JP2004516653A - Rfおよびマイクロ波通信集積回路用熱電スポット冷却装置 - Google Patents

Rfおよびマイクロ波通信集積回路用熱電スポット冷却装置 Download PDF

Info

Publication number
JP2004516653A
JP2004516653A JP2002550313A JP2002550313A JP2004516653A JP 2004516653 A JP2004516653 A JP 2004516653A JP 2002550313 A JP2002550313 A JP 2002550313A JP 2002550313 A JP2002550313 A JP 2002550313A JP 2004516653 A JP2004516653 A JP 2004516653A
Authority
JP
Japan
Prior art keywords
integrated circuit
cold plate
heat
thermally coupled
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002550313A
Other languages
English (en)
Other versions
JP4478388B2 (ja
Inventor
ゴシャル、ウタム、シャマリンドゥ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2004516653A publication Critical patent/JP2004516653A/ja
Application granted granted Critical
Publication of JP4478388B2 publication Critical patent/JP4478388B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5227Inductive arrangements or effects of, or between, wiring layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】無線周波集積回路で使用される能動トランジスタまたは受動回路要素のような集積回路内の選ばれた要素を冷却するための装置を提供すること。
【解決手段】一実施形態では、冷却装置は、集積回路要素の直ぐ近くの領域に熱的に結合された低温プレート、この低温プレートに熱的に結合された熱電冷却装置、およびこの熱電冷却装置に熱的に結合された高温プレートを含む。熱は低温プレートを通して集積回路要素から除去され、熱電冷却装置を通して高温プレートに伝達される。1つの形態では、高温プレートは集積回路の外面に位置づけされるか結合されるので、集積回路要素から周囲に伝達された熱は集積回路を囲繞する雰囲気中に放散されるようになる。他の形態では、高温プレートは、集積回路基板中に埋め込まれて、熱を基板中に放出しながら、集積回路の要素を局部的に冷却する。
【選択図】図7

Description

【0001】
【発明の属する技術範囲】
本発明は一般的に集積回路の分野に関し、より詳細には、集積回路を冷却する方法および装置に関する。
【0002】
【従来の技術】
無線周波数(RF)およびマイクロ波周波数の使用は、20世紀の大部分で通信を行うために利用されてきた。RFおよびマイクロ波技術の初期の使用には、同報通信と2方向通信の両方の無線通信、および侵入してくる航空機を検出するレーダが含まれていた。この初期の技術の大部分は、第二次世界大戦を戦う際に役立つように1940年代に開発された。
【0003】
戦争後、RFおよびマイクロ波技術は他の通信領域に拡張された。電話会社は、マイクロ波技術を使用して、例えば非常に山の多い地域のような伝送線を築くことが実際的でない地域を横断して音声通信を伝えた。また、RF周波数は、出現するテレビジョン産業でも人々の家庭にテレビジョン放送を伝えるために使用され、家庭ではテレビジョン・セットで放送信号が受信された。
【0004】
極最近は、衛生信号を搬送するためにRF伝送が使用されており、この衛生信号は例えば、軍用と商業用途の両方の衛星信号、並びに、極最近はテレビジョン内容の加入者家庭への配信およびインターネット・アクセスのための衛星信号である。また、RFおよびマイクロ波の周波数は、無線(セルラー式)電話サービスを提供するためにも使用され、これらのサービスには、アナログ通信サービス、ディジタル通信サービス、およびパーソナル通信サービス(PCS)がある。
【0005】
RF伝送による電子通信の伝送容量は、周波数信号の範囲(帯域幅)および帯域幅内のチャネルの数によって決定される。伝送容量は、1秒当たりのビット、1秒当たりのバイトの単位で、またはヘルツ(1秒あたりのサイクル)の単位で表される。ますます多くの情報がRF回路を通して伝送されるようになるにつれて、この情報伝送の増大に対処するために、より広い帯域幅が求められている。しかし、RFシステム、セルラー・システムおよびマイクロ波システムの帯域幅およびチャネル容量は、システム内の増幅プロセスおよびフィルタ処理プロセスの信号対雑音(S/N)比で制限されている。S/N比を高める1つの重要な方法は、回路の動作温度を下げて熱雑音を低減することである。したがって、RF回路の帯域幅およびチャンネル容量を増大するようにRF回路を冷却する装置、システム、および方法を所有していることが望ましい。
【0006】
【発明が解決しようとする課題】
本発明は、無線周波トランジスタまたは受信機で使用される電界効果トランジスタ回路のような集積回路部品を冷却するための装置を提供する。
【0007】
【課題を解決するための手段】
第1の態様において、本発明は集積回路の要素を冷却するための装置を提供し、この装置は、集積回路の選ばれた要素に熱的に結合された低温プレートと、この低温プレートに熱的に結合された熱電冷却装置と、この熱電冷却装置に熱的に結合された高温プレートとを備え、熱は集積回路の選ばれた要素から低温プレートを通して除去され、熱電冷却装置を通して高温プレートに伝達される。そして、熱は高温プレートから放散される。
【0008】
一実施形態では、本冷却装置は、集積回路部品に熱的に結合された低温プレートと、この低温プレートに熱的に結合された熱電冷却装置と、この熱電冷却装置に熱的に結合された高温プレートとを含む。熱は低温プレートを通して集積回路部品から除去され、熱電冷却装置を通して高温プレートに伝達される。集積回路部品から高温プレートに伝達された熱が集積回路チップを囲繞する雰囲気に放散されるように、高温プレートは、集積回路の表面に位置づけらている。
【0009】
他の実施形態では、集積回路の要素を冷却するための装置が提供され、この装置は、集積回路の選ばれた要素に熱的に結合された低温プレートと、この低温プレートに熱的に結合された熱電冷却装置と、この熱電冷却装置に熱的に結合された高温プレートとを備え、高温プレートは集積回路のバルク基板中に熱を流し込むように熱的に結合され、さらに、集積回路要素からの熱は低温プレートから熱電冷却装置を通して運ばれ、高温プレートを通してバルク基板中に放散される。
【0010】
これから、本発明の好ましい実施形態を、単に例として、添付の図面を参照してより詳細に説明する。
【0011】
【発明の実施の形態】
図を参照すると、特に図1から5を参照すると、冷却動作の恩恵を受ける一般的な無線周波(RF)回路の例の回路図を示す。図1は、受動アンテナ・システムの例を示す。図2は、入力低雑音増幅器(LNA)の例を示す。図3は、RF回路のミクサ段の例を示す。図4は直角位相発信器の例を示す。図5は、出力の電力増幅器(PA)の例を示す。信号経路に使用されるこれらの回路およびフィルタのチャネル選択度は、受動インダクタおよびコンデンサのQ、およびトランジスタの熱雑音電圧によって決定される。Qも熱雑音電圧も、動作温度に強く依存している。
【0012】
ここで、図6を参照すると、チップ上に形成された渦巻き形インダクタのQの一般的な温度依存性のグラフを示す。図6に示すグラフは、CMOSテスト・チップのクロック成生器に実現された150×150μmの3.1ナノヘンリー(nH)渦巻き形インダクタ・コイルのQとギガヘルツ(GHz)単位の動作周波数との関連を3つの温度について示す。図6に示すように、全ての動作周波数で、インダクタの温度が下がるにつれて渦巻き形インダクタ・コイルのQは連続的に大きくなる。摂氏100度のインダクタ温度で、インダクタ・コイルのQは、1.0から10.0GHzまでの周波数範囲にわたって、ほぼ2〜3の範囲にある。インダクタ・コイルの温度が摂氏25度に下がると、Qは同じ周波数範囲でほぼ5.0に増大する。インダクタ・コイルの温度がさらに摂氏−123度に下がると、同じ周波数範囲にわたって、Qはさらにほぼ15.0から18.0にも増大する。このようにして、誘導コイルの動作温度を下げることで、著しい利点を達成することができる。他のRF回路に関して、温度低下の同様な利点が得られる。発信器の位相雑音Lは、また、回路の動作温度の影響を直接受ける。発信器の位相雑音の温度依存性は、次の式で与えられる。
【数1】
Figure 2004516653
ここで、R=(LC)タンクの実効抵抗(温度に依存する)
ω=発振の中心周波数
Δω=周波数オフセット
F=能動デバイスからの雑音に関係する項
signal=発振の電力レベル
T=ケルビン単位の絶対動作温度
【0013】
この式から、発信器の温度が上昇するにつれて、位相雑音が増大することが明らかである。したがって、位相雑音の量を減少させるために、発信器をより低温で動作させることが有利である。
【0014】
図7を参照すると、本発明に従った熱電冷却(TEC)デバイス300の高レベル・ブロック図を示す。TECデバイス300は、温度敏感要素に近い集積回路デバイスに結合するのが好ましい。よく知られている原理である熱電冷却は、ペルチェ効果に基づいている。このペルチェ効果によって、電源302からの直流電流が2つの異なる材料の両端間に加えられて、この2つの異なる材料の接合で熱が吸収されるようになる。一般的な熱電冷却デバイスでは、熱伝導特性が優れ電気伝導の悪い導体308の間にサンドイッチ状に挟まれたp型半導体304とn型半導体306が利用される。電子が電気導体310を介してp型半導体304からn型半導体306に移動するとき、熱源312から吸収する熱エネルギーによって、電子のエネルギー状態は高くなる。このプロセスは、p型半導体304および電気導体310を通過する電子流によって熱エネルギーを熱源312からヒート・シンク316に伝達するという効果を有する。電子は、電気導体310でより低いエネルギー状態に落ち、熱エネルギーを放出する。
【0015】
図8を参照すると、本発明に従ったICのRF回路を冷却する直接結合冷却装置の上面図を示す。集積回路400は、受動渦巻き形コイル402に熱的に結合された2個の冷却装置404および406を含む。冷却装置404および406は、例えば、図7のTECデバイス300として実現することができる。この実施形態で、冷却装置406の低温プレートは、ビア構造408および410を使用して受動渦巻き形コイル402の一端に直接結合する。ビア構造408と410および、より下のレベルの相互接続414は、熱および電気伝導性の銅組成であるのが好ましい。冷却装置404の低温プレートは、好ましくは同じく銅組成の渦巻き形コイル402の他端420に熱的に直接結合する。
【0016】
冷却装置404および406並びに渦巻き形コイル402の部分は、集積回路400の同じ層内に組み立てる。相互接続414は、渦巻き形コイル402の層から集積回路400のより下の層に作る。2個の冷却装置404〜406を使用して渦巻き形コイル402を冷却するように示しているが、単一の冷却装置を利用することもできる。しかし、直列で動作する2個の冷却装置は、単一冷却装置よりも渦巻き形コイル402を強力に冷却することができ、さらに渦巻き形コイル402の異なる部分間の熱勾配を減少するのに役立つ。
【0017】
冷却装置406と受動渦巻き形コイル402の間の電気的な分離は、電流モードの回路を使用して、または、化学気相成長(CVD)二酸化シリコンまたは陽極酸化アルミニウムのような極薄誘電体パシベーション層を使用して実現することができる。アルミニウムの陽極酸化がCVD二酸化シリコンよりも好ましい。その理由は、1〜10ナノメートル(nm)の誘電体層を容易に形成することができ、かつアルミナ(酸化アルミニウム)の熱伝導率は二酸化シリコンのそれよりも優れているからである。
【0018】
図9を参照すると、本発明に従った電流制御熱電冷却装置(TEC)の回路を示す。電流制御TEC回路500は電流モード回路の例であり、この電流モード回路は、受動渦巻き形コイル402からの冷却装置404〜406の電気的分離を維持するために、直接結合冷却装置400とともに使用することができる。電流制御TEC回路500は、pチャネル電界効果トランジスタ502〜506、nチャネル・トランジスタ508、インバータ510と512〜514、およびTEC516を含む。TEC516は、熱を放散する高温端部518および、冷却すべきデバイスに熱的に結合される低温端部520を有する。
【0019】
トランジスタ508のゲートは、バイアス制御電圧Vbc並びにインバータ510の入力に結合する。インバータ510の出力は、トランジスタ506のゲートに結合する。トランジスタ506のドレインおよびトランジスタ508のドレインは、トランジスタ512のソースおよびトランジスタ512〜514のゲートに結合するので、その結果、トランジスタ512および514は、カレント・ミラー構成となる。トランジスタ512〜514のドレインは、接地Gndに結合する。トランジスタ514のソースは、TEC516の第2の端部に結合する。このようにして、電流制御TEC回路500は、バイアス電圧Vbcに基づいてTEC516を流れる一定電流の流れIを維持する。たとえTEC516の低温端部520がデバイスに電気的に接続されても、キルヒホッフの法則によって、TEC516とデバイスの間を流れる電流はない。このようにして、電流モード・バイアス回路500によって、TEC516の電気的な分離が保証される。
【0020】
図10および11を参照すると、図10は、本発明に従ってRF用IC回路を冷却するための集積回路チップのパターン形成された低温プレートの上面図を示し、図11は、この集積回路チップの部分の断面図を示す。この実施形態で、図8に示すような直接結合冷却装置の使用に代わるものとして、例えば図1〜9に示すRF回路の1つのようなRF回路650の下に低温プレート602を配置する。RF回路650の下に低温プレート602を配置することで、RF回路650の中のインダクタおよびコンデンサの大きな面積が冷却される。しかし、低温プレート602は、RF回路650内のどの回路にも物理的に接触しないで、誘電体材料604で分離されている。低温プレート602は、熱導体608を介して熱電冷却装置606に熱的に結合されている。
【0021】
低温プレート602を金属で作り、かつこれをRF回路650内のインダクタの下で使用する場合、インダクタとの磁気結合に起因する金属層内の循環渦電流の誘起を回避するように、低温プレート602をパターン形成する。
【0022】
集積チップ600は、過大な量の熱を発生しないので冷却を必要としない、RF回路650以外の他の領域を含むことができる。このようにして、かなりの熱を発生し冷却を必要とする集積回路600の部分(すなわち、RF回路650)だけをスポット冷却することで、本発明によって、電力節約の効率を達成することができる。
【0023】
図12および13を参照すると、図12は、本発明に従った、集積回路(IC)の本体/基板レベルを経由したTEC冷却装置への直接熱結合を図示する上部切り取り平面図を示し、図13は、集積回路(IC)の本体/基板レベルを経由したTEC冷却装置への直接熱結合の切り口750に沿った断面図を示す。ビア702〜712は、IC700の低温プレート762をIC700の本体/基板レベル752に熱的に結合する。本体/基板レベル752は、低雑音増幅器回路を含むことができる。TEC冷却装置714の低温プレート762は、介在する金属化層または酸化膜層754あるいはその両方によって、IC700の本体/基板レベル752から分離されている。
【0024】
電気導体760は、p形不純物サーモエレメント758をn型不純物サーモエレメント756に結合して、電流が電気導体768からサーモエレメント756および758を通って流れ、さらに電気導体766を通って流れ出ることができるようにする。電気的に絶縁性で熱的に伝導性の高温プレート764は、電気導体766〜768と物理的に接触し、熱がサーモエレメント756〜758から高温プレート764に流れ込むことができるようにする。この高温プレートで、熱は放散される。
【0025】
図14を参照すると、本発明に従って、RF用CMOSIC上に製造された例示の熱電スポット冷却装置の断面図を示す。この例示の実施形態では、集積回路(IC)チップ800は低雑音増幅器(LNA)トランジスタ808を含み、この低雑音増幅器(LNA)トランジスタ808は、シリコン基板890の上にある埋込み酸化膜894の中にシリコン・オン・インシュレータ(SOI)トランジスタとして形成されている。熱電冷却装置(TEC)832は、LNAトランジスタ808を冷却するために、LNAトランジスタ808の上に配置されている。TEC832用の電流源を実現する第2のトランジスタ806は、また、埋込み酸化膜894中にSOIトランジスタとして形成される。酸化膜層816を貫通する伝導性ビア構造810は、トランジスタ806のドレイン826をTEC832に結合して、TEC832のp型半導体材料838およびn型半導体材料840に電流を供給する。p型半導体領域838およびn型半導体領域840は、図7のp型半導体304およびn型半導体306と同様な機能を実現する。
【0026】
熱を放散するための熱スプレッダ830は、例えば図7のヒート・シンク316のようなヒート・シンクとして作用し、層834を介してTEC832の高温側要素に熱的に結合されているが電気的には結合されていない。層834は、例えば極薄酸化物またはアルミナで製造することができる。熱スプレッダ830は、半田で層834に結合されるかもしれない。
【0027】
N型半導体840は、薄い層836を介して低温プレート828に熱的に結合する。層836は、例えば、極薄酸化物またはアルミナから製造することができる。
【0028】
低温プレート828は、それぞれビア814および812を使用して酸化物層816を通して、トランジスタ808のドレイン824とソース822の両方に熱的に結合する。ビア812および814並びにビア810は、一般に、例えば銅(Cu)またはタングステン(W)のような金属で製造され、電気と熱の両方の優れた伝導体である。ビア814は、ドレイン拡散824と反対の不純物型である拡散領域818を通してドレイン824に熱的に結合する。この拡散領域818は、ビア814および低温プレート828のドレイン824からの電気的分離を維持しながら熱的結合を実現する。ビア812は、同様な拡散領域820を通してソース822に熱的に結合する。この拡散領域820は、ビア812および低温プレート828のソース822からの電気的分離を維持しながら、熱的結合を実現する。
【0029】
このようにして、RF動作によってトランジスタ808で熱が発生するとき、この熱は、ビア812および814を通してTEC832の低温プレート828に運び去られる。そして、この熱は低温プレート828から熱スプレッダ830に伝達され、そこでICチップ800から放散される。
【0030】
随意に、部分844の反応性イオン・エッチング(RIE)を行うことができる。RIEエッチングによって、部分844に溝を形成し、この溝によって、高温プレート838に接続されたビア810から、低温プレート828をさらに確実に熱的に分離することができる。
【0031】
図14に示す構造は、RF用ICデバイスに直接結合された熱電スポット冷却装置の例として与えるものであり、本発明を限定する意図ではない。例えば、もっと多くの、またはもっと少ない金属化層M1〜M5およびLMを、例えばトランジスタ808のようなRFデバイスと低温プレート828の間に使用することができる。さらに、トランジスタ808は、本発明の範囲および精神から逸脱することなく、任意の単一または複合の温度敏感デバイスであることができる。また、留意すべきことであるが、本発明は、SOIトランジスタとして組み立てられたRFトランジスタに限定されることはなく、バルク・トランジスタおよびトランジスタ以外のRFデバイスにも適用することができる。さらに、ICチップ802の要素は、図示したもの以外の物質および化合物で作ることができる。
【0032】
ここで図15を参照すると、本発明に従って、熱電冷却装置が受動インダクタ中に組み込まれ、熱がバルク基板中に排出される例示のRF渦巻き形インダクタ回路の断面図を示す。ICチップ900は、示した図に見ることが出来る部品908および910を有する渦巻き形インダクタを含む。渦巻き形インダクタの部品908および910は、例えば銅(Cu)のような電気伝導性材料から形成する。渦巻き形インダクタを低温端部904に形成し、インダクタ部品であるインダクタのリード線908および910を低温端部904に熱的に結合する。この低温端部904は、今度は、フォトレジスト(PR)支持912を用いてICチップ900の表面930の上に部分的に支持する。
【0033】
熱電冷却装置902は、低温端部904をTECのp型要素914およびn型要素916の低温端部に結合する、電気伝導性であるが熱伝導性でない薄い層906を含む。TECを駆動する電流は、導体932を通して供給され、この導体932は、図示の例では、第2の金属化層M2中に存在する。また、熱電冷却装置902は、ビア920への熱結合を実現するように、熱伝導性であるが電気伝導性でない第2の薄い層918を含む。そして、ビア920は、酸化物層922を貫通して基板926の高温端部924への熱接続を実現する。渦巻き形インダクタで熱が発生するとき、その熱はTEC902によって低温端部904から高温端部924に、そしてバルク・シリコン基板926に運ばれて、渦巻き形インダクタを冷やす。
【0034】
集積回路の表面にある高温プレートを介してバルク基板中か集積回路を囲繞する雰囲気中かに熱を放散することに関連して、主に本発明を説明したが、熱は他の手段でも放散することができる。例えば、熱は、空気中に直接ではなくヒート・パイプを介して排出することができる。さらに、熱電冷却装置は、単一型の熱電冷却装置に限定されることなく、例えば量子点冷却装置のようないくつかの異なる型の熱電冷却装置のいずれか1つとして実施することができる。
【0035】
また、留意すべきことであるが、本発明は、フォトレジストまたは誘電体の支持物が容易に冷却プロセスに組み込まれる状態にある金属構造を可能にする。さらに、本発明は図示の例示構造で限定されないこと、および、本発明の範囲および精神から逸脱することなく使用することができる多数の代替え構造があることにも留意すべきである。
【0036】
本発明の記述は、実例と説明のために表現され、網羅的である意図でなく、または開示された形態の発明に限定される意図でない。多くの修正物および変化物が当業者には明らかになるであろう。本発明の原理および実際的な応用を適切に説明するために、および当業者が、意図する特定の使用に適しているような様々な修正物を有する様々な実施形態に関して、本発明を理解することができるようにするために、実施形態を選びかつ説明した。
【図面の簡単な説明】
【図1】
冷却動作の恩恵を受ける一般的な無線周波数(RF)回路の例を示す回路図である。
【図2】
冷却動作の恩恵を受ける一般的な無線周波数(RF)回路の例を示す回路図である。
【図3】
冷却動作の恩恵を受ける一般的な無線周波数(RF)回路の例を示す回路図である。
【図4】
冷却動作の恩恵を受ける一般的な無線周波数(RF)回路の例を示す回路図である。
【図5】
冷却動作の恩恵を受ける一般的な無線周波数(RF)回路の例を示す回路図である。
【図6】
チップ上に形成された渦巻き形インダクタのQの一般的な温度依存性を示すグラフである。
【図7】
本発明に従った熱電冷却(TEC)デバイスを示す高レベル・ブロック図である。
【図8】
本発明に従ったICのRF回路を冷却するための直接結合冷却装置を示す上面図である。
【図9】
本発明に従った電流制御熱電冷却装置(TEC)の回路を示す図である。
【図10】
本発明に従ったRF用IC回路を冷却するためのパターン形成された低温プレートを示す上部切り取り平面図である。
【図11】
本発明に従ったRF用IC回路を冷却するためのパターン形成された低温プレートを示す上部切り取り断面図である。
【図12】
本発明に従った集積回路(IC)のLNA/PAレベルおよび本体/基板レベルと冷却装置との直接熱結合を示す上部切り取り平面図である。
【図13】
本発明に従った集積回路(IC)のLNA/PAレベルおよび本体/基板レベルと冷却装置との直接熱結合を示す上部切り取り断面図である。
【図14】
本発明に従ったRF用CMOSICの上に製造された例示の熱電スポット冷却装置を示す断面図である。
【図15】
本発明に従って、熱電冷却装置が受動インダクタ中に組み込まれ、熱がバルク基板中に排出される例示のRF渦巻き形インダクタ回路を示す断面図である。

Claims (22)

  1. 集積回路の要素を冷却するための装置であって、
    前記集積回路の選ばれた要素に熱的に結合された低温プレートと、
    前記低温プレートに熱的に結合された熱電冷却装置と、
    前記熱電冷却装置に熱的に結合された高温プレートとを備え、
    熱が前記集積回路の前記選ばれた要素から前記低温プレートを通して除去され、前記熱電冷却装置を通して前記高温プレートに伝達され、さらに
    熱が前記高温プレートから放散される装置。
  2. 前記高温プレートが、熱を周囲雰囲気に放散するように前記集積回路の表面に露出している、請求項1に記載の装置。
  3. 前記高温プレートが、熱を放散するための受動要素に熱的に結合されている、請求項1に記載の装置。
  4. 前記高温プレートが、前記集積回路のバルク基板に熱を流し込むように熱的に結合され、その結果、前記集積回路要素からの熱が、前記低温プレートから前記熱電冷却装置を通して伝達され、さらに前記高温プレートを通して前記バルク基板中に放散される、請求項3に記載の装置。
  5. 電流が前記集積回路内の電界効果トランジスタから前記熱電冷却装置に供給され、前記電界効果トランジスタのドレインがビア構造によって前記熱電冷却装置に電気的に結合されている、請求項1ないし4のいずれか一項に記載の装置。
  6. 前記低温プレートが、熱伝導体によって前記集積回路の前記選ばれた要素に熱的に結合され、前記熱伝導体が、前記集積回路の前記選ばれた要素から前記低温プレートを少なくとも部分的に電気的に分離する、請求項1ないし5のいずれか一項に記載の装置。
  7. 前記集積回路の前記選ばれた要素がトランジスタであり、前記低温プレートが前記トランジスタのドレインとソースの両方に熱的に結合されている、請求項1ないし6のいずれか一項に記載の装置。
  8. 前記トランジスタが、低雑音増幅器トランジスタである、請求項7に記載の装置。
  9. 前記トランジスタが、SOI型トランジスタである、請求項7または請求項8に記載の装置。
  10. 前記集積回路の前記選ばれた要素がコンデンサである、請求項1ないし6のいずれか一項に記載の装置。
  11. 前記集積回路の前記選ばれた要素がインダクタである、請求項1ないし6のいずれか一項に記載の装置。
  12. 前記インダクタが渦巻き形インダクタである、請求項11に記載の装置。
  13. 前記集積回路の前記選ばれた要素が、無線周波回路で使用される、請求項1ないし12のいずれか一項に記載の装置。
  14. 前記無線周波回路がアンテナを備える、請求項13に記載の装置。
  15. 前記無線周波回路が受動アンテナを備える、請求項14に記載の装置。
  16. 前記無線周波回路が低雑音増幅器を備える、請求項13ないし15のいずれか一項に記載の装置。
  17. 前記無線周波回路がミクサを備える、請求項13ないし16のいずれか一項に記載の装置。
  18. 前記無線周波回路が直角位相発信器を備える、請求項13ないし17のいずれか一項に記載の装置。
  19. 前記無線周波回路が電力増幅器を備える、請求項13ないし18のいずれか一項に記載の装置。
  20. 前記熱電冷却装置が量子点冷却装置である、請求項1ないし19のいずれか一項に記載の装置。
  21. 前記低温プレートが、支持物によって、前記集積回路の表面から離れて部分的に支持されている、請求項1ないし20のいずれか一項に記載の装置。
  22. 前記支持物がフォトレジストを含む、請求項21に記載の装置。
JP2002550313A 2000-12-11 2001-12-11 Rfおよびマイクロ波通信集積回路用熱電スポット冷却装置 Expired - Fee Related JP4478388B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/734,519 US6588217B2 (en) 2000-12-11 2000-12-11 Thermoelectric spot coolers for RF and microwave communication integrated circuits
PCT/GB2001/005469 WO2002049105A2 (en) 2000-12-11 2001-12-11 Thermoelectric spot coolers for rf and microwave communication integrated circuits

Publications (2)

Publication Number Publication Date
JP2004516653A true JP2004516653A (ja) 2004-06-03
JP4478388B2 JP4478388B2 (ja) 2010-06-09

Family

ID=24952016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002550313A Expired - Fee Related JP4478388B2 (ja) 2000-12-11 2001-12-11 Rfおよびマイクロ波通信集積回路用熱電スポット冷却装置

Country Status (10)

Country Link
US (1) US6588217B2 (ja)
EP (1) EP1342267A2 (ja)
JP (1) JP4478388B2 (ja)
KR (1) KR100543858B1 (ja)
CN (1) CN100409432C (ja)
AU (1) AU2002220923A1 (ja)
CA (1) CA2426562C (ja)
IL (2) IL156321A0 (ja)
TW (1) TW538515B (ja)
WO (1) WO2002049105A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526035A (ja) * 2004-12-27 2008-07-17 インテル・コーポレーション 内蔵熱電冷却機を備えるマイクロエレクトロニクス・アセンブリおよびその製造方法
JP2017162905A (ja) * 2016-03-08 2017-09-14 Necスペーステクノロジー株式会社 温度制御装置、方法、およびそれに使用される制御回路
US10411658B2 (en) 2016-12-14 2019-09-10 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10132763B4 (de) * 2001-07-10 2007-10-11 Robert Bosch Gmbh Integrierte Halbleiterschaltung, Verfahren zum Kühlen eines Mikrowellenschaltungsbereiches und Verfahren zum Herstellen einer integrierten Halbleiterschaltung
DE10141083B4 (de) * 2001-08-22 2006-02-16 Siemens Ag Verfahren und Anordnung zur Temperaturregelung eines Peltier-Elements
IL146838A0 (en) * 2001-11-29 2002-07-25 Active Cool Ltd Active cooling system for cpu
US6743662B2 (en) * 2002-07-01 2004-06-01 Honeywell International, Inc. Silicon-on-insulator wafer for RF integrated circuit
WO2005061972A1 (en) * 2002-12-06 2005-07-07 Nanocoolers, Inc. Cooling of electronics by electrically conducting fluids
US7129640B2 (en) * 2003-06-03 2006-10-31 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Integrated circuit device for driving a laser diode with reduced heat transfer and method for fabricating the device
US7224059B2 (en) * 2003-10-21 2007-05-29 Intel Corporation Method and apparatus for thermo-electric cooling
US20100257871A1 (en) * 2003-12-11 2010-10-14 Rama Venkatasubramanian Thin film thermoelectric devices for power conversion and cooling
US7638705B2 (en) * 2003-12-11 2009-12-29 Nextreme Thermal Solutions, Inc. Thermoelectric generators for solar conversion and related systems and methods
US20050150536A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Method for forming a monolithic thin-film thermoelectric device including complementary thermoelectric materials
US20050150537A1 (en) * 2004-01-13 2005-07-14 Nanocoolers Inc. Thermoelectric devices
US20050150539A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Monolithic thin-film thermoelectric device including complementary thermoelectric materials
US20050150535A1 (en) * 2004-01-13 2005-07-14 Nanocoolers, Inc. Method for forming a thin-film thermoelectric device including a phonon-blocking thermal conductor
US20050160752A1 (en) * 2004-01-23 2005-07-28 Nanocoolers, Inc. Apparatus and methodology for cooling of high power density devices by electrically conducting fluids
US8028531B2 (en) * 2004-03-01 2011-10-04 GlobalFoundries, Inc. Mitigating heat in an integrated circuit
US7286359B2 (en) * 2004-05-11 2007-10-23 The U.S. Government As Represented By The National Security Agency Use of thermally conductive vias to extract heat from microelectronic chips and method of manufacturing
US20050257821A1 (en) * 2004-05-19 2005-11-24 Shriram Ramanathan Thermoelectric nano-wire devices
US7250327B2 (en) * 2004-06-30 2007-07-31 Intel Corporation Silicon die substrate manufacturing process and silicon die substrate with integrated cooling mechanism
US20060000500A1 (en) * 2004-06-30 2006-01-05 Ioan Sauciuc Thermoelectric module
US20060076046A1 (en) * 2004-10-08 2006-04-13 Nanocoolers, Inc. Thermoelectric device structure and apparatus incorporating same
US7523617B2 (en) * 2004-10-22 2009-04-28 Nextreme Thermal Solutions, Inc. Thin film thermoelectric devices for hot-spot thermal management in microprocessors and other electronics
US7296417B2 (en) * 2004-12-23 2007-11-20 Nanocoolers, Inc. Thermoelectric configuration employing thermal transfer fluid flow(s) with recuperator
US7293416B2 (en) * 2004-12-23 2007-11-13 Nanocoolers, Inc. Counterflow thermoelectric configuration employing thermal transfer fluid in closed cycle
US7475551B2 (en) 2004-12-23 2009-01-13 Nanocoolers, Inc. System employing temporal integration of thermoelectric action
US7743614B2 (en) 2005-04-08 2010-06-29 Bsst Llc Thermoelectric-based heating and cooling system
US7795711B2 (en) * 2005-10-20 2010-09-14 Intel Corporation Microelectronic cooling apparatus and associated method
US20070150115A1 (en) * 2005-12-27 2007-06-28 Micron Technology, Inc. Operation and design of integrated circuits at constrained temperature ranges in accordance with bit error rates
CA2655224A1 (en) * 2006-07-07 2008-01-10 Abb Research Ltd Circuit arrangement for electrically controlling power and cooling arrangement
US7861538B2 (en) * 2006-07-26 2011-01-04 The Aerospace Corporation Thermoelectric-based refrigerator apparatuses
US20080022695A1 (en) * 2006-07-26 2008-01-31 Welle Richard P Input Power Control for Thermoelectric-Based Refrigerator Apparatuses
US20100155018A1 (en) 2008-12-19 2010-06-24 Lakhi Nandlal Goenka Hvac system for a hybrid vehicle
US7851237B2 (en) * 2007-02-23 2010-12-14 Infineon Technologies Ag Semiconductor device test structures and methods
US7781263B2 (en) * 2008-06-06 2010-08-24 Coolsilicon Llc Systems, devices, and methods for semiconductor device temperature management
US8264055B2 (en) * 2008-08-08 2012-09-11 Texas Instruments Incorporated CMOS thermoelectric refrigerator
DE102008049726B4 (de) * 2008-09-30 2012-02-09 Advanced Micro Devices, Inc. Gestapelte Chipkonfiguration mit stromgespeistem Wärmeübertragungssystem und Verfahren zum Steuern der Temperatur in einem Halbleiterbauelement
MX2011012238A (es) 2009-05-18 2012-02-28 Bsst Llc Sistema de gestion termica accionado por bateria electrica.
TWI407545B (zh) * 2009-08-19 2013-09-01 Ind Tech Res Inst 整合熱電元件與晶片的封裝體
US8248173B2 (en) 2010-04-27 2012-08-21 The Charles Stark Draper Laboratory, Inc. Devices, systems, and methods for controlling the temperature of resonant elements
WO2012037099A2 (en) * 2010-09-13 2012-03-22 Ferrotec (Usa) Corporation Thermoelectric modules and assemblies with stress reducing structure
US8904809B2 (en) * 2011-03-17 2014-12-09 The Aerospace Corporation Methods and systems for solid state heat transfer
US8722222B2 (en) 2011-07-11 2014-05-13 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
KR101928005B1 (ko) 2011-12-01 2019-03-13 삼성전자주식회사 열전 냉각 패키지 및 이의 열관리 방법
DE112014000419T5 (de) 2013-01-14 2015-10-15 Gentherm Incorporated Auf Thermoelektrik basierendes Thermomanagement elektrischer Vorrichtungen
KR102117141B1 (ko) 2013-01-30 2020-05-29 젠썸 인코포레이티드 열전-기반 열 관리 시스템
US9303902B2 (en) 2013-03-15 2016-04-05 Laird Technologies, Inc. Thermoelectric assembly
US9506675B1 (en) 2013-09-23 2016-11-29 Geoffrey O. Campbell Thermoelectric coolers with asymmetric conductance
US9590282B2 (en) 2013-10-29 2017-03-07 Gentherm Incorporated Battery thermal management systems including heat spreaders with thermoelectric devices
US10162394B2 (en) 2014-09-10 2018-12-25 Arizona Board Of Regents On Behalf Of Arizona State University Systems and methods for sustainable self-cooling of central processing unit thermal hot spots using thermoelectric materials
CN110233308A (zh) 2014-09-12 2019-09-13 詹思姆公司 石墨热电和/或电阻热管理系统和方法
US10088697B2 (en) * 2015-03-12 2018-10-02 International Business Machines Corporation Dual-use electro-optic and thermo-optic modulator
WO2016149289A1 (en) * 2015-03-16 2016-09-22 California Institute Of Technology Differential ring modulator
US10072879B1 (en) * 2015-04-20 2018-09-11 National Technology & Engineering Solutions Of Sandia, Llc Method and apparatus of enhanced thermoelectric cooling and power conversion
US10551715B2 (en) 2015-05-22 2020-02-04 California Institute Of Technology Optical ring modulator thermal tuning technique
US9773717B1 (en) 2016-08-22 2017-09-26 Globalfoundries Inc. Integrated circuits with peltier cooling provided by back-end wiring
US11625523B2 (en) 2016-12-14 2023-04-11 iCometrue Company Ltd. Logic drive based on standard commodity FPGA IC chips
TWI824467B (zh) 2016-12-14 2023-12-01 成真股份有限公司 標準大宗商品化現場可編程邏輯閘陣列(fpga)積體電路晶片組成之邏輯驅動器
US10608638B2 (en) 2018-05-24 2020-03-31 iCometrue Company Ltd. Logic drive using standard commodity programmable logic IC chips
US11309334B2 (en) 2018-09-11 2022-04-19 iCometrue Company Ltd. Logic drive using standard commodity programmable logic IC chips comprising non-volatile random access memory cells
US10937762B2 (en) 2018-10-04 2021-03-02 iCometrue Company Ltd. Logic drive based on multichip package using interconnection bridge
US11211334B2 (en) 2018-11-18 2021-12-28 iCometrue Company Ltd. Logic drive based on chip scale package comprising standardized commodity programmable logic IC chip and memory IC chip
CN113167510A (zh) 2018-11-30 2021-07-23 金瑟姆股份公司 热电调节系统和方法
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
US11227838B2 (en) 2019-07-02 2022-01-18 iCometrue Company Ltd. Logic drive based on multichip package comprising standard commodity FPGA IC chip with cooperating or supporting circuits
US11887930B2 (en) * 2019-08-05 2024-01-30 iCometrue Company Ltd. Vertical interconnect elevator based on through silicon vias
US11637056B2 (en) 2019-09-20 2023-04-25 iCometrue Company Ltd. 3D chip package based on through-silicon-via interconnection elevator
KR102211996B1 (ko) * 2020-06-05 2021-02-05 삼성전자주식회사 반도체 패키지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636864A (ja) * 1986-06-26 1988-01-12 Mitsubishi Electric Corp トランジスタ装置
JPH0964255A (ja) * 1995-08-25 1997-03-07 Murata Mfg Co Ltd 半導体装置
JPH09181261A (ja) * 1995-12-25 1997-07-11 Matsushita Electric Works Ltd 誘電体分離型半導体装置
JPH1032520A (ja) * 1996-04-01 1998-02-03 Nokia Mobile Phones Ltd 2つの周波数帯域の無線周波数信号を送受信する送受信装置
JPH11168415A (ja) * 1997-09-11 1999-06-22 Delco Electron Corp 自動車遠隔キーレス・エントリ・システム用受信機
JPH11289052A (ja) * 1998-01-13 1999-10-19 Internatl Business Mach Corp <Ibm> 半導体チップのための埋め込み型熱導体
JP2000124510A (ja) * 1998-10-19 2000-04-28 Nissan Motor Co Ltd 電子冷却モジュール
JP2000340723A (ja) * 1999-05-31 2000-12-08 Toshiba Corp 半導体スイッチ装置およびこの半導体スイッチ装置を用いた電力変換装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8418025U1 (de) 1984-09-13 Heidenreich, Hermann, 7000 Stuttgart Halbleiterbauelement
FR2328286A1 (fr) 1975-10-14 1977-05-13 Thomson Csf Procede de fabrication de dispositifs a semiconducteurs, presentant une tres faible resistance thermique, et dispositifs obtenus par ledit procede
JPS61172358A (ja) 1985-01-26 1986-08-04 Hideo Masubuchi ペルチエ冷却法利用の集積回路
US5040381A (en) * 1990-04-19 1991-08-20 Prime Computer, Inc. Apparatus for cooling circuits
JPH05168846A (ja) 1990-10-30 1993-07-02 Nippondenso Co Ltd 除湿装置
US5130276A (en) 1991-05-16 1992-07-14 Motorola Inc. Method of fabricating surface micromachined structures
JPH0539966A (ja) 1991-08-07 1993-02-19 Matsushita Electric Ind Co Ltd ヒートポンプデバイス
JP2924369B2 (ja) 1991-11-20 1999-07-26 松下電器産業株式会社 ヒートポンプデバイス
RU2034207C1 (ru) 1992-11-05 1995-04-30 Товарищество с ограниченной ответственностью компании "Либрация" Способ охлаждения объекта каскадной термоэлектрической батареей
WO1994028364A1 (en) 1993-05-25 1994-12-08 Industrial Research Limited A peltier device
JPH0722549A (ja) 1993-06-30 1995-01-24 Pioneer Electron Corp 電子冷却半導体装置
US5655375A (en) * 1996-06-24 1997-08-12 Y.B.S. Enterprises, Inc. Antenna mast-top mountable thermo-electrically cooled amplifier enclosure system
US6052559A (en) 1997-05-02 2000-04-18 Motorola, Inc. Thermoelectrically cooled low noise amplifier and method
JP3234178B2 (ja) * 1997-08-04 2001-12-04 株式会社エスアイアイ・アールディセンター 冷却装置
US5966940A (en) * 1997-11-18 1999-10-19 Micro Component Technology, Inc. Semiconductor thermal conditioning apparatus and method
US5867990A (en) 1997-12-10 1999-02-09 International Business Machines Corporation Thermoelectric cooling with plural dynamic switching to isolate heat transport mechanisms
US5966941A (en) 1997-12-10 1999-10-19 International Business Machines Corporation Thermoelectric cooling with dynamic switching to isolate heat transport mechanisms
US6000225A (en) 1998-04-27 1999-12-14 International Business Machines Corporation Two dimensional thermoelectric cooler configuration
US6388185B1 (en) 1998-08-07 2002-05-14 California Institute Of Technology Microfabricated thermoelectric power-generation devices
US6161388A (en) 1998-12-28 2000-12-19 International Business Machines Corporation Enhanced duty cycle design for micro thermoelectromechanical coolers
DE10009899A1 (de) 2000-03-01 2001-11-22 Jochen Straehle Integriertes aktives Halbleiterkomponentenkühlsystem
TW497234B (en) * 2000-03-29 2002-08-01 Omnivision Tech Inc Image sensor integrate circuit package having cooling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636864A (ja) * 1986-06-26 1988-01-12 Mitsubishi Electric Corp トランジスタ装置
JPH0964255A (ja) * 1995-08-25 1997-03-07 Murata Mfg Co Ltd 半導体装置
JPH09181261A (ja) * 1995-12-25 1997-07-11 Matsushita Electric Works Ltd 誘電体分離型半導体装置
JPH1032520A (ja) * 1996-04-01 1998-02-03 Nokia Mobile Phones Ltd 2つの周波数帯域の無線周波数信号を送受信する送受信装置
JPH11168415A (ja) * 1997-09-11 1999-06-22 Delco Electron Corp 自動車遠隔キーレス・エントリ・システム用受信機
JPH11289052A (ja) * 1998-01-13 1999-10-19 Internatl Business Mach Corp <Ibm> 半導体チップのための埋め込み型熱導体
JP2000124510A (ja) * 1998-10-19 2000-04-28 Nissan Motor Co Ltd 電子冷却モジュール
JP2000340723A (ja) * 1999-05-31 2000-12-08 Toshiba Corp 半導体スイッチ装置およびこの半導体スイッチ装置を用いた電力変換装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526035A (ja) * 2004-12-27 2008-07-17 インテル・コーポレーション 内蔵熱電冷却機を備えるマイクロエレクトロニクス・アセンブリおよびその製造方法
JP4922947B2 (ja) * 2004-12-27 2012-04-25 インテル・コーポレーション 内蔵熱電冷却機を備えるマイクロエレクトロニクス・アセンブリおよびその製造方法
JP2017162905A (ja) * 2016-03-08 2017-09-14 Necスペーステクノロジー株式会社 温度制御装置、方法、およびそれに使用される制御回路
US10411658B2 (en) 2016-12-14 2019-09-10 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
IL156321A (en) 2007-05-15
WO2002049105A3 (en) 2002-12-05
EP1342267A2 (en) 2003-09-10
CN1650422A (zh) 2005-08-03
IL156321A0 (en) 2004-01-04
WO2002049105A2 (en) 2002-06-20
CA2426562A1 (en) 2002-06-20
US20020092307A1 (en) 2002-07-18
JP4478388B2 (ja) 2010-06-09
AU2002220923A1 (en) 2002-06-24
KR20040014435A (ko) 2004-02-14
TW538515B (en) 2003-06-21
CN100409432C (zh) 2008-08-06
US6588217B2 (en) 2003-07-08
KR100543858B1 (ko) 2006-01-23
CA2426562C (en) 2007-07-31

Similar Documents

Publication Publication Date Title
JP4478388B2 (ja) Rfおよびマイクロ波通信集積回路用熱電スポット冷却装置
US7523617B2 (en) Thin film thermoelectric devices for hot-spot thermal management in microprocessors and other electronics
Johnson et al. Advanced thin-film silicon-on-sapphire technology: Microwave circuit applications
US6639242B1 (en) Monolithically integrated solid-state SiGe thermoelectric energy converter for high speed and low power circuits
Tinella et al. A high-performance CMOS-SOI antenna switch for the 2.5-5-GHz band
US6727422B2 (en) Heat sink/heat spreader structures and methods of manufacture
US6222113B1 (en) Electrically-isolated ultra-thin substrates for thermoelectric coolers
US6614109B2 (en) Method and apparatus for thermal management of integrated circuits
US9721909B1 (en) Hybrid microwave integrated circuit
US20090115052A1 (en) Hybrid silicon/non-silicon electronic device with heat spreader
US10103083B2 (en) Integrated circuits with Peltier cooling provided by back-end wiring
Maeda et al. Feasibility of 0.18/spl mu/m SOI CMOS technology using hybrid trench isolation with high resistivity substrate for embedded RF/analog applications
HARADA et al. Low dc power Si-MOSFET L-and C-band low noise amplifiers fabricated by SIMOX technology
US20210384102A1 (en) Low noise amplifiers on soi with on-die cooling structures
Wang Recent advance in thermoelectric devices for electronics cooling
Moussa CMOS SOI distributed amplifiers for new communication systems
JP2000150780A (ja) 半導体装置、その製造方法、およびその半導体装置を用いた光伝送装置ならびに移動体無線携帯機
CN108878385B (zh) 射频集成电路器件及其制造方法
JP2004328561A (ja) マイクロスイッチ及び送受信装置
Tiberj et al. Effect of silicon nitride and silicon dioxide bonding on the residual stress in layer-transferred SOI
Burghartz Review of add-on process modules for high-frequency silicon technology
KODATE et al. Gain improvement of a 2.4-GHz/5-GHz CMOS low noise amplifier by using high-resistivity silicon-on-insulator wafers
El Kaamouchi Design and characterization of monolithic microwave integrated circuits in CMOS SOI technology for high temperature applications
JP2000315769A (ja) 三次元モノリシックマイクロ波集積回路

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060524

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees