JP2006331777A - Thermo-protector and its manufacturing method - Google Patents

Thermo-protector and its manufacturing method Download PDF

Info

Publication number
JP2006331777A
JP2006331777A JP2005152255A JP2005152255A JP2006331777A JP 2006331777 A JP2006331777 A JP 2006331777A JP 2005152255 A JP2005152255 A JP 2005152255A JP 2005152255 A JP2005152255 A JP 2005152255A JP 2006331777 A JP2006331777 A JP 2006331777A
Authority
JP
Japan
Prior art keywords
elastic plate
conductive elastic
housing
stacked conductive
soluble material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005152255A
Other languages
Japanese (ja)
Other versions
JP4554436B2 (en
Inventor
Toshiaki Kawanishi
俊朗 川西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2005152255A priority Critical patent/JP4554436B2/en
Publication of JP2006331777A publication Critical patent/JP2006331777A/en
Application granted granted Critical
Publication of JP4554436B2 publication Critical patent/JP4554436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To guarantee a long-term stability and improve the reliability of operation of a thermo-protector operated by a release of an elastic strain energy of an elastic body supported by junction and fixation by a fusible body such as solder, caused by fusion of a fusible body. <P>SOLUTION: Both ends 21, 22 of a laminated conductive elastic body 2 in a state of compressed in longitudinal direction is fixed to a lead conductor 1 serving as a framework, and the elastic body 2 is formed into convex curved shape, one end side of the convex curve is erected at a prescribed angle θL' to the framework 1, the other end 22 of the convex curve has a deflection angle 0, fixation of the one end part 21 of the elastic body and the framework 1 is carried out via a fusible material 3, an apex part of the convex curve is contacted with the other reed conductor 10, and the melting point or the softening point of the fusible body 3 is made to be an operation temperature. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は可溶材の融点または軟化点を動作温度とするサーモプロテクタ及びサーモプロテクタの製作方法に関するものである。   The present invention relates to a thermoprotector whose operating temperature is the melting point or softening point of a fusible material and a method for manufacturing the thermoprotector.

電子・電気機器における異常発熱を感知し、この感知に基づくカットオフ動作で機器を電源から遮断して機器の過熱を防止し、火災の発生を未然に防止するサーモプロテクタとして、弾性歪みエネルギーを蓄積させておき、可溶材の溶融乃至は軟化により弾性歪みエネルギーを解放させる方式が知られている。
例えば、図9に示すサーモプロテクタでは、導電弾性板2’の一端部21’がリード導体1’にリベッティングや溶接等により固定され、該導電弾性板2’が凸曲線状に曲げられて弾性曲げ歪エネルギーが加えられた状態で当該導電弾性板2’の他端部22’が前記リード導体1’に低融点可溶合金等の可溶材3’による面接合で固定されて導電弾性板2’の曲げ頂部が他方のリード導体10’に接触されており、可溶材3’の溶融乃至は軟化による前記弾性曲げ歪エネルギーの解放で前記接触が開放される(特許文献1参照)。
Accumulated elastic strain energy as a thermo protector that detects abnormal heat generation in electronic and electrical devices, cuts off the device from the power supply by cut-off operation based on this detection, prevents overheating of the device, and prevents the occurrence of fire. In addition, a method of releasing elastic strain energy by melting or softening a soluble material is known.
For example, in the thermo protector shown in FIG. 9, one end portion 21 ′ of the conductive elastic plate 2 ′ is fixed to the lead conductor 1 ′ by riveting, welding, etc., and the conductive elastic plate 2 ′ is bent into a convex curve to be elastically bent. With the strain energy applied, the other end 22 'of the conductive elastic plate 2' is fixed to the lead conductor 1 'by surface bonding with a soluble material 3' such as a low-melting-point soluble alloy. The bending top portion is in contact with the other lead conductor 10 ', and the contact is released by releasing the elastic bending strain energy by melting or softening the fusible material 3' (see Patent Document 1).

特開2005−78954号公報JP 2005-78954 A

図9において、可溶材3’による接合界面には、導電弾性板2’の曲げ剛性EIに比例する剪断応力が作用している。
而るに、導電弾性板2’にはその導電路としての役目を果たさせるためにある程度の厚みtを付与する必要があり、その導電弾性板2’の曲げ剛性EIがbEt3/12で与えられて導電弾性板2’の厚みtの3乗に比例するから(bは巾、Eは弾性率)、前記接合界面に作用する剪断応力は大きい。従って、可溶材3’にクリープが生じ易く、長期安定性に問題がある。
In FIG. 9, a shearing stress proportional to the bending rigidity EI of the conductive elastic plate 2 ′ is acting on the bonding interface of the fusible material 3 ′.
Thus, it is necessary to give the conductive elastic plate 2 ′ a certain thickness t in order to serve as a conductive path, and the bending rigidity EI of the conductive elastic plate 2 ′ is given by bEt3 / 12. Since it is proportional to the cube of the thickness t of the conductive elastic plate 2 ′ (b is the width and E is the elastic modulus), the shear stress acting on the joint interface is large. Accordingly, creep is likely to occur in the fusible material 3 ′, and there is a problem in long-term stability.

本発明の目的は、弾性歪エネルギーをはんだ等の可溶材による接合固定で支持している弾性体の弾性歪エネルギーが可溶体の溶融で解放されて動作するタイプのサーモプロテクタの長期安定性を保証し、動作の信頼性の向上を図ることにある。   The object of the present invention is to guarantee the long-term stability of a thermo protector that operates with the elastic strain energy of the elastic body supporting the elastic strain energy by joining and fixing with a soluble material such as solder as the elastic strain energy is released by melting the soluble body. Therefore, the reliability of the operation is to be improved.

請求項1に係るサーモプロテクタは、積重された導電弾性板の一端部が躯体面に固定され、該積重導電弾性板が凸曲線状に曲げられて弾性曲げ歪エネルギーが加えられた状態で当該積重導電弾性板の他端部が躯体面に固定され、これら両固定の少なくとも一方が可溶材による面接合で行われて積重導電弾性板の曲げ頂部が固定導体に接触されており、可溶材の溶融乃至は軟化による前記弾性曲げ歪エネルギーの解放で前記接触が開放されることを特徴とする。
請求項2に係るサーモプロテクタは、請求項1のサーモプロテクタにおいて、積重導電弾性板が長手方向に圧縮された状態でその両端が躯体に固定されて凸曲線状とされ、該凸曲線一端側が躯体に対し所定の角度で立ち上げられており、同凸曲線他端が撓み角0とされていることを特徴とする。
請求項3に係るサーモプロテクタは、請求項2のサーモプロテクタにおいて、積重導電弾性板の一端部が内側に折り曲げられてその折り曲げ片が躯体表面に可溶材を介し面接合されていることを特徴とする。
請求項4に係るサーモプロテクタは、請求項2のサーモプロテクタにおいて、積重導電弾性板の一端部が内側に折り曲げられてその折り曲げ片の内側面が躯体先端部裏面に可溶材を介し面接合されていることを特徴とする。
請求項5に係るサーモプロテクタは、請求項1〜4のサーモプロテクタにおいて、可溶材が低融点金属であることを特徴とする。
請求項6に係るサーモプロテクタは、請求項1〜4のサーモプロテクタにおいて、可溶材が熱可塑性樹脂であることを特徴とする。
請求項7に係るサーモプロテクタの製作方法は、請求項2のサーモプロテクタを製造する方法であり、広巾の躯体材に広巾の積重導電弾性板材の一端部を可溶材を介して面接合し、この接合材を多数条の片に切断したうえ更に弾性体片を前記面接合部を境として折り返すか、または弾性体材を前記面接合部を境として折り返したうえ更に接合材を多数条の片に切断し、次いで折り返し弾性体片を長手方向に圧縮した状態でその他端部を躯体に撓み角0で固定することを特徴とする
請求項8に係るサーモプロテクタの製作方法は、請求項3記載のサーモセンサを製造する方法であり、広巾の躯体材の先端部裏面に広巾の積重導電弾性板材の一端部を可溶材を介して面接合し、この接合材を多数条の片に切断したうえ更に弾性体片を躯体の表面側に折り返すか、または弾性体材を躯体材の表面側に折り返したうえ更に接合材を多数条の片に切断し、次いで折り返し弾性体片を長手方向に圧縮した状態でその他端部を躯体に撓み角0で固定することを特徴とする。
The thermo-protector according to claim 1 is a state in which one end portion of the stacked conductive elastic plates is fixed to the housing surface, the stacked conductive elastic plates are bent into a convex curve shape, and elastic bending strain energy is applied. The other end portion of the stacked conductive elastic plate is fixed to the housing surface, at least one of these two fixings is performed by surface bonding with a soluble material, and the bent top portion of the stacked conductive elastic plate is in contact with the fixed conductor, The contact is released by releasing the elastic bending strain energy by melting or softening a soluble material.
The thermo-protector according to claim 2 is the thermo-protector according to claim 1, wherein the stacked conductive elastic plates are compressed in the longitudinal direction and both ends thereof are fixed to the casing to form a convex curve, and one end of the convex curve is It is set up at a predetermined angle with respect to the housing, and the other end of the convex curve is characterized by a bending angle of 0.
The thermo protector according to claim 3 is the thermo protector according to claim 2, wherein one end of the stacked conductive elastic plate is bent inward, and the bent piece is surface-bonded to the surface of the housing via a soluble material. And
The thermo protector according to claim 4 is the thermo protector according to claim 2, wherein one end of the stacked conductive elastic plate is bent inward, and the inner side surface of the bent piece is surface-bonded to the rear surface of the front end of the housing via a soluble material. It is characterized by.
The thermo protector according to claim 5 is the thermo protector according to claims 1 to 4, wherein the soluble material is a low melting point metal.
The thermo protector according to claim 6 is the thermo protector according to claims 1 to 4, wherein the soluble material is a thermoplastic resin.
The manufacturing method of the thermo protector according to claim 7 is a method of manufacturing the thermo protector according to claim 2, wherein one end portion of the wide stacked conductive elastic plate material is surface-bonded to the wide casing material via the soluble material, The joining material is cut into a number of strips and the elastic piece is folded back at the boundary of the surface joining portion, or the elastic body is folded back at the border of the surface joining portion and the joining material is further stripped into a plurality of strips. The manufacturing method of the thermo protector according to claim 8, wherein the other end portion is fixed to the housing at a bending angle of 0 with the folded elastic body piece compressed in the longitudinal direction. In this method, one end of a wide stacked conductive elastic plate material is surface-bonded to the back surface of the front end portion of a wide casing material via a fusible material, and the bonding material is cut into a number of strips. Furthermore, the elastic piece is placed on the surface side of the housing. Or the elastic material is folded back to the front surface side of the housing material, and the joining material is further cut into a plurality of strips, and then the elastic material piece is folded back in the longitudinal direction and the other end is bent into the housing. It is fixed at an angle of 0.

1枚ものの導電弾性板の厚みをt、巾をb、弾性率をEとすると、その導電弾性板の曲げ剛性EIは
EI=Ebt/12
で与えられる。
この1枚もの導電弾性板の厚みtをn分割して積重構成にすると、その積重導電弾性板の曲げ剛性EI’は
EI’=Ebn(t/n)/12=Ebt/(12n
で与えられ、例えばn=2の場合、曲げ剛性を1/4にできる。
従って、導体断面積を同一にして曲げ剛性を1/4にできる結果、可溶材による接合界面に作用する応力を充分に低くでき、、接合界面の可溶材の常時でのクリープをよく排除でき、接合界面の可溶材がクリープすること等に起因する動作不良を良好に防止できる。
The thickness of the conductive elastic plate of one thing t, the width b, and the elastic modulus E, the bending rigidity EI of the conductive elastic plate EI = Ebt 3/12
Given in.
When the stacking configuration the thickness t of the conductive elastic plate also this one to n divided, the flexural rigidity EI of the stacking conductive elastic plate 'is EI' = Ebn (t / n ) 3/12 = Ebt 3 / ( 12n 2 )
For example, when n = 2, the bending rigidity can be reduced to ¼.
Therefore, as a result of making the conductor cross-sectional area the same and making the bending rigidity ¼, the stress acting on the joining interface by the fusible material can be sufficiently reduced, and the regular creep of the fusible material at the joining interface can be well eliminated, It is possible to satisfactorily prevent malfunction caused by creep of the soluble material at the joint interface.

図1−1の(イ)及び(ロ)は本発明に係るサーモプロテクタの基本的構造の異なる例を示す図面である。
図1−1の(イ)及び(ロ)において、1は躯体としてのリード導体、2は積重された導電弾性板例えば図1−2に示す折り重ね導電弾性板、3は可溶材、10は他方のリード導体である。
図1−1の(イ)においては、積重導電弾性板2の一端部21を可溶材3により躯体1の表面に面接合し、積重導電弾性板2を面接合部の端eを境として所定の角度θL'で折り返し、積重導電弾性板2に長手方向圧縮力pを加えた状態で積重導電弾性板2の他端部22を躯体1に適宜の手段、例えばリベッティング、溶接等4により撓み角0で面接合して積重導電弾性板2を凸曲線状に曲げ、凸曲線頂部を他方のリード導体10に接触させてある。
図1−1の(ロ)においては、積重導電弾性板2の一端部21を可溶材3により躯体1の先端部裏面に面接合し、積重導電弾性板2を躯体1の表面側に所定の角度θL'で折り返し、積重導電弾性板2に長手方向圧縮力pを加えた状態で弾性体2の他端部22を躯体1に適宜の手段、例えばリベッティング、溶接等4により撓み角0で面接合して積重導電弾性板2を凸曲線状に曲げ、凸曲線頂部を他方のリード導体10に接触させてある。
何れの基本的構造においても、積重導電弾性板2が凸曲線状に変形されて弾性曲げ歪みエネルギーが蓄積されており、可溶材3が溶融乃至は軟化されると、面接合による固定が解除され弾性曲げ歪みエネルギーが解放されて前記の凸曲線状の高さhが減少され、この減少が感熱信号となってセンサが動作される。何れの基本的構造においても、凸曲線状に変形された弾性体2の一端部20は所定角度の剛節と力学的に等価である。
1-1 (a) and (b) are drawings showing different examples of the basic structure of the thermoprotector according to the present invention.
1-1, (b) and (b), 1 is a lead conductor as a housing, 2 is a stacked conductive elastic plate, for example, a folded conductive elastic plate shown in FIG. Is the other lead conductor.
In (a) of FIG. 1-1, one end portion 21 of the stacked conductive elastic plate 2 is surface-bonded to the surface of the housing 1 by the fusible material 3, and the stacked conductive elastic plate 2 is bounded by the end e of the surface bonded portion. The other end 22 of the stacked conductive elastic plate 2 is applied to the housing 1 in a state where a longitudinal compression force p is applied to the stacked conductive elastic plate 2, for example, riveting, welding, etc. 4, the stacked conductive elastic plate 2 is bent into a convex curve shape with a bending angle of 0, and the top of the convex curve is brought into contact with the other lead conductor 10.
In (b) of FIG. 1-1, one end portion 21 of the stacked conductive elastic plate 2 is surface-bonded to the rear surface of the front end portion of the housing 1 by the fusible material 3, Folded at a predetermined angle θL ′, and the other end portion 22 of the elastic body 2 is applied to the housing 1 in a state in which the longitudinal compression force p is applied to the stacked conductive elastic plate 2 by an appropriate means such as riveting or welding 4. The stacked conductive elastic plate 2 is bent into a convex curve by surface bonding at 0, and the top of the convex curve is brought into contact with the other lead conductor 10.
In any basic structure, the stacked conductive elastic plate 2 is deformed into a convex curve shape and the elastic bending strain energy is accumulated. When the fusible material 3 is melted or softened, the fixation by the surface bonding is released. Then, the elastic bending strain energy is released and the height h of the convex curve is reduced, and this reduction becomes a thermal signal and the sensor is operated. In any basic structure, the one end portion 20 of the elastic body 2 deformed into a convex curve shape is mechanically equivalent to a rigid joint having a predetermined angle.

図2は前記積重導電弾性板2の力学状態を考察するために使用した一端固定・他端ヒンジ支持の柱(Long column)を示している。
図2において、点(x,y)での曲げモーメントをMxとすると、
FIG. 2 shows a column (Long column) for fixing one end and supporting the other end hinge used for considering the mechanical state of the stacked conductive elastic plate 2.
In FIG. 2, when the bending moment at the point (x, y) is Mx,

d2y/dx=−Mx/EI
が成立し(ただし、EIは柱の曲げ剛性)、曲げモーメントMxが
d2y / dx 2 = -Mx / EI
(Where EI is the bending rigidity of the column) and the bending moment Mx is

Mx=py−Mox/L
で与えられるから、凸曲線の形状yは、p/EI=kとおいて、
Mx = py-Mox / L
Since the convex curve shape y is p / EI = k 2 ,

y=A〔coskx−(sinkx/kL)+(x/L)−1〕
tankL=kL
で与えられ、係数Aはx=L'において凸曲線yの高さが既知のhであることから、
y = A [coskx- (sinkx / kL) + (x / L) -1]
tankL = kL
Since the height of the convex curve y is known h at x = L ′, the coefficient A is given by

x=L'=h、(dy/dx)x=L'=0
より求めることができる。
従って、ヒンジ支持端での撓み角θLは、
y x = L ′ = h, (dy / dx) x = L ′ = 0
It can be obtained more.
Therefore, the deflection angle θL at the hinge support end is

θL=(dy/dx)x=L=A〔(coskL/L)−k(sinkL)+(1/L)〕
で与えられる。
θL = (dy / dx) x = L = A [(cosk L / L) −k (sink L) + (1 / L)]
Given in.

図2において、ヒンジ支持端を力学的に凍結しても(ヒンジ支持端の撓み角と同角度の剛節に置換しても)力学的状態は変わらない。而して、図3の実線(イ)の一端が角度θLの剛節nで他端が撓み角0、長手方向圧縮力がpの柱の一端剛節nでの曲げモーメント反力は0である。
今、図3の点線(ロ)で示すように、一端剛節の角度がθL'、他端の撓み角が0の撓み状態の柱を想定すると、一端剛節に作用する曲げモーメント反力ML'は、一端剛節nの曲げモーメント反力が0の実線(イ)の状態での一端剛節nの角θLを角θL'に歪ませるのに必要な曲げモーメントに一致し、θLとθL'との差が小さいほど、点線(ロ)の一端剛節に作用する曲げモーメント反力ML'を小さくできる。
而るに、本発明に係るサーモプロテクタにおいては、図1において、一端剛節固定のその剛節20の角度を所定の角度θL'とし、他端22の撓み角を0とするように、弾性体2を所定の長手方向圧縮力荷重pのもとで両端固定しており、剛節の角度θL'を前記した曲げモーメント反力が0となる角度θLに近づけるように設定することができるから、弾性体一端21の可溶材3を介しての固定部での曲げモーメント反力を小さくでき、可溶材3による接合界面に作用する反力を前記長手方向圧縮力pに対する反力、すなわち剪断応力を主たる応力にとどめ得、曲げモーメント反力に基づく接合界面を劈開しようとする応力が作用するのを良好に防止できる。
In FIG. 2, the mechanical state does not change even if the hinge support end is mechanically frozen (even if it is replaced with a rigid joint having the same angle as the deflection angle of the hinge support end). Thus, one end of the solid line (A) in FIG. 3 is a rigid node n with an angle θL, the other end has a flexion angle of 0, and a bending moment reaction force at one rigid node n of a column with a longitudinal compressive force p is 0. is there.
Now, as shown by the dotted line (b) in FIG. 3, assuming a column in a bent state where the angle of the rigid joint at one end is θL ′ and the deflection angle at the other end is 0, the bending moment reaction force ML acting on the rigid joint at one end is assumed. 'Corresponds to the bending moment required to distort the angle θL of one end rigid joint n to angle θL' in the state of the solid line (b) where the bending moment reaction force of one end rigid joint n is 0, and θL and θL The smaller the difference from ', the smaller the bending moment reaction force ML' acting on one end rigid joint of the dotted line (b).
Therefore, in the thermo protector according to the present invention, in FIG. 1, the angle of the rigid joint 20 fixed to the rigid joint at one end is set to a predetermined angle θL ′, and the bending angle at the other end 22 is set to 0. Since the body 2 is fixed at both ends under a predetermined longitudinal compressive force load p, the angle θL ′ of the rigid joint can be set to be close to the angle θL at which the bending moment reaction force becomes zero. The bending moment reaction force at the fixed portion of the elastic body one end 21 through the soluble material 3 can be reduced, and the reaction force acting on the bonding interface by the soluble material 3 is the reaction force against the longitudinal compression force p, that is, the shear stress. Therefore, it is possible to satisfactorily prevent the stress that cleaves the joint interface based on the bending moment reaction force from acting.

前記接合界面の剪断応力τは弾性体に作用する長手方向圧縮力をp、接合界面の面積をSとすると、τ=p/Sで与えられる。而るにpは、
p=kEI
で与えられ、導電弾性板の断面2次モーメントIを導電弾性板の積重のために充分に小さくでき、剪断応力τを低減できるから、可溶材のクリープを良好に防止できる。
接合界面をより一層に安定化するために、弾性体他端部または躯体面の一方または双方に、孔、窪み、切欠きを設けて可溶材を食い込ませたり、面接合される弾性体他端部または躯体面の一方または双方を粗面として接合界面の剪断強度を増強することが望ましい。また、前記可溶材で面接合された界面を機械的に補強するために弾性体の先端面と躯体面とにわたって可溶材を盛り付けることもできる。
The shear stress τ at the joint interface is given by τ = p / S, where p is the longitudinal compressive force acting on the elastic body and S is the area of the joint interface. Thus p is
p = k 2 EI
The secondary moment I of the cross section of the conductive elastic plate can be sufficiently reduced due to the stacking of the conductive elastic plate, and the shear stress τ can be reduced, so that the creep of the soluble material can be satisfactorily prevented.
In order to further stabilize the bonding interface, one or both of the other end of the elastic body or the surface of the housing is provided with holes, dents, and notches so that the fusible material is bitten in, or the other end of the elastic body that is surface bonded It is desirable to enhance the shear strength of the bonding interface by using one or both of the part and the housing surface as a rough surface. Moreover, in order to reinforce the interface surface-bonded with the said soluble material mechanically, a soluble material can also be piled up over the front end surface and housing surface of an elastic body.

前記可溶材3には、はんだ等の可溶合金、単体金属または熱可塑性樹脂、或いは導電性粉末を添加した導電性熱可塑性樹脂を用いることができる。
弾性体全長の片面または両面に可溶材をコーティングして弾性体全長の曲げ剛性を均等化することは、曲げ応力の集中化防止に有効である。
As the fusible material 3, a fusible alloy such as solder, a single metal or a thermoplastic resin, or a conductive thermoplastic resin to which conductive powder is added can be used.
Coating a soluble material on one or both sides of the entire length of the elastic body to equalize the bending rigidity of the entire length of the elastic body is effective for preventing concentration of bending stress.

前記躯体には後述するように、サーモプロテクタのハウジングのベースを用いることもできるが、通常は、リード部を有する電極を躯体として用い、この電極の先端部側に弾性体の一端部が可溶材を介して面接合される。
この電極と弾性体とのセット部材は、図4の(イ)〜(ロ)に示すように、導電弾性板材を折り畳んで広巾積重導電弾性板材2aを得、図4の(ハ)に示すように、広巾電極材1aの先端部表面に広巾積重導電弾性板材2aの一端部を可溶材3aを介しヒートローラや電磁誘導加熱等で面接合し、更に、図4の(ニ)に示すように金型カッターで多数条の短冊片に切断し、次いで、図4の(ホ)に示すように短冊片の積重導電弾性板2を所定の角度で折り返すことにより得ることができる。
広巾電極材と広巾積重導電弾性板材とを面接合し、更に積重導電弾性板材を所定の角度で折り返し、而るのち、多数条の短冊片に切断することも可能である。
前記積重導電弾性板片2または広巾積重導電弾性板材2aの折り返しは、図4の(ヘ)に示すように接合面3aとは反対側の躯体面側に回し込んで行うこともできる。
As will be described later, the base of the housing of the thermo protector can be used for the casing, but usually, an electrode having a lead portion is used as the casing, and one end of the elastic body is a soluble material on the tip end side of the electrode. It is surface-joined via.
As shown in FIGS. 4A to 4B, the set member of the electrode and the elastic body is obtained by folding the conductive elastic plate material to obtain the wide stacked conductive elastic plate material 2a, which is shown in FIG. As shown in FIG. 4D, one end of the wide stacked conductive elastic plate 2a is surface-bonded to the front surface of the wide electrode material 1a through a soluble material 3a by a heat roller, electromagnetic induction heating, or the like. As shown in FIG. 4E, the stacked conductive elastic plate 2 can be folded back at a predetermined angle.
It is also possible to surface-join the wide-width electrode material and the wide-width stacked conductive elastic plate material, fold the stacked conductive elastic plate material at a predetermined angle, and then cut the strip into multiple strips.
The folding of the stacked conductive elastic plate piece 2 or the wide stacked stacked conductive elastic plate material 2a can be performed by turning it to the housing surface side opposite to the joint surface 3a as shown in FIG.

前記電極と弾性体とのセット部材を製作したのち、積重導電弾性板2の他端部22が躯体面に撓み角0にて面接合で固定される。その固定には、予め設けた合成樹脂(可溶材の軟化点よりも高い軟化点を有する)の突起を固定子とするリベッティング、可溶材の融点乃至は軟化点よりも高い融点乃至は軟化点を有する接着剤、抵抗溶接や電磁誘導加熱溶接等の溶接(フラックスを使用した溶接が好ましい)を使用できる。   After the set member of the electrode and the elastic body is manufactured, the other end 22 of the stacked conductive elastic plate 2 is fixed to the surface of the housing by surface bonding at a bending angle of 0. For fixing, rivet with a projection of a synthetic resin (having a softening point higher than the softening point of the soluble material) as a stator, and a melting point or softening point higher than the melting point or softening point of the soluble material. It is possible to use adhesive such as resistance welding or electromagnetic induction heating welding (preferably welding using flux).

前記したように本発明に係るサーモプロテクタは、力学的には一端固定・他端ヒンジ支持の柱に等価であり、凸曲線の高さをh、弾性体の長さをLとする貯えられる弾性曲げ歪みエネルギーは両端固定柱の弾性曲げ歪みエネルギー2hπ/Lと両端ヒンジ支持柱の弾性曲げ歪みエネルギーhπ/(2L)の中間値であり、弾性体を両端撓み角0で両端固定するものに較べ、蓄積弾性曲げ歪みエネルギー量同一のもとで弾性体長さを短くでき、サーモプロテクタの小型化に有利である。
また、一端固定・他端ヒンジ支持の柱と両端固定の柱とでは、凸曲線の高さhが等しい場合、前者の方が後者よりも、凸曲線の総長さが長くなり(1.2倍程度)、従って、凸曲線の総長さ同一のもとでは、柱の両支点間の間隔が短くなるから、本発明に係るサーモプロテクタでは長さをそれだけ短くできる。
As described above, the thermo protector according to the present invention is mechanically equivalent to a column having one end fixed and the other end hinge supported, and the stored elastic property is that the height of the convex curve is h and the length of the elastic body is L. The bending strain energy is an intermediate value between the elastic bending strain energy 2h 2 π 4 / L 3 of the both-end fixed column and the elastic bending strain energy h 2 π 4 / (2L 3 ) of the both-end hinge supporting column, and the elastic body is bent at both ends. Compared to the case where both ends are fixed at 0, the elastic body length can be shortened under the same amount of accumulated elastic bending strain energy, which is advantageous for miniaturization of the thermo protector.
In addition, when the height h of the convex curve is the same between the column with one end fixed and the other end hinge supported and the column with both ends fixed, the former has a longer total length of the convex curve than the latter (1.2 times). Therefore, when the total length of the convex curve is the same, the distance between the two fulcrums of the column is shortened, so that the length of the thermo protector according to the present invention can be shortened accordingly.

図5の(イ)は本発明に係るサーモプロテクタの一実施例の平面図を、図5の(ロ)は図5の(イ)におけるロ−ロ断面図を、図5の(ハ)は図5の(イ)におけるハ−ハ断面図をそれぞれ示している。
図5において、51,52はギャップを隔てて配置された一対の電極、510,520は各電極のリード部である。電極51は躯体としても使用されている。2は積重導電弾性板であり、一端部21を前記した角度θL'の剛節を形成するように折り返して電極51の先端部に可溶金属3を介して面接合固定し、この状態で積重導電弾性板2に長手方向圧縮力pを作用させて積重導電弾性板2に曲げ歪エネルギーを加え、更に積重導電弾性板2の他端部22を電極51に撓み角0で面接触にてリベッティング等4で固定し、更にハウジング6で包囲すると共に前記積重導電弾性板2の凸曲線外面を前記他方の電極52に接触させてある。
ハウジング6には、セラミックスや合成樹脂等の絶縁体が使用され、上下二つ割れ構成とし、融着例えば高周波溶着や接着剤や嵌合方式等により組み立てることができる。
5A is a plan view of an embodiment of the thermoprotector according to the present invention, FIG. 5B is a cross-sectional view of FIG. 5A, and FIG. FIG. 6 shows a cross-sectional view of FIG.
In FIG. 5, 51 and 52 are a pair of electrodes arranged with a gap therebetween, and 510 and 520 are lead portions of the respective electrodes. The electrode 51 is also used as a housing. Reference numeral 2 denotes a stacked conductive elastic plate. The one end portion 21 is folded back so as to form a rigid joint having the angle θL ′, and is fixed to the tip portion of the electrode 51 by surface bonding via a soluble metal 3. A longitudinal compressive force p is applied to the stacked conductive elastic plate 2 to apply bending strain energy to the stacked conductive elastic plate 2, and the other end 22 of the stacked conductive elastic plate 2 faces the electrode 51 at a deflection angle of 0. It is fixed by riveting or the like 4 by contact, is further surrounded by a housing 6, and the convex curved outer surface of the stacked conductive elastic plate 2 is brought into contact with the other electrode 52.
The housing 6 is made of an insulator such as ceramics or synthetic resin, and has an upper and lower split structure, and can be assembled by fusion, for example, high frequency welding, an adhesive, a fitting method, or the like.

このサーモプロテクタにおいて、常時は、一方の電極のリード部→弾性板→弾性板と他方の電極との接触面→他方の電極のリード部の経路で導通されている。可溶材3は、導通経路に含まれていないので、その導通性に可溶材の導電性が関与することはなく、可溶材として熱可塑性樹脂の使用も可能である。
このサーモプロテクタの動作について説明すれば、外部温度の上昇により可溶材3がその融点乃至は軟化点にまで加熱されると、弾性板2の曲げ歪エネルギーにより弾性板一端部21と一方の電極51との間の可溶材3による面接合が解放され、図6に示すように弾性板2が元の平板状に復帰されて弾性板の曲げ高さが0にされ、前記弾性板2と他方の電極52との接触が脱離されて非復帰の通電オフが行なわれる。この場合、可溶材が溶融乃至は軟化して弾性体の弾性歪エネルギーが解放されることが動作開始要件であるから、たとえ可溶材の糸引きが生じても、動作性能に影響を与えることがない。
動作後、弾性体先端の折り返し部と他方の電極との確実な絶縁を保証するために、図6に示すように他方の電極52に絶縁膜502を設けることが望ましい。
図5の(ロ)における弾性板2の凸曲線外面と他方の電極52との接触面に接触圧力が作用し、接触抵抗が低減されるが、更なる接触抵抗の低減を図るために、その接触面を前記した可溶材よりも低融点のはんだで接合することもできる。この場合、糸引きを抑えるために、低融点はんだの層を十分薄くすることが好ましい。
In this thermoprotector, the electrical connection is normally made in the path of the lead portion of one electrode → the elastic plate → the contact surface between the elastic plate and the other electrode → the lead portion of the other electrode. Since the soluble material 3 is not included in the conduction path, the conductivity of the soluble material is not involved in the conductivity, and a thermoplastic resin can also be used as the soluble material.
The operation of the thermo protector will be described. When the fusible material 3 is heated to its melting point or softening point due to an increase in external temperature, the elastic plate one end portion 21 and one electrode 51 are caused by the bending strain energy of the elastic plate 2. 6 is released, the elastic plate 2 is restored to its original flat shape as shown in FIG. 6, and the bending height of the elastic plate is reduced to 0. Contact with the electrode 52 is removed, and non-returning energization is turned off. In this case, since it is a requirement for starting the operation that the soluble material melts or softens and the elastic strain energy of the elastic body is released, even if stringing of the soluble material occurs, the operation performance may be affected. Absent.
After the operation, in order to ensure reliable insulation between the folded portion at the tip of the elastic body and the other electrode, it is desirable to provide an insulating film 502 on the other electrode 52 as shown in FIG.
The contact pressure acts on the contact surface between the convex curved outer surface of the elastic plate 2 and the other electrode 52 in FIG. 5B, and the contact resistance is reduced. In order to further reduce the contact resistance, The contact surfaces can be joined with solder having a melting point lower than that of the soluble material. In this case, it is preferable to make the low melting point solder layer sufficiently thin in order to suppress stringing.

本発明に係るサーモプロテクタにおいては、上下のハウジング片を共通化することが好ましく、図7−1〜図7−5はその実施例を示している。
図7−1〔図7−1の(イ)は平面図、同じく(ロ)は図7−1の(イ)のロ−ロ断面図、同じく(ハ)は左側面図、同じく(ニ)は右側面図〕はハウジング片60の一例を示し、ベース部61の両脇に側壁部62,62を設け、その長手方向中央において段差63を付け、各側壁部62,62の長手方向一端側にリード導体押え用凸部5,5を設け、各側壁上面の内側半分の面に超音波溶着用エネルギーダイレクタとしての三角凸条64を設けてある。また、ベース部の一端側にハウジング片内巾よりも狭巾のリベッティング突部4を設けてある。
In the thermo protector according to the present invention, it is preferable to share the upper and lower housing pieces, and FIGS. 7-1 to 7-5 show the embodiments.
7-1 [(a) in FIG. 7-1 is a plan view, (b) is a cross-sectional view of (b) in FIG. 7-1, (c) is a left side view, (d)] Is a right side view] shows an example of the housing piece 60. Side walls 62, 62 are provided on both sides of the base 61, a step 63 is provided in the center in the longitudinal direction, and one end in the longitudinal direction of each of the side walls 62, 62 is shown. Are provided with protrusions 5 and 5 for holding the lead conductor, and triangular protrusions 64 as an ultrasonic welding energy director are provided on the inner half of each side wall. Further, a riveting protrusion 4 having a narrower width than the inner width of the housing piece is provided on one end side of the base portion.

このハウジング片を用いて本発明に係るサーモプロテクタを製作するには、接触片付きリード導体(リード導体部分の一端側の巾は両押え用凸部620,620間の内巾に等しくするようにやや狭くしてある)に孔を穿設し、図7−2〔図7−2の(イ)は平面図、同じく(ロ)は図7−2の(イ)のロ−ロ断面図、同じく(ハ)は図7−2の(ロ)のハ−ハ断面図〕に示すように、孔を穿設した接触片2付きリード導体1を孔において一方のハウジング片60にリベッテング突部4の加熱圧潰により固定し、また、図7−3に示すように、接触片無しのリード導体10についても、孔を穿設しこの孔において他方のハウジング片60にリベッテング突部4の加熱圧潰により固定し、次いで、図7−4に示すように、これら両ハウジング片を上下にかつリード導体部分1,10のリード部の向きを逆とするように重畳して両ハウジング片60,60の側壁を段差63,63の噛み合いで勘合し、接触片付きリード導体のリード導体部分1の巾両側に他方のハウジング片のリード導体押え用凸部5,5を当接し、ついで超音波溶着機にセットし、両ハウジング片の前記エネルギーダイレクタを圧潰溶着させ、これにてサーモプロテクタの製作を終了する。
前記超音波溶着に代え、レザー溶着や接着剤を使用することも可能である。
In order to manufacture the thermo protector according to the present invention using this housing piece, the lead conductor with a contact piece (the width on one end side of the lead conductor portion is slightly equal to the inner width between the pressing convex portions 620 and 620). 7-2 [(b) in FIG. 7-2 is a plan view, and (b) is a cross-sectional view of (b) in FIG. (C) is a cross-sectional view of (c) c) in FIG. 7-2], the lead conductor 1 with the contact piece 2 in which the hole is formed is inserted into one housing piece 60 in the hole and the ribeting projection 4 is formed. As shown in FIG. 7-3, the lead conductor 10 without a contact piece is also provided with a hole and fixed to the other housing piece 60 by the heat crushing of the riveting protrusion 4 as shown in FIG. 7-3. Then, as shown in FIG. The lead conductor portions of the lead conductors with contact pieces are overlapped so that the direction of the lead portions of the lead conductor portions 1 and 10 is reversed and the side walls of both housing pieces 60 and 60 are engaged with each other by the engagement of the steps 63 and 63. The lead conductor pressing convex portions 5 and 5 of the other housing piece are brought into contact with both sides of the width of 1 and then set in an ultrasonic welding machine to crush and weld the energy directors of both housing pieces. Finish production.
It is also possible to use leather welding or an adhesive instead of the ultrasonic welding.

両リード導体1,10のリード部1r、10rの高さレベルを合わせるように、図7−5に示すように一方のリード導体1のリード部1rをハウジング端面に沿い段差を経て折り曲げ加工することもできる。   As shown in FIG. 7-5, the lead portion 1r of one lead conductor 1 is bent through a step along the housing end surface so that the height levels of the lead portions 1r and 10r of both the lead conductors 1 and 10 are matched. You can also.

図8の(イ)は本発明に係るサーモプロテクタの別実施例の平面図を、図8の(ロ)は図8の(イ)におけるロ−ロ断面図をそれぞれ示し、一方のリード導体を積重弾性金属製とし、このリード線先端部をサーモプロテクタの弾性体として使用している。
図8の(ハ)は同上実施例の動作後を示す図面である。
図8において、1はハウジングのベース躯体であり、セラミックスや合成樹脂等の絶縁体から構成してある。510は一方のリード導体であり、先端部2を二枚板の弾性金属製とし、その先端部2の前端をベース躯体1に対し前記した角度θL'の剛節を構成するように内側に折り曲げその折り曲げ片を可溶材3、例えば熱可塑性樹脂を介して面接合し、この状態で前記先端部2に長手方向圧縮力pを加えて曲げ歪エネルギーを与え、先端部2の後方部を躯体面に面接触でリベットや溶接等4により固定して本発明に係るサーモプロテクタを構成してある。
前記躯体面への弾性リード導体先端部2の面接触下での接合固定に可溶金属を使用する場合は、躯体面を金属箔の貼付・エッチングや金属粉ペーストの印刷・焼き付けにより金属化したうえで行なうことができる。
520は他方の扁平リード導体であり、先端部52を折り曲げ成形して一方の弾性リード導体先端部2の曲げ頂面に接触させてある。
6はハウジングであり、セラミックスや合成樹脂等の絶縁体から構成してあり、融着例えば高周波溶着(ベース及びハウジングが共に合成樹脂の場合)や接着剤や嵌合方式等によりベース躯体に結着してある。
8 (a) is a plan view of another embodiment of the thermoprotector according to the present invention, FIG. 8 (b) is a cross-sectional view of FIG. 8 (b), and one lead conductor is shown. It is made of stacked elastic metal, and the lead wire tip is used as an elastic body of the thermo protector.
FIG. 8 (c) is a diagram showing the operation of the embodiment described above.
In FIG. 8, reference numeral 1 denotes a housing base housing, which is made of an insulator such as ceramics or synthetic resin. Reference numeral 510 denotes one lead conductor, the tip 2 is made of a two-plate elastic metal, and the front end of the tip 2 is bent inward with respect to the base housing 1 so as to form the rigid joint of the angle θL ′ described above. The bent piece is surface-bonded via a fusible material 3, for example, a thermoplastic resin, and in this state, a longitudinal compression force p is applied to the distal end portion 2 to give bending strain energy, and the rear portion of the distal end portion 2 is placed on the housing surface. The thermo protector according to the present invention is configured by being fixed by surface contact with a rivet, welding or the like 4.
When using a fusible metal for joining and fixing the surface of the elastic lead conductor tip 2 to the housing surface, the housing surface was metallized by attaching / etching a metal foil or printing / baking a metal powder paste. You can do it above.
Reference numeral 520 denotes the other flat lead conductor, in which the tip 52 is bent and brought into contact with the bent top surface of the one elastic lead conductor tip 2.
Reference numeral 6 denotes a housing, which is made of an insulator such as ceramics or synthetic resin, and is bonded to the base casing by fusion, for example, high frequency welding (when the base and the housing are both synthetic resin), an adhesive, or a fitting method. It is.

このサーモプロテクタにおいて、常時は、一方のリード導体510→このリード導体先端部2の凸曲線部と他方のリード導体520の先端部52との接触面→他方のリード導体520の経路で導通されている。可溶材3は、導通経路に含まれていないので、可溶材の導電性の関与はない。
このサーモプロテクタの動作について説明すれば、外部温度の上昇により可溶材3がその融点乃至は軟化点にまで加熱されると、一方の弾性リード導体先端部2の曲げ歪エネルギーにより一方のリード導体先端部2と躯体面との間の可溶材3による面接合が解放され、図5の(ロ)に示すように弾性リード導体先端部2が元の平板状に復帰されて当該先端部2の曲げ高さが0にされ、前記一方の弾性リード導体先端部2と他方のリード導体520の先端部52との接触面が脱離されて非復帰の通電オフが完結される。
In this thermoprotector, the lead conductor 510 is normally conducted through the path of one lead conductor 510 → the contact surface between the convex curve portion of the lead conductor tip 2 and the tip 52 of the other lead conductor 520 → the other lead conductor 520. Yes. Since the soluble material 3 is not included in the conduction path, the conductive property of the soluble material is not involved.
The operation of this thermo protector will be described. When the fusible material 3 is heated to its melting point or softening point due to an increase in external temperature, the tip of one lead conductor is caused by the bending strain energy of one elastic lead conductor tip 2. The surface joining by the fusible material 3 between the part 2 and the housing surface is released, and the elastic lead conductor tip 2 is returned to the original flat plate shape as shown in FIG. The height is reduced to zero, the contact surface between the one elastic lead conductor tip 2 and the tip 52 of the other lead conductor 520 is detached, and the non-returning energization-off is completed.

上記においても、弾性リード導体先端部2の曲げ外面と他方のリード導体520の先端部52との接触面に接触圧力が作用して接触抵抗が低減されるが、更なる接触抵抗の低減を図るために、その接触面を前記した可溶材より低融点のはんだで接合することもできる。   Also in the above, the contact pressure acts on the contact surface between the bent outer surface of the elastic lead conductor tip 2 and the tip 52 of the other lead conductor 520 to reduce the contact resistance. However, the contact resistance is further reduced. Therefore, the contact surface can be joined with a solder having a melting point lower than that of the aforementioned soluble material.

本発明に係るサーモプロテクタの上記の実施例では、躯体と積重導電弾性体との可溶材による接合界面に劈開力を作用させないようにその部分に作用する曲げモーメントを零にするようにしているが、曲げモーメントが作用する力学的構成としても、積重導電弾性体の低い曲げ剛性のためにその曲げモーメントを充分に低くできるから、曲げモーメントが作用する力学的構成とすることも可能である。   In the above-described embodiment of the thermoprotector according to the present invention, the bending moment acting on the part is made zero so that the cleavage force does not act on the joining interface of the fusible body and the stacked conductive elastic body with the soluble material. However, since the bending moment can be sufficiently reduced because of the low bending rigidity of the stacked conductive elastic body, it is possible to adopt a mechanical configuration in which the bending moment acts. .

上記弾性金属材には、例えばリン青銅を使用できる。弾性材として、弾性金属材と合成樹脂との複合体、例えばリン青銅板とポリアミドフィルムとの積層体を使用することもできる。   For example, phosphor bronze can be used as the elastic metal material. As the elastic material, a composite of an elastic metal material and a synthetic resin, for example, a laminate of a phosphor bronze plate and a polyamide film can be used.

弾性体の寸法は、金属弾性板の場合、例えば厚み0.008〜0.1mm、巾0.3〜4.6mm、長さ1.5〜11mmとされる。   In the case of a metal elastic plate, the dimensions of the elastic body are, for example, a thickness of 0.008 to 0.1 mm, a width of 0.3 to 4.6 mm, and a length of 1.5 to 11 mm.

上記弾性材としての樹脂や可溶材としての熱可塑性樹脂としては、ポリエチレンテレフタレ−ト、ポリエチレンナフタレ−ト、ポリアミド、ポリイミド、ポリブチレンテレフタレ−ト、ポリフェニレンオキシド、ポリエチレンサルファイド、ポリサルホン等のエンジニアリングプラスチック、ポリアセタ−ル、ポリカ−ボネ−ト、ポリフェニレンスルフィド、ポリオキシベンゾイル、ポリエ−テルエ−テルケトン、ポリエ−テルイミド等のエンジニアリングプラスチックやポリプロピレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリメチルメタクリレ−ト、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、エチレンポリテトラフルオロエチレン共重合体、エチレン酢酸ビニル共重合体(EVA)、AS樹脂、ABS樹脂、アイオノマ−、AAS樹脂、ACS樹脂等中から所定融点のものを選定できる。
ハウジングには、これらの樹脂の外、セラミックスも使用できる。ハウジングの寸法は、例えば厚み0.3〜1.5mm、巾1〜5mm、長さ2〜12mmとされる。
Examples of the resin as the elastic material and the thermoplastic resin as the soluble material include polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polybutylene terephthalate, polyphenylene oxide, polyethylene sulfide, and polysulfone. Engineering plastics such as plastic, polyacetal, polycarbonate, polyphenylene sulfide, polyoxybenzoyl, polyether ether ketone, polyetherimide, polypropylene, polyvinyl chloride, polyvinyl acetate, polymethyl methacrylate, Polyvinylidene chloride, polytetrafluoroethylene, ethylene polytetrafluoroethylene copolymer, ethylene vinyl acetate copolymer (EVA), AS resin, ABS resin, ionomer, A S resin, can be selected ones of a predetermined melting point from in ACS resin.
In addition to these resins, ceramics can also be used for the housing. The dimensions of the housing are, for example, a thickness of 0.3 to 1.5 mm, a width of 1 to 5 mm, and a length of 2 to 12 mm.

上記可溶材としての可溶合金としては、PbやCd等の生体系に有害な元素を含まないものを使用することが好ましく、次ぎの組成[A](1)43%<Sn≦70%,0.5%≦In≦10%,残Bi、(2)25%≦Sn≦40%,50%≦In≦55%,残Bi、(3)25%<Sn≦44%,55%<In≦74%,1%≦Bi<20%、(4)46%<Sn≦70%,18%≦In<48%,1%≦Bi≦12%、(5)5%≦Sn≦28%,15%≦In<37%,残Bi(但し、Bi57.5%,In25.2%,Sn17.3%とBi54%,In29.7%,Sn16.3%のそれぞれを基準にBi±2%,In及びSn±1%の範囲を除く)、(6)10%≦Sn≦18%,37%≦In≦43%,残Bi、(7)25%<Sn≦60%,20%≦In<50%,12%<Bi≦33%、(8)(1)〜(7)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(9)33%≦Sn≦43%,0.5%≦In≦10%,残Bi、(10)47%≦Sn≦49%,51%≦In≦53%の100重量部にBiを3〜5重量部を添加、(11)40%≦Sn≦46%,7%≦Bi≦12%,残In、(12)0.3%≦Sn≦1.5%,51%≦In≦54%,残Bi、(13)2.5%≦Sn≦10%,25%≦Bi≦35%,残In、(14)(9)〜(13)の何れか100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(15)10%≦Sn≦25%,48%≦In≦60%,残Biを100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn−Bi系合金の組成[B](16)30%≦Sn≦70%,0.3%≦Sb≦20%,残Bi、(17)(16)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn−Sb系合金の組成[C](18)52%≦In≦85%,残Sn、(19)(18)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Sn系合金の組成[D](20)45%≦Bi≦55%,残In、(21)(20)の組成の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のIn−Bi系合金の組成、[E](22)50%<Bi≦56%,残Sn、(23)(22)の100重量部にAg、Au、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、等のBi−Sn系合金の組成[F](24)Inの100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(25)90%≦In≦99.9%,0.1%≦Ag≦10%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加、(26)95%≦In≦99.9%,0.1%≦Sb≦5%の100重量部にAu、Bi、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加等のIn系合金の組成(27)2%≦Zn≦15%,70%≦Sn≦95%,残Bi及びその合金100重量部にAu、In、Cu、Ni、Pd、Pt、Ga、Ge、Pの1種または2種以上を合計0.01〜7重量部添加した合金の組成等からサーモプロテクタの動作温度に適合した融点の組成を選定することができる。
また、可溶合金にb.c.cやc.p.h等の結晶構造の金属を多く含ませることにより塑性変形を抑止しクリープ強度を向上させることができる。
As the soluble alloy as the soluble material, it is preferable to use an alloy that does not contain elements harmful to biological systems such as Pb and Cd. The following composition [A] (1) 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, remaining Bi, (2) 25% ≦ Sn ≦ 40%, 50% ≦ In ≦ 55%, remaining Bi, (3) 25% <Sn ≦ 44%, 55% <In ≦ 74%, 1% ≦ Bi <20%, (4) 46% <Sn ≦ 70%, 18% ≦ In <48%, 1% ≦ Bi ≦ 12%, (5) 5% ≦ Sn ≦ 28%, 15% ≦ In <37%, remaining Bi (however, Bi57.5%, In25.2%, Sn17.3% and Bi54%, In29.7%, Sn16.3% based on Bi ± 2%, (Except for the range of In and Sn ± 1%), (6) 10% ≦ Sn ≦ 18%, 37% ≦ In ≦ 43%, remaining Bi, (7) 25% < n ≦ 60%, 20% ≦ In <50%, 12% <Bi ≦ 33%, (8) Ag, Au, Cu, Ni, Pd, Pt, 100 parts by weight of any one of (1) to (7) Add one or more of Sb, Ga, Ge, and P in a total of 0.01 to 7 parts by weight, (9) 33% ≦ Sn ≦ 43%, 0.5% ≦ In ≦ 10%, remaining Bi, ( 10) Add 3-5 parts by weight of Bi to 100 parts by weight of 47% ≦ Sn ≦ 49%, 51% ≦ In ≦ 53%, (11) 40% ≦ Sn ≦ 46%, 7% ≦ Bi ≦ 12% , Remaining In, (12) 0.3% ≦ Sn ≦ 1.5%, 51% ≦ In ≦ 54%, remaining Bi, (13) 2.5% ≦ Sn ≦ 10%, 25% ≦ Bi ≦ 35% , Remaining In, (14) any one or more of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P in 100 parts by weight of any one of (14), (9) to (13) 0.01 to 7 parts by weight in total, (15) 10% ≦ Sn ≦ 25%, 48% ≦ In ≦ 60%, 100 parts by weight of the remaining Bi is Ag, Au, Cu, Ni, Pd, Pt, Sb, In-Sn-Bi based alloy composition [B] (16) 30% ≦ Sn ≦ 70%, such as addition of 0.01 to 7 parts by weight of one or more of Ga, Ge, and P in total. 3% .ltoreq.Sb.ltoreq.20%, the balance Bi, (17) (16), 100 parts by weight of Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P or a total of 0.1 or more. Composition of Bi—Sn—Sb alloy such as addition of 01 to 7 parts by weight [C] (18) 52% ≦ In ≦ 85%, remaining Sn, (19) In 100 parts by weight of (18), Ag, Au, In-Sn based compounds such as addition of 0.01 to 7 parts by weight of one or more of Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P [D] (20) 45% ≦ Bi ≦ 55%, remaining In, (21) Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, 100 parts by weight of the composition of (20) Composition of In-Bi alloy such as addition of 0.01 to 7 parts by weight of one or more of P, [E] (22) 50% <Bi ≦ 56%, remaining Sn, (23) ( 22) 100 parts by weight of Bi-Sn alloy such as Ag, Au, Cu, Ni, Pd, Pt, Ga, Ge, P or a total of 0.01 to 7 parts by weight of one or more of them. Composition [F] (24) Add one or more of Au, Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P to 100 parts by weight of In in total 0.01 to 7 parts by weight, (25 ) Au, Bi, Cu, Ni, Pd, Pt, Ga, 100 parts by weight of 90% ≦ In ≦ 99.9%, 0.1% ≦ Ag ≦ 10% Add one or more of Ge and P in a total of 0.01 to 7 parts by weight, (26) Au in 100 parts by weight of 95% ≦ In ≦ 99.9%, 0.1% ≦ Sb ≦ 5%, Composition of In-based alloy such as addition of 0.01 to 7 parts by weight of one or more of Bi, Cu, Ni, Pd, Pt, Ga, Ge, and P (27) 2% ≦ Zn ≦ 15%, 70% ≦ Sn ≦ 95%, the remaining Bi and its alloy 100 parts by weight, total of 0.01 to 7 parts by weight of one or more of Au, In, Cu, Ni, Pd, Pt, Ga, Ge, P The composition of the melting point suitable for the operating temperature of the thermo protector can be selected from the composition of the added alloy.
Moreover, b. c. c and c. p. By containing a large amount of metal having a crystal structure such as h, plastic deformation can be suppressed and the creep strength can be improved.

これらの合金、特に、Biリッチ合金の場合は、金属弾性体に予め層状に被覆しておくことが好ましい。   In the case of these alloys, particularly Bi-rich alloys, it is preferable to coat the metal elastic body in layers.

上記の電極やリード導体には、ニッケル、銅、銅合金等の導電性金属乃至は合金を使用でき、必要に応じ鍍金することができる。
上述した通り、リード導体の先端部に電極や電極を設けることができ、また弾性金属リード導体の先端部を圧潰加工して弾性板状とすることもできる。
これらの場合、躯体及びハウジング外のリード導体の形状は任意の形状にできる。
電極若しくはリード導体または弾性体または両方の可溶金属との接合部は局部的に溶接性に優れた素材に置換することもできる。
リード部付き電極やリード導体の厚みは、例えば0.05〜0.3mm、巾は0.5〜4.6mmとされる。
For the above-mentioned electrodes and lead conductors, conductive metals or alloys such as nickel, copper, and copper alloys can be used, and can be plated as necessary.
As described above, an electrode or an electrode can be provided at the tip of the lead conductor, and the tip of the elastic metal lead conductor can be crushed into an elastic plate shape.
In these cases, the shape of the lead conductor outside the housing and the housing can be any shape.
The joint of the electrode, the lead conductor, the elastic body, or both of the fusible metals can be replaced with a material having excellent weldability locally.
The thickness of the lead-attached electrode or lead conductor is, for example, 0.05 to 0.3 mm, and the width is 0.5 to 4.6 mm.

リチウムイオン2次電池、リチウムポリマー2次電池等に対する電池パックにおいては、電池や電力トランジスター等の異常発熱を検知して不通電とするサーモプロテクタが必要であるが、本発明に係るサーモプロテクタにおいては小型化が容易であり電池パックに良好に組み込み得、その電池用サーモプロテクタとして好適に利用できる。   In battery packs for lithium ion secondary batteries, lithium polymer secondary batteries, etc., a thermo protector for detecting abnormal heat generation such as a battery or a power transistor and de-energizing is necessary. In the thermo protector according to the present invention, however, Miniaturization is easy, it can be incorporated well into a battery pack, and it can be suitably used as a thermo-protector for the battery.

本発明に係るサーモプロテクタを示す図面である。It is drawing which shows the thermoprotector which concerns on this invention. 図1−1のサーモプロテクタにおける積重導電弾性板を示す図面である。It is drawing which shows the accumulation electroconductive elastic board in the thermo protector of FIGS. 1-1. 一端ヒンジ支持・他端固定の柱の力学的状態を示す図面である。It is drawing which shows the mechanical state of the pillar of one end hinge support and other end fixation. 本発明に係るサーモプロテクタの力学的状態を示す図面である。It is drawing which shows the mechanical state of the thermoprotector which concerns on this invention. 本発明に係るサーモプロテクタに使用する弾性体付き躯体の製作方法を示す図面である。It is drawing which shows the manufacturing method of the housing with an elastic body used for the thermoprotector which concerns on this invention. 本発明に係るサーモプロテクタの一実施例を示す図面である。It is drawing which shows one Example of the thermo protector which concerns on this invention. 図5に示するサーモプロテクタの動作後を示す図面である。It is drawing which shows the operation | movement of the thermo protector shown in FIG. 本発明に係るサーモプロテクタに使用するハウジング片の一例を示す図面である。It is drawing which shows an example of the housing piece used for the thermoprotector which concerns on this invention. 図7−1のハウジング片を用いてサーモプロテクタを製作する場合の工程の一部を示す図面である。It is drawing which shows a part of process in the case of manufacturing a thermo protector using the housing piece of FIGS. 図7−1のハウジング片を用いてサーモプロテクタを製作する場合の工程の上記とは別の一部を示す図面である。It is drawing which shows a part different from the above of the process in the case of manufacturing a thermo protector using the housing piece of FIGS. 図7−1のハウジング片を用いてサーモプロテクタを製作する場合の工程の上記とは別の一部を示す図面である。It is drawing which shows a part different from the above of the process in the case of manufacturing a thermo protector using the housing piece of FIGS. 図7−1のハウジング片を用いてサーモプロテクタの一実施例を示す図面である。It is drawing which shows one Example of a thermo protector using the housing piece of FIGS. 本発明に係るサーモプロテクタの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the thermoprotector which concerns on this invention. 従来のサーモプロテクタを示す図面である。It is drawing which shows the conventional thermo protector.

符号の説明Explanation of symbols

1 躯体としてのリード導体
10 他方のリード導体
2 積重導電弾性体
21 積重導電弾性体の一端部
22 積重導電弾性体の他端部
3 可溶材
4 リベッティグ
51 電極
52 電極
51 固定電極
52 可動電極
6 ハウジング
DESCRIPTION OF SYMBOLS 1 Lead conductor 10 as a housing | casing The other lead conductor 2 Stacked conductive elastic body 21 One end part 22 of a stacked conductive elastic body The other end part 3 of a stacked conductive elastic body 3 Soluble material 4 Riveting 51 Electrode 52 Electrode 51 Fixed electrode 52 Movable Electrode 6 housing

Claims (8)

積重された導電弾性板の一端部が躯体面に固定され、該積重導電弾性板が凸曲線状に曲げられて弾性曲げ歪エネルギーが加えられた状態で当該積重導電弾性板の他端部が躯体面に固定され、これら両固定の少なくとも一方が可溶材による面接合で行われて積重導電弾性板の曲げ頂部が固定導体に接触されており、可溶材の溶融乃至は軟化による前記弾性曲げ歪エネルギーの解放で前記接触が開放されることを特徴とするサーモプロテクタ。 One end of the stacked conductive elastic plate is fixed to the housing surface, and the other end of the stacked conductive elastic plate in a state where the stacked conductive elastic plate is bent into a convex curve shape and elastic bending strain energy is applied. The part is fixed to the housing surface, at least one of these fixations is performed by surface joining with a soluble material, and the bending top of the stacked conductive elastic plate is in contact with the fixed conductor, and the above-mentioned by melting or softening of the soluble material A thermo protector, wherein the contact is released by releasing elastic bending strain energy. 積重導電弾性板が長手方向に圧縮された状態でその両端が躯体に固定されて凸曲線状とされ、該凸曲線一端側が躯体に対し所定の角度で立ち上げられており、同凸曲線他端が撓み角0とされていることを特徴とする請求項1記載のサーモプロテクタ。 In a state where the stacked conductive elastic plate is compressed in the longitudinal direction, both ends thereof are fixed to the casing to form a convex curve, and one end of the convex curve is raised at a predetermined angle with respect to the casing. The thermo-protector according to claim 1, wherein the end has a bending angle of 0. 積重導電弾性板の一端部が内側に折り曲げられてその折り曲げ片が躯体表面に可溶材を介し面接合されていることを特徴とする請求項2記載のサーモプロテクタ。 The thermo-protector according to claim 2, wherein one end of the stacked conductive elastic plate is bent inward, and the bent piece is surface-bonded to the surface of the housing via a soluble material. 積重導電弾性板の一端部が内側に折り曲げられてその折り曲げ片の内側面が躯体先端部裏面に可溶材を介し面接合されていることを特徴とする請求項2記載のサーモプロテクタ。 3. The thermo protector according to claim 2, wherein one end of the stacked conductive elastic plate is bent inward, and the inner side surface of the bent piece is surface-bonded to the rear surface of the front end of the housing via a soluble material. 可溶材が低融点金属であることを特徴とする請求項1〜4何れか記載のサーモプロテクタ。 The thermoprotector according to claim 1, wherein the soluble material is a low melting point metal. 可溶材が熱可塑性樹脂であることを特徴とする請求項1〜4何れか記載のサーモプロテクタ。 The thermoprotector according to any one of claims 1 to 4, wherein the soluble material is a thermoplastic resin. 請求項2記載のサーモプロテクタを製造する方法であり、広巾の躯体材に広巾の積重導電弾性板材の一端部を可溶材を介して面接合し、この接合材を多数条の片に切断したうえ更に弾性体片を前記面接合部を境として折り返すか、または弾性体材を前記面接合部を境として折り返したうえ更に接合材を多数条の片に切断し、次いで折り返し弾性体片を長手方向に圧縮した状態でその他端部を躯体に撓み角0で固定することを特徴とするサーモプロテクタの製作方法。 A method of manufacturing the thermoprotector according to claim 2, wherein one end of a wide stacked conductive elastic plate material is surface-bonded to a wide casing material via a soluble material, and the bonding material is cut into a plurality of strips. Furthermore, the elastic piece is folded back at the surface joint portion, or the elastic material is folded back at the surface joint portion, and the joint material is further cut into a plurality of strips, and then the folded elastic body piece is elongated. A manufacturing method of a thermo protector, wherein the other end is fixed to the housing at a bending angle of 0 in a state compressed in the direction. 請求項3記載のサーモセンサを製造する方法であり、広巾の躯体材の先端部裏面に広巾の積重導電弾性板材の一端部を可溶材を介して面接合し、この接合材を多数条の片に切断したうえ更に弾性体片を躯体の表面側に折り返すか、または弾性体材を躯体材の表面側に折り返したうえ更に接合材を多数条の片に切断し、次いで折り返し弾性体片を長手方向に圧縮した状態でその他端部を躯体に撓み角0で固定することを特徴とするサーモプロテクタの製作方法。 A method of manufacturing the thermosensor according to claim 3, wherein one end of a wide stacked conductive elastic plate is surface-bonded to a back surface of a front end of a wide casing material via a soluble material, and the bonding material is formed into a plurality of strips. Cut the piece into pieces and then fold the elastic piece back to the surface side of the case, or turn the elastic piece back to the surface side of the case and cut the joining material into pieces of strips, and then fold the elastic piece A method of manufacturing a thermo protector, wherein the other end is fixed to the housing at a bending angle of 0 in a state compressed in the longitudinal direction.
JP2005152255A 2005-05-25 2005-05-25 Thermo protector and manufacturing method thereof Expired - Fee Related JP4554436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152255A JP4554436B2 (en) 2005-05-25 2005-05-25 Thermo protector and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152255A JP4554436B2 (en) 2005-05-25 2005-05-25 Thermo protector and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006331777A true JP2006331777A (en) 2006-12-07
JP4554436B2 JP4554436B2 (en) 2010-09-29

Family

ID=37553260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152255A Expired - Fee Related JP4554436B2 (en) 2005-05-25 2005-05-25 Thermo protector and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4554436B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539179A (en) * 2010-09-02 2013-10-17 バシウム・カナダ・インコーポレーテッド Current collector terminal for electrochemical cells
JP2014520367A (en) * 2011-06-17 2014-08-21 エルジー・ケム・リミテッド Secondary battery component and method for manufacturing the same, and secondary battery and multi-battery system manufactured using the component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063792A (en) * 2003-08-11 2005-03-10 Uchihashi Estec Co Ltd Heat sensitive element and thermo-protector
JP2005078954A (en) * 2003-09-01 2005-03-24 Uchihashi Estec Co Ltd Thermosensor and thermoprotector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063792A (en) * 2003-08-11 2005-03-10 Uchihashi Estec Co Ltd Heat sensitive element and thermo-protector
JP2005078954A (en) * 2003-09-01 2005-03-24 Uchihashi Estec Co Ltd Thermosensor and thermoprotector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539179A (en) * 2010-09-02 2013-10-17 バシウム・カナダ・インコーポレーテッド Current collector terminal for electrochemical cells
JP2014520367A (en) * 2011-06-17 2014-08-21 エルジー・ケム・リミテッド Secondary battery component and method for manufacturing the same, and secondary battery and multi-battery system manufactured using the component

Also Published As

Publication number Publication date
JP4554436B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP4410056B2 (en) Thermosensor, thermoprotector, and method of manufacturing thermosensor
US7345570B2 (en) Thermoprotector
TWI547966B (en) Circuit breaker and battery pack including the same
EP2988313B2 (en) Protective device
JP4290426B2 (en) Thermal fuse
JP2017098186A (en) Breaker, safety circuit with the same, and secondary battery circuit
JP2012094374A (en) External packaging material of laminate battery, method of producing external packaging material of laminate battery, method of manufacturing laminate battery, and laminate battery
KR20210126750A (en) protection element
JP4554436B2 (en) Thermo protector and manufacturing method thereof
JP2006196189A (en) Thermo-protector, manufacturing and mounting method of the same
JP6560548B2 (en) Breaker and safety circuit equipped with it.
JP2005063792A (en) Heat sensitive element and thermo-protector
JP2007005066A (en) Thermoprotector and manufacturing method of the same
JP4223354B2 (en) Thermo protector
JPH11273541A (en) Fuse
JP5391796B2 (en) Thermal fuse
WO2024069853A1 (en) Breaker and secondary battery pack including same
US11749482B2 (en) Protection element
JP2013182750A (en) Temperature fuse and manufacturing method thereof
JP7471625B2 (en) Battery pack and battery pack manufacturing method
JP2006351393A (en) Thermo-protector
JP4527609B2 (en) Thermo protector
WO2023074752A1 (en) Breaker
JP2013098098A (en) Breaker
JP2006202677A (en) Thermo-protector and manufacturing method of thermo-protector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees