦ 99.9%, 0.1% ≦ Sb ≦ 5% 18. One or two or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P are added in a total amount of 0.01 to 7 parts by weight. The thin thermal fuse according to any of the above. 請求項1〜16何れかまたは18記載の薄型温度ヒューズを電流ヒューズとして使用することを特徴とする薄型電流ヒューズ。 A thin current fuse, wherein the thin thermal fuse according to any one of claims 1 to 16 is used as a current fuse.
JP2003274265A 2002-07-22 2003-07-14 Thin thermal fuse Expired - Fee Related JP4269264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274265A JP4269264B2 (en) 2002-07-22 2003-07-14 Thin thermal fuse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002212192 2002-07-22
JP2003274265A JP4269264B2 (en) 2002-07-22 2003-07-14 Thin thermal fuse

Publications (2)

Publication Number Publication Date
JP2004071552A true JP2004071552A (en) 2004-03-04
JP4269264B2 JP4269264B2 (en) 2009-05-27

Family

ID=32032664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274265A Expired - Fee Related JP4269264B2 (en) 2002-07-22 2003-07-14 Thin thermal fuse

Country Status (1)

Country Link
JP (1) JP4269264B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070759A1 (en) * 2003-02-05 2004-08-19 Sony Chemicals Corp. Protection element
JP2006234250A (en) * 2005-02-24 2006-09-07 Ferrotec Corp Heating/cooling device and its manufacturing method
JP2007274814A (en) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The Bus duct
JP2008226796A (en) * 2007-03-16 2008-09-25 Uchihashi Estec Co Ltd Board type temperature fuse, and manufacturing method of board type temperature fuse
JP2010522421A (en) * 2007-03-26 2010-07-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Thermal fuse
EP2306485A1 (en) * 2009-10-01 2011-04-06 Samsung SDI Co., Ltd. Current interrupting device and secondary battery including current interrupting device
JP2013122861A (en) * 2011-12-12 2013-06-20 Panasonic Corp Thermal fuse and manufacturing method of the same
CN113380591A (en) * 2021-05-11 2021-09-10 国网浙江嘉善县供电有限公司 Anti-external-damage line-connection ceramic tube

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070759A1 (en) * 2003-02-05 2004-08-19 Sony Chemicals Corp. Protection element
US7088216B2 (en) 2003-02-05 2006-08-08 Sony Chemicals Corp. Protective device
JP2006234250A (en) * 2005-02-24 2006-09-07 Ferrotec Corp Heating/cooling device and its manufacturing method
JP2007274814A (en) * 2006-03-31 2007-10-18 Furukawa Electric Co Ltd:The Bus duct
JP2008226796A (en) * 2007-03-16 2008-09-25 Uchihashi Estec Co Ltd Board type temperature fuse, and manufacturing method of board type temperature fuse
JP2010522421A (en) * 2007-03-26 2010-07-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Thermal fuse
EP2306485A1 (en) * 2009-10-01 2011-04-06 Samsung SDI Co., Ltd. Current interrupting device and secondary battery including current interrupting device
JP2011077023A (en) * 2009-10-01 2011-04-14 Samsung Sdi Co Ltd Current breaking element, and secondary battery equipped with the same
CN102035186A (en) * 2009-10-01 2011-04-27 三星Sdi株式会社 Current interrupting device and secondary battery including current interrupting device
US8741453B2 (en) 2009-10-01 2014-06-03 Samsung Sdi Co., Ltd. Current interrupting device and secondary battery including current interrupting device
JP2013122861A (en) * 2011-12-12 2013-06-20 Panasonic Corp Thermal fuse and manufacturing method of the same
CN113380591A (en) * 2021-05-11 2021-09-10 国网浙江嘉善县供电有限公司 Anti-external-damage line-connection ceramic tube
CN113380591B (en) * 2021-05-11 2022-11-04 国网浙江嘉善县供电有限公司 Anti-external-damage line-connection ceramic tube

Also Published As

Publication number Publication date
JP4269264B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
US9153401B2 (en) Protective device
JP4290426B2 (en) Thermal fuse
US20070024407A1 (en) Temperature fuse element, temperature fuse and battery using the same
JP2005026036A (en) Fuse and fuse manufacturing method
JP2006049063A (en) Fabrication method of thermo sensor and thermo protector as well as thermo sensor
JP2007059295A (en) Circuit protective element and protection method of circuit
EP1465224B1 (en) Thermal fuse having a function of a current fuse
US7173512B2 (en) Thermistor having improved lead structure and secondary battery having the thermistor
JP2004071552A (en) Thin thermal fuse
JP4369008B2 (en) Alloy type temperature fuse
JP2004190113A (en) Alloy-type thermal fuse and material for thermal fuse element
JP4912447B2 (en) Alloy type thermal fuse
JP4112297B2 (en) Thermo protector and method of manufacturing thermo protector
KR20190141719A (en) Protection element
JPH0412428A (en) Fuse element
JP4409747B2 (en) Alloy type thermal fuse
JP2000090792A (en) Alloy type thermal fuse
JP4610807B2 (en) Thin fuse
JP2000348583A (en) Alloy temperature fuse
JP3358677B2 (en) Thin fuse
JP4083471B2 (en) Thin fuse and method of manufacturing the same
JP2001118480A (en) Thin film temperature fuse
JPH10106425A (en) Thin type fuse
JP2003045305A (en) Thin fuse
JP2004227962A (en) Thin fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees