JP2005050898A - 半導体光増幅器及びそれを用いた光モジュ−ル - Google Patents

半導体光増幅器及びそれを用いた光モジュ−ル Download PDF

Info

Publication number
JP2005050898A
JP2005050898A JP2003203605A JP2003203605A JP2005050898A JP 2005050898 A JP2005050898 A JP 2005050898A JP 2003203605 A JP2003203605 A JP 2003203605A JP 2003203605 A JP2003203605 A JP 2003203605A JP 2005050898 A JP2005050898 A JP 2005050898A
Authority
JP
Japan
Prior art keywords
optical
semiconductor
optical waveguide
waveguide
optical amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003203605A
Other languages
English (en)
Other versions
JP4090402B2 (ja
Inventor
Hiroyuki Kamiyama
博幸 神山
Kenji Uchida
憲治 内田
Seiji Washimi
聖二 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Opnext Japan Inc
Original Assignee
Opnext Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opnext Japan Inc filed Critical Opnext Japan Inc
Priority to JP2003203605A priority Critical patent/JP4090402B2/ja
Priority to US10/851,910 priority patent/US7127145B2/en
Publication of JP2005050898A publication Critical patent/JP2005050898A/ja
Priority to US11/375,466 priority patent/US7190872B2/en
Application granted granted Critical
Publication of JP4090402B2 publication Critical patent/JP4090402B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

【課題】従来、半導体光増幅器には、偏波依存性や利得が飽和しないという難点や、利得を飽和させようとすると、面発光レ−ザを集積するなど結晶成長に時間がかかり、コストの上昇を避けられないという難点があった。本発明は、偏波無依存且つ利得の飽和する高機能な半導体光増幅器及び光モジュ−ルを工業的に安価に提供することにある。
【解決手段】本発明の骨子は、光増幅に供するレ−ザ発振用の光共振器部の光導波路と、光信号を導波させる光導波路とを同一平面内で且つ平行とならないように配置して、両光導波路を構造的に分離することにある。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は光通信システムに関するものである。より詳しくは、本発明は光増幅器及びこれを用いた諸モジュールに関するものである。
【0002】
【従来の技術】
光通信システムは近年急速に拡大し、電信電話通信或いはネットワークに関する重要な技術となっている。光通信システムは光ファイバを通して高速で情報を伝達するものであり、この重要な光コンポーネントの一つとして、光増幅器、わけても半導体光増幅器を挙げることが出来る。光増幅器は、例えばこうした系での光信号のアッテネーション(attenuation)などに用いられる。
【0003】
これまでの代表的な半導体光増幅器としては、半導体レーザ装置と類似の構造の光共振器を用いて、レーザ発振の閾値以下で動作させる例や活性領域での利得(ゲイン;Gain)を制御するチューナブルゲイン(Tunable−Gain)半導体光増幅器などが知られている。前者の例では、光共振器に電流を注入しキャリア(carrier)を励起する。そして、この領域に光信号を通過させ、前記励起されたキャリアに基づく誘導放出に基づいて光信号を増幅するものである。後者の例は、例えば、光共振器において、基板に対して上下方向に光信号の光軸に直交する、いわゆるバーティカル(vertical)方向に光に光の進行方向を有するレーザ発振をせしめ、この活性領域での利得を制御せんとする例である。或いは利得が固定された半導体光増幅器に直列に可変減衰器を接続した例なども知られている。それらの例は、例えば、米国特許第6、347、104号公報“Optical signal power monitor and regulator”(特許文献1)、米国特許第6、445、495号公報“Tunable−gain semiconductor optical amplifier”(特許文献2)などに見られる。
【特許文献1】
米国特許公報 No.6、347、104(コラム16、14行目−43行目、図3A、3B)
【特許文献2】
米国特許公報 No.6、445、495(コラム2、24行目−46行目、図8A)
【0004】
【発明が解決しようとする課題】
これまでの通例の半導体光増幅器は、入射する光信号の強度によって利得が変化し、且つ増幅利得が飽和に至らない難点を有している。これに対応する為、ゲインチューナブルな半導体光増幅器の提案があるが、こうした例においても、更に自然放出によるスペクトル広がりとこれに基づく雑音レベルの上昇などの難点があった。半導体光増幅器に直列に可変減衰器を接続する形態は、加えて素子の増加を伴う難点も発生する。
【0005】
【課題を解決するための手段】
前述の諸難点に対処する本発明の骨子を述べると次の通りである。
【0006】
即ち、本発明の半導体光増幅器は、入射した光信号を導波させる第1の光導波路と、その光信号を増幅する光増幅部とを準備する。そして、光励起のみを用いて前記光増幅部においてキャリアを励起し、誘導放出を生じさせる。この場合、第1の光導波路に前記光増幅部よりの誘導放出を前記第1の光導波路に導入し、ここを伝搬する光信号の増幅を行うのである。その代表例は、この光励起を前記光導波路と平行ではない光導波路及び共振器構造をもって行うものである。より、具体的に述べれば、入射した光信号を導波させる光導波路と同一平面内で且つ前記光導波路と平行ではない光導波路及び共振器構造によって、レ−ザ発振を行う。そして、前記レ−ザ光を、光信号の伝播する光導波路の一部もしくは全体に通過させ、光信号の伝播する光導波路のキャリアを光励起して誘導放出を生じさせることによって光信号を増幅する。前記光増幅部及び第1の光導波路への光の導入には種々の形態については、後述される。
【0007】
本願発明の別な形態は、前記光信号を導波する第1の光導波路の入射端、出射端のいづれかもしくは両方に、所望の光部材、光素子及び光電気素子の群から選ばれた少なくとも一者が、当該半導体光増幅器に集積化されたものである。集積化した素子によって、当該半導体光増幅器が新たな機能を有するものとなる。
【0008】
更に、本願発明の更に別な形態は、本発明の半導体光増幅器を用いた光モジュ−ルである。本発明は、入射する光信号の強度による利得の変化を実質的に無くした光モジュ−ルを提供することが出来る。
【0009】
【発明の実施の形態】
具体的な実施例を説明するに先立って、本発明の一般的な諸事項を詳細に説明する。図1の(a)は本発明の代表例の平面図である。尚、図1の(a)の例をもって、本発明を具体的に説明するが、本発明の原理適用の具体的構造はこの例に限られるものではない。入射した光信号170を導波させる光導波路101、この光導波路101と同一平面内で且つ平行ではない光導波路及び光共振器構造102を形成する。これらの各層は通例の半導体プロセスによって作製することが出来る。尚、加工上の理由から、半導体光共振器の出入射端面を第1の光導波路の光軸が直交せず、角度を有して構成されることもある。この場合、エッチングの結晶構造への依存性の為、半導体レーザ発振の為の反射面が形成される溝が前記端面と直角以外の角度を有する形態となる。この場合の平面図を図1の(b)に示す。各部位は図1の(a)と同様である。尚、図1の(b)では、光信号を伝達する第1の光導波路の光軸の延長線と、半導体レーザ発振の為の反射面が形成される溝の、第1の光導波路側の側面の延長線との交差角をθとして概念略図として示した。この交差角θは空気とInP系化合物半導体の屈折率とブリュースター角との関係から、実際的に4度−7度程度の範囲である。
【0010】
前記光導波路は、通例、少なくともコア層とこれを挟む第1及び第2のクラッド層で構成する。更には、前記コア層等は量子多重井戸構造を用いることも可能である。その一例を掲げれば、例えば、InGaAs/InGaAsPの積層によって量子多重井戸構造を構成する。
【0011】
こうした光共振器構造によってレ−ザ発振を行うことが出来る。そして、前記光共振器構造よりのレ−ザ光を、前記光信号が伝播する光導波路の一部もしくは全体に通過させ、光信号の伝播する光導波路のキャリアを光励起して誘導放出を生じさせる。この誘導放出によって前記光信号を増幅させる。
【0012】
この場合、光信号の進行方向に対して横方向から入射するレ−ザ光により、増幅で消費された励起キャリア量は瞬時に補填されるため励起キャリアの量、即ち反転分布は、入力光信号のパワーレベルに依存せず一定となる。従って、当該半導体光増幅器としての利得を飽和させることができる。
【0013】
加えて、半導体層の積層を用いた光導波路においては、レ−ザ発振させる光導波路領域102と、光信号を導波させる第1の光導波路領域101を構造的に分離することで、光信号を導波させる第1の光導波路の光の進行方向(光軸)と直交する断面をほぼ正方形にすることができる。このため、光の進行方向と垂直な面内において、方向によらず、ほぼ、円形な領域で均一な利得を持つことができ、従来の半導体光増幅器に存在した偏波依存性の問題、即ち、増幅利得が偏波によって異なる値を取る難点も解消することができる。
【0014】
更に、本発明のように、光信号を導波させる光導波路とレ−ザ発振させる光導波路を分離した構造では、前記スペクトル広がりとそれによる雑音レベルを低く押さえることが可能である。他方、面発光レ−ザを用いて、光信号を導波させる光導波路にも電流注入した場合には、電流による励起成分もあるため、自然放出光によるスペクトル広がりとそれによる雑音レベルが高くなる。
【0015】
又、光信号を導波させる光導波路にも電流注入した場合には、電流経路の高抵抗化を防ぐために、クラッド層にp型もしくはn型の不純物をある濃度レベル以上にする必要がある。しかし、本発明のように、光信号を導波させる光導波路とレ−ザ発振させる光導波路を分離した構造では、光信号を導波させる光導波路のクラッド層をノンドープにすることが可能であり、不純物に起因する損失を防ぐことが可能である。
【0016】
尚、本発明の実施に当たり、光信号の波長は当該光導波路の媒質の組成波長と同じかこれより短波長、光増幅の為に用いるレーザ光の波長は、当該光導波路の媒質の組成波長と同じかこれより短波長、又、レーザ光の波長は光信号の波長に等しいか短波長に設定される。即ち、これらの関係は、[レーザ光の波長]≦[光信号の波長]≦[光導波路の媒質の組成波長]と表わすことが出来る。更に、光信号の波長と光導波路の媒質の組成波長とは等しいことが好ましい。
【0017】
本発明の第2の光導波路を用いた光共振器を構成する為の光帰還部は、通例の半導体レーザ共振器のそれと同等で十分である。その代表例を例示すれば、第2の光導波路の両端面を、例えばドライエッチングあるいはへき開により反射面を形成する。そして、通例この端面上に誘電体多層膜或いは半導体多層反射膜を形成する。更に、本発明の別な形態によれば、当該光導波路を構成する各半導体層或いは当該レーザ光が感応する領域に回折格子を配置して光帰還手段となすことが出来る。
【0018】
又、本発明の光共振器は、前記第1の光導波路の両側に設けた第2の光導波路に加えて、当該半導体光増幅器を構成する積層体の垂直方向の一部領域を用いることも可能である。即ち、第2の光導波路の両端部に各々に45°反射鏡を形成し、各反射鏡によって当該半導体光増幅器の基板側に光が反射可能な構成となす。そして、前記両45°反射鏡による反射光の、前記基体側の光路中に各々反射部を形成し、光共振器を実現する。多くの場合、実際的に形成が容易な前記基板の上部あるいは裏面に反射鏡を設け、第2の光導波路及び半導体光増幅器を構成する積層体の所望領域とを用いて光共振器を構成する。尚、45°反射鏡とは、第2の光導波路の光の進行方向に対して45°の角度を持った反射鏡を言う。この45°反射鏡は、例えば半導体積層体を結晶方位に依存したウエットエッチングすることによって形成することが出来る。
【0019】
更に、本発明において、光信号を導波する第1の光導波路の入射端、出射端のいづれかもしくは両方に、所望の光部材、光素子及び光電気素子の群から選ばれた少なくとも一者を、当該半導体光増幅器に集積化して用いることも当然可能である。
【0020】
具体例を示すならば、次のような諸例である。第1は図17に示す例のように、入力光パワーレベルを制御するための、光信号を導波させる光導波路の前部に電界吸収型の可変光減衰器(VOA:Valuable Optical Attenuator)を集積化した例である。第2は図20に示す例のように、出力光パワーレベルを制御するための、光信号を導波させる光導波路の後部に電界吸収型の可変光減衰器(VOA)を集積化した例である。第3は図21に示す例のように光プリアンプを構成する目的で光信号を導波させる光導波路の後部にPINフォトダイオードなどを集積した例である。
【0021】
<実施例1>
レ−ザ発振を行う共振器構造が1つである例について、図1のより図4の各図を用いて説明する。図1の(a)は前述したように上からみた平面図、図2は図1の2−2断面図、図3は図1の3−3断面図、図4は図1の4−4断面図である。
【0022】
図1の(a)を用いて本例の基本的動作を説明する。光信号170は、図中央の光導波路101に左側から入力する。そして、光信号170が当該レ−ザ共振器102を横切ることによって、増幅され、光導波路101の右側から出力光171として出射される。尚、図1において、101は光信号用光導波路、102はレ−ザ共振器部、103は下部の電極パッド、104は光信号用光導波路端面の無反射コ−ティング膜、105はレ−ザ共振器用コ−ティング膜である。本実施例では、レ−ザ共振器を形成するための結晶面はドライエッチングにより形成しているが、へき開により形成することも可能である。
【0023】
図3は、図1の断面3−3における断面図である。光信号用光導波路部101の積層構造を説明すると次の通りである。InP基板(n型、2×1018cm−3厚み100μm)111の上に、InPバッファ層(n型、1×1018cm−3、0.15μm)112、InGaAsPクラッド層 (none−dope、膜厚0.3μm、λg=1.15μm)113、InGaAsP導波層(none−dope、膜厚0.8μm、λg=1.55μm)114、InGaAsPクラッド層(none−dope、膜厚0.3μm、λg=1.15μm)115、InPキャップ層(none−dope、膜厚1.0μm)、117の絶縁膜(SiN、膜厚0.5μm)116の各層が積層されている。
【0024】
図2は、図1の断面2−2の断面図である。図2によって、レ−ザ共振器部の積層構造を説明する。レ−ザ共振器部は前記光導波路部101を挟んで両側に形成される。そして、この光導波路部101と後述するレ−ザ共振器部用積層構造とによって、光信号の進行方向とは交差する方向に共振器の軸方向を有するレーザ共振器が構成される。
【0025】
前記光導波路部101を挟んで両側に形成される積層構造は次の通りである。InP基板111の上に、InPバッファ層(n型、1×1018cm−3、膜厚0.15μm)112、InGaAsPクラッド層(n型、5×1018cm−3、膜厚0.2μm、λg=1.05μm)122、InGaAsPSCH層(n型、1×1017cm−3、膜厚0.2μm、λg=1.15μm)123、InGaAsP MQW(Multi−quantum Well)活性層(none−dope、ウエル層膜厚10nm/λg=1.55μm、バリア層膜厚10nm/λg=1.3μm、10周期)124、InGaAsPSCH層(p型、1×1017cm−3、膜厚0.2μm、λg=1.15μm)125、InPクラッド層(p型、5×1017cm−3、膜厚1.5μm)128、InGaAsコンタクト層(p型、2×1019cm−3、膜厚0.1μm)129、絶縁膜(SiN、膜厚0.5μm)117、p電極(Ti/Pt/Au)118が積層される。一方、基板111の裏面にはn電極(Ni/AuGe/Au)119が形成される。
【0026】
尚、第1の光導波路の半導体積層領域と第2の光導波路の半導体積層領域の間に、例えば不純物拡散の阻止の為、半導体層(例えばバリア層)を介在させても良い。尚、この追加の半導体層は本例に限らず、本発明の諸例に用い得るものである。
【0027】
光信号用光導波路の導波方向の断面図を図4に示す。当該領域での積層構造は図2及び図3に示す光導波路と同じ構造である。従って、その詳細説明は省略する。
【0028】
前述した各半導体積層体は、例えば、先ず、基板111に前述した第1の光導波路を構成する第1の半導体積層体を形成する。それは、幅広の半導体積層体を形成した後、所望幅に加工しても良いし、又、所望幅の第1の半導体積層体を形成しても良い。そして、この第1の半導体積層体の光導波路の光軸に平行な面に接して前述した光増幅器部の第2の半導体積層体を形成する。この所望形状の第1及び第2の半導体積層体の両側部を半絶縁性半導体層130、例えば半絶縁性InPの埋込層を形成する。次いで、半絶縁性半導体層130の第2の半導体積層体との境界近傍に溝部を形成し、この溝部の内部にレーザ共振器用のコーティング膜105を形成する。この溝部は前述したようにドライエッチングあるいはへき開によって形成することが出来る。尚、このレーザ共振器用のコーティング膜105はレーザ発振用の光共振器の両側面にあれば十分であるが、製造上、特別不都合のない他の領域にも存在することも許容される。更に、光信号を伝搬する第1の光導波路の両端面に、無反射コーティング104を形成する。p型電極118、n型電極119が設けられ、光増幅器が完成される。
【0029】
本発明の半導体増幅器をサブマウント上に実装し、レンズ、ファイバにより調芯して、増幅利得特性を測定した。この結果を図5に例示する。横軸が光出力(Output Power)、縦軸が利得である。図5に示すように、光信号の入力に対し、出力信号の利得は入力光信号のパワーレベルに依存せず約16dBとほぼ一定となり、増幅利得が飽和していることを確認した。又、光信号を導波させる光導波路の断面をほぼ正方形にすることにより、増幅利得の偏波依存性がないことも確認した。
【0030】
更に、光信号を導波させる光導波路とレ−ザ発振させる光導波路を分離した構造の採用により、次のような利点を生みだしている。即ち、光信号を導波させる光導波路に電流注入がなく、自然放出光によるスペクトル広がりとそれによる雑音レベルを低く押さえること、及び、光信号を導波させる光導波路のクラッド層をノンドープとしている。この為、当該光増幅器は、前記光導波路の不純物に起因する損失を防ぐことを可能とした。
【0031】
励起用レ−ザ光を発生させる共振器構造には、面型構造ではなく光導波路構造を採用しているため、励起光強度を高めることができた。
【0032】
<実施例2>
光増幅器がレ−ザ発振を行う共振器構造が複数有する例について、図6より図8を用いて説明する。図6は、本例の光共振器を上からみた平面図、図7は図6の7−7断面の断面図、図8は、図8−8断面の断面図である。
【0033】
光信号170は、図中央の光導波路101に左側から入り、複数に分離されたレ−ザ共振器102を信号が横切ることによって、増幅され、光導波路の右側から射出光171として出射される。
【0034】
レ−ザ発振部は図6の複数並置された斜線部102である。レ−ザ共振器を複数に分離する部分の形成方法はいくつかあるが、例えば次の方法が有用である。即ち、レ−ザ共振器部の積層構造を形成して後、分離溝形成し、後に光信号用光導波路部と同じ層構造を結晶成長して埋め込み型とする。この部分の形成方法は、更には、分離溝形成後に、この分離溝の内部を保護膜のみでパッシベーションし、リッジ型とすることなども可能である。
【0035】
尚、図において、101は光信号用光導波路、103は電極パッド、104は光信号用光導波路端面の無反射コーティング膜、105はレ−ザ共振器用コーティング膜である。
【0036】
本実施例では、レ−ザ共振器を形成するための結晶面はドライエッチングにより形成した。しかし、又、一般的なへき開により形成することも可能である。光信号用光導波路部の積層構造、レ−ザ共振器部の積層構造、電極は、実施例1と同様である。従って、その詳細説明は省略する。
【0037】
前述したように、図7に信号導波部とレ−ザ部を含む断面図を、図8にレ−ザ部を含まずに信号導波部のみを含む断面図を示す。レ−ザ共振器を複数に分離する目的は、各レ−ザ共振器の幅を狭くすることで、横モードを安定化させ、レ−ザ部のバイアス電流と励起光パワーの関係の線形性を高めることに有る。
【0038】
本発明の半導体増幅器をサブマウント上に実装し、レンズ、ファイバにより調芯して、光信号を入力し特性を測定したところ、図5の特性とほぼ同様に増幅利得が飽和している特性を確認した。又、光信号を導波させる光導波路の断面をほぼ正方形にすることにより、増幅利得の偏波依存性がないことも確認した。
【0039】
更に、光信号を導波させる光導波路とレ−ザ発振させる光導波路を分離した構造の採用により、光信号を導波させる光導波路に電流注入がなく、自然放出光によるスペクトル広がりとそれによる雑音レベルを低く押さえること、及び、光信号を導波させる光導波路のクラッド層をノンドープとしているため、不純物に起因する損失を防ぐことを可能とした。
【0040】
励起用レ−ザ光を発生させる共振器構造には、面型構造ではなく光導波路構造を採用しているため、励起光強度を高めることができた。
【0041】
<実施例3>
本例は、45°反射鏡を用いた光増幅器の例である。即ち、本例は、光信号の増幅に用いる励起光を発生させるレ−ザ共振器が、基板の底面側に形成した誘電体多層膜及び光導波路と基板に対して同一平面側に形成した2つの45°反射鏡とにより構成されている。本例を、図9より図11を用いて説明する。図9は、本例の光共振器を上からみた平面図、図10は図9の10−10断面の断面図、即ち、レ−ザ共振器部の断面図、図11は、図11−11断面の断面図である。光信号用光導波路部の4−4断面は図4と同様である。光信号用光導波路部の積層構造及びレーザ共振器部の積層構造は、実施例1と同様である。
【0042】
図9に即せば、光導波路101の左側の入射口から入射した光信号170は、レ−ザ共振器102を信号が横切ることによって、増幅され、光導波路101の右側から光出力171として出射される。尚、図中、101は光信号用光導波路、103は裏面の電極パッド、104は光信号用光導波路端面の無反射コーティング膜、131は45°ミラ−部である。45°ミラ−部131は、半導体積層体に対するウエットエッチングにより、結晶成長用の基体の上面に対して45°を成す面が形成される。更に、その上面に高反射率の誘電体膜132が形成されている。この意味で、図には当該部分が131/132と表示されている。又、基板底面のレ−ザ光の反射部には、鏡面エッチ処理後に高反射率の誘電体膜133が形成されている。このようにして、2つの45°ミラ−部131、半導体積層部及び基板底面の反射部133を介して、光共振器が構成される。
【0043】
図12は本実施例の別な形態を示す断面図である。本例は、反射部133の部分を基板111上に半導体多層反射膜134を形成した例である。n型の半導体多層反射膜134をあらかじめ、n型クラッド層113の下に作り込んでおくことにより、基板底面に反射部を形成しない構造も可能である。半導体多層反射膜は、InGaAsP/InP、もしくはGaAs/InAsにより形成可能である。
【0044】
本実施例の構造の利点は、ドライエッチングにより形成した垂直面への誘電体多層反射膜の形成等、高度な技術を用いることなく、レ−ザ共振器を形成できることに有る。
【0045】
本発明の半導体増幅器をサブマウント上に実装し、レンズ、ファイバにより調芯して、光信号を入力したところ、図5の例とほぼ同様に増幅利得が飽和している特性を確認した。又、光信号を導波させる光導波路の断面をほぼ正方形にすることにより、増幅利得の偏波依存性がないことも確認した。
【0046】
更に、光信号を導波させる光導波路とレ−ザ発振させる光導波路を分離した構造の採用により、次のような利点を生む。光信号を導波させる光導波路に電流注入がなく、自然放出光によるスペクトル広がりとそれによる雑音レベルを低く押さえること、及び、光信号を導波させる光導波路のクラッド層をノンドープとしているため、不純物に起因する損失を防ぐことを可能とした。
【0047】
又、励起用レ−ザ光を発生させる共振器構造には、面型構造ではなく光導波路構造を採用しているため、励起光強度を高めることができた。
【0048】
<実施例4>
本例は、光信号の増幅に用いるレ−ザ共振器を構成する光導波路部にグレーティングが形成されている例である。図14より図15を用いて本例を説明する。図14は、本例の光共振器を上からみた平面図、図15は図14の15−15断面の断面図、図16は、図14の16−16断面の断面図である。図15は光信号用光導波路部の断面図、図16はレ−ザ共振器の部断面であり、光信号用光導波路部の積層構造は、実施例1と基本的に同様である。
【0049】
光信号170は、光導波路101に左側の入射口から入射され、レ−ザ共振器102を光信号が横切ることによって、増幅され、光導波路101の右側から射出光171として出射される。尚、図中、101は光信号用光導波路、102はレ−ザ部、103は裏面の電極パッド、104は光信号用光導波路端面の無反射コーティング膜、105はレ−ザ共振器用コーティング膜である。
【0050】
本例では、レ−ザ共振器のSCH(Separate ConfiningHeterostructure)層125とクラッド層128との間には、縦モードを選択するためにグレーティング127が形成されている。又、本実施例では、レ−ザ共振器を形成するための結晶面はドライエッチングにより形成しているが、へき開により形成することも可能である。レーザ発振の為には、グレーティング127で可能であるが、レーザ光をチップ内に閉じ込めて効率を上げる為、反射面が有効に用いられる。
【0051】
図16にレ−ザ共振器部の断面を示すが、レ−ザ部の構造は次の各層が積層されている。即ち、InP基板111に、InPバッファ層(n型、1×1018cm−3、膜厚0.15μm)112、InGaAsPクラッド層(n型、5×1017cm−3、膜厚0.2μm、λg=1.05μm)122、InGaAsPSCH層(n型、1×1017cm−3、膜厚0.1μm、λg=1.15μm)123、InGaAsPMQW活性層(none−dope、ウエル層膜厚10nm/λg=1.55μm、バリア層膜厚10nm/λg=1.3μm、10周期)124、InGaAsPSCH層(p型、1×1017cm−3、膜厚0.1μm)125、InPスペーサ層(p型、5×1017cm−3、膜厚0.2μm)126、InGaAsP回折格子層(p型、1×1018cm−3、膜厚0.05μm)127、InPクラッド層(p型、1×1017cm−3、膜厚1.5μm)128、InGaAsコンタクト層(p型、2×1019cm−3、膜厚0.1μm)129、絶縁膜(SiN、膜厚0.5μm)117、p電極(Ti/Pt/Au)118の各層が積層されている。更に、n電極(Ni/AuGe/Au)119が基板111の裏面に形成される。前記回折格子は電子ビ−ム露光を用いて形成する。
【0052】
本発明の半導体増幅器をサブマウント上に実装し、レンズ、ファイバにより調芯して、光信号を入力し、特性を測定した。この結果、当該半導体増幅器においても、図5とほぼ同様に増幅利得が飽和している特性を確認した。又、光信号を導波させる光導波路の断面をほぼ正方形にすることにより、増幅利得の偏波依存性がないことも確認した。
【0053】
更に、光信号を導波させる光導波路とレ−ザ発振させる光導波路を分離した構造の採用により、次のような利点を生む。光信号を導波させる光導波路に電流注入がなく、自然放出光によるスペクトルの広がりとそれによる雑音レベルを低く押さえること、及び、光信号を導波させる光導波路のクラッド層をノンドープとしているため、不純物に起因する損失を防ぐことを可能とした。
【0054】
励起用レ−ザ光を発生させる共振器構造には、面型構造ではなく光導波路構造を採用しているため、励起光強度を高めることができた。
【0055】
<実施例5>
光信号の伝播する光導波路の入射端に可変光減衰器を集積化している例を、図16及び図17を用いて説明する。図16は、当該光増幅器を上からみた平面図、図17は光の進行方向に平行な面、18−18断面での断面図である。光信号170は、可変光減衰器106に入り、光パワーレベルが調節されてから、光増幅器部107の光導波路に左側から入り、レ−ザ共振器102を光信号が横切ることによって増幅され、光導波路の右側から出力光171として出射される。異なるパワーレベルを持つ複数の光信号を並列に扱う場合に、入力パワーレベルを揃えることで、出力端での各信号のパワーレベルを揃えることを可能となる。
【0056】
図17は可変光減衰器の断面図である。積層構造はInP基板111上に、InPバッファ層(n型、1×1018cm−3、膜厚0.15μm)112、InGaAsP バッファ層(n型、5×1017cm−3、膜厚0.2μm、λg=1.05μm)152、InGaAsP SCH層(n型、1×1017cm−3、膜厚0.2μm、λg=1.15μm)153、InGaAsP MQW活性層(none−dope、ウエル層膜厚8nm/λg=1.52μm、バリア層膜厚12nm/λg=1.3μm、10周期)154、InGaAsP SCH層(none−dope、膜厚0.2μm、λg=1.10μm)155、InPクラッド層(p型、1×1018cm−3、膜厚1.5μm)158、InGaAsコンタクト層(p型、2×1019cm−3、膜厚0.1μm)159、絶縁膜(SiN、膜厚0.5μm)117、p電極(Ti/Pt/Au)118が積層されている。基板111の裏面にはn電極(Ni/AuGe/Au)119が形成される。
【0057】
又、図19及び図20には出射端に可変減衰器を集積している例について示す。図19は平面図、図20は断面図である。出射端に可変減衰器106を設けた外は、前述の例と同様である。可変減衰器106の領域は、前述の図18における可変光減衰器と同等である。出射端の可変減衰器により半導体増幅器により増幅された信号光170のパワーレベルを適切な強度に調整することが可能である。従って、異なるパワーレベルを持つ複数の光信号を並列に扱う場合に、出力端での各信号のパワーレベルを揃えたり、特定のチャネルの信号を遮断するなどの動作が可能となる。
【0058】
更に、出射端に高速な可変減衰器即ちEA変調器を集積化した場合には、半導体光増幅器にてCW(Continuous Wave)光を増幅し、大振幅の光信号を生成することが可能となる。
【0059】
<実施例6>
本例は、光信号の伝播する光導波路の出射端に受光素子を集積化している例である。図21は上からみた平面図、図21は光の進行方向に平行な面、22−22断面での断面図である。光信号170は、光増幅器107の光導波路に左側から入り、レ−ザ共振器部102を信号が横切ることによって増幅される。そして、増幅された光信号は、光導波路107の右端側に集積された受光素子108に入り、電気信号に変換される。光増幅器の増幅機能により微弱な光信号も受光素子の最小受信感度以上に増幅できる。
【0060】
受光素子の層構造を図22に示す。InP基板111上に、InPバッファ層(n型、1×1018cm−3、膜厚0.15μm)112、InGaAsP クラッド層(n型、1×1017cm−3、膜厚0.5μm、λg=1.15μm)163、InGaAs吸収層(none−dope、1.5μm)164、InGaAsP クラッド層(p型、1×1017cm−3、膜厚0.2μm、λg=1.15μm)165、InGaAsP キャップ層(p型、1×1018cm−3、膜厚0.2μm)166、InGaAs コンタクト層(p型、2×1019cm−3、膜厚0.1μm)167、117の絶縁膜(SiN、膜厚0.5μm)117、p電極(Ti/Pt/Au)118が積層される。一方、基板111の裏面に、n電極(Ni/AuGe/Au)119が形成される。
【0061】
図23に、半導体光増幅器に受光素子を集積化した半導体光増幅器を、レンズ210、光ファイバ211と組み合わせて構成した光受信モジュ−ルの構成例、図24に、更にプリアンプ109と組み合わせた光受信モジュ−ルの構成例を示す。図23では、光信号170は、当該光受信モジュ−ルの入射端121より光ファイバー211に導入される。そして、光信号はレンズ210を介して半導体光増幅器107の光増幅部に集光される。更に、光増幅部からの出力は、光受光器108、具体的には例えばPINフォトダイオードに入力される。そして、光受光器108より電気信号として外部に取り出される。一方、図24の例は、図23の光受光器108の電気出力に対するプリアンプ109を設けてある。その他は図23の例と同様である。尚、各図での黒丸は電気的な接続部あるいは端子部を示す。
【0062】
通常の受光素子とプリアンプのみを組合せた受信モジュ−ルでは受信できない微弱な光信号を、これらの諸例の半導体光増幅器により増幅することが出来る。この為、こうした諸例は、受信モジュ−ルとしての総合的な受信性能を向上させることができる。受信モジュ−ルとしての総合的な受信性能例を図25に示す。横軸は受信感度、縦軸はBERである。特性140は本発明のSOA(Semiconductor Optical Amplifier)とPINフォトダイオードを有する受信モジュ−ルの特性、特性141はSOAを有せず、PINフォトダイオードとプリアンプのみで構成される受信モジュ−ルの特性例を示す。これらの例に見られるように、半導体増幅器を含まない場合に比べて、10dB以上向上する。APDを用いた場合に匹敵する受信性能が得られる。従って、本例の受信モジュ−ルは、わけても高度な実装技術が要求される10Gbpsを超える用途では、集積化の効果を発揮する。
【0063】
<実施例7>
図26は、前述の実施例1〜実施例4に示す半導体光増幅器をレンズ210、ファイバ211、ペッルチエ素子212を組み合わせてモジュ−ル化した例を示す。こうした構成により、利得が飽和して結合損の小さいモジュ−ルを作製することが可能となる。尚、各図面中、図23及び図24と同様の部分は同じ符号で示した。符号122の部分は出力端である。
【0064】
図27は、可変減衰器を集積化した半導体光増幅器と制御スイッチを組合せたものや、図28に示すようにEA変調器を集積化した半導体光増幅器とドライバ−ICを組合せたものをモジュ−ル化することなど各種変形構成が可能である。こうして、要請のある各種電気的或いは光学的素子を、所定の基板に集積化することによって、実装コストが低く結合損の小さいチューナブル半導体光増幅器モジュール(tunable Semiconductor AmplifierModule)を提供することが可能となる。
【0065】
尚、上記実施例1より実施例7では、多層結晶としてInGaAsP、InGaAs、InP用いているが、他の結晶系、例えば多層結晶としてInAlGaAs、InAlAs等の使用することが出来る。更に、基板、層構造としてp型、n型の組み合わせ、その不純物濃度等、要請される装置に応じて自由に選択出来ることはいうまでもない。
【0066】
以上、諸実施例に基づき、従来、半導体光増幅器にあった、偏波依存性や利得が飽和しないという課題や、利得を飽和させようとすると、面発光レ−ザを集積するなど結晶成長に時間がかかり、コストの上昇を避けられないという課題を解決できることを説明した。本発明では、レ−ザ部の光導波路と、光信号を導波させる光導波路を同一平面内で且つ平行とならないように配置して構造的に分離することにより解決した。本発明は、偏波無依存で且つ利得の飽和する高機能な半導体光増幅器及びモジュ−ルを安価に提供できる効果があり、工業上重要である。
【0067】
これまで述べた本発明の主な諸形態を列挙すれば、以下の通りである。
(1)入射した光信号を導波させる光導波路と、その信号を増幅する機能を有する半導体光増幅器において、光励起のみを用いて光導波路のキャリアを光励起し、誘導放出を起させることによって光信号の増幅を行うことを特徴とする半導体光増幅器。
(2)入射した光信号を導波させる光導波路と同一平面内で且つ前記光導波路と平行ではない光導波路及び光共振器構造によってレ−ザ発振を行い、光信号の伝播する光導波路の一部もしくは全体に前記レ−ザ光を通過させ、光信号の伝播する光導波路のキャリアを光励起して誘導放出を生じさせることによって光信号を増幅することを特徴とする前項(1)の半導体光増幅器。
(3)入射した光信号を導波させる光導波路と同一平面内で且つ光導波路と平行ではない光導波路及び共振器構造によってレ−ザ発振を行い、光信号の伝播する光導波路の一部もしくは全体に前記レ−ザ光を通過させ、光信号の伝播する光導波路のキャリアを光励起して誘導放出を生じさせることによって光信号を増幅することを特徴とする半導体光増幅器において、レ−ザ発振を行う光導波路及び共振器構造が複数に分離していることを特徴とする前項(2)の半導体光増幅器。
(4)光信号の増幅に用いるレ−ザ共振器を構成する光反射部がドライエッチングにより形成した端面とその外側に形成した誘電体多層膜により構成されていることを特徴とする前項(2)及び(3)の半導体光増幅器。
(5)光信号の増幅に用いるレ−ザ共振器を構成する光反射部がへき開により形成した端面とその外側に形成した誘電体多層膜により構成されていることを特徴とする前項(2)及び(3)の半導体光増幅器。
(6)光信号の増幅に用いるレ−ザ共振器を構成する光反射部が基板の底面と底面に形成した誘電体多層膜及び光導波路と基板に対して同一平面側に形成した2つの45°反射鏡により構成されていることを特徴とする前項(2)及び(3)の半導体光増幅器。
(7)光信号の増幅に用いるレ−ザ共振器を構成する光反射部がエピタキシャル成長により形成した半導体多層反射膜及び光導波路と基板に対して同一平面側に形成した2つの45°反射鏡により構成されていることを特徴とする前項(2)及び(3)の半導体光増幅器。
(8)光信号の増幅に用いるレ−ザ共振器を構成する光導波路部にグレ−ティングが形成されていることを特徴とする前項(1)より(7)の半導体光増幅器
(9)光信号の伝播する光導波路の入射端、出射端のいづれかもしくは両方に可変光減衰器を集積化していることを特徴とする前項(1)より(8)の半導体光増幅器。
(10)前項(1)より(8)の半導体光増幅器の構成要素である光信号の伝播する光導波路の出射端に受光素子を集積化していることを特徴とする光プリアンプ付受光素子。
(11)前項(1)より(10)の半導体光増幅器を搭載している光増幅モジュ−ル。
(12)前項(11)の光プリアンプ付受光素子を搭載している光受信モジュ−ル。
【0068】
【発明の効果】
本発明は、入射する光信号の強度による利得の変化を実質的に無くすることが出来る。更に、本発明は、自然放出によるスペクトル広がりとこれに基づく雑音レベルの上昇を抑制することが出来る。
【0069】
又、各部材の集積化になる本発明は、高機能且つ安価な光増幅器を提供することが出来る。
【図面の簡単な説明】
【図1】図1、は本発明の第1の実施例である半導体光増幅器の平面図である。
【図2】図2は、本発明の第1の実施例である半導体光増幅器の図1の2−2断面の断面図である。
【図3】図3は、本発明の第1の実施例である半導体光増幅器の図1の3−3断面の断面図である。
【図4】図4は、本発明の第1の実施例である半導体光増幅器の図1の4−4断面の断面図である。
【図5】図5は、本発明の第1の実施例である半導体光増幅器の増幅利得特性の例を示す。
【図6】図6は、本発明の第2の実施例である半導体光増幅器の平面図である。
【図7】図7は、本発明の第2の実施例である半導体光増幅器の図6の7−7断面の断面図である。
【図8】図8は、本発明の第2の実施例である半導体光増幅器の図6の8−8断面の断面図である。
【図9】図9は、本発明の第2の実施例である半導体光増幅器の平面図である。
【図10】図10は、本発明の第2の実施例である半導体光増幅器の図9の10−10断面の断面図である。
【図11】図11は、本発明の第2の実施例である半導体光増幅器の図9の11−11断面の断面図である。
【図12】図12は、本発明の第3の実施例である半導体光増幅器の図9の10−10断面に対応する断面図である。
【図13】図13は、本発明の第3の実施例である半導体光増幅器の図9の11−11断面に対応する断面図である。
【図14】図14は、本発明の第4の実施例である半導体光増幅器の平面図である。
【図15】図15は、本発明の第4の実施例である半導体光増幅器の図14の15−15断面の断面図である。
【図16】図16は、本発明の第4の実施例である半導体光増幅器の図14の15−15断面の断面図である。
【図17】図17は、本発明の第5の実施例である、可変光減衰器を半導体光増幅部の入射端に集積化した半導体光増幅器の平面図である。
【図18】図18は、本発明の第5の実施例である、可変光減衰器を半導体光増幅部の入射端に集積化した半導体光増幅器の図17の18−18断面の断面図である。
【図19】図19は、本発明の第5の実施例である、可変光減衰器を半導体光増幅部の入射端に集積化した半導体光増幅器の平面図である。
【図20】図20は、本発明の第5の実施例である、可変光減衰器を半導体光増幅器の出射端に集積化した半導体光増幅器の図19の20−20断面の断面図である。
【図21】図21は、本発明の第6の実施例である、受光素子を集積化した半導体光増幅器の平面図である。
【図22】図22は、本発明の第6の実施例である、受光素子を集積化した半導体光増幅器の図21の22−22断面の断面図である。
【図23】図23は、本発明の第6の実施例である受光素子を集積化した半導体光増幅器を用いたモジュ−ル構成図の例を示す概略図である。
【図24】図24は、本発明の第6の実施例である受光素子を集積化した半導体光増幅器を用いたモジュ−ル構成図の別な例を示す概略図である。
【図25】図25は、本発明の第6の実施例である受光素子を集積化した半導体光増幅器の受信モジュ−ルとしての特性例を示す図である。
【図26】図26は、本発明の第7の実施例である半導体光増幅器モジュ−ルの構成例を示す図である。
【図27】図27は、本発明の第7の実施例である半導体光増幅器モジュ−ルの構成の別な例を示す図である。
【図28】図28は、本発明の第7の実施例である半導体光増幅器モジュ−ルの構成の別な例を示す図である。
【符号の説明】
101…光信号用光導波路、102…レ−ザ部、103…電極パッド、104…光信号用光導波路端面の無反射コーティング膜、105…レ−ザ共振器用コーティング膜、106…可変光減衰器、107…半導体光増幅器、108…PINフォトダイオード、109…プリアンプ、111…InP基板、112…InPバッファ層、113、115…InGaAsPクラッド層、114…InGaAsP導波層、116…InPキャップ層、117…絶縁膜、118…p電極(Ti/Pt/Au)、119…n電極(Ni/AuGe/Au)、122、128…InGaAsPクラッド層、123、125…InGaAsP SCH層、124…InGaAsP MQW活性層、126…InPスペーザ層、127…InGaAsP回折格子層、128…InPクラッド層、129…InGaAsコンタクト層、130…半絶縁性InP埋込層、131…45°ミラ−部、132、133…高反射率の誘電体膜、134…n型半導体多層反射膜、153、155…InGaAsP SCH層、154…InGaAsP MQW活性層、156…InPクラッド層、157…InGaAsコンタクト層、163、165…InGaAsPクラッド層、164…InGaAs光吸収層166…InGaAsキャップ層、167…InGaAsコンタクト層、210…レンズ、211…光ファイバ、212…ペルチエ素子。

Claims (10)

  1. 入射した光信号を導波させる第1の光導波路と、
    前記第1の光導波路と平行な面内で且つ前記第1の光導波路の光の進行方向と交差する方向から当該光導波路に入射する輻射光によって、当該光導波路のキャリアを光励起し、誘導放出を起させることにより光信号の増幅を行う光増幅部とを有することを特徴とする半導体光増幅器。
  2. 前記光増幅部は、
    前記第1の光導波路と交差して、前記第1の光導波路と同一平面内で且つ少なくとも前記第1の光導波路における光の進行方向と平行ではない方向に、光の進行方向を有する第2の光導波路と、
    前記第2の光導波路における前記第1の光導波路と重複する領域とならない光導波路領域でレーザ発振を可能とするキャリア注入部と、
    前記第2の光導波路を含む光路に対する光帰還部とを有し、
    前記第2の光導波路におけるレーザ発振によるレーザ光を前記第1の光導波路の一部もしくは全体に通過させ、前記第1の光導波路のキャリアを光励起して誘導放出を生じさせることによって光信号を増幅することを特徴とする請求項1に記載の半導体光増幅器。
  3. 前記光増幅部は、前記レ−ザ発振を行う第2の光導波路が複数部分を有して成ることを特徴とする請求項2に記載の半導体光増幅器。
  4. 前記光帰還部は、前記第2の光導波路を含む光路を構成する半導体層の端面に形成された誘電体多層膜及び半導体多層反射膜の群から選ばれた少なくとも一者を有して構成されることを特徴とする請求項2及び請求項3のいずれかに記載の半導体光増幅器。
  5. 前記光帰還部は、レ−ザ共振器を構成する光導波路部に形成された回折格子であることを特徴とする請求項2及び請求項3のいずれかに記載の半導体光増幅器。
  6. 前記第2の光導波路を含む光路は、
    前記第1の光導波路における、信号光の進行方向と交差する所定領域と、
    前記第1の光導波路の、信号光の進行方向と交差する両側部を挟んで設けられた第2の光導波路と、
    前記第1の光導波路両側部を挟んで設けられた第2の光導波路の、光の進行方向に存在する両端面が、それらの両端面を延長した面が互いに直角をなすような角度を有する反射面となされ、且つ当該両反射面によって、光が反射される当該第2の光導波路を搭載する基体の両所定領域と、を有し、且つ
    前記前記光帰還部は、少なくとも、前記両反射面による反射光の、前記基体側の光路中に設けられた反射部であることを特徴とする請求項2及び請求項3のいずれかに記載の半導体光増幅器。
  7. 前記両反射面による反射光の前記基体側の光路中に設けられた反射部は、当該半導体光増幅器の基板の、前記第1及び第2の光導波路が搭載された面上に形成された誘電体多層膜或いは半導体多層反射鏡、及び当該半導体光増幅器の基板の、前記第1及び第2の光導波路が搭載された面とは反対の面上に形成された誘電体多層膜或いは半導体多層反射鏡の群から選ばれた少なくとも一者であることを特徴とする請求項2及び請求項3のいずれかに記載の半導体光増幅器。
  8. 前記光信号を導波する第1の光導波路の入射端、出射端のいづれかもしくは両方に、所望の光部材、光素子及び光電気素子の群から選ばれた少なくとも一者が、当該半導体光増幅器に集積化して有することを特徴とする請求項2及び請求項3のいずれかに記載の半導体光増幅器。
  9. 請求項1より請求項8のいずれかに記載の半導体光増幅器を有する光モジュ−ル。
  10. 前記光信号を導波する第1の光導波路の出射端に、受光素子が当該半導体光増幅器に集積化されて有する請求項2及び請求項3のいずれかに記載の半導体光増幅器を有する光モジュール。
JP2003203605A 2003-07-30 2003-07-30 半導体光増幅器及びそれを用いた光モジュ−ル Expired - Fee Related JP4090402B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003203605A JP4090402B2 (ja) 2003-07-30 2003-07-30 半導体光増幅器及びそれを用いた光モジュ−ル
US10/851,910 US7127145B2 (en) 2003-07-30 2004-05-20 Semiconductor optical amplifier, and optical module using the same
US11/375,466 US7190872B2 (en) 2003-07-30 2006-03-13 Semiconductor optical amplifier and optical module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203605A JP4090402B2 (ja) 2003-07-30 2003-07-30 半導体光増幅器及びそれを用いた光モジュ−ル

Publications (2)

Publication Number Publication Date
JP2005050898A true JP2005050898A (ja) 2005-02-24
JP4090402B2 JP4090402B2 (ja) 2008-05-28

Family

ID=34100637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203605A Expired - Fee Related JP4090402B2 (ja) 2003-07-30 2003-07-30 半導体光増幅器及びそれを用いた光モジュ−ル

Country Status (2)

Country Link
US (2) US7127145B2 (ja)
JP (1) JP4090402B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232371A (ja) * 2009-03-26 2010-10-14 Furukawa Electric Co Ltd:The 半導体光増幅素子
JP2016058738A (ja) * 2014-09-11 2016-04-21 住友電工デバイス・イノベーション株式会社 光増幅装置の制御方法及び光装置
JP2018093443A (ja) * 2016-12-07 2018-06-14 日本電信電話株式会社 光半導体送信器

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064051A (ja) * 2003-08-14 2005-03-10 Fibest Ltd 光モジュールおよび光通信システム
WO2005047965A1 (ja) * 2003-11-14 2005-05-26 Optical Comb Institute, Inc. 光周波数コム発生器並びに光変調器
JP4781648B2 (ja) * 2004-04-14 2011-09-28 株式会社 光コム 光共振器
JP4849915B2 (ja) * 2006-03-15 2012-01-11 富士通株式会社 光集積素子及び光モジュール
JP2008288284A (ja) * 2007-05-15 2008-11-27 Sumitomo Electric Ind Ltd 半導体光素子及びその製造方法
US7658986B2 (en) * 2007-05-30 2010-02-09 Kemet Electronics Corporation Anodes with corner and edge modified designs
CN105816498A (zh) * 2009-04-27 2016-08-03 玫琳凯有限公司 植物性抗痤疮制剂
JP2011091163A (ja) * 2009-10-21 2011-05-06 Sumitomo Electric Ind Ltd 半導体集積素子
KR20130067610A (ko) * 2011-12-14 2013-06-25 한국전자통신연구원 도파로형 광 혼합기
US9091820B2 (en) 2013-06-10 2015-07-28 Freescale Semiconductor, Inc. Communication system die stack
US9442254B2 (en) 2013-06-10 2016-09-13 Freescale Semiconductor, Inc. Method and apparatus for beam control with optical MEMS beam waveguide
US9435952B2 (en) 2013-06-10 2016-09-06 Freescale Semiconductor, Inc. Integration of a MEMS beam with optical waveguide and deflection in two dimensions
US9094135B2 (en) 2013-06-10 2015-07-28 Freescale Semiconductor, Inc. Die stack with optical TSVs
US10230458B2 (en) 2013-06-10 2019-03-12 Nxp Usa, Inc. Optical die test interface with separate voltages for adjacent electrodes
US9810843B2 (en) 2013-06-10 2017-11-07 Nxp Usa, Inc. Optical backplane mirror
US9766409B2 (en) 2013-06-10 2017-09-19 Nxp Usa, Inc. Optical redundancy
US9261556B2 (en) 2013-06-10 2016-02-16 Freescale Semiconductor, Inc. Optical wafer and die probe testing
KR102323049B1 (ko) 2014-03-10 2021-11-05 마리 케이 인코포레이티드 피부 라이트닝 조성물
US10050416B2 (en) 2014-09-11 2018-08-14 Sumitomo Electric Device Innovations, Inc. Method of controlling variable optical attenuator and semiconductor optical amplifier, and optical amplifying unit implementing the same
JP7408924B2 (ja) * 2018-06-19 2024-01-09 富士フイルムビジネスイノベーション株式会社 半導体光増幅器、光出力装置、および距離計測装置
EP3648267B1 (en) * 2018-11-02 2022-05-11 Huawei Technologies Co., Ltd. Optical amplifier
TWM588387U (zh) * 2019-07-02 2019-12-21 智林企業股份有限公司 具有檢光結構之電激發光子晶體面射型雷射元件
EP4210185A1 (en) * 2022-01-10 2023-07-12 Nokia Solutions and Networks Oy Integrated opto-electronic device for flip-chip integration

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331455A (en) * 1991-10-31 1994-07-19 The Research Foundation Of State University Of New York Electrical pulse operated laser sampling light amplifier
US6160824A (en) * 1998-11-02 2000-12-12 Maxios Laser Corporation Laser-pumped compound waveguide lasers and amplifiers
US6347104B1 (en) 1999-02-04 2002-02-12 Genoa Corporation Optical signal power monitor and regulator
US6445495B1 (en) 1999-03-22 2002-09-03 Genoa Corporation Tunable-gain lasing semiconductor optical amplifier
US6803604B2 (en) * 2001-03-13 2004-10-12 Ricoh Company, Ltd. Semiconductor optical modulator, an optical amplifier and an integrated semiconductor light-emitting device
US6804280B2 (en) * 2001-09-04 2004-10-12 Pbc Lasers, Ltd. Semiconductor laser based on the effect of photonic band gap crystal-mediated filtration of higher modes of laser radiation and method of making the same
US6597497B2 (en) * 2001-10-04 2003-07-22 Shih-Yuan Wang Semiconductor optical amplifier with transverse laser cavity intersecting optical signal path and method of fabrication thereof
US6836357B2 (en) * 2001-10-04 2004-12-28 Gazillion Bits, Inc. Semiconductor optical amplifier using laser cavity energy to amplify signal and method of fabrication thereof
US20040057485A1 (en) * 2002-07-16 2004-03-25 The Furukawa Electric Co., Ltd. Semiconductor laser device, semiconductor laser module, and optical fiber amplifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232371A (ja) * 2009-03-26 2010-10-14 Furukawa Electric Co Ltd:The 半導体光増幅素子
US8547631B2 (en) 2009-03-26 2013-10-01 Furukawa Electric Co., Ltd. Semiconductor optical amplifier
JP2016058738A (ja) * 2014-09-11 2016-04-21 住友電工デバイス・イノベーション株式会社 光増幅装置の制御方法及び光装置
JP2018093443A (ja) * 2016-12-07 2018-06-14 日本電信電話株式会社 光半導体送信器

Also Published As

Publication number Publication date
US7190872B2 (en) 2007-03-13
US20050025414A1 (en) 2005-02-03
US20060165363A1 (en) 2006-07-27
JP4090402B2 (ja) 2008-05-28
US7127145B2 (en) 2006-10-24

Similar Documents

Publication Publication Date Title
JP4090402B2 (ja) 半導体光増幅器及びそれを用いた光モジュ−ル
US6888973B2 (en) Tunable optical add/drop multiplexer with multi-function optical amplifiers
WO2010100738A1 (ja) 半導体レーザ、シリコン導波路基板、集積素子
US6445724B2 (en) Master oscillator vertical emission laser
JP3950028B2 (ja) 光増幅器
JP2008311536A (ja) 半導体光増幅装置、半導体光増幅システム及び半導体光集積素子
US20100271690A1 (en) Vertical cavity surface emitting laser element, vertical cavity surface emitting laser array element, vertical cavity surface emitting laser device, light source device, and optical module
WO2013115179A1 (ja) 半導体光素子、集積型半導体光素子および半導体光素子モジュール
JP4634010B2 (ja) 半導体光素子
US6909536B1 (en) Optical receiver including a linear semiconductor optical amplifier
JPH041614A (ja) 光増幅装置
US7110170B2 (en) Semiconductor optical amplifier having photo detector and method of fabricating the same
JP2967057B2 (ja) 面型光多機能素子
US6829285B2 (en) Semiconductor laser device and method for effectively reducing facet reflectivity
JP2006278729A (ja) 半導体光増幅素子
JP3647656B2 (ja) 光機能素子及び光通信装置
JP4321970B2 (ja) 半導体光増幅器およびase放射用光源装置および光ゲートアレイおよび波長可変レーザ装置および多波長レーザ装置および光伝送システム
JP2010003883A (ja) 半導体レーザ素子、光モジュールおよび光トランシーバ
US7110169B1 (en) Integrated optical device including a vertical lasing semiconductor optical amplifier
US20050040416A1 (en) Gain-clamped semiconductor optical amplifier having horizontal lasing structure and manufacturing method thereof
JP5503319B2 (ja) 光モジュール
US8401044B2 (en) Semiconductor light emitting element, driving method of semiconductor light emitting element, light emitting device, and optical pulse tester using light emitting device
JP3505509B2 (ja) 半導体発光素子と半導体発光装置及び半導体発光素子の変調方法
EP1317037A2 (en) Optical amplifier
JP5374196B2 (ja) 半導体光素子

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Ref document number: 4090402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees