JP2005048723A - 内燃機関の燃焼制御装置 - Google Patents

内燃機関の燃焼制御装置 Download PDF

Info

Publication number
JP2005048723A
JP2005048723A JP2003283778A JP2003283778A JP2005048723A JP 2005048723 A JP2005048723 A JP 2005048723A JP 2003283778 A JP2003283778 A JP 2003283778A JP 2003283778 A JP2003283778 A JP 2003283778A JP 2005048723 A JP2005048723 A JP 2005048723A
Authority
JP
Japan
Prior art keywords
injection
fuel
internal combustion
combustion engine
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003283778A
Other languages
English (en)
Inventor
Motohiro Niizawa
元啓 新沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003283778A priority Critical patent/JP2005048723A/ja
Publication of JP2005048723A publication Critical patent/JP2005048723A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】 EGR運転中における黒煙やドライスートの発生を抑制可能な内燃機関の燃焼制御装置を提供する。
【解決手段】 内燃機関1の燃焼室に直接燃料を噴射可能で且つ噴射形態が可変な燃料噴射手段(10)と、内燃機関1の運転状態に応じて排気の一部を機関吸気へ還流させるEGR制御手段(S400)と、内燃機関1の運転状態に応じて噴射目標圧力を求め、燃料噴射手段10に供給する燃料圧力を制御する噴射圧力制御手段(S200)と、内燃機関1の運転状態に応じて演算したメイン噴射量およびパイロット噴射量に基づいて燃料噴射手段を制御する噴射制御手段(S300)とを備え、EGR制御手段(S400)の動作中は噴射目標圧力を増圧するようにした。
【選択図】 図7

Description

本発明は、EGR運転中の排気を浄化する内燃機関の燃焼制御装置に関する。
従来から燃料噴射圧力、メインおよびパイロットの燃料噴射量、メインおよびパイロットの燃料噴射時期を内燃機関の運転状態に応じて制御するコモンレール式燃料噴射装置を備えるディーゼルエンジンが知られている(例えば、特許文献1参照)。
このようなコモンレール式燃料噴射装置を備えたディーゼルエンジンにおいては、パイロット噴射する噴射量,噴射時期,噴射間隔などを木目細かく制御するのに最適であり、燃料の着火遅れ期間中に形成される混合気が爆発的に燃焼する予混合的燃焼の量が多いほど多量に生成するNOxを低減するため、パイロット噴射により燃料の主噴射に先立って少量の燃料を燃焼室内に噴射して燃焼させ、シリンダ内の温度と圧力をあらかじめ高めておくことにより,主噴射の着火遅れ時間を短縮してNOxの低減を図ることに有効である。
特開2003−74403号公報
ところで、NOxを低減する方法として、エンジンから排出された排気ガスの一部を吸気系へ還流し、シリンダ内の燃焼ガス温度を低下させることにより、NOxの生成を抑制する排気再循環(EGR:ExhaustGasRecirculation、以下、EGRという)がガソリンエンジンのNOx低減対策として広く使われている。上記従来例のディーゼルエンジンにおいても、燃料噴射による混合気形成が空間的にきわめて不均一であるため燃焼ガスの冷却に直接関与するEGRガスが混合気まわりに限定されることやガソリンエンジンに比べて空気過剰率を高く保つ必要があること等の制約から、空気過剰率の大きな部分負荷に限定して実施することが可能であるが、空気過剰率が低下することによる黒煙や粒子状物質の増加を招くことが解決すべき課題としてある。
そこで本発明は、上記課題に鑑みてなされたもので、EGR運転中における黒煙やドライスートの発生を抑制可能な内燃機関の燃焼制御装置を提供することを目的とする。
本発明は、内燃機関の燃焼室に直接燃料を噴射可能で且つ噴射形態が可変な燃料噴射手段と、内燃機関の運転状態に応じて排気の一部を機関吸気へ還流させるEGR制御手段と、内燃機関の運転状態に応じて噴射目標圧力を求め、燃料噴射手段に供給する燃料圧力を制御する噴射圧力制御手段と、内燃機関の運転状態に応じて演算したメイン噴射量およびパイロット噴射量に基づいて燃料噴射手段を制御する噴射制御手段とを備え、EGR制御手段の動作中は噴射目標圧力を増圧するようにした。
したがって、本発明では、EGR動作中は噴射目標圧力を増圧するため、噴射された燃料が微粒化され且つ噴射期間が短縮化され、燃料と空気の混合が良好となり燃焼状態が改善され、黒煙やドライスートの発生を抑制することができる。
以下、この発明の好ましい実施の形態を図面に基づいて詳細に説明する。
図1は、本発明の燃焼制御装置を備えたエンジンシステムの構成図であり、軽油を燃料とするディーゼルエンジンを例にして構成したものである。
図1において、1はディーゼルエンジン(以下、単にエンジンと記述する)を示し、3はこのエンジン1の排気通路を示す。
エンジン1の排気通路3の上流側部分を構成する排気出口通路3aは、過給機のタービン3bに接続されており、その下流に、排気後処理装置としての酸化触媒やNOxトラップ触媒を内部に収容したケーシング20が配置されている。酸化触媒は流入する排気成分(HC、CO)を酸化する機能を持たせてある。酸化触媒はパーティキュレート捕集フィルタ(以下、DPFと称する)に酸化触媒(貴金属)を担持させたものでもよい。上記ケーシング20の入口部には、実空燃比検出手段となる空燃比センサ37が設けられている。この空燃比センサ37は、例えば、酸素イオン伝導性固体電解質を用いて、排気中の酸素濃度を検出し、酸素濃度から空燃比を求める。なお、排気通路3のDPFの下流若しくは上流に、排気浄化のため、排気空燃比がリーンのときに流入する排気中のNOxをトラップし、排気空燃比がリッチのときトラップしたNOxを脱離浄化するNOxトラップ触媒を配置してもよい。NOxトラップ触媒には、酸化触媒(貴金属)を担持させて、流入する排気成分(HC、CO)を酸化する機能を持たせる。また、DPF21にNOxトラップ触媒を担持させて一体に構成してもよい。
排気還流装置として、吸気通路2の吸気コレクタ2cと排気出口通路3aとの間には、排気の一部を還流するためのEGR通路4が設けられており、ここに、ステッピングモータにて開度が連続的に制御可能なEGR弁5が介装されている
吸気通路2は、上流位置にエアクリーナ2aを備え、その出口側に、吸入空気量検出手段となるエアフロメータ7が設けられている。そして、エアフロメ一タ7の下流に、過給機のコンプレッサ2bが配置されているとともに、このコンプレッサ2bと吸気コレクタ2cとの間に、アクチュエータ(例えばステッピングモータ式)によって開閉駆動される吸気絞り弁6が介装されている。
エンジン1の燃料供給系は、ディーゼル用燃料である軽油を蓄える燃料タンク60と、燃料をエンジン1の燃料噴射装置10へ供給するための燃料供給通路16と、エンジン1の燃料噴射装置10からのリターン燃料(スピル燃料)を燃料タンク60に戻すための燃料戻り通路19と、を備えている。
このエンジン1の燃料噴射装置10は、公知のコモンレール式燃料噴射装置であって、サプライポンプ11と、コモンレール(蓄圧室)14と、気筒毎に設けられた燃料噴射弁15と、から大略構成され、サプライポンプ11により加圧された燃料が燃料供給通路12を介してコモンレール14にいったん蓄えられたあと、コモンレール14内の高圧燃料が各気筒の燃料噴射弁15に分配される。
上記コモンレール14には、該コモンレール14内の燃料の圧力および温度を検出するために、圧力センサ34および温度センサ35が設けられている。また、コモンレール14内の燃料圧力を制御するために、サプライポンプ11からの吐出燃料の一部が、一方向弁18を具備したオーバーフロー通路17を介して燃料供給通路16に戻されるようになっている。詳しくは、オーバーフロー通路17の流路面積を変える圧力制御弁13が設けられており、この圧力制御弁13がエンジンコントロールユニット30からのデューティ信号に応じてオーバーフロー通路17の流路面積を変化させる。これにより、サプライポンプ11からコモンレール14への実質的な燃料吐出量が調整され、コモンレール14内の燃料圧力が制御される。
燃料噴射弁15は、エンジンコントロールユニット30からのON−OFF信号によって開閉される電子式の噴射弁であって、ON信号によって燃料を燃焼室に噴射し、OFF信号によって噴射を停止する。そして、燃料噴射弁15へ印加されるON信号の期間が長いほど燃料噴射量が多くなり、またコモンレール14の燃料圧力が高いほど燃料噴射量が多くなる。
また、エンジン1の適宜位置には、内燃機関の温度を代表するものとして、冷却水温度を検出する水温センサ31が取り付けられている。
エンジンコントロールユニット30には、吸入空気量を検出するエアフロメータ7の信号(Qa)、水温センサ31の信号(冷却水温度Tw)、クランク角度検出用クランク角センサ32の信号(エンジン回転数Neの基礎となるクランク角度信号)、気筒判別用クランク角センサ33の信号(気筒判別信号Cy1)、コモンレール14の燃料圧力を検出する圧力センサ34の信号(コモンレール圧力PCR)、燃料温度を検出する温度センサ35の信号(燃料温度TF)、負荷に相当するアクセルペダルの踏み込み量を検出するアクセル開度センサ36の信号(アクセル開度(負荷)L)、空燃比センサ37の信号(02)、がそれぞれ入力される。
次に、上記エンジンコントロールユニット30によって実行される本実施例の制御の内容を、図6〜図8のフローチャートに基づいて説明する。
図6は、ディーゼルエンジン1全体の制御に関する基本制御ルーチンである。
このエンジン基本制御ルーチンにおいて、ステップS100では、冷却水温度Tw、エンジン回転数Ne、気筒判別信号Cyl、コモンレール圧力PCR、エアフロメータ7の信号Qa、燃料温度TF、アクセル開度L、空燃比センサの信号O2、をそれぞれ読み込み、ステップS200に進む。
ステップS200では、コモンレール圧力制御を行う。このコモンレール圧力制御は、エンジン回転数Neと負荷Lとをパラメータとして、コントロールユニット30のROMに予め記憶されている所定のマップを検索することにより主噴射量を検索し、この主噴射量を得るためのコモンレール14の目標基準圧力PCR0を求め、この目標基準圧力PCR0が得られるように圧力制御弁13のフィードバック制御を実行するものであるが、後述する図7のコモンレール圧力制御ルーチンに基づき詳細に説明する。
次いで、ステップS300で燃料噴射制御を行う。この燃料噴射制御は、例えば、エンジン回転数Neと負荷Lをパラメータとして、主燃料噴射量Qmain、パイロット噴射量Qpilot、主噴射期間Mperiod、パイロット噴射時期Pperiod、パイロット噴射開始時期Pstart、主噴射開始時期Mstart等を、コントロールユニット30のROMに予め記憶されている所定のマップデータを検索してそれぞれ求める。そして、パイロット噴射量Qpilot、主燃料噴射量Qmainが供給されるように、クランク角度検出用クランク角センサ32のクランク角度信号および気筒判別用クランク角センサ33の気筒判別信号Cylに基づいて、噴射すべき気筒の燃料噴射弁15を開弁駆動するものである。なお、燃料噴射制御の詳細は、図8の燃料噴射制御のサブルーチンに基づき後述する。
ステップS400では、EGR制御を行う。このEGR制御は、例えば、エンジン回転数Neと負荷Lとをパラメータとして設定されるパイロット噴射量Qpilotおよび主燃料噴射量Qmainを、コントロールユニット30のROMに予め記憶されている所定のマップを検索して求め、上記パイロット噴射量Qpilotと主燃料噴射量Qmainとの合算噴射量(主燃料噴射量Qmainだけでもかまわない)とエンジン回転数Neとをパラメータとして、コントロールユニット30のROMに予め記憶されている所定のマップを検索して、吸気絞り弁駆動信号(吸気絞り弁6の開度を意味する)THdutyおよび基準EGR制御信号となるEGR駆動信号(EGR弁5の開度信号)EGRdutyを求め、夫々の駆動信号に基づいて、吸気絞り弁6およびEGR弁5を駆動するようにしている。
ステップS500では、排気後処理制御を行ってリターンとなる。この排気後処理制御は、例えば、流入する排気の空燃比がリーンであるときにNOxを吸収し、流入する排気の酸素濃度を低下させるとNOxを放出する公知のNOxトラップ触媒の再生時期に、吸気絞りの強化(吸気絞り弁6の開度小)、排気還流の強化、あるいはポスト噴射(主噴射後に行われる少量の燃料の噴射)、を単独もしくは組み合わせて実行することで、機関が排出する排気の空燃比をリッチにしてNOxトラップ触媒の再生を行うようにしている。
図7は、上記ステップS200のコモンレール圧力制御のサブルーチンである。
ステップS211では、主燃料噴射量Qmainを、エンジン回転数Neと負荷Lとをパラメータとして予めコントロールユニット30のROMに記憶されている所定のマップを検索して求める。そして、ステップS212に進む。
ステップS212では、EGR開始可能か否かを冷却水温度Twが50℃未満であるか否かで判定し、50℃未満である場合にはステップS215へ進み、50℃を超えている場合にはステップS213へ進む。
ステップS213では、エンジン回転数Neとエンジン負荷(アクセル開度)Lとをパラメータとして予めコントロールユニット30のROMに記憶されている所定のマップを検索して、EGR領域か否かを判定し、EGR領域である場合にはステップS214へ進み、EGR領域でない場合にはステップS215へ進む。前記所定のマップは、図4に示すように、エンジン回転数とエンジン負荷とをパラメータとして、高エンジン回転数領域および高エンジン負荷領域を除く領域をEGR実施領域として設定している。
ステップS214では、主燃料噴射量Qmainを得るためのコモンレール14の目標基準圧力PCR0を、予めコントロールユニット30のROMに記憶されている所定のマップを検索して求める。そして、ステップS216に進む。この場合の所定のマップは、図5(A)(図4に実線および破線で示すコモンレール圧力一定の等高線を横断する、例えば、A−A断面状態)に示すように、EGR停止領域の基準圧力PCR0特性(実線図示)とEGR実施領域での基準圧力PCR0特性(破線図示)とが記憶されており、ここでは、EGR実施領域であるため、破線で図示した基準圧力PCR0特性が選択され、エンジン回転数・負荷に対応する基準圧力PCR0が求められる。この破線で示したEGR実施領域での基準圧力PCR0特性(破線図示)は、EGR停止領域の基準圧力PCR0特性(実線図示)に対して増圧される。この増圧により、噴射された燃料噴霧が微粒化され且つ噴射期間が短縮化され、燃料と空気の混合が良好となり燃焼状態が改善され、EGR中であっても、黒煙やドライスートの発生を抑制することができる。
ステップS215では、主燃料噴射量Qmainを得るためのコモンレール14の目標基準圧力PCR0を、図5(A)に示すマップのEGR停止領域の基準圧力PCR0特性(実線図示)が選択されて、エンジン回転数・負荷に対応する基準圧力PCR0を求める。
ステップS216では、冷却水温度Twをパラメータとして、コントロールユニット30のROMに予め記憶されている所定の温度補正係数KTWCRPのテーブルデータを検索してステップS214に進む。この冷却水温度Twによる温度補正係数KTWCRPは、図3(A)に示すように、冷却水温度Twが暖機済の標準温度、例えば、80℃における補正係数を1(KTWCRP=1)とし、標準温度より冷却水温度Twが低下するにつれて減少され、標準温度より冷却水温度Twが高くなるにつれて増加するよう設定される。このように、冷却水温度Twが標準温度より低い場合には、コモンレール圧力PCR0を低下させて燃料噴射弁から燃料を低圧噴射させ、燃料噴射弁からの噴霧の拡散を抑制して燃焼室内に濃混合気塊の形成を助長して、着火性を向上させる。
ステップS217では、前記ステップS214若しくはステップS215の目標圧力PCR0にステップS216で検索した温度補正係数KTWCRPを乗算して目標圧力の温度補正がなされ、ステップS218へ進む。
ステップS218では、ステップS217で補正されたコモンレールの目標圧力PCR0をパラメータとして予めコントロールユニット30のROMに記憶されている所定のマップを検索して圧力制御弁13の基準制御信号Duty0(制御デューティ比)を求める。
ステップS219では、目標圧力PCR0と現在のコモンレール圧力PCRとの差圧(絶対値)が予め設定した設定圧力差ΔPCR0未満であるか否かが判定され、差圧が設定圧力差ΔPCR0以上である場合にはステップS220へ進み、差圧が設定圧力差ΔPCR0未満である場合にはステップS222へ進む。
ステップS220では、前記差圧をパラメータとして予め設定されている補正係数kDutyを検索し、ステップS221で補正制御信号Dutyを基準制御信号Duty0と補正係数kDutyとを乗算して求め、ステップS223へ進む。
ステップS222では、基準制御信号Duty0を制御信号Dutyとして、ステップS223へ進む。
ステップS223では、ステップS221若しくはステップS222で設定された制御信号Dutyにより圧力制御弁13をデューティ駆動してコモンレール14の圧力を制御し、ステップS300へ進む。
以上説明したコモンレール圧力制御ルーチンでは、ステップS212およびステップS213でEGR制御領域か否かを判断し、EGR制御領域でない場合にはステップS215により図5(A)において実線図示のEGR停止領域におけるコモンレール圧力CRPとし、EGR領域である場合にはステップS214により、EGR停止領域におけるコモンレール圧力CRPより増圧された図5(A)における破線図示のEGR領域におけるコモンレール圧力CRPを設定する。このため、EGR領域において噴射された燃料噴霧はより一層微粒化され且つ噴射期間が短縮化され、燃料と空気の混合が良好となり燃焼状態が改善され、EGR中であっても、黒煙やドライスートの発生を抑制することができる。
図8は、上記ステップS300の噴射制御のサブルーチンである。
ステップS310では、主燃料噴射量Qmainを、エンジン回転数Neと負荷Lとをパラメータとして予めコントロールユニット30のROMに記憶されている所定のマップを検索して求める。そして、ステップS311に進む。
ステップS311では、EGR開始可能か否かを冷却水温度Twが50℃未満であるか否かで判定し、50℃未満である場合にはステップS314へ進み、50℃を超えている場合にはステップS312へ進む。
ステップS312では、エンジン回転数Neとエンジン負荷(アクセル開度)Lとをパラメータとして予めコントロールユニット30のROMに記憶されている所定のマップを検索して、EGR領域か否かを判定し、EGR領域である場合にはステップS313へ進み、EGR領域でない場合にはステップS314へ進む。前記所定のマップは、前述した図4に示すものである。
ステップS313では、パイロット噴射量Qpilotを、エンジン回転数Neと負荷Lとをパラメータとして予めコントロールユニット30のROMに記憶されている所定のマップを検索して求める。そして、ステップS315に進む。この場合の所定のマップは、図5(B)(図4に実線および破線で示すパイロット噴射量一定の等高線を横断する、例えば、A−A断面状態)に示すように、EGR停止領域のパイロット噴射量Qpilot特性(実線図示)とEGR実施領域でのパイロット噴射量Qpilot特性(破線図示の実施例1との記載がある)とが記憶されており、ここでは、EGR実施領域であるため、破線で図示したパイロット噴射量Qpilot特性が選択され、エンジン回転数・負荷に対応するパイロット噴射量Qpilotが求められる。この破線(実施例1)で示したEGR実施領域でのパイロット噴射量Qpilot特性は、EGR停止領域のパイロット噴射量Qpilot特性(実線図示)に対して増量されている。
ステップS314では、図5(B)に示すマップのEGR停止領域のパイロット噴射量Qpilot特性(実線図示)が選択されて、エンジン回転数・負荷に対応するパイロット噴射量Qpilotが求められる。
ステップS315では、パイロット噴射間隔DITを、エンジン回転数Neと負荷Lとをパラメータとして予めコントロールユニット30のROMに記憶されている所定のマップを検索して求める。そして、ステップS316に進む。
ステップS316では、冷却水温度Twをパラメータとして、コントロールユニット30のROMに予め記憶されているパイロット噴射量Qpilotの温度補正係数KTWPLTQのテーブルデータを検索してステップS317に進む。この冷却水温度Twによる温度補正係数KTWPLTQは、図3(B)に示すように、冷却水温度Twが暖機済の標準温度、例えば、80℃における補正係数を1(KTWPLTQ=1)とし、標準温度より冷却水温度Twが低下するにつれて増加され、標準温度より冷却水温度Twが高くなるにつれて減少するよう設定される。このように、冷却水温度Twが標準温度より低い場合には、パイロット噴射量Qpilotを増加させて、パイロット噴射燃料の着火性並びに主噴射燃料の着火性を向上させ、主噴射の着火遅れ期間を短縮化して燃焼状態を改善し、未燃焼のHC排出を抑制する。
ステップS317では、冷却水温度Twをパラメータとして、コントロールユニット30のROMに予め記憶されているパイロット噴射間隔DITの温度補正係数KTWDITのテーブルデータを検索してステップS318に進む。この冷却水温度Twによる温度補正係数KTWDITは、図3(C)に示すように、冷却水温度Twが暖機済の標準温度、例えば、80℃における補正係数を1(KTWDIT=1)とし、標準温度より冷却水温度Twが低下するにつれて低下され、標準温度より冷却水温度Twが高くなるにつれて増加するよう設定される。このように、冷却水温度Twが標準温度より低い場合には、パイロット噴射間隔DITを減少させて、主噴射燃料の着火遅れ期間を短縮して燃焼状態を改善し、未燃焼のHC排出を抑制する。
ステップS318では、ステップS316およびステップS317で求めた各補正係数をパイロット噴射量Qpilotおよびパイロット噴射間隔DITに夫々乗算して、各々の温度補正がなされる。
ステップS319では、主燃料噴射量Qmainおよびパイロット噴射量Qpilotとコモンレール圧力PCRとに基づき、これらをパラメータとしてコントロールユニット30のROMに予め記憶されている所定のマップを検索して、主噴射期間Mperiodおよびパイロット噴射期間Pperiodを求める。そして、ステップS320に進む。
ここで、主噴射期間Mperiodおよびパイロット噴射期間Pperiodは、msec(ミリ秒)を単位として設定されるものであり、図2に示すように、主燃料噴射量Qmainまたはパイロット噴射量Qpilotが同じならば、コモンレール圧力PCRが高いほど主噴射期間Mperiodまたはパイロット噴射期間Pperiodが短くなり、またコモンレール圧力PCRが同じならば、主燃料噴射量Qmainまたはパイロット噴射量Qpilotが多いほど主噴射期間Mperiodまたはパイロット噴射期間Pperiodが長くなる。
ステップS320では、エンジン回転数Neと主燃料噴射量Qmainをパラメータとしてコントロールユニット30のROMに予め記憶されている所定のマップを検索し、パイロット噴射開始時期Pstartを求める。そして、ステップS321へ進む。
ステップS321では、基準燃料噴射時期となる主噴射開始時期Mstartを、パイロット噴射開始時期Pstartにパイロット噴射間隔DITを加算して求める。そして、ステップS322に進む。
そして、ステップS322で、パイロット噴射量Qpilotおよび主燃料噴射量Qmainが供給されるように、クランク角度検出用クランク角センサ32のクランク角度信号および気筒判別用クランク角センサ33の気筒判別信号Cy1に基づいて、パイロット噴射開始時期PstartよりPperiodの期間、主噴射開始時期MstartよりMperiodの期間、パイロット噴射および主噴射すべき気筒の燃料噴射弁15を開弁駆動する。
以上説明した噴射制御ルーチンでは、ステップS311およびステップS312でEGR制御領域か否かを判断し、EGR制御領域でない場合にはステップS314により図5(B)において実線図示のEGR停止領域におけるパイロット噴射量とし、EGR領域である場合にはステップS313により、前記EGR停止領域におけるパイロット噴射量より増量された図5(B)における破線図示(実施例1)のEGR領域におけるパイロット噴射量を設定する。このため、EGR領域において、このように増量されたパイロット噴射量Qpilot特性は、この燃料の燃焼によって燃焼室の温度及び圧力状態を高め、かつ火種となる火炎核の形成を一層助ける。続いて、燃料噴射弁15により燃料の主噴射が行われると、高圧の燃料噴射によって燃料噴霧の微粒化特性が極めて良いこととも相俟って、主噴射された燃料の殆どが最初から極めて良好な拡散燃焼状態となる。この結果、主噴射燃料の初期燃焼の立ち上がりは大幅に緩和される一方、拡散燃焼速度はむしろ高くなり、燃焼後期の熱発生率は燃焼初期のピークと同様の高い状態に維持されるので、短い燃焼期間で燃焼が完了するようになり、燃焼後期のスモークの生成が抑制される。つまり、EGRによって燃焼室への吸入空気量が減少していても、失火の発生を確実に防止しかつスモークの生成も低減できるものである。
ところで、排気通路に酸化触媒を備えて、後処理によっても排出される未燃焼HCを低減可能な場合においては、酸化触媒の活性度合いに応じて、図5(B)に示すEGR領域でのパイロット噴射量の増量を、実施例2として記載した破線で示すように、抑制すると、排気ガス中の未燃焼HCは、活性化した酸化触媒により処理して排出されないようにすることができる。酸化触媒の活性度合いは、エンジン回転数およびエンジン負荷による運転状態に応じて判定でき、例えば、図5(B)においては、エンジン回転数とエンジン負荷とが30パーセント以上の領域で徐々に活性化される場合に、活性化の度合いに応じてパイロット噴射量をEGR停止領域のパイロット噴射量に移行するようにしている。なお、酸化触媒の活性度合いは、これ以外に、例えば、酸化触媒自体の温度を測定することや排気温度センサにより排気温度を測定することによっても判定することができる。以上のように、EGR制御中においても、酸化触媒の活性域においては、パイロット噴射量の増量を停止することにより、排出される未燃焼HCを抑制しつつ、パイロット噴射量増量分の燃料消費を抑制でき、燃費を改善することができる。
本実施形態においては、以下に記載する効果を奏することができる。
(ア)内燃機関1の燃焼室に直接燃料を噴射可能で且つ噴射形態が可変な燃料噴射手段10と、内燃機関1の運転状態に応じて排気の一部を機関吸気へ還流させるEGR制御手段(S400)と、内燃機関1の運転状態に応じて噴射目標圧力を求め、燃料噴射手段に供給する燃料圧力を制御する噴射圧力制御手段(S200)と、内燃機関1の運転状態に応じて演算したメイン噴射量およびパイロット噴射量に基づいて燃料噴射手段を制御する噴射制御手段(S300)とを備え、EGR制御手段(S400)の動作中は噴射目標圧力を増圧するようにした。このため、黒煙やドライスートが発生しやすいEGR中においても、噴射目標圧力が増圧されるため、噴射された燃料が微粒化され且つ噴射期間が短縮化され、燃料と空気の混合が良好となり燃焼状態が改善され、黒煙やドライスートの発生を抑制することができる。
(イ)また、EGR制御中に、パイロット噴射量を増量する場合にも、メイン噴射燃料噴霧に対する着火性の向上により燃焼状態を改善して黒煙やドライスートの発生を抑制することができる。しかも、コモンレール圧力の増圧と併用してパイロット噴射量を増量する場合には、燃料噴射弁15からの燃料噴霧の微粒化と相まってより一層燃焼状態を改善でき、黒煙やドライスートの発生をより一層抑制することができる。
(ウ)さらに、排気通路3に酸化触媒を備える場合には、前記実施例2で示すように、酸化触媒の活性域では前記パイロット噴射量の増量を抑制することにより、未燃焼HCの排出を抑制しつつ、燃費を改善することができる。
本発明の燃焼制御装置を備えたディーゼルエンジンのシステム構成図。 コモンレール圧力と燃料噴射期間による燃料噴射量の特性図。 冷却水温毎の目標圧力補正係数(A)、パイロット噴射量補正係数(B)、およびパイロット噴射間隔補正係数(C)を示す図。 エンジン回転数およびエンジン負荷をパラメータとするコモンレール圧力一定およびパイロット噴射量一定の等高線図。 エンジン回転数およびエンジン負荷に対するコモンレール圧力の特性図(A)およびパイロット噴射量の特性図(B)。 ディーゼルエンジンの基本制御ルーチンを示すフローチャート。 コモンレール圧力制御ルーチンを示すフローチャート。 燃料噴射制御ルーチンを示すフローチャート。
符号の説明
1 ディーゼルエンジン
5 EGR弁
6 吸気絞り弁
10 燃料噴射装置
21 酸化触媒
30 エンジンコントロールユニット
31 水温センサ

Claims (4)

  1. 内燃機関の燃焼室に直接燃料を噴射可能な燃料噴射手段と、
    内燃機関の運転状態に応じて排気の一部を機関吸気へ還流させるEGR制御手段と、
    内燃機関の運転状態に応じて噴射目標圧力を求め、燃料噴射手段に供給する燃料圧力を制御する噴射圧力制御手段と、
    内燃機関の運転状態に応じて演算したメイン噴射量およびパイロット噴射量に基づいて燃料噴射手段を制御する噴射制御手段と、を備え、
    前記噴射圧力制御手段は、その噴射目標圧力を、前記EGR制御手段の動作中は増圧することを特徴とする内燃機関の燃焼制御装置。
  2. 内燃機関の燃焼室に直接燃料を噴射可能で且つ噴射形態が可変な燃料噴射手段と、
    内燃機関の運転状態に応じて排気の一部を機関吸気へ還流させるEGR制御手段と、
    内燃機関の運転状態に応じて噴射目標圧力を求め、燃料噴射手段に供給する燃料圧力を制御する噴射圧力制御手段と、
    内燃機関の運転状態に応じて演算したメイン噴射量およびパイロット噴射量に基づいて燃料噴射手段を制御する噴射制御手段と、を備え、
    前記噴射制御手段は、そのパイロット噴射量を、前記EGR制御手段の動作中は増量することを特徴とする内燃機関の燃焼制御装置。
  3. 前記内燃機関の燃焼制御装置は、前記EGR制御手段の動作中は、前記噴射圧力制御手段にその噴射目標圧力を増圧させる一方、前記噴射制御手段にそのパイロット噴射量を増量させることを特徴とする請求項1または請求項2に記載の内燃機関の燃焼制御装置。
  4. 前記内燃機関の燃焼制御装置は、排気通路に酸化触媒を備え、
    前記噴射制御手段は、前記酸化触媒の活性域では前記パイロット噴射量の増量を抑制することを特徴とする請求項2または請求項3に記載の内燃機関の燃焼制御装置。
JP2003283778A 2003-07-31 2003-07-31 内燃機関の燃焼制御装置 Pending JP2005048723A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283778A JP2005048723A (ja) 2003-07-31 2003-07-31 内燃機関の燃焼制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283778A JP2005048723A (ja) 2003-07-31 2003-07-31 内燃機関の燃焼制御装置

Publications (1)

Publication Number Publication Date
JP2005048723A true JP2005048723A (ja) 2005-02-24

Family

ID=34268563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283778A Pending JP2005048723A (ja) 2003-07-31 2003-07-31 内燃機関の燃焼制御装置

Country Status (1)

Country Link
JP (1) JP2005048723A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121641A (ja) * 2006-11-15 2008-05-29 Toyota Motor Corp 多種燃料内燃機関
WO2009139072A1 (ja) * 2008-05-12 2009-11-19 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP2011026967A (ja) * 2009-07-21 2011-02-10 Mitsubishi Motors Corp 内燃機関の燃料噴射制御装置
WO2014020982A1 (ja) * 2012-08-01 2014-02-06 日産自動車株式会社 内燃機関の制御装置
CN110848039A (zh) * 2018-08-20 2020-02-28 卡特彼勒公司 发动机熄火缓解

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121641A (ja) * 2006-11-15 2008-05-29 Toyota Motor Corp 多種燃料内燃機関
JP4737045B2 (ja) * 2006-11-15 2011-07-27 トヨタ自動車株式会社 多種燃料内燃機関
WO2009139072A1 (ja) * 2008-05-12 2009-11-19 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP2011026967A (ja) * 2009-07-21 2011-02-10 Mitsubishi Motors Corp 内燃機関の燃料噴射制御装置
WO2014020982A1 (ja) * 2012-08-01 2014-02-06 日産自動車株式会社 内燃機関の制御装置
JP5673896B2 (ja) * 2012-08-01 2015-02-18 日産自動車株式会社 内燃機関の制御装置
EP2881570A4 (en) * 2012-08-01 2015-08-12 Nissan Motor CONTROL DEVICE FOR A COMBUSTION ENGINE
US10174719B2 (en) 2012-08-01 2019-01-08 Nissan Motor Co., Ltd. Control device for internal combustion engine
CN110848039A (zh) * 2018-08-20 2020-02-28 卡特彼勒公司 发动机熄火缓解

Similar Documents

Publication Publication Date Title
EP1245815B1 (en) Direct-injection spark-ignition engine with a turbo-charging device, engine control method , and computer-readable storage medium therefor
US8256206B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JP3555559B2 (ja) 内燃機関
JP2003120348A (ja) 内燃機関のバルブタイミング制御装置
JPH0886251A (ja) ディーゼルエンジン
JP2006226188A (ja) ディーゼルエンジンの燃料性状検出装置
JP2006183466A (ja) 内燃機関の燃焼制御装置
JP2005048703A (ja) 内燃機関の燃焼制御装置
US6513320B1 (en) Control system for a direct injection-spark ignition engine
JP2005048723A (ja) 内燃機関の燃焼制御装置
JPWO2004097200A1 (ja) 内燃機関の制御装置
EP0919713B1 (en) Controlsystem for a direct injection-spark ignition engine
JPH07269416A (ja) 燃料噴射式エンジンのegr制御装置
JP4523766B2 (ja) 内燃機関の燃焼制御装置
JP2010196525A (ja) 圧縮着火式内燃機関の燃焼制御装置
JP5282604B2 (ja) 圧縮着火式内燃機関の燃焼制御装置
JP5310128B2 (ja) 圧縮着火式内燃機関の燃焼制御装置
JP4404841B2 (ja) 内燃機関の制御装置
JP2004036566A (ja) 内燃機関の気筒内気流旋回方向制御装置
JP3341686B2 (ja) 内燃機関
JP7488995B2 (ja) 触媒昇温システムの制御装置
JP2005069086A (ja) 内燃機関の燃料噴射量劣化検出方法及び燃料噴射量劣化検出装置
JP4171909B2 (ja) 筒内噴射式内燃機関の制御装置
JP3344334B2 (ja) 内燃機関
JP2005220823A (ja) 筒内噴射式内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407