JP4118738B2 - Thermal element and thermo protector - Google Patents

Thermal element and thermo protector Download PDF

Info

Publication number
JP4118738B2
JP4118738B2 JP2003131273A JP2003131273A JP4118738B2 JP 4118738 B2 JP4118738 B2 JP 4118738B2 JP 2003131273 A JP2003131273 A JP 2003131273A JP 2003131273 A JP2003131273 A JP 2003131273A JP 4118738 B2 JP4118738 B2 JP 4118738B2
Authority
JP
Japan
Prior art keywords
elastic
stress
thermal element
fusible
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003131273A
Other languages
Japanese (ja)
Other versions
JP2004335333A (en
Inventor
俊朗 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2003131273A priority Critical patent/JP4118738B2/en
Publication of JP2004335333A publication Critical patent/JP2004335333A/en
Application granted granted Critical
Publication of JP4118738B2 publication Critical patent/JP4118738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermally Actuated Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子・電気機器用のサーモプロテクタ及びこのサーモプロテクタ用の感熱エレメントに関するものである。
【0002】
【従来の技術】
電子・電気機器における異常発熱を感知し、この感知に基づくカットオフ動作で機器を電源から遮断して機器の過熱を防止し、火災の発生を未然に防止するサーモプロテクタとして、弾性応力を利用する応力型、バイメタルスイッチのような熱応力型が存在する。
応力型としては、たとえば図9の(イ)に示すように弾性金属片1’を強制的に曲げ、この曲げ弾性金属片1’の両端を曲げ反力に抗して一対の固定端子72’,72’に所定融点の可溶合金(はんだ)2’で接合し、周囲温度が可溶合金2’の融点まで昇温されて可溶合金2’が溶融されると、図9の(ロ)に示すように弾性金属片1’の曲げ応力を解除させて弾性金属片1’の一端と一方の固定端子72’との接合を解離して通電を遮断するものが知られている。
【0003】
また、図10の(イ)に示すように一端にリード端子13’を取付けた金属ケース14’内に一端側から所定融点のペレット2’、座板15’、圧縮スプリング1’、座板16’を順次に収容し、更に外周が金属ケース内面に摺動接触されたコンタクト42’を収容し、リードピン貫通ブッシング17’を金属ケース14’の他端側に固定し、このブッシング17’とコンタクト42’との間に引外しスプリング18’を組み込んでリード端子13’→金属ケース14’→コンタクト42’→リードピン41’を経る導通路を構成し、周囲温度がペレット2’の融点まで昇温されてペレット2’が溶融されると、図10の(ロ)に示すように圧縮スプリング1’の圧縮応力を解放させて引外しスプリング18’の圧縮応力でリードピン41’の先端からコンタクト42’を離隔させて前記導通路を遮断するものも知られており、いわゆる、ペレットタイプ温度ヒューズと称されている。
前記の熱応力型としては、既述した通りバイメタルスイッチが知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、図9に示す応力型では、弾性金属片の曲げ反力を支持する可溶合金(はんだ)での応力分布が複雑であり、応力集中が避けられずクリープに基づく動作不良が発生し易い。また、図10に示すペレットタイプでは、座板による均圧化のためにペレットを一様に圧縮できても構造が複雑であり、小型化やコスト面での不利を免れ得ない。
更に、バイメタルタイプは復帰型であり、オン・オフの繰返しが進むにつれてヒステリシスにより動作温度が経時的に上昇する危険性がある。
【0005】
本発明の目的は、弾性体と可溶体との複合体であり弾性体の応力状態が可溶体の溶融で解除されて動作するタイプの感熱エレメントまたは熱応力の発生で動作するタイプの感熱エレメントの長期安定性を保証し、かかる感熱エレメントを使用するサーモプロテクタの動作の信頼性の向上を図ることにある。
【0006】
〔課題を解決するための手段〕
請求項1に係る感熱エレメント、多孔弾性シート、または多数の孔を穿った弾性板或いは網状弾性体に応力が作用していると共に多孔弾性シート、または多数の孔を穿った弾性板の孔或いは網状弾性体の網目が変形されており、その孔或いは網目に可溶体が充填され、その充填可溶体に前記応力に釣りあった応力が生じていることを特徴とする
【0007】
請求項2に係る感熱エレメントは、多孔弾性シート、または多数の孔を穿った弾性板或いは網状弾性体に引っ張り応力が作用していると共に多孔弾性シート、または多数の孔を穿った弾性板の孔或いは網状弾性体の網目が変形されており、その孔或いは網目に可溶体が充填され、その充填可溶体に前記引っ張り応力に釣りあった応力が生じていることを特徴とする。
【0008】
請求項3に係る感熱エレメント、請求項1または2の感熱エレメントにおいて、可溶体が可溶合金または熱可塑性樹脂であることを特徴とする。
【0009】
請求項4に係るサーモプロテクタは、請求項1〜3何れか記載の感熱エレメントを有し、該感熱エレメントの可溶体の溶融による弾性体の応力解除で動作することを特徴とする。
【0010】
請求項5に係るサーモプロテクタは、請求項2のシート状または板状の感熱エレメントの一端に絶縁フィルムが取付けられ、該絶縁フィルムが固定電極と可動電極との間に介在され、前記シート状または板状の感熱エレメントの他端が固定され、前記の絶縁フィルムに設けられた孔において電極の接点が接触されていることを特徴とする。
【0011】
請求項6に係るサーモプロテクタは、請求項5記載のサーモプロテクタにおいて、可動電極にバイメタルが使用されていることを特徴とする。
【0012】
請求項7に係るサーモプロテクタは、一対のリード導体間または電極間に可溶合金片が接続され、請求項2の可溶体の溶融により収縮する感熱エレメントが、その収縮方向が可溶合金片の長手方向に向けられて可溶合金片の中間に貼り合わされていることを特徴とする。
【0013】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1の(イ)は本発明に係る感熱エレメントの一実施例を示す平面図、図1の(ロ)は図1の(イ)の点線枠内の拡大図、図1の(ハ)は図1の(ロ)におけるハ−ハ断面図である。
図1において、1は穿孔弾性板、2は穿孔弾性板1の孔11に充填固化した可溶体であり、穿孔弾性板1が引張り応力状態とされ、可溶体2が圧縮応力状態とされ、これらの引張り応力状態と圧縮応力状態との平衡により全体が平面形状に安定に保持されている。前記穿孔弾性板1の引張り応力の分布を可及的に一様にするように孔の寸法、密度、パターン等を設定してあり、図示のものでは、孔列の1列ごとに孔ピッチpを半ピッチずらしてある。孔の形状は円形の外、長円形、三角形、四角形等とすることも可能である。
【0014】
上記感熱エレメントの穿孔弾性板1の引張り応力δ及び充填可溶体2の圧縮応力δについては、穿孔弾性板を引っ張って弾性限界内のεで伸長し、この伸長状態で孔に可溶体を充填し、この充填可溶体の固化をまって穿孔弾性板の引っ張りを解除し、その解除のもとでの力の釣り合いから引張り応力δ及び圧縮応力δを求めることができ、穿孔弾性板の厚みと充填可溶体との厚みが等しく、穿孔弾性板の断面積Sと充填可溶体の断面積Sとの比S/SをS/S=n、穿孔弾性板のヤング率をE、充填可溶体のヤング率をEとすると
【数1】
δ=nδ (1)
【数2】
〔1+(δ/E)〕=(1+ε)〔1−(δ/E) (2)
が成立し、
【数3】
δ=ε/〔(1/E)+(1+ε)(n/E)〕 (3)
【数4】
δ=ε/〔(1/nE)+(1+ε)(1/E)〕 (4)
で与えられる。
【0015】
而して、可溶体が溶融されると、式(3)において可溶体のヤング率Eが0になり、穿孔弾性板が引張り応力δから0になって穿孔弾性板が収縮し、その収縮率Aがδ/E、すなわち
【数5】
A=ε/〔1+(ε+1)(nE/E)〕 (5)
で与えられる。
従って、本発明によれば、ほぼ可溶体の融点にて収縮率Aで熱収縮する感熱エレメントを提供できる。
【0016】
本発明において、弾性体には穿孔弾性板例えば穿孔ゴム板の外、多孔弾性シート例えば発泡ゴムシートや弾性金属線の網状体(クロス箇所は剛節とすることが好ましい)を使用することができ、可溶体には所定融点の可溶合金や熱可塑性樹脂を使用できる。
可溶体に可溶合金を使用する場合、固相線温度に達すると液化が始まり、ヤング率Eが急激に減少し、式(3)で示すδを高感度で減少させることができるから、ほぼ固相線温度を本感熱エレメントの感熱温度とすることができる。
可溶体に熱可塑性樹脂を使用する場合、軟化温度に達すると液化が始まり、ヤング率Eが急激に減少し、式(3)で示すδを高感度で減少させることができるから、ほぼ軟化温度を本感熱エレメントの感熱温度とすることができる。
【0017】
図1に示した実施例においては、弾性体1に作用する引張り応力の分布の中心と可溶体2に作用する圧縮応力の分布の中心とが感熱エレメントの厚み中央に位置しているから、偶力が0であり、反りの無い安定な平面状を保持させることができる。
【0018】
図2は本発明に係る感熱エレメントの別実施例を示している。
図2において、Bは感熱エレメント本体を示し、穿孔弾性板若しくは多孔弾性シートまたは網状弾性体等1の孔11または網目に可溶合金或いは熱可塑性樹脂等の可溶体2を充填固化し、穿孔弾性板若しくは多孔弾性シートまたは網状弾性体等1に上記した引張り応力δを、可溶体2に上記した圧縮応力δをそれぞれ発生させてある。3は感熱エレメント本体Bの片面または両面に貼着した可溶合金シート片または熱可塑性樹脂シート片であり、上記の充填可溶合金または熱可塑性樹脂と同材質のもの、またはその可溶合金よりも固相線温度がやや低いもの或いはその熱可塑性樹脂よりも軟化点がやや低いものを使用できる。
この別実施例では、万一、感熱エレメント本体Bに偶力が内在していても、可溶合金シート片または熱可塑性樹脂シート片3の貼着により曲げ剛性が高められるから、全体の反りをよく抑えることができる。
【0019】
上記した実施例では、弾性体の引張り応力を可溶体で支えて可溶体に圧縮応力を発生させているが、弾性体の応力状態を圧縮応力状態としこの弾性体の圧縮応力を可溶体で支えて可溶体に引張り応力を発生させること、弾性体の応力状態をプラス方向剪断応力状態としこの弾性体のプラス方向剪断応力を可溶体で支えて可溶体にマイナス方向剪断応力を発生させることも可能である。
【0020】
本発明に係る感熱エレメントを製造するには、(1)多孔弾性シート、穿孔弾性板または網状弾性体を前記弾性限界内の引っ張り歪εで延伸し、この延伸物に溶融した可溶合金或いは熱可塑性樹脂を浸漬含浸し、含浸物の冷却固化をまって弾性体の延伸引っ張りを解除する方法、(2)多孔弾性シート、穿孔弾性板または網状弾性体にシート状可溶合金シート或いは熱可塑性樹脂シートを重ねて加熱圧延し、弾性体を延伸しつつ可溶体を溶融含浸し、含浸物の冷却固化をまって圧延から解放する方法、(3)多孔弾性シート、穿孔弾性板または網状弾性体に可溶合金或いは熱可塑性樹脂の粉末を供給し、これを加熱圧延して弾性体を延伸しつつ可溶体を溶融含浸し、含浸物の冷却固化をまって圧延から解放する方法等を使用できる。
【0021】
図3は本発明に係るサーモプロテクタの一実施例を示す図面であり、図3の(イ)は常時のオン状態を、図3の(ロ)はオフ動作時をそれぞれ示している。
図3において、41は固定電極、42は可動電極、40は可動電極42に設けた接点である。この接点は固定電極側に設けることもできる。Bは本発明に係る感熱エレメント、5は感熱エレメントBの一端に連結した絶縁フィルムであり、孔51を有し、平常時は、図3の(イ)に示すように、孔51において、接点40を接触させ、感熱エレメントの熱収縮Bのもとで孔51を接点40に対し移動させ得るように、感熱エレメントBの他端を固定してある。
【0022】
今、周囲の温度上昇により感熱エレメントBが加熱され前記可溶体2の固相線温度若しくは軟化点Tに達すると、感熱エレメントBの収縮に伴い絶縁フィルム5が固定電極41側に向け移動され、これに伴い前記の孔51が接点40に対して相対的に移動されて、図3の(ロ)に示すように接点40に絶縁フィルム5が局部的に介入され接点40が絶縁されてオフ状態にされる。
而して、図3の(イ)において、接点40をオフにできる絶縁フィルムの移動長さ、すなわち感熱エレメントBの収縮長さをΔL、感熱エレメントBの長さをLとすると、式(5)に示す感熱エレメントの収縮率AをA≧ΔL/Lを満たすように設定することにより、サーモプロテクタをほぼ温度Tの機器温度でオフ動作させて機器への通電を遮断できる。
【0023】
本発明に係るサーモプロテクタは、基板上に設け、ケースで封止し、ケースから固定電極の端子及び可動電極の端子をそれぞれ導出した部品の形態、回路板上に直接に設けた形態等で実施でき、後者の場合、回路導体を固定電極として使用できる。
【0024】
図4は本発明に係るサーモプロテクタの別実施例を示す断面図であり、図4の(イ)は常時のオン状態を、図4の(ロ)はオフ動作状態をそれぞれ示している。
図4において、41は固定電極、42は可動電極である。Bは本発明に係る感熱エレメント、5は感熱エレメントBの一端に連結した絶縁フィルムであり、この絶縁フィルム5に接点材400を貫通固着し、平常時は図4の(イ)に示すように、接点材400を両電極41,42に接触させるように絶縁フィルム5を両電極41,42間に介入させ、感熱エレメントBの他端を固定し、感熱エレメントBの収縮のもとで接点材400を電極41,42間から脱出させ得るように、式(5)に示す感熱エレメントの収縮率Aを設定してある。
従って、周囲の温度上昇により感熱エレメントBが加熱され前記可溶体2の固相線温度若しくは軟化点Tに達すると、感熱エレメントが固定電極41側に向け収縮され、これに伴い図4の(ロ)に示すように、前記の接点材400が両電極41,42間から脱離され、接点400が絶縁フィルム5で絶縁されてオフ状態にされ機器への通電が遮断される。
【0025】
図5は本発明に係るサーモプロテクタの上記とは別の実施例を示す断面図であり、バイメタル型であり、図5の(イ)はスイッチオン時を、図5の(ロ)はスイッチオフ時を、図5の(ハ)は動作ロック状態をそれぞれ示している。
図5において、41は固定電極である。42は可動電極でありバイメタルが用いられている。40は可動電極2に設けた接点であり、前記と同様に固定電極側に設けることもできる。Bは本発明に係る感熱エレメント、5は感熱エレメントBの一端に連結した絶縁フィルムであり、孔51を有し、平常時にはその孔51近傍のフィルム部分を両電極41,42間に介入させ、孔51において接点40を接触させてあり、感熱エレメントBの他端を固定し、感熱エレメントBの収縮のもとで孔51を接点40から外して接点40を絶縁フィルムの介入で絶縁するようにしてある。
【0026】
図5において、バイメタル可動電極42が感熱エレメントBの動作温度Tよりも低い温度でオン・オフ作動されるように設定されているとする。しかしながら、バイメタルスイッチでは、オン・オフの累積回数が多くなると、動作温度が本来の動作温度よりも高い温度側にシフトされる危険性がある。而るに、図5に示すサーモプロテクタでは、温度Tのもとで感熱エレメントBを収縮させて図5の(ハ)に示すように接点40を絶縁フィルム5の介入で絶縁することができ、バイメタル42の本来の動作温度よりも高い温度Tでのオン・オフ動作を実質的にロックできる。
【0027】
図6は本発明に係るサーモプロテクタの上記とは別の実施例を示す図面であり、図6の(イ)は常時のオン状態を、図6の(ロ)はオフ動作状態をそれぞれ示している。
図6において、41は固定電極である。42は可動電極を示し、本発明に係る感熱エレメントBと薄肉金属板6との積層体からなり、感熱エレメントBの収縮により外側に曲げ変形される。40は固定電極41に設けた接点材であり、可動電極42側に設けることもてきる。
【0028】
この積層体において、薄肉金属板6の厚みをh、弾性率をe、感熱エレメントの厚みをt、弾性率をE、収縮率をaとすれば、感熱エレメントBの収縮による積層体42(可動電極)の曲げ半径rは、e≫E、t≫hとして、
【数6】
r=t〔{(E/e)+(h/t)}{(t/h)+(e/E)}〕/(6a) (6)
で与えられ、可動電極42を固定電極1から脱離させるのに必要な可動電極42の曲げ変形の曲げ半径をrとすれば、感熱エレメントの前記した温度Tでの収縮率Aを式6を満たすa以上するように設定してある。
従って、周囲の温度上昇により感熱エレメントが温度Tに加熱されると、図6の(ロ)に示すように、可動電極42がその曲げ変形により固定電極41から脱離されてオフ状態とされる。
【0029】
図7は本発明に係るサーモプロテクタの上記とは別の実施例を示している。
図7において、Cは可溶合金片3の中間に本発明に係る感熱エレメントBを貼り合わせたヒューズエレメントであり、感熱エレメントBが単独では前記した充填固化可溶体の液相線温度若しくは軟化点Tで収縮し、可溶合金片3の固相線温度が感熱エレメントBの充填固化可溶体の液相線温度若しくは軟化点Tとほぼ等しくされている。71,71は一対の扁平リード導体であり、ヒューズエレメントCの可溶合金片3の各端に接合してある。8は保護ケースである。
このサーモプロテクタでは、周囲温度がほぼTに昇温されると、可溶合金片3が溶融されると共に感熱エレメントBが収縮される結果、リード導体71と感熱エレメントBとの間の可溶合金片箇所30が引っ張り切断されてカットオフ動作するに至る。
【0030】
図8は本発明に係るサーモプロテクタの上記とは別の実施例を示し、絶縁基板81上に一対の電極72,72を設け、各電極72にリード導体(丸線の使用が可能)71を連結し、可溶合金片3の中間に本発明に係る感熱エレメントBを貼り合わせたヒューズエレメントCの可溶合金片3の各端を各電極72接合し、基板81上に保護カバー82を被冠してあり、動作機構は図7に示した実施例と実質的に同じである。
【0031】
【発明の効果】
本発明に係る感熱エレメントによれば、応力状態の弾性体の応力を可溶体で支え可溶体の溶融で弾性体の応力状態を解除し、その際の弾性体の変形で感熱動作させるエレメントにおいて、前記弾性体応力に釣り合う可溶体の応力分布を充分に一様化できるから、可溶体のクリープをよく抑制して感熱動作の安定化を図ることができる。
特に、請求項2の感熱エレメントでは、弾性体の応力の中心と可溶体の応力の中心とを実質的に一致させて偶力の発生を排除できるから、反りの無いコンパクトな姿態にできる。
本発明に係るサーモプロテクタにおいては、前記感熱エレメントを用いており、その感熱エレメントのために動作の安定化を図ることができる。
特に、請求項6の感熱エレメントでは、バイメタル可動電極のオン・オフが繰り返されてヒステリシスのためにオン・オフ温度が高温側にシフトされても、本発明に係る感熱エレメントの動作によってオフ状態にロックできるから、バイメタルスィツチの安全動作を保証できる。
【図面の簡単な説明】
【図1】本発明に係る感熱エレメントの一実施例を示す図面である。
【図2】本発明に係る感熱エレメントの上記とは別の実施例を示す図面である。
【図3】本発明に係るサーモプロテクタの一実施例を示す図面である。
【図4】本発明に係るサーモプロテクタの上記とは別の実施例を示す図面である。
【図5】本発明に係るサーモプロテクタの上記とは別の実施例を示す図面である。
【図6】本発明に係るサーモプロテクタの上記とは別の実施例を示す図面である。
【図7】本発明に係るサーモプロテクタの上記とは別の実施例を示す図面である。
【図8】本発明に係るサーモプロテクタの上記とは別の実施例を示す図面である。
【図9】従来のサーモプロテクタを示す図面である。
【図10】従来の上記とは別のサーモプロテクタを示す図面である。
【符号の説明】
1 弾性体
2 可溶体
B 感熱エレメント
3 可溶体片
41 固定電極
42 可動電極
40 接点
400 接点材
5 絶縁フィルム
51 孔
6 金属薄板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoprotector for an electronic / electrical device and a thermal element for the thermoprotector.
[0002]
[Prior art]
Elastic stress is used as a thermo protector that detects abnormal heat generation in electronic and electrical equipment, cuts off the equipment from the power supply by cut-off operation based on this detection, prevents the equipment from overheating, and prevents the occurrence of fire. There are stress types and thermal stress types such as bimetal switches.
As the stress type, for example, as shown in FIG. 9A, the elastic metal piece 1 ′ is forcibly bent, and both ends of the bent elastic metal piece 1 ′ are resisted against bending reaction force and a pair of fixed terminals 72 ′. , 72 ′ with a soluble alloy (solder) 2 ′ having a predetermined melting point, the ambient temperature is raised to the melting point of the soluble alloy 2 ′, and the soluble alloy 2 ′ is melted as shown in FIG. As shown in FIG. 2, there is known a method in which the bending stress of the elastic metal piece 1 ′ is released to dissociate the connection between one end of the elastic metal piece 1 ′ and one fixed terminal 72 ′ to cut off the energization.
[0003]
Further, as shown in FIG. 10 (a), a pellet 2 ′ having a predetermined melting point, a seat plate 15 ′, a compression spring 1 ′, and a seat plate 16 from one end side in a metal case 14 ′ having a lead terminal 13 ′ attached to one end. 'Is sequentially accommodated, and the contact 42' whose outer periphery is slidably contacted with the inner surface of the metal case is accommodated, and the lead pin through bushing 17 'is fixed to the other end side of the metal case 14'. A trip spring 18 'is assembled between the lead terminal 13', the metal case 14 ', the contact 42', and the lead pin 41 ', and the ambient temperature is raised to the melting point of the pellet 2'. When the pellet 2 'is melted, the compressive stress of the compression spring 1' is released as shown in FIG. 10B, and the contact 42 'from the tip of the lead pin 41' is released by the compressive stress of the tripping spring 18 '. Release There is also known one that blocks the conduction path at a distance and is called a so-called pellet type thermal fuse.
As described above, a bimetal switch is known as the thermal stress type.
[0004]
[Problems to be solved by the invention]
However, in the stress type shown in FIG. 9, the stress distribution in the soluble alloy (solder) that supports the bending reaction force of the elastic metal piece is complicated, and stress concentration is unavoidable and malfunction due to creep is likely to occur. . In the pellet type shown in FIG. 10, the structure is complicated even if the pellet can be uniformly compressed for pressure equalization by the seat plate, and the disadvantages in terms of downsizing and cost cannot be avoided.
Further, the bimetal type is a return type, and there is a risk that the operating temperature rises with time due to hysteresis as the ON / OFF repetition progresses.
[0005]
An object of the present invention is a composite of an elastic body and a soluble body, and is a thermal element of a type that operates by releasing the stress state of the elastic body by melting the soluble body or a type of thermal element that operates by generation of thermal stress. The purpose is to guarantee long-term stability and to improve the reliability of the operation of a thermo protector using such a thermal element.
[0006]
[Means for solving the problems]
The heat-sensitive element according to claim 1, the porous elastic sheet, or the elastic plate or net-like elastic body having a large number of holes and stress is acting on the porous elastic sheet or the elastic plate having a large number of holes or the net-like shape of the elastic plate. The mesh of the elastic body is deformed, and the hole or the mesh is filled with a soluble material, and a stress commensurate with the stress is generated in the filled soluble material .
[0007]
The heat-sensitive element according to claim 2 is a porous elastic sheet, or an elastic plate or a net-like elastic body having a large number of holes and a tensile stress acting on the porous elastic sheet or an elastic plate having a large number of holes. Alternatively, the mesh of the net-like elastic body is deformed, the hole or the net is filled with a soluble material, and a stress commensurate with the tensile stress is generated in the filled soluble material.
[0008]
The heat-sensitive element according to claim 3 and the heat-sensitive element according to claim 1 or 2, wherein the fusible body is a fusible alloy or a thermoplastic resin.
[0009]
Thermoprotector according to claim 4, having a heat-sensitive element as set forth in any one of claims 1 to 3, characterized in that it operates in the stress release of the elastic body due to melting of the fusible element of the thermosensitive element.
[0010]
The thermo protector according to claim 5 is provided with an insulating film attached to one end of the sheet-like or plate-like thermal element of claim 2, and the insulating film is interposed between the fixed electrode and the movable electrode, The other end of the plate-like thermal element is fixed, and the contact of the electrode is in contact with the hole provided in the insulating film.
[0011]
Thermoprotector according to claim 6 is the thermo-protector according to claim 5, it characterized in that the bimetal movable electrode is used.
[0012]
In the thermoprotector according to claim 7, the fusible alloy piece is connected between the pair of lead conductors or between the electrodes, and the thermosensitive element that shrinks by melting the fusible body of claim 2, the shrinking direction of the fusible alloy piece is It is oriented in the longitudinal direction and bonded to the middle of the soluble alloy piece .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 (a) is a plan view showing an embodiment of the thermal element according to the present invention, FIG. 1 (b) is an enlarged view in the dotted frame of FIG. 1 (a), and FIG. FIG. 2 is a cross-sectional view of FIG.
In FIG. 1, 1 is a perforated elastic plate, 2 is a soluble body filled and solidified in the hole 11 of the perforated elastic plate 1, the perforated elastic plate 1 is in a tensile stress state, and the soluble body 2 is in a compressive stress state. Due to the balance between the tensile stress state and the compressive stress state, the whole is stably held in a planar shape. The size, density, pattern, and the like of the holes are set so that the tensile stress distribution of the perforated elastic plate 1 is made as uniform as possible. Is shifted by a half pitch. The shape of the hole may be a circle, an oval, a triangle, a quadrangle, or the like.
[0014]
The compressive stress [delta] 2 of the perforated elastic plate 1 of the tensile stress [delta] 1 and filled fusible second heat-sensitive element, by pulling the perforated elastic plate is stretched by epsilon 0 in the elastic limit, fusible into a hole in the stretched state , And the tension of the perforated elastic plate is released and the tensile stress δ 1 and the compressive stress δ 2 can be obtained from the balance of the forces under the release. The thickness of the plate is equal to the thickness of the filled soluble body, the ratio S 1 / S 2 between the cross-sectional area S 1 of the perforated elastic plate and the cross-sectional area S 2 of the filled soluble body is S 1 / S 2 = n, and the perforated elastic plate When the Young's modulus of E 1 is E 1 and the Young's modulus of the filled soluble material is E 2 ,
δ 2 = n δ 1 (1)
[Expression 2]
[1+ (δ 1 / E 1 )] = (1 + ε 0 ) [1− (δ 2 / E 2 ) (2)
Is established,
[Equation 3]
δ 1 = ε 0 / [(1 / E 1 ) + (1 + ε 0 ) (n / E 2 )] (3)
[Expression 4]
δ 2 = ε 0 / [(1 / nE 1 ) + (1 + ε 0 ) (1 / E 2 )] (4)
Given in.
[0015]
Thus, when the fusible body is melted, the Young's modulus E 2 of the fusible body becomes 0 in the formula (3), the perforated elastic plate becomes the tensile stress δ 1 to 0, and the perforated elastic plate contracts. Shrinkage rate A is δ 1 / E 1 , that is,
A = ε 0 / [1+ (ε 0 +1) (nE 1 / E 2 )] (5)
Given in.
Therefore, according to the present invention, it is possible to provide a heat-sensitive element that is thermally contracted at a contraction rate A at substantially the melting point of the soluble material.
[0016]
In the present invention, a perforated elastic plate such as a perforated rubber plate, a perforated elastic sheet such as a foamed rubber sheet, or a net of elastic metal wires (a cross point is preferably a rigid joint) can be used as the elastic body. A soluble alloy or thermoplastic resin having a predetermined melting point can be used as the soluble material.
When a fusible alloy is used for the fusible substance, liquefaction starts when the solidus temperature is reached, and the Young's modulus E 2 decreases rapidly, so that δ 1 represented by equation (3) can be reduced with high sensitivity. In general, the solidus temperature can be set as the thermal temperature of the present thermal element.
When a thermoplastic resin is used for the fusible body, liquefaction starts when the softening temperature is reached, the Young's modulus E 2 rapidly decreases, and δ 1 represented by formula (3) can be reduced with high sensitivity. The softening temperature can be the heat sensitive temperature of the present heat sensitive element.
[0017]
In the embodiment shown in FIG. 1, the center of the distribution of tensile stress acting on the elastic body 1 and the center of the distribution of compressive stress acting on the fusible body 2 are located at the center of the thickness of the thermal element. The force is 0, and a stable flat shape without warping can be maintained.
[0018]
FIG. 2 shows another embodiment of the thermal element according to the present invention.
In FIG. 2, B indicates a heat sensitive element body, and a perforated elastic plate, a perforated elastic sheet, a net elastic body 1 or the like 11 or a net is filled with a soluble body 2 such as a soluble alloy or a thermoplastic resin, and solidified. The above-described tensile stress δ 1 is generated on the plate, the porous elastic sheet or the net-like elastic body 1, and the above-described compressive stress δ 2 is generated on the fusible body 2. 3 is a fusible alloy sheet piece or a thermoplastic resin sheet piece adhered to one or both sides of the thermosensitive element body B, and is made of the same material as the above-mentioned filled fusible alloy or thermoplastic resin, or its fusible alloy. Also, those having a slightly lower solidus temperature or those having a slightly lower softening point than the thermoplastic resin can be used.
In this alternative embodiment, even if a couple of forces is inherent in the thermosensitive element main body B, the bending rigidity is increased by sticking the fusible alloy sheet piece or the thermoplastic resin sheet piece 3, so that the entire warp is reduced. It can be suppressed well.
[0019]
In the embodiment described above, the tensile stress of the elastic body is supported by the fusible body to generate a compressive stress in the fusible body. However, the elastic body is in a compressive stress state and the compressive stress of the elastic body is supported by the fusible body. It is possible to generate a tensile stress in the fusible body, and to make the elastic body a stress state in the plus direction shear stress and to support the plus direction shear stress of the elastic body with the fusible body to generate a minus direction shear stress in the fusible body. It is.
[0020]
In order to produce the thermosensitive element according to the present invention, (1) a porous alloy sheet, a perforated elastic plate or a net-like elastic body is stretched with a tensile strain ε 0 within the elastic limit, and a fusible alloy or A method of immersing and impregnating a thermoplastic resin, and cooling and solidifying the impregnated material to release the stretch tension of the elastic body; (2) a sheet-like soluble alloy sheet or a thermoplastic resin on a porous elastic sheet, a perforated elastic plate or a net-like elastic body; A method in which a resin sheet is stacked and heated and rolled, and the elastic body is stretched and melted and impregnated with a soluble body, and the impregnated material is cooled and solidified and released from rolling; (3) perforated elastic sheet, perforated elastic plate or net-like elastic body It is possible to use a method in which a powder of a soluble alloy or a thermoplastic resin is supplied to the resin, and this is heated and rolled to melt and impregnate the soluble material while stretching the elastic material, and the impregnated material is cooled and solidified to be released from rolling. .
[0021]
FIG. 3 is a view showing an embodiment of the thermo protector according to the present invention. FIG. 3 (a) shows a normally on state, and FIG. 3 (b) shows an off operation.
In FIG. 3, 41 is a fixed electrode, 42 is a movable electrode, and 40 is a contact provided on the movable electrode 42. This contact can also be provided on the fixed electrode side. B is a heat-sensitive element according to the present invention, 5 is an insulating film connected to one end of the heat-sensitive element B, and has a hole 51. Normally, as shown in FIG. The other end of the thermal element B is fixed so that the hole 51 can be moved relative to the contact 40 under the thermal contraction B of the thermal element.
[0022]
When the thermal element B is heated by the surrounding temperature rise and reaches the solidus temperature or softening point T 1 of the fusible body 2, the insulating film 5 is moved toward the fixed electrode 41 as the thermal element B contracts. Accordingly, the hole 51 is moved relative to the contact 40, and as shown in FIG. 3B, the insulating film 5 is locally intervened in the contact 40 and the contact 40 is insulated and turned off. Put into a state.
Thus, in FIG. 3A, when the moving length of the insulating film that can turn off the contact 40, that is, the contraction length of the thermal element B is ΔL and the length of the thermal element B is L, the equation (5) ) Is set so as to satisfy A ≧ ΔL / L, the thermo-protector can be turned off at the device temperature of the temperature T 1 to cut off the power to the device.
[0023]
The thermo protector according to the present invention is provided on a substrate, sealed with a case, and implemented in the form of a component in which a terminal of a fixed electrode and a terminal of a movable electrode are derived from the case, a form provided directly on a circuit board, etc. In the latter case, the circuit conductor can be used as a fixed electrode.
[0024]
FIG. 4 is a cross-sectional view showing another embodiment of the thermoprotector according to the present invention. FIG. 4 (a) shows a normal on state, and FIG. 4 (b) shows an off operation state.
In FIG. 4, 41 is a fixed electrode and 42 is a movable electrode. B is a heat sensitive element according to the present invention, 5 is an insulating film connected to one end of the heat sensitive element B, and a contact material 400 is fixed to the insulating film 5 in a normal state, as shown in FIG. The insulating film 5 is interposed between the electrodes 41 and 42 so that the contact material 400 contacts the electrodes 41 and 42, the other end of the thermal element B is fixed, and the contact material is contracted under the contraction of the thermal element B. The contraction rate A of the thermal element shown in Formula (5) is set so that 400 can escape from between the electrodes 41 and 42.
Therefore, when the thermal element B is heated by the surrounding temperature rise and reaches the solidus temperature or the softening point T 1 of the fusible body 2, the thermal element is contracted toward the fixed electrode 41, and accordingly (( As shown in (b), the contact material 400 is detached from between the electrodes 41 and 42, the contact 400 is insulated by the insulating film 5 and turned off, and the power supply to the device is cut off.
[0025]
FIG. 5 is a cross-sectional view showing another embodiment of the thermoprotector according to the present invention, which is a bimetal type. FIG. 5 (a) shows a switch-on state and FIG. 5 (b) shows a switch-off state. FIG. 5C shows the operation lock state.
In FIG. 5, reference numeral 41 denotes a fixed electrode. Reference numeral 42 denotes a movable electrode, which uses a bimetal. Reference numeral 40 denotes a contact provided on the movable electrode 2 and can be provided on the fixed electrode side as described above. B is a heat sensitive element according to the present invention, 5 is an insulating film connected to one end of the heat sensitive element B, and has a hole 51. In normal times, a film portion in the vicinity of the hole 51 is interposed between both electrodes 41 and 42, The contact 40 is brought into contact with the hole 51, the other end of the thermal element B is fixed, the hole 51 is removed from the contact 40 under the contraction of the thermal element B, and the contact 40 is insulated by the intervention of an insulating film. It is.
[0026]
In FIG. 5, it is assumed that the bimetal movable electrode 42 is set to be turned on / off at a temperature lower than the operating temperature T 1 of the thermal element B. However, in the bimetal switch, when the cumulative number of on / off operations increases, there is a risk that the operating temperature is shifted to a higher temperature than the original operating temperature. Therefore, in the thermo protector shown in FIG. 5, the thermal element B is contracted under the temperature T 1 and the contact 40 can be insulated by the intervention of the insulating film 5 as shown in FIG. It can be substantially lock the on-off operation at high temperatures T 1 than the original operating temperature of the bimetal 42.
[0027]
FIG. 6 is a drawing showing another embodiment of the thermo protector according to the present invention. FIG. 6 (a) shows a normal on state, and FIG. 6 (b) shows an off operation state. Yes.
In FIG. 6, reference numeral 41 denotes a fixed electrode. Reference numeral 42 denotes a movable electrode, which is composed of a laminated body of the thermal element B and the thin metal plate 6 according to the present invention, and is bent outwardly by contraction of the thermal element B. Reference numeral 40 denotes a contact material provided on the fixed electrode 41, and may be provided on the movable electrode 42 side.
[0028]
In this laminate, if the thickness of the thin metal plate 6 is h, the elastic modulus is e, the thickness of the thermal element is t, the elastic modulus is E, and the contraction rate is a, the laminate 42 (movable) due to the contraction of the thermal element B The bending radius r of the electrode) is e >> E, t >> h,
[Formula 6]
r = t [{(E / e) + (h / t) 3 } {(t / h) + (e / E)}] / (6a) (6)
If the bending radius of the bending deformation of the movable electrode 42 necessary for detaching the movable electrode 42 from the fixed electrode 1 is r, the shrinkage rate A of the thermal element at the temperature T 1 is expressed by Equation 6 below. It is set so as to satisfy a satisfying a.
Therefore, when the heat-sensitive element due to the temperature rise of the ambient is heated to a temperature T 1, as shown in (b) of FIG. 6, the movable electrode 42 and desorbed by the OFF state from the fixed electrode 41 by the bending deformation The
[0029]
FIG. 7 shows an embodiment different from the above of the thermo protector according to the present invention.
In FIG. 7, C is a fuse element in which the thermal element B according to the present invention is bonded to the middle of the fusible alloy piece 3, and the thermal element B alone is the liquidus temperature or softening point of the above-mentioned filled solidified soluble body. It shrinks at T 1 , and the solidus temperature of the fusible alloy piece 3 is made approximately equal to the liquidus temperature or softening point T 1 of the filled solidified soluble body of the thermal element B. Reference numerals 71 and 71 denote a pair of flat lead conductors, which are joined to each end of the fusible alloy piece 3 of the fuse element C. Reference numeral 8 denotes a protective case.
This thermoprotector, when the ambient temperature is raised to approximately T 1, a result of the heat-sensitive element B is contracted with fusible alloy piece 3 is melted, soluble between the lead conductor 71 and the heat-sensitive element B The alloy piece part 30 is pulled and cut, leading to a cut-off operation.
[0030]
FIG. 8 shows another embodiment of the thermoprotector according to the present invention, in which a pair of electrodes 72, 72 are provided on an insulating substrate 81, and a lead conductor (a round wire can be used) 71 is provided on each electrode 72. Each end of the fusible alloy piece 3 of the fuse element C in which the heat sensitive element B according to the present invention is bonded to the middle of the fusible alloy piece 3 is joined to each electrode 72, and a protective cover 82 is covered on the substrate 81. The operating mechanism is substantially the same as the embodiment shown in FIG.
[0031]
【The invention's effect】
According to the heat sensitive element of the present invention, in the element that supports the stress of the elastic body in the stress state with the fusible body, releases the stress state of the elastic body by melting the fusible body, and performs the heat sensitive operation by deformation of the elastic body at that time, Since the stress distribution of the fusible body that balances the elastic body stress can be made sufficiently uniform, the creep of the fusible body can be well suppressed and the thermal operation can be stabilized.
In particular, in the heat sensitive element according to the second aspect, since the center of stress of the elastic body and the center of stress of the fusible body can be substantially matched to eliminate generation of couples, a compact form without warping can be achieved.
In the thermo protector according to the present invention, the thermal element is used, and the operation can be stabilized due to the thermal element.
In particular, in the heat sensitive element of claim 6, even if the on / off temperature of the bimetal movable electrode is repeated and the on / off temperature is shifted to a high temperature side due to hysteresis, the heat sensitive element according to the present invention is turned off. Since it can be locked, the safe operation of the bimetal switch can be guaranteed.
[Brief description of the drawings]
FIG. 1 is a drawing showing an embodiment of a thermal element according to the present invention.
FIG. 2 is a drawing showing another embodiment of the thermal element according to the present invention other than the above.
FIG. 3 is a view showing an embodiment of a thermo protector according to the present invention.
FIG. 4 is a view showing an embodiment different from the above of the thermo protector according to the present invention.
FIG. 5 is a view showing an embodiment different from the above of the thermo protector according to the present invention.
FIG. 6 is a drawing showing an embodiment different from the above of the thermo protector according to the present invention.
FIG. 7 is a view showing an embodiment different from the above of the thermo protector according to the present invention.
FIG. 8 is a view showing an embodiment different from the above of the thermo protector according to the present invention.
FIG. 9 is a view showing a conventional thermo protector.
FIG. 10 is a drawing showing another conventional thermo protector.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Elastic body 2 Soluble body B Thermal element 3 Soluble body piece 41 Fixed electrode 42 Movable electrode 40 Contact 400 Contact material 5 Insulating film 51 Hole 6 Metal thin plate

Claims (7)

多孔弾性シート、または多数の孔を穿った弾性板或いは網状弾性体に応力が作用していると共に多孔弾性シート、または多数の孔を穿った弾性板の孔或いは網状弾性体の網目が変形されており、その孔或いは網目に可溶体が充填され、その充填可溶体に前記応力に釣りあった応力が生じていることを特徴とする感熱エレメント Stress is acting on the porous elastic sheet, or the elastic plate or net-like elastic body having a large number of holes, and the holes of the porous elastic sheet or the elastic plate having a large number of holes or the mesh of the net-like elastic body are deformed. The heat-sensitive element is characterized in that a soluble material is filled in the holes or meshes, and a stress commensurate with the stress is generated in the filled soluble material . 多孔弾性シート、または多数の孔を穿った弾性板或いは網状弾性体に引っ張り応力が作用していると共に多孔弾性シート、または多数の孔を穿った弾性板の孔或いは網状弾性体の網目が変形されており、その孔或いは網目に可溶体が充填され、その充填可溶体に前記引っ張り応力に釣りあった応力が生じていることを特徴とする感熱エレメント。The tensile stress acts on the porous elastic sheet, or the elastic plate or net-like elastic body having a large number of holes, and the holes of the porous elastic sheet or the elastic plate having a large number of holes or the mesh of the net-like elastic body are deformed. The heat-sensitive element is characterized in that a soluble material is filled in the hole or mesh, and a stress commensurate with the tensile stress is generated in the filled soluble material. 可溶体が可溶合金または熱可塑性樹脂であることを特徴とする請求項1または2記載の感熱エレメント。The heat-sensitive element according to claim 1 or 2, wherein the fusible body is a fusible alloy or a thermoplastic resin. 請求項1〜3何れか記載の感熱エレメントを有し、該感熱エレメントの可溶体の溶融による弾性体の応力解除で動作することを特徴とするサーモプロテクタ。A thermo protector comprising the thermal element according to any one of claims 1 to 3, and operating by releasing stress of an elastic body by melting a soluble body of the thermal element. 請求項2記載のシート状または板状の感熱エレメントの一端に絶縁フィルムが取付けられ、該絶縁フィルムが固定電極と可動電極との間に介在され、前記シート状または板状の感熱エレメントの他端が固定され、前記の絶縁フィルムに設けられた孔において電極の接点が接触されていることを特徴とするサーモプロテクタ。 An insulating film is attached to one end of the sheet-like or plate-like thermal element according to claim 2, and the other end of the sheet-like or plate-like thermal element is interposed between the fixed electrode and the movable electrode. Is fixed, and the contact of an electrode is contacted in the hole provided in the said insulating film, The thermo protector characterized by the above-mentioned. 可動電極にバイメタルが使用されていることを特徴とする請求項5記載のサーモプロテクタ。The thermoprotector according to claim 5, wherein a bimetal is used for the movable electrode. 一対のリード導体間または電極間に可溶合金片が接続され、請求項2記載の可溶体の溶融により収縮する感熱エレメントが、その収縮方向が可溶合金片の長手方向に向けられて可溶合金片の中間に貼り合わされていることを特徴とするサーモプロテクタ。 A fusible alloy piece is connected between a pair of lead conductors or between electrodes, and the heat-sensitive element shrinks by melting the fusible body according to claim 2, the shrinking direction is directed to the longitudinal direction of the fusible alloy piece. A thermo protector characterized by being bonded in the middle of an alloy piece .
JP2003131273A 2003-05-09 2003-05-09 Thermal element and thermo protector Expired - Fee Related JP4118738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131273A JP4118738B2 (en) 2003-05-09 2003-05-09 Thermal element and thermo protector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131273A JP4118738B2 (en) 2003-05-09 2003-05-09 Thermal element and thermo protector

Publications (2)

Publication Number Publication Date
JP2004335333A JP2004335333A (en) 2004-11-25
JP4118738B2 true JP4118738B2 (en) 2008-07-16

Family

ID=33506495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131273A Expired - Fee Related JP4118738B2 (en) 2003-05-09 2003-05-09 Thermal element and thermo protector

Country Status (1)

Country Link
JP (1) JP4118738B2 (en)

Also Published As

Publication number Publication date
JP2004335333A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP2791383B2 (en) Double safety thermostat
KR101714802B1 (en) Electrically activated surface mount thermal fuse
EP1912236A1 (en) Electrical composite device
JP6297028B2 (en) Protective device
JP4410056B2 (en) Thermosensor, thermoprotector, and method of manufacturing thermosensor
JP6919180B2 (en) Switch circuit and power supply
JPH01230220A (en) Fuse assembly for solid electrolytic capacitor
JP6195910B2 (en) Protective device
JPS62268030A (en) Protector
JP2017098186A (en) Breaker, safety circuit with the same, and secondary battery circuit
KR102481793B1 (en) Thermal Fuse and Printed Circuit Board with Thermal Fuse
JP2014533423A (en) High current repetitive fuse
JP4118738B2 (en) Thermal element and thermo protector
JPWO2016098441A1 (en) Method for manufacturing breaker and method for manufacturing battery pack provided with the breaker
JP2005063792A (en) Heat sensitive element and thermo-protector
JP3754725B2 (en) Flat temperature fuse
JPH11111135A (en) Temperature fuse
JP2017147029A (en) Breaker, manufacturing method of the breaker, and manufacturing method of battery pack with the breaker
JP2005222700A (en) Temperature sensor and thermo-protector
JP4145732B2 (en) Thermal element, thermo protector and thermal switch
JP2006196189A (en) Thermo-protector, manufacturing and mounting method of the same
KR102669859B1 (en) high capacity fuse assembly for Energy Storage System
JP4223354B2 (en) Thermo protector
JPH0917302A (en) Flat type temperature fuse
JP3724178B2 (en) Thermal protector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees