JP2005039364A - カラー画像形成装置及びカラー制御方法 - Google Patents

カラー画像形成装置及びカラー制御方法 Download PDF

Info

Publication number
JP2005039364A
JP2005039364A JP2003197817A JP2003197817A JP2005039364A JP 2005039364 A JP2005039364 A JP 2005039364A JP 2003197817 A JP2003197817 A JP 2003197817A JP 2003197817 A JP2003197817 A JP 2003197817A JP 2005039364 A JP2005039364 A JP 2005039364A
Authority
JP
Japan
Prior art keywords
color
chromaticity
sensor
forming apparatus
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003197817A
Other languages
English (en)
Other versions
JP4236255B2 (ja
Inventor
Satoshi Nakajima
里志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003197817A priority Critical patent/JP4236255B2/ja
Publication of JP2005039364A publication Critical patent/JP2005039364A/ja
Application granted granted Critical
Publication of JP4236255B2 publication Critical patent/JP4236255B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Color, Gradation (AREA)
  • Color Electrophotography (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Abstract

【課題】高価なカラーセンサをプリンタに搭載することなく、現行のカラーセンサを用いて簡易で且つ、処理効率の良いカラーセンサ較正方法が実装されたカラー画像形成装置および方法を提供することにある。
【解決手段】カラー画像形成装置におけるカラーセンサ(42)は、所定のテストチャートの色度を検知し、色度検知結果(RGB)を取得する。一方、画像読取装置(10)によって同じテストチャートの色度を検知し、RGB値およびXYZ値を取得する。この取得されたカラーセンサのRGBと画像読取装置のRGB値及びXYZ値により、カラーセンサが有するXYZ変換テーブルを補正することにより、カラーセンサの較正が行われる。
【選択図】 図16

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、原稿画像を読み取るイメージリーダ(画像読取装置)と、このイメージリーダやパーソナルコンピュータから送られる画像情報に基づいて記録材上にカラー画像を形成するカラー画像形成装置とを組合せたMFP(マルチファンクションプリンタ)に関するものである。特に、例えば、このプリンタが有するカラーセンサの色度較正の効率のよい実現に関するものである。
【0002】
【従来の技術】
近年、カラープリンタ、カラー複写機等の電子写真方式やインクジェット方式等を採用したカラー画像形成装置には、出力画像の高画質化が求められている。特に、濃度の階調とその安定性は、人間が下す画像の良し悪しの判断に大きな影響を与える。
【0003】
ところが、電子写真方式の画像形成装置は、環境の変化や長時間の使用による装置各部の変動があると、得られる画像の濃度が変動してしまう。特に電子写真方式のカラー画像形成装置の場合、わずかな濃度の変動でもカラーバランスが崩れてしまう恐れがあるので、常に一定の階調‐濃度特性を保つ必要がある。そこで、各色のトナーに対して、絶対湿度に応じた数種類の露光量や現像バイアスなどのプロセス条件、ルックアップテーブル(LUT)などの階調補正手段をもち、温湿度センサによって測定された絶対湿度に基づいて、その時のプロセス条件や階調補正の最適値を選択している。また、装置各部の変動が起こっても一定の階調‐濃度特性が得られるように、各色のトナーで濃度検知用トナーパッチを中間転写体やドラム等の上に作成し、その未定着トナーパッチの濃度を未定着トナー用濃度検知センサで検知し、その検知結果より露光量、現像バイアスなどのプロセス条件にフィードバックをかけて濃度制御を行うことで、安定した画像を得るように構成している。
【0004】
しかし、上記未定着トナー用濃度検知センサを用いた濃度制御はパッチを中間転写体やドラム等の上に形成し検知するもので、その後に行われる転写材への転写及び定着による画像のカラーバランスの変化については制御していない。転写材へのトナー像の転写における転写効率や、定着による加熱及び加圧によってもカラーバランスが変化する。この変化には、上記未定着トナー用濃度検知センサを用いた濃度制御では対応できない。そこで転写、定着後に転写材上の単色トナー画像の濃度又はフルカラー画像の色度を検知する濃度又は色度センサ(以下カラーセンサとする)を設置し、濃度又は色度制御用カラートナーパッチ(以下パッチとする)を転写材上に形成し、検知した濃度又は色度を露光量、プロセス条件、ルックアップテーブル(LUT)などにフィードバックし、転写材上に形成した最終出力画像の濃度又は色度制御を行う画像形成装置が考えられている。このカラーセンサは、CMYKを識別したり、濃度又は色度を検知するために、例えば発光素子として赤(R)、緑(G)、青(B)を発光する光源を用いたり、発光素子は白色(W)を発光する光源を用いて、受光素子上に赤(R)、緑(G)、青(B)等の分光透過率が異なる3種のフィルタを形成したもので構成する。このことにより得られる3つの異なる出力、例えばRGB出力から、CMYKを識別したり濃度を検知することができる。また、RGB出力を線形変換等で数学的な処理をしたり、ルックアップテーブル(LUT)で変換することで色度を検知することができる。
【0005】
インクジェット方式のプリンタにおいても、インク吐出量の経時変化や環境差、インクカートリッジの個体差によりカラーバランスが変化し、階調‐濃度特性を一定に保てない。
【0006】
そこで、プリンタの出力部付近にカラーセンサを設置し、転写材上のパッチの濃度又は色度を検知し、濃度又は色度制御を行うことが考えられている。
濃度又は色度の制御方法は様々ある。例えば測定した濃度からガンマ特性制御や、測定した色度からカラーマッチングテーブルや色分解テーブルの補正を実施する方法等がある。
【0007】
ここで、カラーセンサを用いてパッチの絶対濃度又は絶対色度を検知するためには、以下の理由によりセンサ出力較正用白色基準板等の濃度又は色度の絶対値が既知である基準が必要となる。第1に、センサを構成する発光素子や受光素子の分光特性のバラツキを較正する必要があるからである。第2に、センサを構成する発光部及び受光部の経時変化や周囲温度変化により、同じパッチを検知しても出力が異なることがあるからである。第3に、通常印刷時に多くの転写材がセンサ付近を通過することにより、紙粉やトナー又はインクが飛び散り、センサ表面に堆積や付着することによりセンサ出力の低下を招くからである。
【0008】
【特許文献1】
特開2003−84532
【特許文献2】
特開2003−107830
【特許文献3】
特開2003−107835
【0009】
【発明が解決しようとする課題】
しかしながら、センサ出力較正用の基準としてよく使用される白色基準板は、高価であるだけでなく、センサと同様に白色基準板にも紙粉やトナー又はインクが飛び散り、基準板として使えなくなることもある。
【0010】
一方、センサ出力較正用の基準を用いずに、つまりセンサ出力の較正を行うことなくパッチの濃度又は色度を検知すると、上記理由の影響を受けた場合、センサ出力は実際のパッチの濃度又は色度とは異なった値を出力することとなる。その結果を用いて濃度又は色度制御を実施すると、カラーバランスはとれず、所望の階調‐濃度特性も得られない。そればかりか、カラ−バランスを逆に崩し、階調−濃度特性を悪化させることがある。
【0011】
さらには絶対色度を精度良く検知するためには高価な測色器で用いられるような高精度のXYZ型フィルタや反射光を分光する機能等を持つ必要があるが、このような機能を持たせると非常に大きいコストアップとなり、このような機能を持った高性能カラーセンサをプリンタに搭載することは現実的ではない。
【0012】
一方、プリンタ以外に新たに測色機やスキャナ等の外部装置を用意し、得られた読み取りデータを用いてプリンタのカラーセンサを較正することも考えられるが、その読み取りデータをプリンタのカラーセンサの較正に適用するという処理自体が複雑となるのが通常であり、特に、その外部装置の特性がよく判っていない場合には処理の効率が悪く、ユーザにとっても煩に耐えないものとなってしまう可能性が高い。
【0013】
そこで、本発明はこのような問題点を解決するためになされたものであり、その目的は、高価なカラーセンサをプリンタに搭載することなく、安価なカラーセンサを用いて簡易で且つ、処理効率の良いカラーセンサ較正方法が実装されたカラー画像形成装置および方法を提供することにある。
【0014】
【課題を解決するための手段】
上記の課題を解決するために、本発明によるカラー画像形成装置は、この画像形成装置によって生成された所定のテストチャートの色度を検知し、第1の色度検知結果を取得する色度検知手段と、画像読取装置によって検知された所定のテストチャートの色度である第2の色度検知結果を取得するデータ取得手段と、第1の色度検知結果と第2の色度検知結果とに基づいて、色度検知手段の検知誤差を補正する補正手段と、を備えている。
【0015】
また、色度検知手段は、色度データを変換する色データ変換テーブルを有し、補正手段は、色データ変換テーブルを補正することにより検知誤差を補正する。
【0016】
さらに、本発明によるカラー画像形成装置は、所定の条件を満足した場合に、色度検知手段の誤差補正の必要性を告知する告知手段とを備えている。この所定の条件には、前回に色度検知手段の誤差補正を行ったときから所定枚数以上プリントしたか否かが含まれている。
【0017】
また、色データ変換テーブルは、RGBデータをXYZデータに変換するテーブルであり、補正手段は、色度検出手段のRGB出力と画像読取装置のXYZ値を用いて変換テーブルを変更することとしている。
【0018】
さらに、画像読取装置におけるXYZ変換テーブルは、所定画像から取得したRGB値を説明変量、測定されたXYZ値を目的変量として、重回帰演算を実行することにより求められたものである。
【0019】
本発明によるカラー制御方法は、カラーセンサを用いてカラー画像形成装置によって生成された所定のテストチャートの色度を検知し、第1の色度検知結果を取得する色度検知工程と、画像読取装置によって検知された所定のテストチャートの色度である第2の色度検知結果を取得するデータ取得工程と、第1の色度検知結果と第2の色度検知結果とに基づいて、カラーセンサの検知誤差を補正する補正工程と、を備えている。
【0020】
ここで、カラーセンサは、色度データを変換する色データ変換テーブルを有し、補正工程では、色データ変換テーブルを補正することにより検知誤差を補正することとしている。
【0021】
さらに、所定の条件を満足した場合に、カラーセンサの誤差補正の必要性を告知する告知工程とを備えている。所定の条件には、前回にカラーセンサの誤差補正を行ったときから所定枚数以上プリントしたか否かが含まれる。
【0022】
また、色データ変換テーブルは、RGBデータをXYZデータに変換するテーブルであり、補正工程では、カラーセンサのRGB出力と画像読取装置のXYZ値を用いて変換テーブルを変更する。
【0023】
さらに、画像読取装置におけるXYZ変換テーブルは、所定画像から取得したRGB値を説明変量、測定されたXYZ値を目的変量として重回帰演算を実行することにより得られたものである。
【0024】
【発明の実施の形態】
以下、本発明を図示の実施形態に基づいて詳細に説明する。
【0025】
<第一の実施の形態>
本実施形態では、画像読取装置が搭載されているMFPにおけるカラーセンサの較正方法について説明する。
【0026】
図19はこの発明の一実施形態に係るMFPの画像読取装置の一例を示す図である。画像読取装置10は原稿台11に置かれた原稿と対向するように設置された図示しないRGBの3ラインのCCDカラーセンサで、原稿から画像情報を読み取る。そして、読み取られた画像データを後述する画像処理部へRGB信号として転送する。
【0027】
また、図1は電子写真方式のカラー画像形成装置の一例である中間転写体27を採用したタンデム方式のカラー画像形成装置を示す構成図である。画像形成装置は、図1に示す画像形成部と図示しない画像処理部を有するものである。
【0028】
まず最初に、画像処理部における処理について説明する。
【0029】
図2は、画像形成装置の画像処理部における処理の一例を示すフローチャートである。ステップS131で、あらかじめ用意されているカラーマッチングテーブルにより、前記イメージリーダやホストコンピュータ等から送られてくる画像の色を表すRGB信号を画像形成装置の色再現域に合わせたデバイスRGB信号(以下DevRGBとする)に変換する。
【0030】
ステップS132で、あらかじめ用意されている色分解テーブルにより、前記DevRGB信号を画像形成装置のトナー色材色であるCMYK信号に変換する。ステップS133で、各々の画像形成装置に固有の階調‐濃度特性を補正する濃度補正テーブルにより、前記CMYK信号を階調‐濃度特性の補正を加えたC’M’Y’K’信号へ変換する。その後ステップS134でハーフトーン処理を行いC’’M’’Y’’K’’信号へ変換する。ステップS135で、PWM(Pulse Width Modulation)処理により、前記C’’M’’Y’’K’’信号に対応する前記スキャナ部24C、24M、24Y、24Kの露光時間Tc、Tm、Ty、Tkへ変換する。
【0031】
次に図1を用いて、電子写真方式のカラー画像形成装置における、画像形成部の動作を説明する。
【0032】
画像処理部が変換した露光時間に基づいて点灯させる露光光により静電潜像を形成し、この静電潜像を現像して単色トナー像を形成し、この単色トナー像を重ね合わせて多色トナー像を形成し、この多色トナー像を転写材11へ転写し、その転写材11上の多色トナー像を定着させるもので、画像形成部は給紙部21、現像色分並置したステーション毎の感光体(22Y、22M、22C、22K)、一次帯電手段としての注入帯電手段(23Y、23M、23C、23K)、トナーカートリッジ(25Y、25M、25C、25K)、現像手段(26Y、26M、26C、26K)、中間転写体27、転写ローラ28および定着部30によって構成されている。
【0033】
上記感光ドラム(感光体)22Y、22M、22C、22Kは、アルミシリンダの外周に有機光導伝層を塗布して構成し、図示しない駆動モータの駆動力が伝達されて回転するもので、駆動モータは感光ドラム22Y、22M、22C、22Kを画像形成動作に応じて反時計周り方向に回転させる。
【0034】
一次帯電手段として、ステーション毎にイエロー(Y)、マゼンダ(M)、シアン(C)、ブラック(K)の感光体を帯電させるための4個の注入帯電器23Y、23M、23C、23Kを備える構成で、各注入帯電器にはスリーブ23YS、23MS、23CS、23KSが備えられている。
【0035】
感光ドラム22Y、22M、22C、22Kへの露光光はスキャナ部24Y、24M、24C、24Kから送られ、感光ドラム22Y、22M、22C、22Kの表面を選択的に露光することにより、静電潜像が形成されるように構成されている。
【0036】
現像手段として、上記静電潜像を可視化するために、ステーション毎にイエロー(Y)、マゼンダ(M)、シアン(C)、ブラック(K)の現像を行う4個の現像器26Y、26M、26C、26Kを備える構成で、各現像器には、スリーブ26YS、26MS、26CS、26KSが設けられている。各々の現像器は脱着可能に取り付けられている。
中間転写体27は、感光ドラム22Y、22M、22C、22Kに接触しており、カラー画像形成時に時計周り方向に回転し、感光ドラム22Y、22M、22C、22Kの回転に伴って回転し、単色トナー像が転写される。その後、中間転写体27に後述する転写ローラ28が接触して転写材11を狭持搬送し、転写材11に中間転写体27上の多色トナー像が転写する。
【0037】
転写ローラ28は、転写材11上に多色トナー像を転写している間、28aの位置で転写材11に当接し、印刷処理後は28bの位置に離間する。
【0038】
定着部30は、転写材11を搬送させながら、転写された多色トナー像を溶融定着させるものであり、図1に示すように転写材11を加熱する定着ローラ31と転写材11を定着ローラ31に圧接させるための加圧ローラ32を備えている。定着ローラ31と加圧ローラ32は中空状に形成され、内部にそれぞれヒータ33、34が内蔵されている。すなわち、多色トナー像を保持した転写材11は定着ローラ31と加圧ローラ32により搬送されるとともに、熱および圧力を加えられ、トナーが表面に定着される。
【0039】
トナー像定着後の転写材11は、その後図示しない排出ローラによって図示しない排紙トレイに排出して画像形成動作を終了する。
【0040】
クリーニング手段29は、中間転写体27上に残ったトナーをクリーニングするものであり、中間転写体27上に形成された4色の多色トナー像を転写材11に転写した後の廃トナーは、クリーナ容器に蓄えられる。
【0041】
濃度センサ41は、図1の画像形成装置において中間転写体27へ向けて配置されており、中間転写体27の表面上に形成されたトナーパッチの濃度を測定する。この濃度センサ41の構成の一例を図3に示す。LEDなどの赤外発光素子51と、フォトダイオード、Cds等の受光素子52、受光データを処理する図示しないICなどとこれらを収容する図示しないホルダーで構成される。受光素子52aはトナーパッチからの乱反射光強度を検知し、受光素子52bはトナーパッチからの正反射光強度を検知する。正反射光強度と乱反射光強度の両方を検知することにより、高濃度から低濃度までのトナーパッチの濃度を検知することができる。また、所定の紙との色差を出力とすることもできる。なお、前記発光素子51と受光素子52の結合のために図示しない光学素子が用いられることもある。
【0042】
前記濃度センサ41は中間転写体上にのっているトナーの色を見分けることはできない。そのため、単色トナーの階調パッチ64を中間転写体上に形成する。その後この濃度データは、画像処理部の階調‐濃度特性を補正する濃度補正テーブルや、画像形成部の各プロセス条件へフィードバックされる。
カラーセンサ42は、図1の画像形成装置において転写材搬送路の定着部30より下流に転写材11の画像形成面へ向けて配置されており、転写材11上に形成された定着後の混色パッチの色のRGB出力値を検知する。カラーセンサ42は、前記中間転写体27へ向けて配置された図1の濃度センサ41と非常に似ている。
【0043】
図4にカラーセンサ42の構成の一例を示す。
【0044】
カラーセンサ42は、白色LED53とRGBオンチップフィルタ付き電荷蓄積型センサ54aにより構成される。白色LED53を定着後のパッチが形成された転写材11に対して斜め45度より入射させ、0度方向への乱反射光強度をRGBオンチップフィルタ付き電荷蓄積型センサ54aにより検知する。RGBオンチップフィルタ付き電荷蓄積型センサ54aの受光部は、54bのようにRGBが独立した画素となっている。RGBオンチップフィルタ付き電荷蓄積型センサ54の電荷蓄積型センサは、フォトダイオードでも良い。RGBの3画素のセットが、数セット並んでいるものも有る。また、入射角が0度、反射角が45度の構成でも良い。更には、RGB3色が発光するLEDとフィルタ無しセンサにより構成しても良い。
【0045】
次にこれらのセンサを用いた第1の実施の形態における階調‐濃度特性制御の概念図を説明する。
【0046】
図5は、カラーセンサ42と濃度センサ41を組み合わせた階調‐濃度特性の制御を示すフローチャートである。カラーセンサを用いた制御は、転写材を消費するため、実施回数が濃度センサを用いた制御に比べて制限される。そこで、図5に示すように、最初にステップS101でカラーセンサと濃度センサを用いた階調‐濃度特性制御(以下混色制御と言う)を実施し、その後ステップS102〜104において濃度センサのみを用いた階調‐濃度特性制御(以下単色制御と言う)を規定回数実施し、再び混色制御へ戻る。なお、混色及び単色制御は、通常のプリント動作の合間に実施される。実施のタイミングは、環境変動などを検知しあらかじめ設定された所定のタイミングで自動的に実施するか、又はユーザーが制御実施を所望した場合にユーザーの手動操作により実施される。
【0047】
図6は、前記混色制御と単色制御を組み合わせた階調‐濃度特性の制御の詳細を示すフローチャートである。図6は、図5のフローチャートを詳細に表したものである。なお、図6中に図5のステップS111〜113に相当する部分が示されていないが、これは、本実施の形態とは直接関係ないため図5では省略し、概略を理解しやすくしている。
【0048】
図6において、まず、新規のカートリッジが使用される場合、すなわち画像形成装置が最初に設置された時、またはカートリッジが交換された時にはステップS111でC,M,Y,K各色の階調‐濃度特性のターゲットとしてあらかじめ定められたデフォルトの階調‐濃度曲線を用いる。デフォルトの階調‐濃度曲線は画像形成装置の特性を加味して設定される。
【0049】
なお、本実施の形態では図7のような入力階調度に対して出力濃度が線形になるようなものを用いる。また、図2のステップS133で用いられる濃度補正テーブルは入力値を変更しない所謂スルーのテーブルを用いる。
【0050】
次に、中間転写体上にパッチパターンを形成し、濃度センサによって読み取る(ステップS112)。図8に、中間転写体上に形成するパッチパターンの例を示す。未定着Kトナー単色の階調パッチ64が並んでおり、この後、図示しないC,M,Yトナー単色の階調パッチが引き続き形成される。この時パッチを形成するC,M,Y,Kの階調度はあらかじめ定められたものを用いる。
【0051】
中間転写体上に形成されたパッチパターンは濃度センサによって濃度を検知され、検知された濃度より補間により階調‐濃度曲線が生成される。シアンの濃度検知結果が図9の黒丸で示したようになった場合には、例えば線形補間のような補間により100のような階調‐濃度曲線を生成する。さらにステップS111で設定されたターゲットの濃度曲線300を基準に逆特性の曲線200を算出し、縦軸を出力階調度としたものを入力画像データに対するシアンの濃度補正テーブル201とする。入力画像データに対してこの濃度補正テーブル201でテーブル変換することによりシアンの入力階調度と出力濃度がターゲットの階調‐濃度曲線300の関係になる(ステップS113)。M,Y,Kについても同様の濃度補正テーブル201を生成する。
【0052】
図9において、100はステップS112で検知された濃度値、300はターゲット、201は補正テーブルを示している。
【0053】
なお、ステップS111〜S113は、カートリッジを交換した場合の単色制御を示している。上述のように、濃度補正テーブルをスルー(デフォルト状態)にする必要性は、交換前のカートリッジにおける特性(濃度補正テーブル)が加味されると単色制御の補正精度が落ちてしまうためである。
【0054】
図6の説明に戻ると、ステップS114ではステップS113で生成された各色の濃度補正テーブル201を用いて補正されたCMY混色パッチ及びKの単色パッチパターンを転写材上に形成し、カラーセンサで検知する。以下本ステップの内容を詳細に述べる。
【0055】
CMY混色パッチパターンは8つのパッチを1組として8組、計64個のパッチからなる。各組の8つのパッチは組0を例にとると図10のような(0−0)〜(0−6)までの7つのC,M,Yのデータ及びKの単色データ(0−7)からなっている。(0−0)〜(0−6)までの各パッチのC,M,Yの階調度は図10のように基準の階調度(以下、基準値と記す)C0,M0,Y0及び基準値から特定の色の階調度を±α変化させた値の組み合わせになっている。また(0−7)のパッチはKの単色パッチで、あらかじめ定められた階調度K0で形成される。ここで基準値C0,M0,Y0,K0の値は、C,M,Y,Kの階調‐濃度特性がデフォルトの階調‐濃度曲線300の状態に調整され、通常の画像形成条件下で、C0,M0,Y0の値を混色するとK0と同じ色になるような値であり、色処理及びハーフトーン設計時に設定される。また、各組のKの基準値K0〜K7は低濃度から高濃度まで単調増加するように設定されており、CN,MN,YN(N=1…7)は上記と同様、混色するとKNと同じ色になるような値となっている。
【0056】
転写材上には図11のように(0−0)〜(7−7)の64個のパッチパターンが形成され、転写材上に形成されたパッチは定着装置30通過後、カラーセンサ42で検知し、RGB値を出力する。
【0057】
次に、カラーセンサのRGB出力値をマトリクスによる1次変換によってXYZ表色系に変換する。ここで、カラーセンサのRGBフィルタの特性は理想的なXYZ等色関数の特性とは非線形な関係にあるため、全色域で同じマトリクス(下記変換式で示されるAnおよびBn)を用いて変換すると、誤差が非常に大きくなってしまう。そこで、各組のパッチが各KN(N=0…7)の近傍の色域内にあることを考慮して、各KN(N=0…7)の近傍の色域ごとに最適なマトリクスを用意し、各組のパッチは対応するマトリクスで変換することによって、変換の精度を向上させる。
【0058】
マトリクス(RGBをXYZに変換する変換行列)はパッチの各組に対応して3×3のマトリクスAnと1×3のマトリクスBn(n=0…7)が用意されており、組0に対してはA0,B0、組1に対してはA1,B1、…のように下式を用いてセンサのRGB出力値をXYZ値に変換する。
【0059】
【数1】
Figure 2005039364
【0060】
次にステップS115で上記変換したXYZ値を用いて、C,M,Yのプロセスグレー(CMYの混色で生成されるグレイ色)とKの単色パッチの色が一致するためのC,M,Yの値(階調度)を算出する。
【0061】
パッチの組0を例にステップS115の内容を説明する。図10のCMY混色の各パッチの階調度を改めて順に(0−0)=(C00,M00,Y00)〜(0−6)=(C06,M06,Y06)とする。また、CMY混色の各パッチのXYZ値を(0−0)=(x00,y00,z00),(0−1)=(x01、y01、z01),…(0−6)=(x06、y06、z06)とし、(0−7)のK単色パッチのXYZ値を(xk0、yk0、zk0)とする。
【0062】
ここで、Xについて図12のようにC,M,Yの階調度を説明変量(予測のもととなる変数をいう。独立変数である)、Xを目的変量(予測する変数をいう。従属変数である)として以下の重回帰式の係数x0、x1、x2、x3を求める。ただし、以下の計算式ではイエローの階調度をXYZのYと区別するためにYlと記す。
【0063】
X=x1×C+x2×M+x3×Yl+x0
係数x0、x1、x2、x3は以下のようにして求める。つまり、いわゆる重回帰の式であるが、最小2乗法を用いて予測値の誤差平方和が最小となるような係数を求める演算を行っている。
【0064】
【数2】
Figure 2005039364
ただし、
【0065】
【数3】
Figure 2005039364
とすると、
【0066】
【数4】
Figure 2005039364
でx1、x2、x3が求まる。
さらに、
【0067】
【数5】
Figure 2005039364
でx0が求まる。
【0068】
さらに、Y,Zに対しても同様に下記の重回帰式の係数が求まる。
【0069】
Y=y1×C+y2×M+y3×Yl+y0
Z=z1×C+z2×M+z3×Yl+z0
ここで、KのXYZ値(xk0、yk0、zk0)に対するC,M,Yの値を(C0’,M0’,Yl0’)として上記の式に代入し、これを行列で書くと、
【0070】
【数6】
Figure 2005039364
となる。
【0071】
なお、ここで、X,Y,Zは目的変量を示し、
【0072】
【数7】
Figure 2005039364
によって(C0’,M0’,Yl0’)が求まる。つまり、以上の演算によって図13に示されるテーブル150が得られることになる。テーブル150はCについてのテーブルであるが、M、Yについてもテーブル150と同様なテーブルを生成するのである。
【0073】
また、他の組1〜7に対しても上記と同様の計算をし、基準値(CN,MN,YN,KN)(N=1,2...7)に対して(CN’,MN’,YN’,KN’)を求める。このようにして求めた(CN,MN,YN)と(CN’,MN’,YN’)のシアンの関係が図13の黒丸のようになったとすると、間の値を例えば線形補間して150のような曲線(色補正テーブル)を作る。
【0074】
次にステップS116で濃度補正のターゲットテーブルを補正する。元のターゲット階調‐濃度曲線(図9、300)に対して図13の色補正テーブル150を掛け合わせた階調‐濃度曲線を生成し、これを新しいシアンのターゲットの階調‐濃度曲線とする(図14、400)。具体的には入力階調度に対して色補正テーブル150でテーブル変換した後にターゲット階調‐濃度曲線にしたがって出力濃度に変換する。
【0075】
同様に、M,Yについてもターゲットを変更する。この新しいターゲットで濃度補正を行うことで、(CN,MN,YN)の混色による色はKNの色と一致する。なお、(CN,MN,YN,KN)の値は“人間の目はハイライトのグレーに敏感で、シャドウになるほど鈍感になること”、“通常色処理時にはUCR処理(色分解時にCMYの一部をKで置き換える処理)を行うため、シャドウ領域ではCMYの3色のみによるグレーは現われないこと”に留意して、ハイライトを中心に選ぶことによって本発明をより効果的に実施できる。 つまり、通常の画像処理においてグレイ色は、シャドー、即ち高濃度側ではC,M,Y,Kの4色を使って(特にKを多く入れる)生成するものの、ハイライト、即ち低濃度側ではC,M,Yのみを使って生成するので、このハイライトを中心にパッチを生成して集中的に補正すれば効率がいいということである。
【0076】
ステップS117で、ステップS112の濃度検知結果からステップS116で変更されたC,M,Yのターゲットを用いて改めて濃度補正テーブルを生成する。つまり、ステップS113の結果(濃度補正テーブル)をステップS117の結果(濃度補正テーブル)で置換する処理をする。なお、ステップS116の結果はC,M,Yの濃度補正すべきターゲットテーブル(図14)であり、このターゲット通りになるように入力階調を変更するテーブルが濃度補正テーブルとなるのである。図示してはいないが、図14のテーブル400の逆特性である。
【0077】
そして、処理はステップS118に移行し、通常プリント状態になる。以後プリント時にはこの濃度補正テーブル(ステップS117の結果)を用いて入力画像データの濃度補正を行うことになる。
【0078】
通常プリント状態で規程枚数プリントすると(ステップS120)、単色濃度制御を行う。単色濃度制御ではステップS121でステップS112と同様に中間転写体上にパッチパターンを形成し、濃度センサによって読み取る。中間転写体上に形成されたパッチパターンは濃度センサによって濃度を検知され、検知された濃度より補間により階調‐濃度曲線を生成し、ステップS116で生成されたターゲット400を用いてステップS113と同様の方法で濃度補正テーブルを更新する(ステップS122)。さらに規程回数単色濃度制御が行われたかどうか判断し(ステップS123)、規程回数に達していない場合には再び通常プリントに入る。規程回数行われていれば、再度ステップS114でCMY混色及びKの単色パッチパターンを転写材上に形成し、カラーセンサで検知する。この時パッチパターンの形成は最新の濃度補正テーブルを用いて行う。その後は上述したステップSで処理が行われる。ただし、新しいターゲット作成時には前回のステップS116で生成されたターゲット400に対して新しい色補正テーブル150を掛け合わせる。
【0079】
また、通常プリント状態でいずれかの色のカートリッジが交換された場合(ステップS119)には画像形成条件が大きく変わるため、再びステップS111の処理へと戻る。
以上が本実施例におけるカラーセンサを用いた単色・混色制御である。
【0080】
次に、本実施の形態におけるカラーセンサの較正方法について述べる。
まず、工場出荷時にMFPの画像読取装置のRGBからXYZへ変換するためのマトリクスを以下のようにして求めておく。図20のように、前述したK0〜K7に対応した低濃度から高濃度まで単調に増加するようなプロセスグレイ階調度の組をGr0〜Gr7として、その組分けした各色域内にある無彩色近傍で各々7色のグレイパッチを作る。各組の7つのグレイパッチは組Gr0を例にとると、図中のG00〜G06のようにL*a*b*空間上で均等に散らばせてある。このGr00〜Gr76までの全56のグレイパッチは図21のように紙上に並べられたチャートとなっており、較正された分光測色計等で測定することによって全てのパッチのXYZ値が解かっているとする。そして、この全56のグレイパッチのXYZ値を画像処理部にあるメモリに格納しておく。次に、このチャートを画像処理部に接続されている画像読取装置でスキャンする。スキャン画像は画像処理部へと転送され、XYZ変換マトリクスを求めるのに必要な全グレイパッチの56個のRGB値を画像処理部によって算出、メモリ内に格納される。画像処理部内ではメモリ内に格納された測色データXYZ値と画像読取装置のRGB値を用いてXYZ変換マトリクスを求める。
【0081】
以下に、XYZ変換マトリクスの求め方について説明する。説明にはグレイパッチの組Gr0を例に用いている。
【0082】
Gr00〜Gr06の各パッチの画像読取装置によって得られたRGB値を順に(R00,G00,B00)〜(R06,G06,B06)とする。また、上記各パッチの分光測色計による測定結果を順に(x00,y00,z00)〜(x06,y06,z06)とする。
【0083】
ここで、図18のように画像読取装置のRGB値を説明変量、分光測色計の測定値のXを目的変量として以下の重回帰式の係数x0、x1、x2、x3を求める。
【0084】
X=x1×R+x2×G+x3×B+x0
係数x0、x1、x2、x3は以下のようにして求める。
【0085】
【数8】
Figure 2005039364
ただし、
【0086】
【数9】
Figure 2005039364
とすると、
【0087】
【数10】
Figure 2005039364
でx1、x2、x3が求まる。
さらに、
【0088】
【数11】
Figure 2005039364
でx0が求まる。
【0089】
さらに、Y,Zに対しても同様に下記の重回帰式の係数が求まる。
【0090】
Y=y1×R+y2×G+y3×B+y0
Z=z1×R+z2×G+z3×B+z0
以上の計算により、求まった係数を用いて、
【0091】
【数12】
Figure 2005039364
とすると、
【0092】
【数13】
Figure 2005039364
となり、前述の画像読取装置のRGBからXYZ表色系への変換行列が求まる。
【0093】
Xを求めるためには、Gr0の場合、結局画像読取装置でのR00〜R06、G00〜G06、B00〜B06と測色計でのx00〜x06、y00〜y06、z00〜z06が必要となる。
【0094】
グレイパッチの組Gr1〜Gr7に対しても同様の計算を行い、新しいP1〜P7,Q1〜Q7を求める。
【0095】
次に、以下のセンサ較正条件が真になった時に、画像形成装置はオペレーションパネル(図15)などにより、ユーザにセンサの較正が必要なことを知らせる。本実施例では画像形成装置のオペレーションパネル上に表示しているが、ホストPC上などで同様の表示を行ってもよい。
【0096】
センサ較正条件は以下の4つの条件のいずれかを満たした場合に真となる。
1)画像形成装置が工場出荷後、最初に電源を投入された時
2)不図示の温度センサ及び湿度センサによって検知される環境の変化が、前回のセンサ補正時に対して所定のレベル以上に達した時
3)前回のセンサ補正時から所定の期間が経過した時
4)前回のセンサ補正時から所定の枚数プリントした時
【0097】
図16は上記センサ較正条件が真となった場合のカラーセンサの較正方法についてのフローチャートである。ここでの処理は、簡単に言えば、次のように記述できる。つまり、プリンタで図21のパッチを出力し、プリンタのカラーセンサ42によってRGB値を取得する。これによりカラーセンサのRGB−XYZ変換テーブルが求まる。次に、図21のパッチのプリント出力を画像読取装置10で読み取らせてRGB値を取得し、さらに画像出力装置10におけるRGB−XYZ変換テーブルを取得する。最後にカラーセンサ42のRGB−XYZ変換テーブルを画像読取装置10のRGB−XYZ変換に合わせ込むのである。このように画像読取装置10のRGB−XYZ変換テーブルにカラーセンサ42のそれを合わせるのは、画像読取装置10のRGB値はカラーセンサ42によって取得されたRGB値に比べて常に安定した値を示すからである。
【0098】
以上がカラーセンサ較正処理の概要であるが、図16のフローチャートを用いて、この処理をより詳細に説明する。
【0099】
まず、ユーザがオペレーションパネル上でセンサ較正実行を選択すると(ステップS211)、図示しないROMに格納されたテストチャートの画像がロードされ、転写材上に形成される(ステップS212)。ここで、テストチャート画像はカラーセンサによる混色制御と同じく、組0〜7の8組のパッチから構成されている。各パッチの組は組0を例に説明すると、図17のような(0−0)〜(0−6)の7つのパッチから構成される。図のように7つのパッチはCMYの基準値及び基準値からCMY各色の階調度を±β変化させたパッチとなっている。
【0100】
転写材上に形成されたテストチャートは定着装置30通過後、カラーセンサ42で検知され、各パッチのRGB値が読み取られる。この各パッチのRGB値は、EEPROMに格納される(ステップS213)。
【0101】
次に、ユーザは転写紙上に形成されたテストチャートを、MFPの画像読取装置でスキャンする(ステップS214)。画像読取装置は画像形成装置の画像処理部に接続されており、テストチャートのスキャン画像を画像処理部へと転送され、パッチのRGB値を図示しない画像処理部によって算出(ステップS215)し、工場出荷時に求められたXYZ変換マトリクスを使ってRGBからXYZ変換され(ステップS216)て、メモリ内に格納される。画像処理部内ではステップS213で保存されたカラーセンサのRGB出力値とステップS216でメモリ内に格納された画像読取装置のXYZ値を用いてカラーセンサのXYZ変換マトリクスを求める(ステップS217)。
【0102】
カラーセンサの新しいXYZ変換マトリクスの求め方は、前述した工場出荷時における画像読取装置のXYZ変換マトリクスの計算方法と同じ方法で、図18のようにR,G,Bのセンサ出力値を説明変量、画像読取装置の各X,Y,Z値を目的変量として求めることができる。
【0103】
ステップS218で、求めた新しいマトリクスで古いマトリクスを置き換える。以後、カラーセンサによる補正は新しいマトリクスを用いて行われる。
【0104】
以上がカラーセンサの較正処理の説明である。
【0105】
このように、本実施の形態におけるMFPの画像読取装置を用いてカラーセンサの較正を行えば、ユーザの負担が軽く、容易にカラーセンサの較正を行うことができる。
【0106】
なお、転写材上に形成するパッチの数は本実施例で用いた数には限らない。
また、本実施例ではα及びβの値はC,M,Yで同一のものを用いた。しかし、色毎に異なる値を用いてもよい。
【0107】
また、本実施の形態ではカラーセンサはRGB出力とした。しかし、フィルタの形状はRGBとは限らない。
【0108】
本実施の形態ではマトリクスをRGBからXYZへの変換マトリクスとした。しかし、変換元のデータとしては、RGBに加えてフィルタを通さないセンサ出力値も含めた4つのデータとしてもよく、変換後のデータはXYZ以外の均等な色空間上のデータであってもよい。
【0109】
本実施の形態ではC,M,Yの混色パッチの色をKのパッチの色に合わせた。しかし、カラーセンサで検知されたC,M,Yの混色パッチのXYZ値をL*a*b*値等に変換し、例えばa=0,b=0の無彩色軸をターゲットにしてC,M,Yの混色が無彩色となる最適な階調度を算出し、単色制御にフィードバックしてもよい。
【0110】
本実施の形態ではユーザが所定のタイミングでセンサの補正を行っている。しかし、画像形成装置の工場出荷時などに同様の補正を行ってもよい。
【0111】
本実施の実施の形態では、テストチャートは画像形成装置内のROMに格納される。しかし、テストチャートはホストコンピュータなどの外部の装置から画像形成装置へ入力するようにしてもよい。
【0112】
本実施の形態では、工場出荷時に用いるグレイパッチはL*a*b*空間上を均等に散らばせた。しかし、グレイパッチの散らばせ方はL*a*b*空間に限らず、均等でなくてもよい。
【0113】
本実施の形態では、グレイパッチを較正された分光測色計等で測定した値を画像処理部にあるメモリに格納して、画像処理部で画像読取装置のXYZ変換マトリクスを求め、求めた変換マトリクスを図示しない画像処理部内のメモリに格納している。しかし、これら画像処理部での計算やメモリを、画像読取装置内にあるCPUやメモリで行ってもよい。
【0114】
< 第2の実施の形態>
第1の実施の形態では、カラーセンサの較正方法は、センサ較正条件が真とになった時にユーザにセンサの較正が必要なことを知らせ、ユーザがカラーセンサの較正実行を選択した場合、必ずカラーセンサの較正が行われる。
しかし、第2の実施の形態では、カラーセンサの較正方法は、センサ較正条件が真となった時に、カラーセンサによる混色制御が成功したか失敗したかを判断することによってカラーセンサの較正の必要性をチェックしてから、カラーセンサの較正を行う。
【0115】
これは、カラーセンサの較正条件の判断するタイミングを図22に示したように混色制御を行った後に行うもので、第1の実施例で説明したと同様のセンサ較正条件の真偽の判断をして(ステップS130)、真の時に、カラーセンサのチェックが必要なことをユーザに知らせ(ステップS131)てカラーセンサの較正モードに入る。
【0116】
図23は本実施例におけるカラーセンサの較正方法についてのフローチャートである。
【0117】
ユーザがオペレーションパネル上等でセンサチェック実行を選択すると(ステップS232)、図示しないROMに格納されたセンサチェック用チャートの画像がロードされ、転写材上に形成される(ステップS233)。ここで、センサチェック用チャートはカラーセンサの混色制御が成功したか失敗したかを判断するためのチャートで、混色制御と同じ組0〜7の8組のからなっており、各組は混色制御によって同じ色度となるように色補正されたCMY混色パッチとK単色パッチの2つで全16パッチから構成される。そして、カラーセンサでこのセンサチェック用チャートの各パッチの色度を検知(ステップS234)して、各組のCMY混色パッチとK単色パッチ間の色差が許容範囲内かどうかを判断する(ステップS235)。例えばΔE(2色間の色差と呼ばれる定量的な値)で2以下かどうかなどと。もし、許容範囲内であった場合は、カラーセンサが正常に作動しておりカラーセンサを較正する必要がないのでカラーセンサの調整を終了する(ステップS236)。
【0118】
許容範囲外の組が1つでもあった場合は、カラーセンサの較正が必要である旨をユーザに知らせ(ステップS237)、その後のカラーセンサ較正方法は第1の実施の形態で説明した方法(図16)と同じである。
【0119】
よって、本実施の形態におけるカラーセンサの較正方法でカラーセンサのチェックを行ってから較正すれば、カラーセンサの較正の必要の有無を判断でき、必要の無い場合は無駄な手順を減らすことができるのでユーザの負担をより軽くすることができる。
【0120】
なお、転写材上に形成するチャートのパッチの数は本実施例で用いた数には限らない。
【0121】
さらに、本実施の形態ではセンサチェック用チャートは画像形成装置内のROMに格納されているとした。しかし、センサチェック用チャートはホストコンピュータなどの外部の装置から画像形成装置へ入力するようにしてもよい。
【0122】
また、本実施の形態では許容範囲外の組が1つ以上あった場合カラーセンサの較正を行うとした。しかし、本実施の形態で用いた数に限らない。
【0123】
さらに、本実施の形態ではカラーセンサのチェックの必要性やカラーセンサの較正が必要なことをユーザに知らせるとした。しかし、ユーザに知らせずテストチャートを排出するまでの動作を行ってもよい。
【0124】
<他の実施の形態>
本発明の目的は前述したように、実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体をシステム或は装置に提供し、そのシステム或は装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出し実行することによっても達成される。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フロッピィ(登録商標)ディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM,CD−R、磁気テープ、不揮発性のメモリカード、ROMなどを用いることができる。
【0125】
また、コンピュータが読み出したプログラムコードを実行することにより、前述した実施の形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれている。
【0126】
さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書きこまれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含む。
【0127】
なお、上述の第1および第2の実施の形態では、予め工場出荷時にMFPの画像読取装置のRGBからXYZへの変換マトリクス(テーブル)を求めておいて、それに基づいてカラー較正をするようにしたが、ユーザがプリンタとスキャナ等の外部画像読取装置を接続した時点で、その外部画像読取装置のRGBからXYZへの変換マトリクスを取得するようにし、それに基づいてプリンタのカラーセンサの較正を行うようにしても良い。つまり、本実施の形態の機能がプログラムとして格納された記録媒体(CD−ROM等)から、そのプログラムをスキャナ接続時にホストPC等にインストールしておけば簡単に本機能を実現することができるようになるので、ユーザにとって便利である。これなら特性のよく判らない外部装置を用いても効率的にカラー較正を実現できる。
【0128】
また、RGBからXYZへ変換する構成のみならず、sRGB、L*a*b等、種々の標準色空間へ変換するように構成しても良い。
【0129】
【発明の効果】
以上説明したように、本発明によれば、カラーセンサを構成する発光部及び受光部の経時変化や周囲温度変化による出力の変動や、センサ表面の汚れによるセンサ出力の低下の影響を抑えるためのカラーセンサの較正を容易に行うことができる。また、本発明によれば、カラーセンサの較正の必要の有無を判断し、必要の無い場合は無駄な手順を減らすことができるので、ユーザの負担を軽くすることができる。そして、本発明によって較正されたカラーセンサを用いると、経時変化に対する色変動を抑えた画像形成装置を提供できる。
【図面の簡単な説明】
【図1】本発明による実施の形態におけるカラー画像形成装置の構成を示す図である。
【図2】本発明による実施の形態におけるカラー画像形成装置の画像処理部の処理の流れを示す図である。
【図3】本発明による実施の形態における濃度センサの構成の一例を示す図である。
【図4】本発明による実施の形態におけるカラーセンサの構成の一例を示す図である。
【図5】本発明による実施の形態におけるカラーセンサと濃度センサを組み合わせた階調‐濃度特性の制御を示すフローチャートである。
【図6】本発明の第1の実施の形態におけるカラーセンサと濃度センサを組み合わせた階調‐濃度特性の制御の詳細を示すフローチャートである。
【図7】本発明の第1の実施の形態におけるデフォルトの階調‐濃度曲線を示す図である。
【図8】本発明の第1の実施の形態における中間転写体上に形成するパッチパターンを示す図である。
【図9】本発明の第1の実施の形態における濃度センサによる階調‐濃度特性の制御を示す図である。
【図10】本発明の第1の実施の形態における転写材上に形成するパッチパターンの内容を示す図である。
【図11】本発明の第1の実施の形態における転写材上に形成するパッチパターンを示す図である。
【図12】本発明の第1の実施の形態における転写材上に形成するパッチパターンのC,M,Y座標を示す図である。
【図13】本発明の第1の実施の形態におけるカラーセンサによる階調‐濃度特性の制御を示す図である。
【図14】本発明の第1の実施の形態におけるターゲットの階調‐濃度特性を示す図である。
【図15】本発明の第1の実施の形態におけるオペレーションパネルを示す図である。
【図16】本発明の実施の形態におけるカラーセンサの較正制御を示すフローチャートである。
【図17】本発明の実施の形態におけるカラーセンサの較正のためのテストチャートを示す図である。
【図18】本発明の第1の実施の形態における重回帰分析の説明変量、及び目的変量を示す図である。
【図19】本発明の実施の形態における画像読取装置を示す図である。
【図20】本発明の実施の形態における画像読取装置用のチャートの色域を示す図である。
【図21】本発明の実施の形態における画像読取装置用のを示す図である。
【図22】本発明の第2の実施の形態におけるカラーセンサと濃度センサを組み合わせた階調‐濃度特性の制御の詳細を示すフローチャートである。
【図23】本発明の第2の実施の形態におけるカラーセンサのチェックを示すフローチャートである。

Claims (14)

  1. 画像情報に基づいて記録材上にカラー画像を形成するカラー画像形成装置であって、
    前記カラー画像形成装置によって生成された所定のテストチャートの色度を検知し、第1の色度検知結果を取得する色度検知手段と、
    画像読取装置によって検知された前記所定のテストチャートの色度である第2の色度検知結果を取得するデータ取得手段と、
    前記第1の色度検知結果と第2の色度検知結果とに基づいて、前記色度検知手段の検知誤差を補正する補正手段と、
    を備えることを特徴とするカラー画像形成装置。
  2. 前記色度検知手段は、色度データを変換する色データ変換テーブルを有し、前記補正手段は、前記色データ変換テーブルを補正することにより前記検知誤差を補正すること、を特徴とする請求項1に記載のカラー画像形成装置。
  3. さらに、所定の条件を満足した場合に、前記色度検知手段の誤差補正の必要性を告知する告知手段とを備えることを特徴とする請求項1又は2に記載のカラー画像形成装置。
  4. 前記所定の条件には、前回に前記色度検知手段の誤差補正を行ったときから所定枚数以上プリントしたか否かが含まれることを特徴とする請求項3に記載のカラー画像形成装置。
  5. 前記色データ変換テーブルは、RGBデータをXYZデータに変換するテーブルであり、前記補正手段は、前記色度検出手段のRGB出力と前記画像読取装置のXYZ値を用いて前記変換テーブルを変更することを特徴とする請求項2に記載のカラー画像形成装置。
  6. 前記画像読取装置におけるXYZ変換テーブルは、所定画像から取得したRGB値を説明変量、測定されたXYZ値を目的変量として、重回帰演算を実行することにより求められたものであることを特徴とする請求項5に記載のカラー画像形成装置。
  7. 画像情報に基づいて記録材上にカラー画像を形成するカラー画像形成装置のカラー制御方法であって、
    カラーセンサを用いて前記カラー画像形成装置によって生成された所定のテストチャートの色度を検知し、第1の色度検知結果を取得する色度検知工程と、
    画像読取装置によって検知された前記所定のテストチャートの色度である第2の色度検知結果を取得するデータ取得工程と、
    前記第1の色度検知結果と第2の色度検知結果とに基づいて、前記カラーセンサの検知誤差を補正する補正工程と、
    を備えることを特徴とするカラー制御方法。
  8. 前記カラーセンサは、色度データを変換する色データ変換テーブルを有し、前記補正工程では、前記色データ変換テーブルを補正することにより前記検知誤差を補正すること、を特徴とする請求項7に記載のカラー制御方法。
  9. さらに、所定の条件を満足した場合に、前記カラーセンサの誤差補正の必要性を告知する告知工程とを備えることを特徴とする請求項7又は8に記載のカラー制御方法。
  10. 前記所定の条件には、前回に前記カラーセンサの誤差補正を行ったときから所定枚数以上プリントしたか否かが含まれることを特徴とする請求項9に記載のカラー制御方法。
  11. 前記色データ変換テーブルは、RGBデータをXYZデータに変換するテーブルであり、前記補正工程では、前記カラーセンサのRGB出力と前記画像読取装置のXYZ値を用いて前記変換テーブルを変更することを特徴とする請求項7に記載のカラー制御方法。
  12. 前記画像読取装置におけるXYZ変換テーブルは、所定画像から取得したRGB値を説明変量、測定されたXYZ値を目的変量として重回帰演算を実行することにより得られたものであることを特徴とする請求項11に記載のカラー制御方法。
  13. 請求項7乃至12のいずれか1項に記載のカラー制御方法を実行することを特徴とするプログラム。
  14. 請求項13に記載のプログラムを記憶したことを特徴とするコンピュータ読み取り可能な記憶媒体。
JP2003197817A 2003-07-16 2003-07-16 カラー画像形成装置及びカラー制御方法 Expired - Fee Related JP4236255B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003197817A JP4236255B2 (ja) 2003-07-16 2003-07-16 カラー画像形成装置及びカラー制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003197817A JP4236255B2 (ja) 2003-07-16 2003-07-16 カラー画像形成装置及びカラー制御方法

Publications (2)

Publication Number Publication Date
JP2005039364A true JP2005039364A (ja) 2005-02-10
JP4236255B2 JP4236255B2 (ja) 2009-03-11

Family

ID=34207830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003197817A Expired - Fee Related JP4236255B2 (ja) 2003-07-16 2003-07-16 カラー画像形成装置及びカラー制御方法

Country Status (1)

Country Link
JP (1) JP4236255B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343599A (ja) * 2005-06-09 2006-12-21 Canon Inc カラー画像形成装置およびその制御方法
JP2009004991A (ja) * 2007-06-20 2009-01-08 Canon Inc 色変換装置及び色変換方法
JP2011103535A (ja) * 2009-11-10 2011-05-26 Konica Minolta Business Technologies Inc 画像処理支援方法、画像処理支援システム及び画像形成装置
JP2011107374A (ja) * 2009-11-17 2011-06-02 Canon Inc 画像形成装置
KR101204452B1 (ko) 2006-01-19 2012-11-26 삼성전자주식회사 출력 영상 보정 장치 및 방법
US9332159B2 (en) 2014-05-27 2016-05-03 Konica Minolta, Inc. Image reading apparatus and image forming apparatus
US10044910B2 (en) 2015-08-27 2018-08-07 Kyocera Document Solutions Inc. Image reading apparatus and image reading method that reduce error in color reproduction due to variation in light source unit, and recording medium therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343599A (ja) * 2005-06-09 2006-12-21 Canon Inc カラー画像形成装置およびその制御方法
KR101204452B1 (ko) 2006-01-19 2012-11-26 삼성전자주식회사 출력 영상 보정 장치 및 방법
JP2009004991A (ja) * 2007-06-20 2009-01-08 Canon Inc 色変換装置及び色変換方法
US8184349B2 (en) 2007-06-20 2012-05-22 Canon Kabushiki Kaisha Color management system
JP2011103535A (ja) * 2009-11-10 2011-05-26 Konica Minolta Business Technologies Inc 画像処理支援方法、画像処理支援システム及び画像形成装置
JP2011107374A (ja) * 2009-11-17 2011-06-02 Canon Inc 画像形成装置
US9332159B2 (en) 2014-05-27 2016-05-03 Konica Minolta, Inc. Image reading apparatus and image forming apparatus
US10044910B2 (en) 2015-08-27 2018-08-07 Kyocera Document Solutions Inc. Image reading apparatus and image reading method that reduce error in color reproduction due to variation in light source unit, and recording medium therefor

Also Published As

Publication number Publication date
JP4236255B2 (ja) 2009-03-11

Similar Documents

Publication Publication Date Title
KR100544557B1 (ko) 화상 형성 장치 및 그 제어 방법
US6898381B2 (en) Color image forming apparatus and method for controlling the same
JP4447887B2 (ja) カラー画像形成装置及び色安定化制御方法
KR100585907B1 (ko) 컬러 화상 형성 장치 및 그 제어 방법
EP1298500A2 (en) Color image forming apparatus and method for controlling color image forming apparatus
JP4564705B2 (ja) カラー画像形成装置及びその制御方法、制御プログラム及び記憶媒体
CN102968011B (zh) 图像形成装置、图像形成方法和文档管理系统
JP2007274438A (ja) 画像形成装置及びその制御方法
JP2006229351A (ja) 画像形成装置及び画像処理方法
JP4236255B2 (ja) カラー画像形成装置及びカラー制御方法
JP4136351B2 (ja) カラー画像形成装置、カラー画像形成装置における処理方法
JP4860854B2 (ja) カラー画像形成装置システム
JP4478721B2 (ja) カラー画像形成装置
JP4536970B2 (ja) カラー画像形成装置及びカラー画像の制御方法
JP4630938B2 (ja) カラー画像形成装置、カラー画像の制御方法
JP2004069833A (ja) カラー画像形成装置
JP4311734B2 (ja) 色補正装置及びカラー画像形成装置の色補正方法
JP2005027276A (ja) 画像形成方法及びその装置
JP2004117745A (ja) カラー画像形成装置及びその方法
JP2005352051A (ja) 画像形成装置
JP2004198947A (ja) カラー画像形成装置
JP2004243560A (ja) カラー画像形成装置およびカラー画像形成装置の制御方法およびコンピュータが読み取り可能なプログラムを格納した記憶媒体およびプログラム
JP4502373B2 (ja) 画像形成装置及びその制御方法
JP2005062273A (ja) カラー画像形成装置システム
JP2004015093A (ja) カラー画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

R150 Certificate of patent or registration of utility model

Ref document number: 4236255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees