JP2005026033A - 燃料電池式発電システムとその運転停止方法 - Google Patents

燃料電池式発電システムとその運転停止方法 Download PDF

Info

Publication number
JP2005026033A
JP2005026033A JP2003189280A JP2003189280A JP2005026033A JP 2005026033 A JP2005026033 A JP 2005026033A JP 2003189280 A JP2003189280 A JP 2003189280A JP 2003189280 A JP2003189280 A JP 2003189280A JP 2005026033 A JP2005026033 A JP 2005026033A
Authority
JP
Japan
Prior art keywords
gas
combustor
reformer
fuel cell
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003189280A
Other languages
English (en)
Other versions
JP3947498B2 (ja
Inventor
Yoshihiko Takasu
芳彦 高須
Akio Tanaka
章夫 田中
Naomasa Sugimoto
尚優 杉本
Tsutomu Sofue
務 祖父江
Naoki Muro
室  直樹
Toru Nakamura
透 中村
Susumu Kobayashi
晋 小林
Kouichi Kusumura
浩一 楠村
Manabu Mizobuchi
学 溝渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Rinnai Corp
Original Assignee
Rinnai Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp, Matsushita Electric Works Ltd filed Critical Rinnai Corp
Priority to JP2003189280A priority Critical patent/JP3947498B2/ja
Publication of JP2005026033A publication Critical patent/JP2005026033A/ja
Application granted granted Critical
Publication of JP3947498B2 publication Critical patent/JP3947498B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】燃料電池式発電システムの停止時に、内部に残った可燃性ガスを安全に処理する手段と方法を提供する。
【課題を解決するための手段】燃料電池式発電システムの停止時に、コントローラが原料ガスと燃料ガスの供給を停止し、改質器に水を適量供給すると共に、燃焼器に適量の燃焼用空気を供給する。改質器に適量で供給された水が水蒸気となって、燃料電池式発電システムの内部に残った可燃性ガスを燃焼器に徐々に押し出す。可燃性ガスは、送風ファンから適量で供給される燃焼用空気を用いて安定して燃焼し、処理される。
【選択図】図3

Description

【0001】
【発明の属する技術分野】本発明は、原料ガスと水から水素ガスを生成し、これを燃料として発電を行う燃料電池式発電システムに関する。特に、発電を停止した燃料電池式発電システムを安全で確実に停止し、燃料電池式発電システムを構成する装置の劣化や損傷を未然に防ぐ技術に関する。
【0002】
【従来の技術】燃料電池は、高濃度水素ガスと空気中の酸素を化学反応させて電気を取り出す。燃料電池が使用する高濃度水素ガスを生成するための装置として、改質器が知られている。改質器には改質触媒が収容されており、炭化水素系ガスから成る原料ガスと水を供給すると、改質触媒の作用によって改質反応が促進されて水素ガスが得られる。改質触媒の効果を得るためには、改質触媒の種類によって多少の変動はあるものの、改質触媒の温度を約600℃から800℃前後の高温に保つ必要がある。原料ガスと水を改質して水素ガスを生成する反応は吸熱反応であるので、改質触媒温度を高温に保つためには、燃焼器で改質器を加熱しつづける必要がある。燃焼器は、燃料ガスの他、燃料電池で消費しきれなかった水素ガスを含むオフガス等を燃焼し、燃焼熱を発生させて改質器を高温にする。
原料ガスと水を反応させて改質する際には、副生成物として一酸化炭素が発生する。一酸化炭素は燃料電池を劣化させるので、水素ガスの中からできる限り取り除かなければならない。改質器には改質触媒の他に、改質の際に出る一酸化炭素を二酸化炭素に変えるシフト触媒と、それでも残った一酸化炭素を二酸化炭素に変える選択酸化触媒が収容されており、燃料電池に供給される前の水素ガスから一酸化炭素を取り除いている。
【0003】
燃料電池による発電を停止する際には、改質器と燃焼器の運転も停止させる。改質器の改質触媒とシフト触媒は、一定温度以上に加熱された状態で大気に触れると、酸化して劣化する。又、シフト触媒が吸湿すると、次回の発電開始時に水分が気化して膨張して改質器を損傷する恐れがある。このために、改質器に収容された触媒の酸化と吸湿を防止しながら運転を停止する技術が必要となる。
従来は、窒素ガス等の不活性ガスを用いて、改質器のパージを行ってきた。この技術では、改質器の運転停止直後に窒素ガスを改質器に供給し、改質器内で生成された水素ガスを改質器内から排除しながら冷却する。触媒は大気にさらされないので酸化が防止される。ボンベ等で貯蔵管理することが必要な窒素ガスの代わりに、水蒸気と原料ガスを用いてパージする方法も知られている。特許文献1には、改質器の運転停止時に水蒸気パージを行い、改質器に収容された触媒が酸化反応を起こさない温度にまで冷却されたときに、原料ガスを改質器に導入して改質触媒等を原料ガスの雰囲気で保存する技術が開示されている。
【0004】
【特許文献1】
特開平2002−151124号公報
【0005】
【発明が解決しようとする課題】
燃料電池式発電システムの運転停止時に、改質器と燃料電池とこれらを接続する配管に対して水蒸気パージを行うと、これらの内部に存在していたオフガスや、発電に使用される前の高濃度水素ガスや、改質前の原料ガスが押し出され、燃焼器に到達する。特許文献1の技術では、水蒸気パージした後に供給する原料ガスが燃焼器に到達したときに、再び燃焼器に点火して原料ガスを一時的に燃焼させて処理する技術を開示している。しかしながら水蒸気パージの開始時に燃焼器に到達するオフガスや、高濃度水素ガスや、改質前の原料ガスの処理は考慮していない。
水蒸気パージの開始時の燃焼器は、停止直後で非常に高温である。オフガスや高濃度水素ガスや改質前の原料ガス等の可燃性ガスが高温の燃焼器に供給されると、再着火して爆着する可能性がある。
【0006】
本発明は、上記の問題点に鑑みてなされたものであり、燃料電池式発電システムの運転停止時に行う水蒸気パージの開始時に、高温の燃焼器に押し出される水素ガス、オフガス、及び/又は未反応の原料ガス等を安全に処理することが可能な燃料電池式発電システムとその運転停止方法を提供するものである。
【0007】
【課題を解決するための手段と作用】請求項1の発明は、運転停止時に燃料電池式発電システムに残っている可燃性ガスに対する対策が施された燃料電池式発電システムに関する。この燃料電池式発電システムは、原料ガスと水から高濃度水素ガスを生成する改質器と、改質器に原料ガスを供給する原料ガス供給装置と、改質器に水を供給する水供給装置と、改質器を加熱する燃焼器と、燃焼器に燃料ガスを供給する燃料ガス供給装置と、燃焼器に燃焼用空気を供給する送風ファンと、改質器で生成された高濃度水素ガスに酸素を反応させて発電する燃料電池と、燃料電池を通過した可燃性ガスを燃焼器に供給するオフガス経路と、改質器で生成された不安定な可燃性ガスを燃料電池をバイパスして燃焼器に供給するバイパス経路を備えている。さらに、燃料電池が発電を停止した後に、原料ガス供給装置と燃料ガス供給装置の運転を停止し、オフガス経路またはバイパス経路から燃焼器に供給される可燃性ガスが失火するまで水供給装置と送風ファンの運転を継続するコントローラを備えている。
【0008】
発電停止後にも水供給装置が運転を継続すると、供給された水は改質器内で蒸発して水蒸気となり、改質器と燃料電池とこれらを接続する経路の内部をパージする。パージすることによって、原料ガスや水素ガスやオフガス等の可燃性ガスが、オフガス経路またはバイパス経路を通過して燃焼器に押出される。このときコントローラは、送風ファンの運転を継続し、燃焼用空気を燃焼器に供給し続ける。燃焼器は、燃料ガスの供給が停止されているにもかかわらず、燃焼用空気が供給され続けることによって、改質器と燃料電池とこれらを接続する経路から押し出される可燃性ガスを燃焼し続ける。可燃性ガスは燃焼によって消費されるので、爆着することを防止できる。
コントローラは、オフガス経路またはバイパス経路から燃焼器に供給される可燃性ガスがなくなって失火するまで水供給装置と送風ファンの運転を継続し、その後に水供給装置と送風ファンの運転を停止する。失火後にオフガス経路またはバイパス経路から燃焼器に供給される可燃性ガスの量はゼロかあってもごく僅かであり、燃焼器で再着火する恐れはない。このように可燃性ガスを燃焼して処理することにより、本発明の燃料電池式発電システムは、安全で確実に停止する。
【0009】
燃料電池の発電停止後の水供給装置の水供給量が、改質器の過熱を防止するのに必要な量以上であり、オフガス経路またはバイパス経路から燃焼器に供給される可燃性ガスを送風ファンによってエアリッチ状態で燃焼させられる量以下に設定されていることが好ましい。
【0010】
燃料電池の発電停止後に改質器に供給する水供給量が少ないと、発電停止直後で高温の改質器は、更に昇温して損傷する恐れがある。それまでにおきていた吸熱反応が生じなくなることから、昇温しやすい。
一方、水供給装置の水供給量が多いと、オフガス経路またはバイパス経路から燃焼器に可燃性ガスが一度に多く供給され、一時的に激しい燃焼が起こって改質器が過熱する恐れがある。また、可燃性ガスの供給量に対する送風ファンによる燃焼用の空気の供給が追いつかなくなり、ガスリッチ状態となって不完全燃焼を起こす恐れがある。
コントローラが水供給装置の供給する水の量を一定量以上に制御することにより、改質器の過熱による損傷を防ぐことができる。同時に、水蒸気パージによって燃焼器に押出される可燃性ガスの量は、水供給装置から供給される水蒸気の量とほぼ等量となることから、コントローラが水供給装置の水供給量を制限することにより、燃焼器に供給される可燃性ガスの量を送風ファンが供給する空気によってエアリッチ状態で燃焼できる量以下に制御することができる。
可燃性ガスは上記の範囲内の量で燃焼器に供給されて、良好な燃焼状態で安定して燃焼して処理される。
【0011】
コントローラが、オフガス経路またはバイパス経路から燃焼器に供給される可燃性ガスがエアリッチとなって失火し、かつ、燃焼器の温度が可燃性ガスを自然発火させない温度に低下するまで送風ファンの運転を継続することが好ましい。
【0012】
発電が停止して水蒸気によるパージを開始した直後に燃焼器に押出される可燃性ガスは、非常に高濃度である。その後、時間の経過に伴って燃焼器に供給される可燃性ガスの量が減って水蒸気の量が増え、可燃性ガスの濃度が下がる。可燃性ガスの供給量に対する送風ファンによる燃焼用空気の供給量の割合が多くなった場合にはエアリッチな燃焼状態となり、更に可燃性ガスの供給量が減ると失火する。エアリッチで失火したとき、可燃性ガスの大部分は燃焼によって既に処理されている。コントローラが送風ファンの運転を制御して、可燃性ガスがエアリッチとなって失火し、かつ、燃焼器の温度が可燃性ガスを自然発火させない温度に低下するまで送風ファンの運転を継続することにより、失火後に燃焼器に微量の可燃性ガスが供給された場合でも、燃焼器で再着火する恐れはない。
本発明のコントローラは、燃焼器の温度と失火しているか否かを実際に確認して、送風ファンの運転を停止することができる。また、水供給装置が供給した水の量の累積値量と燃焼器に供給される可燃性ガスの濃度との関係を予め明らかにしておき、水供給装置が供給した水の量から、可燃性ガスがエアリッチとなって失火するタイミングを知って、送風ファンの運転を停止してもよい。燃焼器が失火してからの時間と燃焼器の温度の関係を予め明らかにしておき、失火からの経過時間から、燃焼器が可燃性ガスを自然発火させない温度まで冷却しているか否かを知って、送風ファンの運転を停止するタイミングを決めてもよい。いずれの場合でも、コントローラの制御によって送風ファンを停止した後に燃焼器で再着火する恐れはなく、本発明の燃料電池式発電システムは、安全に停止する。
【0013】
本発明は、燃料電池式発電システムの運転停止方法にも具現化される。請求項4の発明は、改質器と、原料ガス供給装置と、水供給装置と、燃焼器と、燃料ガス供給装置と、送風ファンと、燃料電池と、オフガス経路と、バイパス経路を備えた燃料電池式発電システムに適用される運転停止方法であって、燃料電池による発電を停止する工程と、前記原料ガス供給装置による原料ガスの供給を停止する工程と、前記燃料ガス供給装置による燃料ガスの供給を停止する工程と、前記燃焼器が失火するまで、前記水供給装置によって前記改質器に水を供給し、前記送風ファンによって前記燃焼器に空気を供給する工程を有している。
本発明の燃料電池式発電システムの運転停止方法によって、発電停止後に燃料電池式発電システムの中に残された可燃性ガスは燃焼器で燃焼され、安全に処理される。発電を停止した燃料電池式発電システムは安全で確実に停止し、燃料電池式発電システムを構成する装置の劣化や損傷が、未然に防止される。
【0014】
【発明の実施の形態】以下に説明する実施例の主要な特徴を次に列記する。
(形態1)燃焼器では、燃料ガス供給装置から供給される燃料ガスと、改質器から供給される水素ガスと、燃料電池から供給されるオフガスを燃焼させる。
(形態2)改質器から燃料電池に高濃度水素ガスを供給する水素ガス供給系路が設けられている。
(形態3)水素ガス供給系路から、改質器で生成された不安定な可燃性ガスを燃料電池をバイパスして燃焼器に供給するバイパス経路が分岐している。
(形態4)燃料電池の発電停止後に、コントローラは水供給装置が供給する水の流量を、送風ファンの回転能力に合わせて調整する。
【0015】
【実施例】以下に、本発明の燃料電池式発電システムの実施例を、添付図面を参照しながら詳細に説明する。
(第一実施例)
図1は、本発明の第一実施例に係わる、燃料電池式発電システムの構成を示している。本実施例の燃料電池式発電システムは、原料ガスと水から高濃度の水素ガスを発生させる改質器2と、改質器2に水を供給する水供給装置4と、改質器2に原料ガスを供給する原料ガス供給装置6と、改質器2を加熱する燃焼器8と、燃焼器8に燃焼用空気を供給する送風ファン10と、燃焼器8に燃料ガスを供給する燃料ガス供給装置12と、改質器2で生成された高濃度水素ガスに酸素を反応させて発電する燃料電池14と、コントローラ16を備えている。
改質器2と燃料電池14は水素ガス供給系路18で接続され、燃料電池14と燃焼器8はオフガス経路24で接続されている。水素ガス供給経路18からバイパス経路20が分岐しており、改質器2から供給される高濃度水素ガスを燃料電池14を経由せずに燃焼器8に供給することも可能である。水素ガス供給経路18とバイパス経路20の開閉は、分岐箇所に設けられた制御弁22によって行われる。燃料電池14で消費されなかった水素を含むオフガスは、燃料電池14と燃焼器8を接続するオフガス経路24を通って燃焼器8で燃焼する。
【0016】
改質器2の内部では、改質触媒(図示されない)を用いた化学反応により、原料ガスと水から高濃度水素ガスが生成する。発電中に必要とされる水素ガスの量は発電量に応じて変化し、発電停止後も水蒸気パージのために改質器2には所定量の水が供給されなければならない。コントローラ16は、水供給装置4と原料ガス供給装置6を制御し、改質器2に水と原料ガスをほどよい量で供給する。
【0017】
水素ガスを発生する反応を安定して行うために、本実施例の改質器2の場合は、約700℃以上の高温に維持する必要がある。改質器2を約700℃に維持するために、改質器2を加熱する燃焼器8が用いられる。改質器2が必要とする熱量は、発生させる水素ガスの量に応じて変化するので、これに対応するために燃焼器8の燃焼量が制御される。燃焼器8が、発電中には改質器2が必要とする熱量を供給し続け、発電停止時に安全に失火させるためには、燃料ガスと燃焼用空気が好ましい割合で安定して供給されて、良好な燃焼状態が維持される必要がある。コントローラ16は、燃料ガス供給装置12の燃料ガスの供給量と送風ファン10の回転数を調節して、燃焼器8への燃焼用空気供給量を燃料ガスの供給量に対して好ましい量になるよう制御する。
【0018】
燃料電池式発電システムは、運転状況に応じて4つのモードに区分することができる。即ち、改質器2が加熱され始めてから改質に適した温度(本実施例の場合には約700℃)に達するまでの加熱モード、改質器2で生成される水素を高濃度で含むガス(以下、改質ガスとも称する)の成分が安定するまでの安定化モード、改質器2が生成する改質ガスが高濃度水素ガスとなり、この高濃度水素ガスを用いて燃料電池14が発電する運転モード、発電運転の停止命令が出てから実際に停止するまでの停止モードの4モードに区分することができる。
【0019】
図2に、本実施例における燃料電池式発電システムの加熱モードから運転モードの間の、起動からの経過時間に対して、改質器2の温度(グラフA)と、改質器2に供給される水の量(グラフB)と、原料ガスの量(グラフC)と、燃焼器8に供給される燃料ガスの量(グラフD)と、改質器2で生成される改質ガス量(グラフE)と、燃料電池14で消費しきれなかった水素ガスを含むオフガスの生成量(グラフF)と、送風ファン10によって供給される燃焼用空気量(グラフG)がそれぞれ変化する様子を示す。以下、加熱モードから運転モードの期間の燃料電子式発電システムの運転内容を、図2を用いて説明する。
【0020】
加熱モードでは、燃焼器8で燃焼が開始される。コントローラ16が、燃料ガス供給装置12による燃料ガス供給量と、送風ファン10による燃焼用空気供給量を、燃料ガスが燃焼器8で確実に点火する量に制御した状態で、点火処理が行われる。コントローラ16は、点火を確認後、改質器2を速やかに700℃まで加熱するために、多量の原料ガスと多量の燃焼用空気の供給する。加熱モードの途中で、燃料ガスの供給量を減らして送風ファンの回転数を下げる。この結果、改質器2の温度上昇率が緩やかになり、やがて改質器2は改質に適した温度で平衡する。コントローラ16は、加熱モードでは、改質器2に原料ガスを供給させない。加熱モードの後半で改質器2の温度が相当程度に上昇したときに水供給装置4に所定量の水の供給を開始させる。水が供給されている改質器2の温度が改質に適した温度に達すると、原料ガス供給装置6に原料ガスの供給を開始させる。これによって改質反応が開始されて、安定化モードに切換わる。
【0021】
安定化モードでは、改質ガスは副生成物の濃度と改質ガス自体の発生量が不安定であるため、水素ガス供給系路18を閉じてバイパス経路20を開け、改質ガスをバイパス経路20から燃焼器8に送って改質ガスを燃焼させる。改質ガスは燃料電池14に送られず、発電はまだ行われない。安定化モードを継続していると、改質ガスの量が安定し、改質ガスの成分は水素ガスの濃度が高くて一酸化炭素の濃度が極めて薄い状態で安定する。改質ガスが高濃度水素ガスとして安定したときに、バルブ22を切換えて改質ガスを燃料電池14に送る。これによって運転モードに切換えられ、燃料電池14が発電を開始する。
【0022】
改質ガスの成分と量が安定した時点で、制御弁22が切換えられ、燃料電池14に至る水素ガス供給経路18の経路を開としてバイパス経路20を閉とする。高濃度水素ガスが燃料電池14に供給されて発電が開始される。燃料電池式発電システムは運転モードとなる。
運転モードにおけるコントローラ16は、発電の要求量にあわせて、水と原料ガスの供給量を制御して、発生する高濃度水素ガスの量を調整する。
発電中の燃料電池14からは、発電に使用されなかった水素を含むオフガスが、オフガス経路24を通って燃焼器8に供給される。オフガスの水素含有量は、燃料電池14の発電容量と発電負荷によって変化し、発電負荷が100%の場合には体積率で約30〜40%の水素がオフガスに含まれる。オフガスの発生量は、供給された高濃度水素ガスの量に応じて、変化する。
運転モードの燃焼器8は、燃料ガス供給装置12から供給される燃料ガスと共に供給されたオフガスを燃焼させて、燃焼熱を改質器2に供給する。コントローラ16は、燃焼器8に供給する燃料ガスと燃焼用空気の量を、改質器2に供給される水と原料ガスの量から決定して、燃料ガス供給装置12と送風ファン10を制御する。このとき燃料ガス供給装置12が供給する燃料ガスの量は、オフガスの供給量を考慮して決定される。また、送風ファン10が供給する燃焼用空気量は、燃料ガスとオフガスが良好な状態で燃焼できる空気量が定められる。このようにして、燃焼器8では常に好ましい燃焼状態で燃料ガスとオフガスが燃焼して、改質器2の温度が700℃に安定して保たれる。
【0023】
発電中に発電の停止命令が出されると、燃料電池式発電システムは停止モードとなる。図3に、燃料電池式発電システムの起動からの経過時間に対して、改質器2の温度(グラフA)と、改質器2に供給される水の量(グラフB)と、原料ガスの量(グラフC)と、燃焼器8に供給される燃料ガスの量(グラフD)と、燃焼器8に供給される改質ガス量(グラフH)と、燃焼器8に供給されるオフガスの生成量(グラフF)と、送風ファン10によって供給される燃焼用空気量(グラフG)をが変化する様子を示す。図3では、発電の停止命令が出る直前の運転モードから停止モードの期間における燃料電池式発電システムの運転状況が、特に詳細に示されている。以下、図3を用いて、本発明の燃料電池式発電システムの運転停止方法を説明する。
【0024】
燃料電池14で発電された電気を供給する回路のスイッチ26が切られて、電気の供給が停止する。制御弁22が全ての経路を開く。コントローラ16の制御によって原料ガス供給装置6が原料ガスの供給を停止し、燃料ガス供給装置12が、燃料ガスの供給を停止する。同時に、コントローラ16は、水供給装置4による改質器2への水供給量と、送風ファン10の回転数を適量に再設定する。改質器2では原料ガスが供給されなくなったために改質が行われなくなる。水供給装置4から改質器2に供給される水は改質器2内で蒸発して水蒸気となり、改質器2と燃料電池14と水素ガス供給経路18とバイパス経路20とオフガス経路24に残っている原料ガスと水素ガスとオフガスをパージして、燃焼器8に押出す。原料ガスと水素ガスとオフガスはいずれも可燃性であり、燃料ガスが供給されなくなった燃焼器8では、これらの可燃性ガスによって燃焼が継続する。
【0025】
発電停止命令が出されたあとの水供給量Aは、グラフBのA1に示すように水供給量Aを運転モードのときよりも減少させる場合もあれば、グラフBのA2に示すように増加させる場合もありうる。水供給量Aは、改質器2の熱容量と送風ファン10の送風能力を考慮して以下のように定められる。
水の供給量が少なすぎた場合には、発電停止直後で高温の改質器2が更に昇温して損傷する恐れがある。改質器2が過熱しない単位時間あたりの水供給量の最小値が予め定められている。水供給装置4は、最低値以上の水を供給するように制御される。
一方で、水の供給量が多すぎた場合には、オフガス経路24またはバイパス経路20から燃焼器8に可燃性ガスが一度に多く供給されて、オフガス経路またはバイパス経路から燃焼器に可燃性ガスが一度に多く供給され、一時的に激しい燃焼が起こって改質器2が過熱する恐れがある。また、送風ファン10の回転数を最大にしても、燃焼用の空気の供給が追いつかなくなり、ガスリッチ状態となって不完全燃焼を起こす恐れがある。水供給装置4は、燃焼器8への可燃性ガスの供給量が過剰とならないように、水供給量が制限される。
改質器2に単位時間あたりに供給される水の量から求められる水蒸気の体積と、燃焼器8に到達する可燃性のガスの単位時間あたりの体積はほぼ等量となるので、送風ファン10の最大送風能力で良好に燃焼させることができる可燃性ガスの体積から、改質器2への水の供給量の最大値を決定することができる。水供給装置4は、最大値以下の水を供給するように制御される。
コントローラ16は、設定された水供給量の最小値と最大値の間で、水供給装置4が改質器2に供給する単位時間あたりの水の量を一定に設定する。設定値は、A1に示すように水供給量Aを運転モードのときよりも減少する場合もあれば、A2に示すように増加する場合もある。水供給装置4は、設定された量で改質器2に水を供給し、供給停止の指令を受けて供給をやめる。
【0026】
停止モードが開始されたときに、燃料電池14とオフガス経路24に残っていたオフガスは、水蒸気によるパージによって燃焼器8に押し出される。運転モードの終了時に燃料電池14とオフガス経路24に残るオフガスの量は、運転モードの発電量が同じときには、ほぼ一定である。しかし、燃焼器8に供給されるオフガスの量は、停止モードで改質器2に供給される水の量に対応して変化する。水の供給量がA1で示すように運転モードの時よりも少なく設定された場合には、燃焼器8に供給されるオフガスの体積は、グラフFのC1に示すように運転モードの時よりも少なくなり、改質器2に供給されている水の量を水蒸気に換算したときの体積とほぼ等量となる。燃料電池14とオフガス経路24に残るオフガスの量が少なくなると共に、燃焼器8に供給されるオフガスの量も徐々に減少し、やがて供給されなくなる。
水の供給量がA2で示すように運転モードの時よりも多く設定された場合には、燃焼器8に供給されるオフガスの体積は、グラフFのC2に示すように運転モードの時よりも多くなる。燃料電池14とオフガス経路24に残るオフガスは、水の供給量がA1に設定されているときよりもはやく押出されるので、燃焼器8に供給されるオフガスの量は、A1の場合よりも急激に減少する。
【0027】
停止モードが開始されたときに、改質器2と、水素ガス供給系路18と、バイパス経路と、燃料電池14に残っていた高濃度水素ガスは、水蒸気によるパージによって燃焼器8に押出される。高濃度水素ガスは、オフガスに続いて燃焼器8に到達するが、到達時期が厳密に分かれることはなく、しばらくの間はオフガスと高濃度水素ガスの混合した可燃性ガスが、燃焼器8で燃焼する。燃焼器8に供給される高濃度水素ガスの単位時間あたりの体積は、オフガスと同様に、改質器2に供給される水の単位時間あたりの供給量に対応して変化する。
水の供給量がA1で示すように少なく設定された場合には、燃焼器8に供給される高濃度水素ガスの供給量は、グラフHのB1に示すように徐々に増加して、燃料電子式発電システムに残る高濃度水素ガスの量が少なくなると共に徐々に減少し、やがて供給されなくなる。
水の供給量がA2で示すように多く設定された場合には、燃焼器8に供給される高濃度水素ガスは、グラフHのB2に示すように、B1の場合よりも早い時期に燃焼器8に押出され、その量は急激に増加した後に急激に減少する。
水蒸気パージによって、発電の停止命令の直前に改質器2に供給されていて改質されなかった原料ガスも高濃度水素ガスとほぼ同時に燃焼器8に到達するが、高濃度水素ガスとオフガスの量に較べると非常に少量であり、燃焼器8の燃焼には大きな影響を与えない。
【0028】
コントローラ16は、停止モードの開始と同時に、送風ファン10の回転数を、燃焼器8に供給される可燃性ガスが全て高濃度水素ガスであった場合でも可燃性ガスを安定して燃焼させることのできる充分な回転数に設定する。送風ファン10は、グラフGの実線Dで示されるように設定された回転数で回転し続けて燃焼器8に空気を供給し、供給停止の指令を受けて供給を止めるまで一定の回転数を保つ。
水蒸気によるパージが開始されると燃焼器8にはまずオフガスが押出される。オフガスは高濃度水素ガスに比較すると燃焼用空気の必要量は少ないが、すぐに高濃度水素ガスがオフガスに混ざって燃焼器8に到達しはじめるために、可燃性ガスの組成は急激に水素ガスの濃度が高くなり、燃焼用空気の必要量が増える。そこでコントローラ16は、送風ファン10の回転数を、最初から可燃性ガスが全て高濃度水素ガスに占められている場合でも、可燃性ガスを安定して燃焼させることのできる回転数に設定して、安全率を考慮している。水蒸気パージの開始直後で、燃焼器8にオフガスのみが供給されて水素ガス濃度が比較的低い状態であっても、可燃性ガスに対する燃焼用空気が多すぎて失火する恐れのないことは、本実施例の燃料電子式発電システムにおいて実験的に確認されている。
時間の経過に伴ってオフガスと高濃度水素ガスと原料ガスから成る可燃性ガスの供給量が減って水蒸気の供給量が増え、可燃性ガスの濃度が下がる。可燃性ガスの供給量に対する送風ファンによる燃焼用空気の供給量の割合が多くなった場合にはエアリッチな燃焼状態となり、更に可燃性ガスの供給量が減ると失火する。エアリッチで失火したとき、可燃性ガスの大部分は燃焼によって既に処理されている。コントローラ16は、失火を確認し、さらに改質器2が触媒が酸化しない温度まで冷却し、燃焼器8が可燃性ガスを自然発火させない温度まで冷却するまで送風ファンの運転を同一の回転数のままで継続する。失火後に燃焼器に微量の可燃性ガスが供給された場合でも、可燃性ガスは送風ファン10が供給する空気で希釈されるために、燃焼器で再着火する恐れはない。
改質器2が、シフト触媒の酸化の起こらない温度まで冷却すると、コントローラ16は水供給装置4を停止し、原料ガス供給装置6を再び稼働させる。原料ガスによって水蒸気がパージされて、シフト触媒の吸湿が防止される。燃料電池式発電システムの内部に原料ガスが充填されると、コントローラ16は、原料ガス供給装置6を停止し、送風ファン10を停止して、停止モードが完了する。
【0029】
本実施例における停止モードのコントローラ16は、燃焼器8に供給される可燃性ガスを安全に燃焼させる燃焼用空気量に基づいて、送風ファン10を充分高速な一定の回転数に設定する。この制御方法以外にも、コントローラ16は、供給される可燃性ガスの組成に対応してより細かく送風ファン10の回転数を設定することもできる。例えば、燃焼器8に供給される水素ガス量を検出して、送風ファン10の回転数を水素ガス量に応じて随時変更することができる。又、グラフGの点線Fで示されるように、水蒸気パージの開始時には回転数を高濃度水素ガスに対応する充分高速な回転数に設定しておき、燃焼器8に供給される水蒸気量を検出して、可燃性ガスの割合が低下してきたときには、回転数を徐々に下げていくこともできる。
いずれの場合に於いても、可燃性ガスは燃焼によって安全に処理され、燃料電子式発電システムは確実に停止される。
【0030】
本実施例の燃料電池式発電システムは、発電中に停止命令が出されて停止モードとなったときに、コントローラ16が原料ガスと燃料ガスの供給を停止し、水供給装置4の水供給量と送風ファン10の回転数を所定の適値に設定する。水供給装置4から改質器2に供給された水蒸気によって、燃料電池式発電システム内に残っていた可燃性ガスが燃焼器8に徐々に押し出される。燃焼器8に到着した可燃性ガスは、送風ファン10から適量で供給される燃焼用空気を用いて燃焼器8で安定して燃焼し、安全に処理される。
コントローラ16が制御する燃料電子式発電システムの停止方法は、改質器2の過熱を防止するように行われており、改質器2が昇温しすぎて損傷する恐れを事前に防止している。
本実施例の燃料電池式発電システムの構成は、従来の燃料電池式発電システムに、コントローラ16による新たな制御内容を加えるのみで構成することが可能であり、非常に簡易な手段を用いながら確実な運転停止方法を提供することができる。
【0031】
(第二実施例) 発電開始前の安定化モードで運転停止命令が出された場合を、図4を参照しながら説明する。
【0032】
安定化モードで運転停止命令が出される場合、制御弁22はバイパス経路20のみを開いている。改質器2で生成される改質ガスは、生成量や水素含量が不安定であるため、燃焼器8に供給されて燃焼している。この状態で、燃料電池式発電システムに発電の停止命令が出されると、制御弁22はバイパス経路20のみが開いている状態を保つ。コントローラ16は、原料ガス供給装置6と燃料ガス供給装置12を停止し、水供給装置4の水供給量と送風ファン10の回転数を再設定する。水供給装置4から改質器2に供給される水が水蒸気となって、改質器2と、制御弁22に至るまでの水素ガス供給系路18と、バイパス20に残る可燃性ガスを燃焼器8に押出し、パージする。本実施例において燃焼器8で燃焼する可燃性ガスは、燃料電池14でまだ発電が行われていないために、改質器2で生成された組成が不安定な改質ガスと、発電の停止命令の直前に改質器2に供給されていて改質されなかった原料ガスから成る。
【0033】
コントローラ16は、停止モードにはいると、改質器2が過熱しない所定量と燃焼器8への可燃性ガスの供給が過剰とならない所定量の間で、水供給装置4が改質器2に供給する水の量Gを一定に設定する。設定値は、グラフBのG1に示すように水供給量Gを運転モードのときよりも減少する場合もあれば、グラフBのG2に示すように増加する場合もある。水供給装置4は、設定された量で改質器2に水を供給する。
水の供給量がG1で示すように運転モードの時よりも少なく設定された場合には、燃焼器8に供給される改質ガスの体積は、グラフEのH1に示すように運転モードの時よりも少なくなり、改質器2に供給されている水の量を水蒸気に換算したときの体積とほぼ等量となる。改質器2と制御弁22に至るまでの水素ガス供給系路18とバイパス経路24に残る改質ガスの量が少なくなると共に、燃焼器8に供給される改質ガスの量も徐々に減少し、やがて供給されなくなる。
水の供給量がG2で示すように運転モードの時よりも多く設定された場合には、燃焼器8に供給される改質ガスの体積は、グラフEのH2に示すように運転モードの時よりも多くなる。改質器2と制御弁22に至るまでの水素ガス供給系路18とバイパス経路24に残る改質ガスは、水の供給量がG1に設定されているときよりもはやく押出されるので、燃焼器8に供給される改質ガスの量は、G1の場合よりも急激に減少する。
発電の停止命令の直前に改質器2に供給されていて改質されなかった原料ガスも、パージによって改質ガスとほぼ同時に燃焼器8に到達するが、改質ガスの量に較べると非常に少量であり、燃焼器8の燃焼には大きな影響を与えない。
【0034】
コントローラ16は、停止モードの開始と同時に、送風ファン10の回転数を、燃焼器8に供給される可燃性ガスが全て高濃度水素ガスであったときでも、可燃性ガスを安定して燃焼させるために充分な空気量を供給する回転数に制御する。送風ファン10は、グラフGの実線Iで示されるように設定された回転数で回転して燃焼器8に空気を供給する。供給停止の指令を受けるまで、送風ファン10の回転数は一定である。
安定化モードで生成される改質ガスは、水素ガスの含まれる量が不安定であるので、コントローラ16は、改質ガスが高濃度の水素ガスであると見なして、その場合の燃焼に必要となる燃焼用空気量を算出し、これに基づいて送風ファン10の回転数を設定することで、安全率を考慮している。燃焼器8に供給される改質ガスの水素ガス濃度が比較的低い状態であっても、改質ガスに対する燃焼用空気が多すぎて失火する恐れのないことは、本実施例の燃料電子式発電システムにおいて実験的に確認されている。
【0035】
時間の経過に伴って可燃性ガスの供給量が減って水蒸気の供給量が増え、可燃性ガスの濃度が下がる。可燃性ガスの供給量に対する送風ファンによる燃焼用空気の供給量の割合が多くなった場合にはエアリッチな燃焼状態となり、更に可燃性ガスの供給量が減ると失火する。コントローラ16は、失火を確認し、さらに改質器2が触媒が酸化しない温度まで冷却し、燃焼器8が可燃性ガスを自然発火させない温度まで冷却するまで送風ファンの運転を同一の回転数のままで継続する。本実施例において水蒸気によるパージが行われるのは、改質器2と制御弁22に至るまでの水素ガス供給系路18とバイパス経路20であり、燃料電池式発電システムの内部全体をパージするのよりも短時間で原料ガスや改質ガスから成る可燃性ガスがパージされる。
改質器2が、シフト触媒の酸化の起こらない温度まで冷却すると、コントローラ16は水供給装置4を停止し、原料ガス供給装置6再び稼働する。原料ガスによって水蒸気がパージされて、シフト触媒の吸湿が防止される。燃料電池式発電システムの内部に原料ガスが充填されると、コントローラ16は、原料ガス供給装置6と送風ファン10を停止して、停止モードが完了する。
【0036】
コントローラ16は、送風ファン10を、充分高速な一定の回転数で運転する以外にも、供給される可燃性ガスの組成に合わせて回転数を変更させることができる。例えば、グラフGの点線Jで示されるように、水蒸気パージの開始時には回転数を高濃度水素ガスに対応する充分高速な回転数に設定しておき、燃焼器8に供給される水蒸気量を検出して、可燃性ガスの割合が低下してきたときには、回転数を徐々に下げていくこともできる。
いずれの場合に於いても、可燃性ガスは燃焼によって安全に処理され、燃料電子式発電システムは確実に停止される。
【0037】
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。例えば、実施例の燃料電池式発電システムでは、水蒸気によるパージを行った後に原料ガスを改質器と燃料電池と配管経路内に充填しているが、空気若しくは不活性ガスを充填することもできる。実施例では、単一のコントローラが原料ガスと水と燃料ガスと燃焼用空気の供給量を制御しているが、燃料電池式発電システム全体を制御するコントローラのもとに、各供給装置を制御する手段としてのコントローラが従属していてもよい。その他、実施例の図中に示した経路の配管や構成は、装置の構成によって自由に変更が可能である。
【0038】
【発明の効果】以上のように、本願発明の燃料電池式発電システムと運転停止方法によると、燃料電池式発電システムの運転停止時には、改質器と燃料電池とこれらを接続する経路に残った可燃性ガスを処理するために、コントローラが原料ガスと燃料ガスの供給を停止し、改質器への水供給装置装置の水供給量と送風ファンの回転数を所定の適値に設定している。改質器に適量で供給された水が水蒸気となって、燃料電池式発電システムの内部に残った可燃性ガスを燃焼器に徐々に押し出す。可燃性ガスは、送風ファンから適量で供給される燃焼用空気を用いて安定して燃焼する。これにより、停止処理直後の高温の燃焼器に供給される可燃性ガスによって、消火後の再燃焼や再着火による爆着が発生して改質器や燃焼器を損傷することを防止することが可能となる。
また、コントローラが運転停止時に設定する水供給装置の水の供給量は、改質器の過熱を防止するように適量が確保されており、水の供給量の不足から改質器が昇温しすぎて損傷する恐れを事前に防止している。
本発明の燃料電池式発電システムは、従来の燃料電池式発電システムに、コントローラによる新たな制御内容を加えるのみの簡易な手段で構成することが可能でありながら、安全で確実な運転停止方法を提供することができる。
【図面の簡単な説明】
【図1】実施例1の燃料電池式発電システムの構成を模式的に示す図。
【図2】実施例1の燃料電池式発電システムの起動から発電までの経過時間と運転状況を示す図。
【図3】実施例1の燃料電池式発電システムの発電から停止までの経過時間と運転状況を示す図。
【図4】実施例2の燃料電池式発電システムの起動から停止までの経過時間と運転状況を示す図。
【符号の説明】
2:改質器
4:水供給装置
6:原料ガス供給装置
8:燃焼器
10:送風ファン
12:燃料ガス供給装置
14:燃料電池
16:コントローラ
18:水素ガス供給経路
20:バイパス経路
22:制御弁
24:オフガス経路
26:スイッチ

Claims (4)

  1. 原料ガスと水から高濃度水素ガスを生成する改質器と、
    改質器に原料ガスを供給する原料ガス供給装置と、
    改質器に水を供給する水供給装置と、
    改質器を加熱する燃焼器と、
    燃焼器に燃料ガスを供給する燃料ガス供給装置と、
    燃焼器に燃焼用空気を供給する送風ファンと、
    改質器で生成された高濃度水素ガスに酸素を反応させて発電する燃料電池と、
    燃料電池を通過した可燃性ガスを燃焼器に供給するオフガス経路と、
    改質器で生成された不安定な可燃性ガスを燃料電池をバイパスして燃焼器に供給するバイパス経路と、
    燃料電池が発電を停止した後に、原料ガス供給装置と燃料ガス供給装置の運転を停止し、オフガス経路またはバイパス経路から燃焼器に供給される可燃性ガスが失火するまで水供給装置と送風ファンの運転を継続するコントローラと、
    を有する燃料電池式発電システム。
  2. 燃料電池の発電停止後の水供給装置による水供給量が、改質器の過熱を防止するのに必要な量以上であり、オフガス経路またはバイパス経路から燃焼器に供給される可燃性ガスを送風ファンによってエアリッチ状態で燃焼させられる量以下に設定されていることを特徴とする請求項1の燃料電池発電システム。
  3. 前記コントローラが、オフガス経路またはバイパス経路から燃焼器に供給される可燃性ガスがエアリッチとなって失火し、かつ、燃焼器の温度が可燃性ガスを自然発火させない温度に低下するまで送風ファンの運転を継続することを特徴とする請求項1の燃料電池発電システム。
  4. 原料ガスと水から高濃度水素ガスを生成する改質器と、改質器に原料ガスを供給する原料ガス供給装置と、改質器に水を供給する水供給装置と、改質器を加熱する燃焼器と、燃焼器に燃料ガスを供給する燃料ガス供給装置と、燃焼器に燃焼用空気を供給する送風ファンと、改質器で生成された高濃度水素ガスに酸素を反応させて発電する燃料電池と、燃料電池を通過した可燃性ガスを燃焼器に供給するオフガス経路と、改質器で生成された不安定な可燃性ガスを燃料電池をバイパスして燃焼器に供給するバイパス経路を備えた燃料電池式発電システムの運転停止方法であって、
    前記燃料電池による発電を停止する工程と、
    前記原料ガス供給装置による原料ガスの供給を停止する工程と、
    前記燃料ガス供給装置による燃料ガスの供給を停止する工程と、
    前記燃焼器が失火するまで、前記水供給装置によって前記改質器に水を供給し、前記送風ファンによって前記燃焼器に空気を供給する工程を有することを特徴とする燃料電池式発電システムの運転停止方法。
JP2003189280A 2003-07-01 2003-07-01 燃料電池式発電システムとその運転停止方法 Expired - Fee Related JP3947498B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189280A JP3947498B2 (ja) 2003-07-01 2003-07-01 燃料電池式発電システムとその運転停止方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189280A JP3947498B2 (ja) 2003-07-01 2003-07-01 燃料電池式発電システムとその運転停止方法

Publications (2)

Publication Number Publication Date
JP2005026033A true JP2005026033A (ja) 2005-01-27
JP3947498B2 JP3947498B2 (ja) 2007-07-18

Family

ID=34187539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189280A Expired - Fee Related JP3947498B2 (ja) 2003-07-01 2003-07-01 燃料電池式発電システムとその運転停止方法

Country Status (1)

Country Link
JP (1) JP3947498B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119736A1 (ja) * 2006-04-11 2007-10-25 Panasonic Corporation 水素生成装置、これを備える燃料電池システムおよびその運転方法
JP2008105892A (ja) * 2006-10-25 2008-05-08 Fuji Electric Holdings Co Ltd 燃料改質装置の停止方法
JP2009040679A (ja) * 2007-07-18 2009-02-26 Panasonic Corp 水素生成装置、燃料電池システム、及び水素生成装置の運転方法
JP2011098839A (ja) * 2009-11-04 2011-05-19 Panasonic Corp 水素発生装置の運転方法および燃料電池システムの運転方法
WO2011114748A1 (ja) * 2010-03-18 2011-09-22 パナソニック株式会社 燃料電池発電システム及び燃料電池発電システムの運転停止方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119736A1 (ja) * 2006-04-11 2007-10-25 Panasonic Corporation 水素生成装置、これを備える燃料電池システムおよびその運転方法
US8097371B2 (en) 2006-04-11 2012-01-17 Panasonic Corporation Hydrogen generator, fuel cell system comprising the same, and operation method thereof
JP5135209B2 (ja) * 2006-04-11 2013-02-06 パナソニック株式会社 水素生成装置、これを備える燃料電池システムおよびその運転方法
JP2008105892A (ja) * 2006-10-25 2008-05-08 Fuji Electric Holdings Co Ltd 燃料改質装置の停止方法
JP2009040679A (ja) * 2007-07-18 2009-02-26 Panasonic Corp 水素生成装置、燃料電池システム、及び水素生成装置の運転方法
JP2011098839A (ja) * 2009-11-04 2011-05-19 Panasonic Corp 水素発生装置の運転方法および燃料電池システムの運転方法
WO2011114748A1 (ja) * 2010-03-18 2011-09-22 パナソニック株式会社 燃料電池発電システム及び燃料電池発電システムの運転停止方法
US8771892B2 (en) 2010-03-18 2014-07-08 Panasonic Corporation Fuel cell power generation system and operation stop method of the same
JP5796227B2 (ja) * 2010-03-18 2015-10-21 パナソニックIpマネジメント株式会社 燃料電池発電システム及び燃料電池発電システムの運転停止方法

Also Published As

Publication number Publication date
JP3947498B2 (ja) 2007-07-18

Similar Documents

Publication Publication Date Title
JP3807361B2 (ja) 燃料改質システムおよび燃料電池システム
US9587564B2 (en) Fuel oxidation in a gas turbine system
JP5416347B2 (ja) 固体酸化物形燃料電池発電システムおよびその起動方法
JP5334034B2 (ja) 改質装置および燃料電池システム
JP5064387B2 (ja) 水素生成装置及び燃料電池システム
JP4130681B2 (ja) 燃料電池システム
JP5369370B2 (ja) 燃料電池システム
JP6138378B2 (ja) 燃料電池システム
JP2002305012A (ja) 燃料電池システム
JP2008108691A (ja) 改質装置の制御方法及び改質装置並びに燃料電池システム
JP3947498B2 (ja) 燃料電池式発電システムとその運転停止方法
JP3898123B2 (ja) 燃料電池式発電システムの改質器
JP3775718B2 (ja) 発電プラントおよびその運転方法
JP2008243592A (ja) 燃料電池装置
JP4021757B2 (ja) 燃料電池式発電システムとその運転停止方法
JP2006342003A (ja) 水素製造装置及び水素製造装置の停止方法
JP4098332B2 (ja) 改質装置および燃料電池システム
JP2004103453A (ja) 燃料電池システム
JP2019212466A (ja) 燃料電池システム、起動制御プログラム
JP4442163B2 (ja) 燃料電池システム
JP2002110212A (ja) 燃料改質装置
JP4346943B2 (ja) 改質器を利用したシステム
JP5309799B2 (ja) 改質装置および燃料電池システム
JP4421337B2 (ja) 燃料電池発電システム
JP6468910B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees