JP2005043255A - 赤外線ガス分析計用光源 - Google Patents

赤外線ガス分析計用光源 Download PDF

Info

Publication number
JP2005043255A
JP2005043255A JP2003278524A JP2003278524A JP2005043255A JP 2005043255 A JP2005043255 A JP 2005043255A JP 2003278524 A JP2003278524 A JP 2003278524A JP 2003278524 A JP2003278524 A JP 2003278524A JP 2005043255 A JP2005043255 A JP 2005043255A
Authority
JP
Japan
Prior art keywords
light source
infrared
gas analyzer
light
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003278524A
Other languages
English (en)
Inventor
Kennosuke Kojima
建之助 小島
Hiroji Kamisaka
博二 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2003278524A priority Critical patent/JP2005043255A/ja
Publication of JP2005043255A publication Critical patent/JP2005043255A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 効率のよいチョッピング光を得ることのでき、赤外線ガス分析計に組み込んだ場合、所望の測定を高感度、高精度で行わせることのできる赤外線ガス分析計用光源を提供すること。
【解決手段】 サンプルガスSが供給されるセル2に対して赤外光IRをパルス的に照射するための赤外線ガス分析計用光源7において、前記光源が、その発光時の立ち上がり応答および消光時の立ち下がり応答がともに速く、かつその点滅の振幅が大きい赤外光を発するようにした。
【選択図】 図2

Description

この発明は、赤外線ガス分析計に組み込まれる光源、特に、サンプルガスが供給されるセルに対して赤外光をパルス的に照射するための赤外線ガス分析計用光源に関する。
特開平8−285773号公報
赤外線ガス分析計は、例えば大気中や自動車排ガス中に含まれるCOやCO2 など特定のガス濃度の測定を始め、各種の分野において広く用いられている。このような赤外線ガス分析計の一つに、サンプルガスが供給されるセルに対して、赤外光源に断続的に電力を供給することにより、赤外光をパルス的に照射するようにした、所謂点滅式赤外線ガス分析計がある。このような点滅式赤外線ガス分析計は、機械的なチョッパーを用いることなく、また、セルに対してサンプルガスとリファレンスガスとを交互に供給して流体変調を行うことなく、検出器から所望の交流信号を得ることができるので、例えば、特開平8−285773号公報に示されるように、赤外線ガス分析計を小型に形成できるといった利点がある。
ところで、上記点滅式赤外線ガス分析計においては、従来、その光源の点灯制御は、図5に示すように、赤外光源としてのフィラメント41の一端に、例えば5V電源42を接続するとともに、フィラメント41の他端に、電流制限用抵抗43とスイッチング素子としてのトランジスタ44とを直列に接続し、トランジスタ44のベースに対する制御信号45として、図6(A)に示すような矩形状のパルス電源45を与えることにより、フィラメント41に断続的に電力を供給し、所望の赤外光IRをパルス的に発生させるようにしていた。
しかしながら、上記のように、矩形状のパルス電源45を用いた場合、図6(B)において符号46で示すような赤外放射エネルギーを有する赤外光IRしか発生しない。すなわち、この赤外光IRは、図6(B)に示すように、赤外光源41の発光時の立ち上がり応答および消光時の立ち下がり応答のいずれもが遅く、また、赤外光源41の出力における振幅Aも前記波形46で示すように小さく、したがって、前記赤外線ガス分析計における測定感度として必ずしも十分ではなく、これに伴って高精度な測定を行えないことがあった。
この発明は、上述の事柄に留意してなされたもので、その目的は、効率のよいチョッピング光を得ることのでき、赤外線ガス分析計に組み込んだ場合、所望の測定を高感度、高精度で行わせることのできる赤外線ガス分析計用光源(以下、赤外光源という)を提供することである。
上記目的を達成するために、この発明は、サンプルガスが供給されるセルに対して赤外光をパルス的に照射するための赤外線ガス分析計用光源において、前記光源が、その発光時の立ち上がり応答および消光時の立ち下がり応答がともに速く、かつその点滅の振幅が大きい赤外光を発するようにしてなることを特徴としている(請求項1)。
より具体的には、この発明は、サンプルガスが供給されるセルに対して赤外光をパルス的に照射するための赤外線ガス分析計用光源において、前記光源を点滅させるためのパルス電源として、その電圧が、発光低位時においては0Vよりも高く、次いで、発光立ち上がり部が最も高くなり、その後、発光高位時においては前記発光低位時の電圧よりも高く、さらに、消光時においては前記発光低位時における電圧よりも低くなるように変化するものを用いることを特徴としている(請求項2)。
上記特徴的構成よりなる赤外光源においては、その発光時の立ち上がり応答および消光時の立ち下がり応答がともに速くなるとともに、点滅の振幅が従来に比べて大きくなる。したがって、このような大きな赤外放射エネルギーを有する赤外光源を用いた赤外線ガス分析計においては、チョッピング効率が向上し、測定感度として十分大きなものが得られ、所望の測定を高精度に行うことができる。
図1〜3は、この発明の一つの実施例を示すものである。まず、図1は、この発明の赤外光源を組み込んだ赤外線ガス分析計1の構成を概略的に示すもので、この図において、2は筒状のサンプルセルで、その両端部には赤外透過性のセル窓3,4が設けられるとともに、サンプルガスSの導入口5および導出口6が形成されている。そして、サンプルセル2の一方のセル窓3側には、サンプルセル2内のサンプルガスSに対して赤外光IRを照射するための赤外光源7が設けられており、7aはそのフィラメントである。そして、8はこの赤外光源7を制御する光源制御部である。なお、この光源制御部8から出力されるパルス電源については後述する。
また、サンプルセル2の他方のセル窓4側には、サンプルセル2内を通過してきた赤外光IRが入射する検出部9が設けられている。この検出部9は、例えば、二つのパイロセンサ10S,10Rが互いに並列的に設けられるとともに、それぞれのパイロセンサ10S,10Rの赤外光入射側には、測定対象成分(ガス)の特性吸収帯域の赤外光のみを通過させるバンドパスフィルタからなる測定用フィルタ11S、前記測定対象成分の特性吸収帯域に吸収特性を持たない赤外光を通過させるバンドパスフィルタからなる比較用フィルタ11Rが設けられ、一方のパイロセンサ9Sを測定用検出器とし、他方のパイロセンサ9Rを比較用検出器としてなるものである。
上記構成の赤外線ガス分析計1においては、光源制御部8から以下に述べるようなパルス電源を赤外光源7のフィラメント7aに与えることにより、フィラメント7aに断続的に電力が供給され、所望の赤外光IRがパルス的に発生する。このパルス的に発生した赤外光IRがセル内に供給されているサンプルガスSを照射する。そして、このサンプルガスSを照射した赤外光IRは検出部9の測定用検出器10S、比較用検出器10Rに入射し、これら両検出器10S,10Rの例えば差に基づいて、サンプルガスSに含まれる測定対象成分の濃度を得ることができる。
そして、この発明の赤外光源7においては、図2において符号13で示すようなパルス電源をフィラメント7aに供給することにより、発光時の立ち上がり応答および消光時の立ち下がり応答がともに速くなるとともに、その赤外線出力波形における点滅の振幅が従来に比べて大きいなるように発光する。以下、これについて、図2および図3をも参照しながら詳細に説明する。
すなわち、この実施例においては、光源制御部8から、図2の上段に実線で示すような形状を有するパルス状の電源13が出力される。すなわち、このパルス電源13は、図2(A)に示すように、発光低位部a、発光立ち上がり部b、発光高位部cおよび消光立ち下がり部dからなるパルス状となっている。より詳しくは、フィラメント7aの抵抗値が例えば4.4Ωとする。このとき、発光低位部aは、0Vよりも高い電圧、例えば、1V、70ms(ミリセカンド)に保持される。従来においては、この部分aは0Vであったが、この実施例においては、0Vよりも高い電圧に保持されている。これは、以下の理由による。
すなわち、下記式で示されるステファン・ボルツマンの法則に示されるように、赤外発光体の点滅温度幅(図3における符号t1 ,t2 )が同じであれば、発光低位時aの絶対温度Tが高い方が赤外放射エネルギーの差は、温度Tの4乗に比例して増えるからである。つまり、この図3では、時間区間t1 ,t2 が互いに等しい場合、h2 >h1 となっている。
W=σT4
W:単位面積当たりの全放射エネルギー(W/cm2
σ:ステファン・ボルツマン定数(5.67×1012W/cm2 ・K-4
T:発光体の絶対温度(K)
そして、発光時の立ち上がりを速くするために、発光立ち上がり部bは、発光高位部cよりも高くなるように、例えば10V、30msに設定される。また、発光高位部cは、例えば4V、70msに設定される。さらに、消光時の立ち下がりを速くするために、消光立ち下がり部dは、発光低位部aより低く、例えば、0V、30msに設定される。
上記a〜dの4つの部位をこの順で繰り返すパルス電源13をフィラメント7aに対して印加することにより、フィラメント7aからは、図2の中段において実線で示すような出力波形(赤外放射エネルギー)14を有する赤外光IRが発せられる。このような出力波形14で示される赤外光IRは、同図の下段において仮想線で示すパルス電源45を印加したときの従来の赤外光IR(同図の中段において仮想線46で示す)に比べて、発光時の立ち上がり応答および消光時の立ち下がり応答がともに速く、しかも、その振幅Bが仮想線46で示す従来の赤外光IRの振幅Aに比べてかなり大きいことが分かる。したがって、このような大きな赤外放射エネルギーを有する赤外光源7を用いた赤外線ガス分析計1においては、チョッピング効率が向上し、測定感度として十分大きなものが得られ、所望の測定を高精度に行うことができる。
なお、上述の実施例においては、パルス電源13は、前記各部a〜dが直流的に変化するものであったが、この発明はこれに限られるものではなく、例えば、パルス電源13として、前記各部a〜dが図4に示すように、高周波(例えば周波数100kHz)的に変化するものであってもよく、このようなパルス電源13においては、その通電のデューティを変えるだけで、光源7に供給される電力を容易に調整することができるとともに、光源7における消費電力を少なくすることができる。
そして、上記いずれのパルス電源13においても、各部a〜dの電圧の大きさや持続時間の長さを必要に応じて適宜の値に設定することができることは言うまでもない。
この発明の赤外光源を組み込んだ赤外線ガス分析計の一例を概略的に示す図である。 この発明の動作説明図で、上段に赤外光源を駆動するパルス電源の波形の一例を模式的に示し、中段に赤外光源が発する赤外光の出力波形を実線で模式的に示すとともに、中段に従来の赤外光源が発する赤外光の出力波形を仮想線で模式的に示し、下段に従来のパルス電源の波形を模式的に示している。 赤外発光体の点滅温度幅と赤外放射エネルギーとの関係を説明するための図である。 赤外光源を駆動するパルス電源の波形の他のを例模式的に示す図である。 赤外光源を駆動する回路の一例を示す図である。 従来技術を説明するための図で、(A)は従来のパルス電源の波形例を示す図、(B)は赤外光の強度を模式的に示す図である。
符号の説明
1 赤外線ガス分析計
2 セル
7 赤外光源
13 パルス電源
S サンプルガス
IR 赤外光
a 発光低位部
b 発光立ち上がり部
c 発光高位部
d 消光立ち下がり部

Claims (2)

  1. サンプルガスが供給されるセルに対して赤外光をパルス的に照射するための赤外線ガス分析計用光源において、前記光源が、その発光発光時の立ち上がり応答および消光時の立ち下がり応答がともに速く、かつその点滅の振幅が大きい赤外光を発するようにしてなることを特徴とする赤外線ガス分析計用光源。
  2. サンプルガスが供給されるセルに対して赤外光をパルス的に照射するための赤外線ガス分析計用光源において、前記光源を点滅させるためのパルス電源として、その電圧が、発光低位時においては0Vよりも高く、次いで、発光立ち上がり部が最も高くなり、その後、発光高位時においては前記発光低位時の電圧よりも高く、さらに、消光時においては前記発光低位時における電圧よりも低くなるように変化するものを用いることを特徴とする赤外線ガス分析計用光源。
JP2003278524A 2003-07-23 2003-07-23 赤外線ガス分析計用光源 Pending JP2005043255A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003278524A JP2005043255A (ja) 2003-07-23 2003-07-23 赤外線ガス分析計用光源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003278524A JP2005043255A (ja) 2003-07-23 2003-07-23 赤外線ガス分析計用光源

Publications (1)

Publication Number Publication Date
JP2005043255A true JP2005043255A (ja) 2005-02-17

Family

ID=34264905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003278524A Pending JP2005043255A (ja) 2003-07-23 2003-07-23 赤外線ガス分析計用光源

Country Status (1)

Country Link
JP (1) JP2005043255A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225486A (ja) * 2006-02-24 2007-09-06 Yokogawa Electric Corp 赤外線分析計の光源の製造方法とその製造装置
JP2018136156A (ja) * 2017-02-20 2018-08-30 パナソニックIpマネジメント株式会社 蛍光検出器及びその制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225486A (ja) * 2006-02-24 2007-09-06 Yokogawa Electric Corp 赤外線分析計の光源の製造方法とその製造装置
JP4702098B2 (ja) * 2006-02-24 2011-06-15 横河電機株式会社 赤外線分析計の光源の製造方法とその製造装置
JP2018136156A (ja) * 2017-02-20 2018-08-30 パナソニックIpマネジメント株式会社 蛍光検出器及びその制御方法

Similar Documents

Publication Publication Date Title
JP4317751B2 (ja) 発光ダイオードを主体とするアレイのパルス幅変調制御
CN106197671B (zh) 火焰检测系统
KR20110052631A (ko) 솔라 시뮬레이터 및 다중접합 태양전지의 측정 방법
US20060289786A1 (en) System and method for a pulsed light source used in fluorescence detection
KR101923003B1 (ko) 가스 성분의 농도를 결정하기 위한 방법 및 이를 위한 분광계
JP2005043255A (ja) 赤外線ガス分析計用光源
US20120228502A1 (en) Circuit and method for controlling an ir source for an analytical instrument
JP4663883B2 (ja) ガスセンサーおよびガスセンサーの動作方法
JP2019502126A5 (ja)
WO2002088673A3 (en) Detector for airborne biological particles
ATE403858T1 (de) Verfahren und system zur physikochemischen analyse mittels lasergepulster ablation
ATE503171T1 (de) Vorrichtung zur uv-behandlung von strömenden fluiden
DE60314686D1 (de) Verfahren und Anordnung zur Steuerung der Helligkeit einer Glühlampe, und eine Lichtquelle mit einer Glühlampe
JP2004198301A (ja) 赤外線式ガス検出器および赤外線式ガス検知装置
US20230221279A1 (en) Electrochemical sensor arrangement, breathalyzer and method for determining a vitality of electrodes of an electrochemical sensor
JP3562744B2 (ja) 校正用ガス調製用オゾン発生器並びにそれを用いた校正用ガス調製装置、オゾン分析計及び窒素酸化物分析計
JP2008066431A (ja) 太陽電池出力特性の測定方法
EP1800109A1 (en) Method and sensor for infrared measurement of gas
JP3847123B2 (ja) 吸光度計
JP2020186966A5 (ja) 光学測定装置、光源装置
JP2000346822A (ja) 携帯用ガス検出装置
US11785683B2 (en) Calibration device for an optical detector and setting device for setting calibration points for the calibration device
JP2006153898A (ja) 吸光度計
JPH0587956B2 (ja)
JP7285630B2 (ja) 流体殺菌装置