JP2004514364A - 多重周波数帯域における電磁インピーダンスの大きいテクスチャ化表面 - Google Patents

多重周波数帯域における電磁インピーダンスの大きいテクスチャ化表面 Download PDF

Info

Publication number
JP2004514364A
JP2004514364A JP2002543745A JP2002543745A JP2004514364A JP 2004514364 A JP2004514364 A JP 2004514364A JP 2002543745 A JP2002543745 A JP 2002543745A JP 2002543745 A JP2002543745 A JP 2002543745A JP 2004514364 A JP2004514364 A JP 2004514364A
Authority
JP
Japan
Prior art keywords
array
conductive
high impedance
conductive plates
ground plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002543745A
Other languages
English (en)
Other versions
JP2004514364A5 (ja
JP3935072B2 (ja
Inventor
シャフナー,ジェイムズ,エイチ.
シーヴェンパイパー,ダニエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HRL Laboratories LLC
Original Assignee
HRL Laboratories LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HRL Laboratories LLC filed Critical HRL Laboratories LLC
Publication of JP2004514364A publication Critical patent/JP2004514364A/ja
Publication of JP2004514364A5 publication Critical patent/JP2004514364A5/ja
Application granted granted Critical
Publication of JP3935072B2 publication Critical patent/JP3935072B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/008Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Aerials With Secondary Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Details Of Aerials (AREA)

Abstract

複数の周波数帯域における反射位相がゼロの高インピーダンス表面、およびその製造方法である。高インピーダンス表面は、接地平面と、接地平面から一定の距離を隔てて配置された第1のアレイ中に配置された複数の導電プレートであって、接地平面と第1のアレイとの間の距離が無線周波数ビームの波長より短く、前記第1のアレイが第1の格子定数を有する複数の導電プレートと、第1のアレイの格子定数より大きい格子定数を有する第2のアレイを形成する、前記複数の導電プレートと関連した複数の導電エレメントとを備えている。

Description

【0001】
(技術分野)
本発明はアンテナの分野に関し、詳細には、高インピーダンス(「Hi−Z」)表面の領域および二重帯域すなわち多重周波数帯域アンテナに関する。
【0002】
(発明の背景および関連出願の参照)
高インピーダンス(Hi−Z)表面とは、電磁特性が変化する専用のテクスチャを備えた接地平面のことである。重要な特性には、表面波の抑制、電磁波の同相反射、および薄いアンテナをHi−Z表面上に印刷することができること、あるいはHi−Z表面上に直接形成することができることが含まれている。
【0003】
Hi−Z表面の一実施形態は、1999年10月7日にWO99/50929で公布された、D.SievenpiperおよびE.Yablonovitchによる「Circuit and Method for Eliminating Surface Currents on Metals」という名称の既に出願済みのPCT出願第PCT/US99/06884号の主題である。本参照によりその開示のすべてが本明細書に組み込まれる、2000年12月22日出願の「A Polarization Converting Reflector」という名称の第PCT/US00/35031号、2001年3月28日出願の「An End−Fire Antenna or Array on Surface with Tunable Impedance」という名称の第PCT/US01/09895号、および2001年1月10日出願の「An Electronically Tunable Reflector」という名称の第PCT/US01/00855号を始めとする最近出願されたPCT特許出願の中に、いくつかの改善が記述されている。
【0004】
本発明は、Hi−Z表面に多重帯域動作を提供することにより、構造の固有対称性を維持しつつHi−Z表面の有用性を拡張する技法に関する。この技法により、薄いアンテナを多重帯域で動作させることができるため、これは重要な開発である。例えば、1つのアンテナでGPS帯域の両方(1.2GHzおよび1.5GHz)をカバーすることができる。また、単一のアンテナで、1.9GHzのPC帯域およびブルートゥース(Bluetooth)、新しい携帯電話、衛星無線同報通信などのプラットフォームにますます重要になりつつある2.4GHzの無免許帯域の両方をカバーすることができる。
【0005】
本発明により、多重帯域アンテナを、同じ総合帯域幅を有する通常のHi−Z表面よりはるかに薄くすることができ、また、多重高インピーダンス帯域を持たせることにより、このような表面の可能最大帯域幅を拡張することができる。
【0006】
高インピーダンス(Hi−Z)表面は、平らなシートからわずかに突き出た金属プレートの周期的テクスチャによって覆われた、平らな金属シートからなっている。Hi−Z表面は、通常、2層または3層印刷回路基板として構築されている。印刷回路基板の頂部層には金属プレートが印刷され、金属めっきビアによって底部層上の平らな接地平面に接続されている。図1は、このような構造の一実施例を示したもので、六角形の金属プレートの三角格子からなっている(導電エレメントを分かり易く示すために、図1には印刷回路基板は省略されている)。金属プレートは、互いに近接しているため、有限のキャパシタンスを有している。金属プレートは、ビアおよび下部金属プレートを備えた、インダクタンスに寄与している導電経路によってリンクしている。この構造により、これらのエレメントの幾何学によって共振周波数が決まるLC共振器のパターンが得られる。隣接する金属プレート対の各々は、めっき金属ビアおよび金属接地平面と共に、Hi−Z表面の「セル」を形成している。典型的なHi−Z表面は、数百個さらには数千個のこのようなセルを有している。
【0007】
図1に示す従来の高インピーダンス表面は、平らな金属シートすなわち接地平面12の上に配置された、同一の金属頂部プレートすなわちエレメント10のアレイからなっている。この従来の高インピーダンス表面は、印刷回路基板技術を使用して、印刷回路基板の頂部表面すなわち第1の表面に、金属プレートすなわちエレメント10を形成し、かつ、印刷回路基板の底部表面すなわち第2の表面に、固体導電接地平面すなわちバックプレーン12を形成することによって製造されている。エレメント10とその下側の接地平面12とを接続している垂直方向の接続部は、金属めっきビア14として印刷回路基板中に形成されている。ビア14は、エレメント10上の中心に置かれている。頂部プレート10およびビア14を備えた金属部材は、二次元格子のセルに配列されており、平らな金属表面12からわずかに突き出たマッシュルーム形あるいは画鋲形の部材を思い浮かべることができる。印刷回路基板によって提供されることが好ましい基板16の厚さによって制御される構造の厚さは、当該周波数の1波長λよりはるかに短くなっている。また、エレメント10のサイズも、当該周波数の1波長λ未満に維持されている。分かり易くするために、図1には印刷回路基板16は示されていないが、印刷回路基板16は、図2aでいつでも見ることができる。分かり易くするために、図1には頂部プレート10のアレイのごく一部しか示されていないが、極めて多数の金属頂部プレートを利用してHi−Z表面が形成されている。
【0008】
この構造は、2つの重要な特性を有しており、表面波による接地平面を横切る伝搬を抑制し、また、高表面インピーダンスを提供し、それにより短絡を生じることなくアンテナを構造上に平らに横たえることができるが、この2つの特性がもたらされるのは、特定の周波数帯域に対してのみである。高インピーダンス領域の周波数および帯域幅は、表面のキャパシタンスおよびインダクタンスを変化させることによって調整することができる。インダクタンスは、帯域幅を直接決定している厚さによって決まる。帯域幅は、tが厚さであり、λが共振波長である2πt/λに等しい。数十GHzのレンジで動作する構造の場合、数ミリメートルの厚さによって、1オクターブに近い帯域幅が提供されるが、重要な周波数レジームであるS帯域およびL帯域に対しては、この厚さによって提供される帯域幅は、10〜20%に過ぎない。UHF周波数に対しては、数センチメートルの厚さtでも、提供される帯域幅はせいぜい数パーセントに過ぎない。
【0009】
多重帯域アンテナには、すべての当該帯域に及ぶ全周波数レンジをカバーする必要がないことがしばしばであるが、本明細書において説明する類の多重帯域Hi−Z表面の場合、未使用周波数の比較的広い帯域で分離された複数の狭帯域をカバーすることが可能である。事実、このことは、帯域外干渉を抑制するためには有利である。多重帯域アンテナの場合、個々の帯域の帯域幅が、それらの間の総周波数分離よりはるかに小さい複数の帯域に、高インピーダンス状態を提供する表面を持つことが望ましく、それにより、すべての帯域を同時にカバーする設計構造より薄くすることができ、また、他の不要な信号の受信を抑制することができる。図2aおよび2bは、これを示したものである。図2aは、比較的分厚い誘電体基板16を備えた従来の2層Hi−Z表面1を示したものである。図2a−1は、図2aのHi−Z表面によってもたらされる単一帯域ギャップの線図である。図2bは、本発明によるHi−Z表面の一実施形態を示したものである。図2b−1は、図2bのHi−Z表面によってもたらされる2つの帯域ギャップの線図である。図2bの実施形態の2つの基板16および22を組み合わせた厚さは、従来技術に典型的に使用されている、Hi−Z表面を備えた基板16の厚さより薄くなっている。
【0010】
図2bに示す二重帯域実施形態は、図2aに示す実施形態と比較した場合、各々の帯域幅が比較的小さい2つの帯域を有しているため、図2bの二重帯域Hi−Z表面は、図2aに示す従来技術による表面より実質的に薄くすることができる。したがって二重帯域Hi−Z表面は、匹敵する従来技術の表面より薄く、かつ、より優れた帯域外干渉の抑制をもたらしている。
【0011】
多重帯域Hi−Z表面を製造するための技法は、異なる内部Hi−Z表面領域を、それぞれ固有の共振で識別することができるよう、局部非対称性によって単一モードを多重モードに分割する多重共振構造を提供する技術、として要約することができる。これらの多重帯域Hi−Z表面の重要な特徴は、ユニットセルのサイズがより大きくなることがしばしばであるとしても、多重帯域Hi−Z表面が、従来の単一帯域Hi−Z表面として、ある程度の総合的対称性を維持することができることである。少なくとも三重回転対称性を備えた従来のHi−Z表面により、受信波または送信波の特性に影響を及ぼすことなく、所望する任意の配向を表面実装アンテナに持たせることができることが実験的に分かっているため、このことは重要である。したがって対称構造を使用することにより、差動ビームダイバーシティアンテナなどの特定のタイプのアンテナの設計を単純にすることができる。一方、偏波制御すなわち調整が望ましい場合は、上に挙げたPCT特許出願第PCT/US00/35031号に記述されているように、表面の対称性を崩すこともできる。この表面の対称性の破壊は、例えば、直線偏波と円偏波との間の変換を可能にするために有用である。本発明は、対称性および非対称性の両Hi−Z表面構造と共に使用することができる。
【0012】
一態様では、本発明により、複数の周波数帯域における反射位相がゼロの高インピーダンス表面が提供される。高インピーダンス表面は、接地平面と、接地平面から一定の距離を隔てて配置された第1のアレイ中に配置された複数の導電プレートであって、接地平面と第1のアレイとの間の距離が無線周波数ビームの波長より短く、前記第1のアレイが第1の格子定数を有する複数の導電プレートと、第1のアレイの格子定数と同じ格子定数あるいは異なる格子定数を有する第2のアレイを形成する、前記複数の導電プレートと関連した複数の導電エレメントとを備えている。
【0013】
複数の導電エレメントは、導電プレートの他のアレイによって、および/または第1のアレイ中に配置された複数の導電プレートを接地平面に結合する導電部材のアレイによって提供されている。
【0014】
他の態様では、本発明により、複数の周波数においてゼロ位相応答を示す高インピーダンス表面を製造する方法が提供される。この方法には、接地平面および接地平面から一定の距離を隔てて配置された第1のアレイ中に配置された複数の導電プレートを有する高インピーダンス表面を形成するステップであって、接地平面と第1のアレイとの間の距離が無線周波数ビームの波長より短いステップと、前記複数の導電プレートを前記接地平面に接続する、前記複数の導電プレートと関連した複数の導電エレメントを形成するステップと、前記複数の導電エレメントの各々を、関連する導電プレートの幾何学中心から一定の距離を隔てて配置するステップであって、導電プレートの所定のクラスタと関連したすべての導電エレメントが、所与のクラスタの共通ポイントに向かう方向に間隔を隔てて配置されるステップとが含まれている。
【0015】
(好ましい実施形態の詳細な説明)
本明細書において説明する新しい構造と比較するべく、HFSSソフトウェアを使用して、従来のHi−Z表面がシミュレートされた。図3aの平面図に示す従来の構造は、160ミル(4.06mm)の格子上に配列された、それぞれ150ミル(3.8mm)平方の頂部エレメント10のアレイとして構築され、米国アリゾナ州ChandlerのRogers Corporation製の、厚さ62ミル(1.6mm)のDuroid 5880で形成された基板16(図2a参照)上に配置されている。導電ビア14は、頂部プレート10内の中心に置かれ、その直径は、それぞれ20ミル(0.5mm)である。頂部プレートおよび底部接地平面12は、銅製である。この解析においては、アレイおよび接地平面の広がりは非常に大きく、したがってアレイは、通常、図に示す数よりはるかに多数のプレートで構築されているものとする。HFSSソフトウェアによるシミュレーションによれば、従来のこのHi−Z表面は、図3bから分かるように、約11GHzの単一共振を有している。共振は、反射位相がゼロを交差する周波数として識別することができる。この周波数においては、有限の電界が表面でサポートされ、短絡を生じることなく、表面に隣接して直接アンテナを置くことができる。アンテナの実用帯域幅は、位相曲線の傾きに比例し、位相が−π/2〜+π/2の範囲に入る領域として近似することができる。
【0016】
Hi−Z表面は、導電ビア14を、必要に応じて、例えば構造の本来の対称性が維持されるやり方で、頂部金属プレート10の幾何学中心から外れて移動させることによって二重帯域にすることができる。図4aは、その一例を示したもので、好ましくは導電性を持たせるべく金属が充填された複数のビア14が、4つのビアからなる(この実施形態では)複数のグループを作って集まっており、クラスタ中の隣り合うビア14は、隣接する頂部プレート10のグループすなわちクラスタが対称配列されている中心点18の方向に移動したかの如くに位置付けされている。この配列により、この構造の対称性が維持されているが、ユニットセルには、以前のセルが4つ含まれている。これを考察する別の方法は、図に示す構造の格子定数を考察することである。ビア14の格子定数は、プレート10の格子定数の2倍である(すなわち、単独で考察した場合、ビア14の幾何学が反覆する距離が、頂部プレート10の幾何学が反覆する距離の2倍である)。対称性を維持することは、この構造上に構築されるアンテナの放射特性にとって重要であり、また、2つの個別共振を生成するためにも重要である。複数のビア14のすべてが同じ方向に移行すると、それにより共振周波数が移動する効果が得られるが、共振周波数が分割されることはない。この場合、ビア14の格子定数は、頂部プレート10の格子定数と同じである。また、この構造は、新しい共振周波数が入力波の偏波に依存している点で異方性である。
【0017】
ビアを移動すなわち移行させるこの技法を使用することにより、個別に変化させることができる2つの共振を備えた構造を提供することができる。図4b〜4dに示す反射位相グラフは、これを示したもので、2つの共振周波数の比率は、ビアのオフセットを20ミルから60ミル(0.5mmから1.5mm)に変更することによって調整されている。図4bに示す反射位相グラフを得るために、ビア14は、頂部プレート10の中心から20ミル(0.5mm)だけオフセットされている。図4bでは、構造の共振は、7.5GHzおよび11.5GHzの2つの共振に分割されている。図4cの場合、ビア14は、頂部プレート10の中心から40(1.0mm)だけオフセットされ、それにより7GHzおよび13GHzの2つの共振がもたらされ、また、図4dでは、ビア14は、頂部プレート10の中心から60ミル(1.5mm)だけオフセットされ、それにより6GHzおよび13.5GHzの共振がもたらされている。ビア14を移行させる効果を他の要因から分離するために、図4aに示す実施形態の頂部プレート10のサイズ、間隔、および基板16の厚さは、図3aに示す実施形態の試験と同じ値が維持されている。
【0018】
ユニットセルが5つ以上のプレートからなる、より複雑な格子にすることにより、3つ以上の共振を生成することができる。各ユニットセルの内部モードが多ければ多いほど、構造の共振周波数が多くなる。また、正方形の格子ではなく、三角形、六角形または他の形状の格子に基づいた類似特性を有する構造を構築することもできる。
【0019】
より複雑な多重帯域構造により、さらに柔軟性に富んだHi−Z表面反射位相構造が提供される。図5a〜5cの側面図を考察されたい。図5aは、図4a〜4dを参照して上で説明した、ビアが移動した基本二重帯域2層構造を略図で示したものである。図5bおよび5cは、二重帯域3層構造を示したものである。追加絶縁層22および頂部プレート20のアレイの頂部金属層が追加され、セル間のキャパシタンスを大きくしている。頂部プレート20の追加アレイは、追加アレイを接地平面12に接続している、それぞれ独自の導電ビア15を有している。このような追加により、所与の厚さに対する共振周波数が低くなり、また、Hi−Z表面の帯域幅が狭くなっている。これらの追加層を追加することにより、多重帯域Hi−Z構造の製造に利用することができる複雑性が付加されている。図5bに示す実施形態では、ビア14のみが中心を外れて移動し、ビア15は、それぞれ関連する頂部プレート20の中心に置かれたままである。図5cに示す実施形態では、1つは比較的サイズが大きく、もう1つは比較的サイズが小さい2つのグループのプレート20が存在するよう、頂部プレート20のサイズが調整されているが、ビア14および15は、すべてプレート10および20の中心にそれぞれ置かれている。上記2つの実施形態は、2層バージョンに関連して示した方法と同様の方法で共振を分割する効果を有している。したがって、(i)ビアの位置を、クラスタ中の関連するそれぞれの頂部プレートの中心を外れて、共通ポイントに向けて移動させるか、あるいは(ii)下部層であるプレート10のプレート10サイズとは異なるサイズの導電頂部プレート20の格子を有する層を追加することにより、従来のHi−Z表面の共振を多重共振にすることができる。図2bに示すように、両技法を組み合わせることにより、さらに大きな効果をもたらすことができる。2層構造の場合と同様、ユニットセルをより複雑にすることにより、さらに多くの共振を付与することができる。複雑性が増すことにより、構造は、より多くの製造費を必要とすることになるが、その分、Hi−Z表面を設計する設計者に自由度が提供され、したがって共振周波数および共振帯域幅を、より一層制御することができる。
【0020】
本明細書で示す各構造では、個々の共振に対する寄与として、異なる物理領域が識別されている。図5a〜5cでは、より高い周波数共振に寄与している物理領域に、矢印HFRのラベルが振られ、より低い周波数共振に寄与している物理領域に、矢印LFRのラベルが振られている。一般的には、より低い周波数共振は、キャパシタンスがより大きい領域、すなわち内部体積がより大きい領域によってもたらされ、一方、キャパシタンスがより小さい領域、すなわち内部体積がより小さい領域は、より高い周波数共振に寄与している。ビアを移動させ、かつ/またはプレートのサイズを調整することにより、キャパシタンスおよびインダクタンスの合計が領域から領域へ移動し、かつ、同一共振器の一様なアレイが、異なる共振器のモザイク中に再形成され、それにより多重高インピーダンス状態になる。このタイプの構造には、複数のビアを各ユニットセル中、さらには各プレート上に配置する能力、およびほとんど無限の可能プレート幾何学配列を始めとする多くの自由度が存在している。
【0021】
図6aおよび6bは、ビアの移動およびパッチ幾何学の変更の両方を具体化する3層構造の実施例を示したものである。この例示的3層構造は、前述のHFSSソフトウェアを使用してシミュレートされている。この例示的3層構造では、基板16(図6aには図示せず)は、厚さ62ミル(1.6mm)のFR4であり、絶縁層22(同じく図6aには図示せず)は、厚さ2ミル(0.05mm)のカプトン(Kapton)ポリイミドである。この構造は、容易に構築できるように設計されたものであり、したがって一方の層のビア14は、もう一方の層中のギャップが存在する部分に置かれている。プレート20の層には、比較的大きいプレート20Aのアレイおよび比較的小さいプレート20Bのアレイが含まれている。プレート20Aおよび20Bは、印刷回路基板技術で便利に使用されている銅などの金属であることが好ましく、また、印刷回路基板技術を使用して基板16上に形成されることが好ましい。プレート20Aおよび20Bのアレイは、反覆パターン中で混合され、また、アレイの各々は、この実施形態では同じ格子定数を有している。この例示的3層構造のプレート20Bは、一辺が30ミル(0.75mm)の正方形の形をした銅であり、プレート20Aは、八角形の形をした、残りの面積を満たすサイズの銅であり、プレート20Bとのクリアランスは20ミル(0.5mm)である。プレート10の上部層は、この実施例では、一辺が150ミル(3.8mm)の正方形の形をした銅であり、基板22上に形成された隣接するプレート10との間のクリアランスは10ミル(0.25mm)である。また、この例示的3層構造では、プレート10のアレイは、プレート20のアレイに対して45度回転している。
【0022】
プレート10および20は、例えば従来の印刷回路製造技法を使用して、各々の基板上に形成されている。プレート20の下部アレイは、Hi−Z表面のこの実施形態の電磁特性には特に影響しないため、この実施形態では電気的にフローティングされているか、あるいは金属充填導電ビア15によって接地平面12に接続されている。プレート10の上部層は、プレート10を接地平面12に結合している、金属充填導電ビア14を有していることが好ましい。この例示的3層構造では、ビア14は、プレート10の中心から70ミル(1.8mm)だけ対角線方向にオフセットされている。試験の結果によれば、金属充填ビア14は、そのすべてが存在する必要はない。実際、試験の結果によれば、金属充填ビア14の50%が存在するだけで、Hi−Z表面は十分満足に機能している。しかしながら図6aおよび6bに示す例示的3層構造には、金属充填ビア14のための空間が明確に存在しているため、ビア14をプレート10の各々に提供することが好ましいとされている。ビア15は、任意選択で、共振周波数に影響を及ぼすことなく、各フローティングプレート20の中心、あるいは特定のフローティングプレート20の中心に置くことができる(この層に対する任意選択導電ビアは、図6bの数表示15で示されている。導電ビア15を使用する場合は、多数の導電ビア15が使用されることになる。ビア15は、この実施形態では任意選択であるため、図6aには示されていない)。
【0023】
この例示的構造は、プレート幾何学およびビア14の位置の両方を調整することによって、広範囲に渡って同調することができる2つの共振周波数を有している。図7は、この例示的3層構造の反射位相を示したものであり、図7から分かるように、この例示的3層構造の共振周波数は、1.3GHzおよび8.6GHzである。
【0024】
この実施形態では、下部層は、2つの異なるプレート構成、すなわちプレート20Aおよびプレート20Bのプレート20アレイとして示されている。一方のプレート構成20Aは、比較的大きい八角形であり、もう一方のプレート構成20Bは、比較的小さい正方形である。例えば、比較的大きい円形プレートおよび比較的小さい円形プレートのアレイ、あるいは他の例として、比較的大きい三角形プレートおよび比較的小さい三角形プレートのアレイなど、他のプレート構成も可能である。図6aおよび6bに示す本発明の例示的3層構造には、反覆パターン、すなわち当該周波数に対する適切なサイズの構成を有し、かつ、プレート10の他の隣接層の格子定数とは異なる格子定数を有する導電プレート20のアレイが含まれている。
【0025】
また、この例示的3層構造では、プレート20を含んだ層を、下部層すなわち底部層と呼び、また、プレート10を含んだ層を、頂部層すなわち上部層と呼んでいるが、図6aおよび6bを考察すれば分かるように、導電ビアをいずれか一方の層または両方の層から接地平面12に経路化するための空間が間違いなく存在しているため、接地平面12に対してどちらの層が上部層を形成し、どちらの層が下部層を形成するかには関係なく、もう一方の層に対して、どちらの層を上にすることもできる。プレート10を下部層として配列する場合、例えば、プレート10を都合良くバイパスする位置Aにビア15を設け、それにより八角形プレート20Aを接地平面12に接続し、また、同様にプレート10を都合良くバイパスする位置Bにビア15を設け、それにより正方形プレート20Bを接地平面12に接続することができる。導電ビア15をプレート20と共に使用する場合、ビア15は、図4a〜4dを参照して上で考察した方法と同様の方法で、プレート20の幾何学中心からオフセットされる。
【0026】
図8aおよび8bは、3層構造の他の実施形態を示したもので、図6aおよび6bの実施形態と概ね類似している。この実施形態では、導電ビア14は、中心を外れて移動している図6aおよび6bの実施形態の場合とは異なり、プレート10の中心に置かれている。また、プレート10およびプレート20(プレート20はこの場合も、2つの異なるサイズのプレート、つまり比較的大きいプレート20Aのサブセットすなわちサブアレイ、および比較的小さいプレート20Bのサブセットすなわちサブアレイからなっており、両プレート構成は、反覆パターン中で混合されている)は、同じ格子定数を有している。図8aおよび8bに示すエレメントの番号は、図6aおよび6bの実施形態および他の実施形態に使用されている番号と一致している。接地プレート12が示されており、プレート10、20Aおよび20Bは、すべて接地プレート12の上に配置されている。プレート10は、絶縁層22の上に配置されることが好ましく、プレート20Aおよび20Bは、基板16上に配置されることが好ましい。図8aおよび8bは、3層構造が、共通の格子定数を共有する異なるサイズの3つのプレートを利用することができることを立証している(プレート10のサイズは、プレート20Aのサイズと20Bのサイズの中間である)。図6aおよび6bに示す実施形態のプレートも、3つの異なるサイズを有しており、また、プレート10のサイズも、同じくプレート20Aのサイズと20Bのサイズの中間であるが、図6aおよび6bの実施形態では、格子定数は、図に示すプレートの2つの層と層の間で変化している。
【0027】
図8aおよび8bに示す例示的3層構造では、プレート20を含んだ層を、底部層すなわち下部層と呼び、また、プレート10を含んだ層を、頂部層すなわち上部層と呼んでいるが、図8aおよび8bを考察すれば分かるように、導電ビアをいずれか一方の層または両方の層から接地平面12に経路化するための空間が間違いなく存在しているため、接地平面12に対してどちらの層が上部層を形成し、どちらの層が下部層を形成するかには関係なく、もう一方の層に対して、どちらの層を上にすることもできる。プレート10を下部層の上に配列する場合、例えば、プレート10を都合良くバイパスする位置Aにビアを設け、それによりプレート20Aを接地平面12に接続し、また、同様にプレート10を都合良くバイパスする位置Bにビアを設け、それによりプレート20Bを接地平面12に接続することができる。導電ビアをプレート20と共に使用する場合、それらのビアは、図4a〜4dを参照して上で考察した方法と同様の方法で、プレート20の幾何学中心からオフセットされ、それにより、よりいっそうの柔軟性が提供される。
【0028】
プレート10および20は、例えば従来の印刷回路製造技法を使用して、各々の基板上に形成されている。プレート20の下部アレイは、Hi−Z表面のこの実施形態の電磁特性には特に影響しないため、この実施形態では電気的にフローティングされているか、あるいは金属導電ビア15によって接地平面12に接続されている。プレート10の上部層は、プレート10を接地平面12に結合している、金属導電ビア14を有していることが好ましい。この例示的3層構造では、ビア14は、プレート10の中心に置かれている。試験の結果によれば、金属ビア14は、そのすべてが存在する必要はない。実際、試験の結果によれば、金属ビア14の50%が存在するだけで、Hi−Z表面は十分満足に機能している。しかしながら図8aおよび8bに示す例示的3層構造には、金属ビア14のため空間が明確に存在しているため、ビア14をプレート10の各々に提供することが好ましいとされている。ビア15は、任意選択で、共振周波数に影響を及ぼすことなく、各フローティングプレート20の中心、あるいは特定のフローティングプレート20の中心に置くことができる(この層に対する2つの任意選択導電ビアは、図8bの数表示15で示されている。導電ビア15を使用する場合は、多数の導電ビア15が使用されることになる。ビア15は、この実施形態では任意選択であるため、図8aには示されていない)。
【0029】
図6aおよび6bおよび図8aおよび8bに示す例示的2絶縁層(層16および22)構造に関しては、以下のことが確認されている。
【0030】
(1)上部プレートおよび下部プレートの両方を、導電ビアによって接地平面12に結合する場合、両プレートセットのプレートサイズを変更することによって共振を分割することができる。
【0031】
(2)上部プレートセットのみを、導電ビアによって接地平面12に結合する場合、(a)下部プレートのサイズを変更することによって共振を分割することができ、(b)上部プレートのサイズを変更しても共振を分割することはできない。
【0032】
(3)下部プレートセットのみを、導電ビアによって接地平面12に結合する場合、(a)下部プレートセットのサイズを変更しても共振を分割することはできず、(b)上部プレートのサイズを変更することによって共振を分割することができる。
【0033】
つまり、一方のプレートセットのみを、導電ビアによって接地平面12に結合する場合、共振を分割するためには、もう一方の層のもう一方のプレートのサイズを変更しなければならない。しかしながら、導電ビアの一方のサブセットを第1の方向に移動させ、導電ビアの第2のサブセットを、異なる第2の方向に移動させることを条件として、関連するプレートの幾何学中心からビアの位置を移動させることにより、導電ビアによっていずれのプレートセットを接地平面12に結合するかに関係なく、共振を分割することができる。
【0034】
単層プレートのみを有するHi−Z表面は、上で考察したビアを移行させる技法および/またはプレートのサイズを変化させる技法と同じ技法を使用して、二重帯域または多重帯域にすることができる。ビアおよびプレートは、それぞれ空洞のインダクタンスおよびキャパシタンスに影響を及ぼすため、生成される2つの共振の帯域幅に対して、それぞれ異なる効果を有している。プレートのサイズのみが変化するHi−Z表面は、広い下部共振および狭い上部共振を有することが観察されている。一方、導電ビアのみが移動するHi−Z表面は、狭い下部共振および広い上部共振を有している。一般的には、ビアのオフセット位置およびプレートサイズの両方を制御することにより、所望する任意の帯域幅比率を概ね有する共振をもたらす二重帯域Hi−Z表面を構築することができ、このような表面に必要なことは、接地平面12に隣接して配置された単層プレート10を持たせることだけである。また、より複雑な幾何学、例えば多層プレートを使用し、そのうちのいくつか(あるいはすべて)を多重サイズのプレート(また、隣接する層のプレートサイズが異なることが好ましい)にすることにより、反射位相が3つ以上の周波数でゼロである構造を構築する技術を使用して、追加共振を導入することができる。
【0035】
本発明の一態様の最も一般的な意味においては、本発明により、セルのサブセットのキャパシタンスまたはインダクタンスを交番させる必要のあるHi−Z表面に複数の共振をもたらすための技法が提供される。図9は、この技法を示したものであり、セル11を1つ置きに交番するコンデンサおよび誘導子が示されている。キャパシタンスの変更、あるいはインダクタンスの変更、もしくはその両方の変更を選択することができる。多層二次元構造では、キャパシタンスは、一般的にはプレートがオーバラップする面積を調整することによって変更され、また、インダクタンスは、ビアの位置を調整することによって変更されるが、コンデンサの厚さすなわち絶縁体の誘電率の変更、あるいは誘導子の幾何形状または誘導子を取り囲んでいる材料の変更など、これらのパラメータを調整する他の方法を使用することもできる。本発明は、上に示した実施例に限定されず、一般的には、例えば複数の共振をもたらすべく、間欠構造中におけるセルのサブセットのキャパシタンスあるいはインダクタンスを、本明細書において説明した方法で変化させるためのあらゆる超小型電子技術が含まれている。
【0036】
Hi−Z表面の形成には、極めて多数のプレートすなわちエレメント10、20を利用することができるが、分かり易くするために、図には、アレイを形成しているプレートすなわちエレメント10、20のごく一部のみが示されている。
【0037】
添付の図面に示す実施形態では、Hi−Z表面は、平面状Hi−Z表面として示されている。Hi−Z表面は、使用上、平面状である必要はなく、それどころか、必要に応じて非平面状の構成にすることも可能である。例えば、Hi−Z表面は、いくつかの例示的車両を挙げると、自動車、トラック、航空機、戦車などの車両の外部表面と同じ形状にすることができる。Hi−Z表面には、通常、使用に際して、複数のアンテナ素子が取り付けられる(実際には、アンテナ素子は表面に統合されるため、表面およびアンテナは非常に薄く、その厚さは、例えば1cm未満である)。また、Hi−Z表面は、地上通信システムまたは衛星通信システムと共に使用するべく構成することもできる。本明細書において開示したタイプの、少なくとも2つの共振を有し、かつ、それらの共振に対して有効な適切なアンテナを備えたHi−Z表面は、Hi−Z表面およびアンテナが、(i)極めて薄く、したがって、例えば車両の屋根の外部形状と同じ形状の構成にすることができ(したがって極めて空気力学的であり、かつ、Hi−Z表面の露出表面およびアンテナを、容易に車両の外部表面構成と同じ形に適合させることができるため、アンテナを視野から有効に隠すことができる)、また、(ii)例えばセルラ電話サービス(現在、複数の周波数帯域を占有している)、および/または直接衛星同報通信サービス(例えばテレビジョンおよび/またはラジオ)、および/または全世界衛星測位システム衛星、および/または地上ベースプロバイダおよび/または衛星ベースプロバイダからのインターネットサービスとの使用に対して有効なアンテナであるため、地上の車両(例えば自動車)との使用に打って付けである。本明細書において開示した多重共振Hi−Z表面を使用した所与の薄さのアンテナは、他の多くのアプリケーションに使用することができる。現在、2つまたは3つの周波数帯域で動作しているハンドヘルドセルラ電話のアンテナは、このようなアプリケーションの1つである。
【0038】
Hi−Z表面と共に使用することができるアンテナ素子は、広範囲のタイプのアンテナ素子から選択することができる。例えばアンテナ素子は、単純なダイポールアンテナを形成することができ、あるいはパッチすなわちノッチアンテナを形成することができる。利用するアンテナのタイプを混合する(例えば、1つのタイプを1つの周波数帯域に、また、別のタイプのアンテナを異なる周波数帯域に)ことにより、アンテナに、異なる周波数帯域における受信信号の様々な偏波に応答させることができる。また、アンテナを送信アンテナとして使用する場合、様々な偏波をこのような帯域中で送信することができる。
【0039】
以上、本発明について、特定の実施形態に関連して説明したが、以上の説明により、当分野の技術者には、自ら改変が可能であろう。したがって本発明は、特許請求の範囲による要求を除き、開示した実施形態には限定されない。
【図面の簡単な説明】
【図1】
従来のHi−Z表面の斜視図である。
【図2a】
比較的分厚い誘電体層を有する従来のHi−Z表面の側断面図、およびこの表面によってもたらされる単一帯域ギャップの線図である。
【図2a−1】
図2aに示すHi−Z表面の単一広帯域ギャップのグラフである。
【図2b】
本発明による比較的薄い誘電体層を有するHi−Z表面の側断面図である。
【図2b−1】
図2bに示すHi−Z表面によってもたらされる2つの帯域ギャップの線図である。
【図3a】
各々の頂部プレートの中心に置かれた複数のビアを示す、従来のHi−Z表面の平面図である。
【図3b】
図3aに示し、かつ、本明細書において説明する表面の、位相がゼロを交差する単一共振によって特性化される反射位相のグラフである。
【図4a】
複数のビアの位置を4つのビアのクラスタ中に移動させ、それにより構造の格子定数を2倍にすることによってもたらされる2つの共振を有するHi−Z表面の一実施形態を示す図である。
【図4bから4d】
図4aに示す実施形態に対して、複数のビアが頂部プレートの幾何学中心からそれぞれ異なる距離に再配置された3つの配列に対する反射位相のグラフである。
【図5aから5c】
多重帯域Hi−Z表面の他の実施形態の側面図である。
【図6a】
図2bに示すHi−Z表面と同様の3層Hi−Z表面の略平面図である。
【図6b】
図6aに示す線6b−6bに沿って取った、図6aの3層Hi−Z表面の断面図である。
【図7】
図6aおよび6bに示す実施形態の配列に対する反射位相のグラフである。
【図8a】
3層Hi−Z表面の他の実施形態の略平面図である。
【図8b】
図8aに示す線8b−8bに沿って取った、図8aの3層Hi−Z表面の断面図である。
【図9】
このような表面における本発明の動作の様子を、より客観的に示す、本明細書において開示した2層Hi−Z表面のL−C等価回路図である。

Claims (46)

  1. 複数の周波数帯域における反射位相がゼロの高インピーダンス表面であって、
    (a)接地平面と、
    (b)前記接地平面から一定の距離を隔てて配置された第1のアレイ中に配置された複数の導電プレートであって、前記距離が、前記複数の周波数帯域の無線周波数の波長より短く、前記第1のアレイが第1の格子定数を有するところの複数の導電プレートと、
    (c)前記複数の導電プレートと関連した複数の導電エレメントであって、前記複数の導電エレメントは、第2のアレイを形成し、前記第2のアレイは、前記第1のアレイの格子定数より大きい格子定数を有するところの複数の導電エレメントと
    を備えた高インピーダンス表面。
  2. 前記第2のアレイの格子定数が、前記第1のアレイの格子定数の整数倍である、請求項1に記載の高インピーダンス表面。
  3. 前記複数の導電エレメントが、前記複数の導電プレートのうちの少なくとも選択された導電プレートを前記接地平面に接続する、請求項2に記載の高インピーダンス表面。
  4. 前記複数の導電エレメントが、前記複数の導電プレートの少なくとも大半を前記接地平面に接続する、請求項2に記載の高インピーダンス表面。
  5. 前記接地平面と、前記第1のアレイ中に配置された前記複数の導電プレートとの間に配置された誘電体層をさらに備え、前記複数の導電エレメントが、前記誘電体層中の導電ビアによって形成される、請求項4に記載の高インピーダンス表面。
  6. 第2の複数の導電プレートをさらに備え、前記第2の複数の導電プレートは、前記第2のアレイ中に、前記接地平面から第2の間隔を隔てて配置された、請求項5に記載の高インピーダンス表面。
  7. 前記第1のアレイ中に配置された前記複数の導電プレートと、前記第2の複数の導電プレートとの間に配置された第2の誘電体層をさらに備えた、請求項6に記載の高インピーダンス表面。
  8. 前記第2の複数の導電プレートのうちの少なくとも選択された導電プレートを前記接地平面に接続する第2の複数の導電エレメントをさらに備えた、請求項7に記載の高インピーダンス表面。
  9. 前記第2の複数の導電エレメントが、前記第2のアレイ中に配列され、そして、その幾何学的中心で、前記第2の複数の導電プレートのうちの少なくとも選択された導電プレートと接触する、請求項8に記載の高インピーダンス表面。
  10. 前記第2の複数の導電エレメントが、前記第2のアレイの格子定数より大きい格子定数を有する第3のアレイ中に配列され、そして、その幾何学的中心から間隔を隔てたポイントで、前記第2の複数の導電プレートのうちの少なくとも選択された導電プレートと接触する、請求項8に記載の高インピーダンス表面。
  11. 前記第2の複数の導電プレートが、比較的サイズの大きい複数のプレートおよび比較的サイズの小さい複数のプレートを備えた、請求項6から10のいずれか1つに記載の高インピーダンス表面。
  12. 前記第2の複数の導電プレート中の比較的サイズの大きい複数のプレートが、概ね八角形の構成を有する、請求項11に記載の高インピーダンス表面。
  13. 前記第1のアレイ中に配置された前記複数の導電プレートのサイズおよび構成が一様である、請求項6から10のいずれか1つに記載の高インピーダンス表面。
  14. 前記複数の導電エレメントが、前記接地平面から第2の距離を隔てて配置された前記第2のアレイ中に配置された第2の複数の導電プレートを備えた、請求項2に記載の高インピーダンス表面。
  15. 前記第1のアレイ中に配置された複数の導電プレートと、前記第2の複数の導電プレートとの間に配置された第1の誘電体層、および、前記接地平面と、前記第2のアレイ中に配置された複数の導電プレートとの間に配置された第2の誘電体層をさらに備えた、請求項14に記載の高インピーダンス表面。
  16. 前記第2の複数の導電プレートのうちの少なくとも選択された導電プレートを前記接地平面に接続する複数の導電ビアをさらに備えた、請求項15に記載の高インピーダンス表面。
  17. 前記第1の複数の導電プレートのうちの少なくとも選択された導電プレートを前記接地平面に接続する複数の導電ビアをさらに備えた、請求項15に記載の高インピーダンス表面。
  18. 前記複数の導電ビアが第3のアレイ中に配列されて、その幾何学中心で、前記第1の複数の導電プレートのうちの少なくとも選択された導電プレートと接触する、請求項17に記載の高インピーダンス表面。
  19. 前記複数の導電ビアが、前記第1のアレイの格子定数より大きい格子定数を有する第3のアレイ中に配列され、そして、その幾何学的中心から間隔を隔てたポイントで、前記第1の複数の導電プレートのうちの少なくとも選択された導電プレートと接触する、請求項17に記載の高インピーダンス表面。
  20. 前記第2の複数の導電プレートが、比較的サイズの大きい複数のプレートおよび比較的サイズの小さい複数のプレートを備えた、請求項14から19のいずれか1つに記載の高インピーダンス表面。
  21. 前記第2の複数の導電プレート中の比較的サイズの大きい複数のプレートが、概ね八角形の構成を有する、請求項20に記載の高インピーダンス表面。
  22. 前記第1のアレイ中に配置された複数の導電プレートのサイズおよび構成が一様である、請求項14から19のいずれか1つに記載の高インピーダンス表面。
  23. 複数の周波数帯域における反射位相がゼロの高インピーダンス表面であって、
    (a)誘電体表面上の接地平面と、
    (b)接地平面から一定の距離を隔てて配置された前記誘電体表面上のアレイ中に配置された複数の導電プレートであって、前記距離が、前記複数の周波数帯域の無線周波数の波長より短いところの複数の導電プレートと、
    (c)前記誘電体表面中の複数の導電ビアであって、前記複数の導電ビアが前記複数の導電プレートと結合し、前記複数の導電ビアが第2のアレイを形成し、第2のアレイの前記ビアが、第1のアレイ中に配置された各導電プレートの幾何学中心から間隔を隔てて配置され、前記複数の導電ビアの第1の選択されたものが、前記幾何学中心から第1の方向に間隔を隔てて配置され、前記複数の導電ビアの第2の選択されたものが、前記幾何学中心から第2の方向に間隔を隔てて配置され、前記第2の方向が前記第1の方向とは異なるところの複数の導電ビアと
    を備えた高インピーダンス表面。
  24. 導電プレートの前記アレイが第1の格子定数を有し、そして、導電ビアのアレイも格子定数を有し、導電プレートのアレイの格子定数が、導電ビアのアレイの格子定数の整数倍である、請求項23に記載の高インピーダンス表面。
  25. 前記複数の導電ビアが、前記複数の導電プレートのうちの少なくとも選択された導電プレートを前記接地平面に接続する、請求項24に記載の高インピーダンス表面。
  26. 無線周波数の放出に影響を及ぼすべく、複数の周波数ゼロ位相応答を示す高インピーダンス表面を形成する方法であって、
    (a)接地平面、および、前記接地平面から一定の距離を隔てて配置された第1のアレイ中に配置された複数の導電プレートを有する高インピーダンス表面を形成するステップであって、前記距離が無線周波数放出の波長より短いところのステップと、
    (b)前記複数の導電プレートと関連した複数の導電エレメントを形成するステップであって、前記複数の導電エレメントは、前記複数の導電プレートを前記接地平面に接続するところのステップと、
    (c)前記複数の導電エレメントの各々を、関連する導電プレートの幾何学中心から一定の距離を隔てて配置するステップであって、導電プレートの所定のクラスタと関連したすべての導電エレメントが、所与のクラスタの共通ポイントに向かう方向に間隔を隔てて配置されるところのステップと
    を含む方法。
  27. 前記接地平面から別の間隔を隔てて配置された、第2のアレイ中に配置された第2の複数の導電プレートを形成するステップであって、前記第2のアレイは、前記第1のアレイの格子定数とは異なる格子定数を有するところのステップをさらに含む、請求項26に記載の方法。
  28. 前記第2のアレイの格子定数が、前記第1のアレイの格子定数の整数倍である、請求項27に記載の方法。
  29. 前記第2の複数の導電プレートが、比較的大きいプレートのグループおよび比較的小さいプレートのグループを備えた、請求項26に記載の方法。
  30. 複数の周波数ゼロ位相応答を示す高インピーダンス表面を形成する方法であって、
    (a)接地平面、および、前記接地平面から一定の距離を隔てて配置された第1のアレイ中に配置された複数の導電プレートを有する高インピーダンス表面を形成するステップであって、前記距離が、複数の周波数ゼロ位相応答における周波数の波長より短いステップと、
    (b)第2の複数の導電プレートを、前記接地平面から別の距離を隔てて配置された第2のアレイ中に形成するステップと、
    (c)前記第1のアレイの格子定数とは異なる格子定数を持たせるべく、前記第2のアレイを形成するステップと
    を含む方法。
  31. 前記第2のアレイの格子定数が、前記第1のアレイの格子定数の整数倍である、請求項30に記載の方法。
  32. 前記第2のアレイの格子定数が、前記第1のアレイの格子定数の2倍である、請求項31に記載の方法。
  33. (d)前記第2の複数の導電プレートと関連した複数の導電エレメントを形成するステップであって、前記複数の導電エレメントは、前記第2の複数の導電プレートを前記接地平面に接続するところのステップをさらに含む、請求項30から32のいずれか1つに記載の方法。
  34. (e)前記複数の導電エレメントの各々を、関連する導電プレートの幾何学中心から一定の距離を隔てて配置するステップであって、導電プレートの所定のクラスタと関連したすべての導電エレメントが、所与のクラスタの共通ポイントに向かう方向に間隔を隔てて配置されるステップをさらに含む、請求項33に記載の方法。
  35. 前記第1の複数の導電プレートが、比較的大きいプレートのグループおよび比較的小さいプレートのグループを備えた、請求項30に記載の方法。
  36. 複数の周波数ゼロ位相応答を示す高インピーダンス表面を形成する方法であって、
    接地平面を形成するステップと、
    複数の導電プレートを、前記接地平面から一定の距離を隔てて配置された第1のアレイ中に配置するステップであって、前記距離が、前記高インピーダンス表面のゼロ位相応答に関連する無線周波数の波長より短く、前記第1のアレイが第1の格子定数を有するところのステップと、
    複数の導電エレメントを、前記複数の導電プレートと関連した、第1のアレイの格子定数より大きい格子定数を有する第2のアレイ中に配置するステップと
    を含む方法。
  37. 前記第2のアレイ中の複数の導電エレメントが、前記第1のアレイ中の前記複数の導電プレートを前記接地平面に抵抗接続する、請求項36に記載の方法。
  38. 前記第2のアレイ中の複数の導電エレメントが、前記接地平面から一定の距離を隔てて配置された前記第2のアレイ中の第2の複数の導電プレートとして形成され、前記距離が、前記複数の周波数帯域における無線周波数の波長より短く、そして、前記第2の複数の導電プレートと前記接地平面を隔てている距離と、前記第1の複数の導電プレートと前記接地平面を隔てている距離とが異なる、請求項36または37に記載の方法。
  39. 複数の周波数帯域における反射位相がゼロである高インピーダンス表面であって、
    (a)接地平面と、
    (b)前記接地平面から一定の距離を隔てて配置された第1のアレイ中に配置された第1の複数の導電プレートであって、前記距離が、前記複数の周波数帯域における無線周波数の波長より短いところの複数の導電プレートと、
    (c)前記接地平面から一定の距離を隔てて配置された第2のアレイ中に配置された第2の複数の導電プレートであって、前記距離が、前記複数の周波数帯域における無線周波数の波長より短く、前記複数の導電プレートが少なくとも2つのサブアレイを備え、前記サブアレイの一方のプレートが他方のサブアレイのプレートより大きいところの複数の導電プレートと
    を備えた高インピーダンス表面。
  40. 前記第1のアレイが格子定数を有し、前記第2のアレイが格子定数を有し、そして、前記第2のアレイの格子定数が、前記第1のアレイの格子定数の整数倍である、請求項39に記載の高インピーダンス表面。
  41. 前記第1のアレイおよび前記第2のアレイが、同じ大きさの格子定数を有する、請求項39に記載の高インピーダンス表面。
  42. 前記一方のサブアレイの大きい方のプレートが、前記第1のアレイのプレートより大きい、請求項39に記載の高インピーダンス表面。
  43. 前記一方のサブアレイの大きい方のプレートが、前記第1のアレイのプレートより小さい、請求項39に記載の高インピーダンス表面。
  44. 前記第2のアレイのプレートが、導電エレメントによって前記接地平面に結合される、請求項39に記載の高インピーダンス表面。
  45. 前記第1および第2のアレイのプレートが、それぞれ第1および第2の誘電体基板上に配置される、請求項39から44のいずれか1つに記載の高インピーダンス表面。
  46. 前記接地平面が、前記第1および第2の誘電体基板の一方に配置される、請求項45に記載の高インピーダンス表面。
JP2002543745A 2000-11-14 2001-10-04 多重周波数帯域における電磁インピーダンスの大きいテクスチャ化表面 Expired - Fee Related JP3935072B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/713,119 US6483481B1 (en) 2000-11-14 2000-11-14 Textured surface having high electromagnetic impedance in multiple frequency bands
PCT/US2001/031283 WO2002041447A1 (en) 2000-11-14 2001-10-04 A textured surface having high electromagnetic impedance in multiple frequency bands

Publications (3)

Publication Number Publication Date
JP2004514364A true JP2004514364A (ja) 2004-05-13
JP2004514364A5 JP2004514364A5 (ja) 2005-12-22
JP3935072B2 JP3935072B2 (ja) 2007-06-20

Family

ID=24864813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002543745A Expired - Fee Related JP3935072B2 (ja) 2000-11-14 2001-10-04 多重周波数帯域における電磁インピーダンスの大きいテクスチャ化表面

Country Status (7)

Country Link
US (1) US6483481B1 (ja)
JP (1) JP3935072B2 (ja)
AU (1) AU2001296656A1 (ja)
DE (1) DE10196911T1 (ja)
GB (1) GB2385994B (ja)
TW (1) TW543237B (ja)
WO (1) WO2002041447A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135178A (ja) * 2005-10-25 2007-05-31 Tatung Co 部分反射面アンテナ
WO2008050441A1 (fr) * 2006-10-26 2008-05-02 Panasonic Corporation Dispositif d'antenne
JP2008219125A (ja) * 2007-02-28 2008-09-18 Toyota Central R&D Labs Inc 電波反射板及びアンテナ
JP2008544671A (ja) * 2005-06-25 2008-12-04 オムニ−アイ・デイ・リミテツド 電磁放射デカップラー
JP2009218970A (ja) * 2008-03-11 2009-09-24 Nec Tokin Corp アンテナ装置
JP2009225159A (ja) * 2008-03-17 2009-10-01 Mitsubishi Electric Corp 電磁波反射面
JP2011109414A (ja) * 2009-11-17 2011-06-02 Toshiba Tec Corp 周期構造体
WO2013128744A1 (ja) * 2012-02-29 2013-09-06 株式会社 エヌ・ティ・ティ・ドコモ リフレクトアレー及び設計方法
WO2013128743A1 (ja) * 2012-02-29 2013-09-06 株式会社 エヌ・ティ・ティ・ドコモ リフレクトアレー及び設計方法
WO2013128745A1 (ja) * 2012-02-29 2013-09-06 株式会社 エヌ・ティ・ティ・ドコモ リフレクトアレー、設計方法およびシステム
WO2014020969A1 (ja) * 2012-07-31 2014-02-06 株式会社 エヌ・ティ・ティ・ドコモ リフレクトアレー
JP5463354B2 (ja) * 2009-05-29 2014-04-09 株式会社Nttドコモ リフレクトアレイ
US8847822B2 (en) 2010-02-26 2014-09-30 Ntt Docomo, Inc. Apparatus having mushroom structures
US8988287B2 (en) 2010-02-26 2015-03-24 Ntt Docomo, Inc. Apparatus having mushroom structures
JP2015142223A (ja) * 2014-01-28 2015-08-03 キヤノン株式会社 セル及び電磁バンドギャップ構造体
JP6659920B1 (ja) * 2018-08-27 2020-03-04 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
JP2020072452A (ja) * 2018-11-02 2020-05-07 京セラ株式会社 アンテナ素子、アレイアンテナ、通信ユニット、移動体及び基地局

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6898773B1 (en) 2002-01-22 2005-05-24 Cadence Design Systems, Inc. Method and apparatus for producing multi-layer topological routes
US6670932B1 (en) 2000-11-01 2003-12-30 E-Tenna Corporation Multi-resonant, high-impedance surfaces containing loaded-loop frequency selective surfaces
US7365701B2 (en) * 2001-02-08 2008-04-29 Sciperio, Inc. System and method for generating a genetically engineered configuration for at least one antenna and/or frequency selective surface
US20030142036A1 (en) * 2001-02-08 2003-07-31 Wilhelm Michael John Multiband or broadband frequency selective surface
US20030076276A1 (en) * 2001-02-08 2003-04-24 Church Kenneth H. Methods and systems for embedding electrical components in a device including a frequency responsive structure
US8114489B2 (en) * 2001-05-23 2012-02-14 The Regents Of The University Of California Composite material having low electromagnetic reflection and refraction
US6895569B1 (en) 2001-06-03 2005-05-17 Candence Design Systems, Inc. IC layout with non-quadrilateral Steiner points
US6882055B1 (en) 2001-06-03 2005-04-19 Cadence Design Systems, Inc. Non-rectilinear polygonal vias
US7310793B1 (en) 2001-06-03 2007-12-18 Cadence Design Systems, Inc. Interconnect lines with non-rectilinear terminations
US6859916B1 (en) 2001-06-03 2005-02-22 Cadence Design Systems, Inc. Polygonal vias
US6976238B1 (en) 2001-06-03 2005-12-13 Cadence Design Systems, Inc. Circular vias and interconnect-line ends
US6456243B1 (en) * 2001-06-26 2002-09-24 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
US6670921B2 (en) * 2001-07-13 2003-12-30 Hrl Laboratories, Llc Low-cost HDMI-D packaging technique for integrating an efficient reconfigurable antenna array with RF MEMS switches and a high impedance surface
SE0103783D0 (sv) * 2001-11-12 2001-11-12 Kildal Antenn Consulting Ab Strip-loaded dielectric substrates for improvements of antennas and microwave devices
WO2003047030A1 (en) * 2001-11-27 2003-06-05 Sciperio, Inc. Multiband or broadband frequency selective surface
US6552687B1 (en) * 2002-01-17 2003-04-22 Harris Corporation Enhanced bandwidth single layer current sheet antenna
US6771221B2 (en) * 2002-01-17 2004-08-03 Harris Corporation Enhanced bandwidth dual layer current sheet antenna
US6938234B1 (en) * 2002-01-22 2005-08-30 Cadence Design Systems, Inc. Method and apparatus for defining vias
US7080329B1 (en) 2002-01-22 2006-07-18 Cadence Design Systems, Inc. Method and apparatus for identifying optimized via locations
US7089524B1 (en) 2002-01-22 2006-08-08 Cadence Design Systems, Inc. Topological vias route wherein the topological via does not have a coordinate within the region
US6795020B2 (en) * 2002-01-24 2004-09-21 Ball Aerospace And Technologies Corp. Dual band coplanar microstrip interlaced array
US6657592B2 (en) * 2002-04-26 2003-12-02 Rf Micro Devices, Inc. Patch antenna
US6774866B2 (en) 2002-06-14 2004-08-10 Etenna Corporation Multiband artificial magnetic conductor
EP1522122A1 (en) * 2002-07-15 2005-04-13 Fractus S.A. Notched-fed antenna
AU2003268291A1 (en) * 2002-08-29 2004-03-19 The Regents Of The University Of California Indefinite materials
GB0221421D0 (en) * 2002-09-14 2002-10-23 Bae Systems Plc Periodic electromagnetic structure
US6995733B2 (en) * 2002-12-24 2006-02-07 Intel Corporation Frequency selective surface and method of manufacture
US7256753B2 (en) * 2003-01-14 2007-08-14 The Penn State Research Foundation Synthesis of metamaterial ferrites for RF applications using electromagnetic bandgap structures
US6933895B2 (en) * 2003-02-14 2005-08-23 E-Tenna Corporation Narrow reactive edge treatments and method for fabrication
US6982676B2 (en) * 2003-04-18 2006-01-03 Hrl Laboratories, Llc Plano-convex rotman lenses, an ultra wideband array employing a hybrid long slot aperture and a quasi-optic beam former
US7411565B2 (en) * 2003-06-20 2008-08-12 Titan Systems Corporation/Aerospace Electronic Division Artificial magnetic conductor surfaces loaded with ferrite-based artificial magnetic materials
US6937194B1 (en) * 2003-08-21 2005-08-30 Rockwell Collins Conformal electronic scanning array
US7145518B2 (en) * 2003-09-30 2006-12-05 Denso Corporation Multiple-frequency common antenna
US7190315B2 (en) * 2003-12-18 2007-03-13 Intel Corporation Frequency selective surface to suppress surface currents
US7456792B2 (en) * 2004-02-26 2008-11-25 Fractus, S.A. Handset with electromagnetic bra
US6967282B2 (en) * 2004-03-05 2005-11-22 Raytheon Company Flip chip MMIC on board performance using periodic electromagnetic bandgap structures
US6967621B1 (en) * 2004-03-16 2005-11-22 The United States Of America As Represented By The Secretary Of The Army Small low profile antennas using high impedance surfaces and high permeability, high permittivity materials
EP2933225A1 (en) * 2004-07-23 2015-10-21 The Regents of The University of California Metamaterials
US7136029B2 (en) * 2004-08-27 2006-11-14 Freescale Semiconductor, Inc. Frequency selective high impedance surface
US7136028B2 (en) * 2004-08-27 2006-11-14 Freescale Semiconductor, Inc. Applications of a high impedance surface
DE102005022473B4 (de) * 2005-05-14 2007-05-24 Forschungszentrum Karlsruhe Gmbh Vorrichtung zur Dämpfung von Reflexionen elektromagnetischer Wellen, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2007000578A2 (en) 2005-06-25 2007-01-04 Omni-Id Limited Electromagnetic radiation decoupler
US7209082B2 (en) * 2005-06-30 2007-04-24 Intel Corporation Method and apparatus for a dual band gap wideband interference suppression
US7218281B2 (en) * 2005-07-01 2007-05-15 Hrl Laboratories, Llc Artificial impedance structure
US7830310B1 (en) * 2005-07-01 2010-11-09 Hrl Laboratories, Llc Artificial impedance structure
JP4557169B2 (ja) * 2005-10-03 2010-10-06 株式会社デンソー アンテナ
US7423608B2 (en) * 2005-12-20 2008-09-09 Motorola, Inc. High impedance electromagnetic surface and method
JP2007235460A (ja) * 2006-02-28 2007-09-13 Mitsumi Electric Co Ltd アンテナ装置
GB0611983D0 (en) 2006-06-16 2006-07-26 Qinetiq Ltd Electromagnetic radiation decoupler
GB0616391D0 (en) 2006-08-18 2006-09-27 Bae Systems Plc Electromagnetic band-gap structure
GB0624915D0 (en) * 2006-12-14 2007-01-24 Qinetiq Ltd Switchable radiation decoupling
GB0625342D0 (en) * 2006-12-20 2007-01-24 Qinetiq Ltd Radiation decoupling
JP2008160589A (ja) * 2006-12-25 2008-07-10 Toshiba Corp 高インピーダンス基板、アンテナ装置および携帯無線装置
US20080160851A1 (en) * 2006-12-27 2008-07-03 Motorola, Inc. Textiles Having a High Impedance Surface
US20080165068A1 (en) * 2007-01-05 2008-07-10 Eric David Caswell Artificial dielectric rotman lens
US7583238B2 (en) * 2007-01-19 2009-09-01 Northrop Grumman Systems Corporation Radome for endfire antenna arrays
US7595757B2 (en) 2007-04-24 2009-09-29 Sony Ericsson Mobile Communications Ab Electrical connection elements provided in the AMC structure of an antenna arrangement
KR100851065B1 (ko) * 2007-04-30 2008-08-12 삼성전기주식회사 전자기 밴드갭 구조물 및 인쇄회로기판
US8212739B2 (en) 2007-05-15 2012-07-03 Hrl Laboratories, Llc Multiband tunable impedance surface
US7728771B2 (en) * 2007-07-03 2010-06-01 Northrop Grumman Systems Corporation Dual band quadpack transmit/receive module
US8159832B2 (en) * 2007-09-21 2012-04-17 Nokia Corporation Electromagnetic band gap structures and method for making same
US7855689B2 (en) * 2007-09-26 2010-12-21 Nippon Soken, Inc. Antenna apparatus for radio communication
FR2922687B1 (fr) * 2007-10-23 2011-06-17 Thales Sa Antenne compacte a large bande.
KR100957548B1 (ko) * 2007-12-17 2010-05-11 한국전자통신연구원 전자파 저지대를 구비한 안테나 장치
US8354975B2 (en) * 2007-12-26 2013-01-15 Nec Corporation Electromagnetic band gap element, and antenna and filter using the same
KR100971931B1 (ko) * 2008-03-19 2010-07-23 한국전자통신연구원 전자파 저감 장치 및 방사체에서 전자파 저감 방법
US8022861B2 (en) 2008-04-04 2011-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. Dual-band antenna array and RF front-end for mm-wave imager and radar
US7733265B2 (en) 2008-04-04 2010-06-08 Toyota Motor Engineering & Manufacturing North America, Inc. Three dimensional integrated automotive radars and methods of manufacturing the same
US7830301B2 (en) 2008-04-04 2010-11-09 Toyota Motor Engineering & Manufacturing North America, Inc. Dual-band antenna array and RF front-end for automotive radars
US7929147B1 (en) 2008-05-31 2011-04-19 Hrl Laboratories, Llc Method and system for determining an optimized artificial impedance surface
US7911407B1 (en) 2008-06-12 2011-03-22 Hrl Laboratories, Llc Method for designing artificial surface impedance structures characterized by an impedance tensor with complex components
US8794533B2 (en) * 2008-08-20 2014-08-05 Omni-Id Cayman Limited One and two-part printable EM tags
JP5355000B2 (ja) * 2008-09-01 2013-11-27 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、周期構造反射板及びテーパ付きマッシュルーム構造
JPWO2010038478A1 (ja) * 2008-10-02 2012-03-01 日本電気株式会社 電磁バンドギャップ構造、これを備える素子、基板、モジュール、半導体装置及びこれらの製造方法
KR20100072382A (ko) * 2008-12-22 2010-07-01 한국전자통신연구원 전자파 저감 장치 및 방사체에서 전자파 저감 방법
US7990237B2 (en) 2009-01-16 2011-08-02 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for improving performance of coplanar waveguide bends at mm-wave frequencies
KR101038234B1 (ko) * 2009-02-24 2011-06-01 삼성전기주식회사 전자기 밴드갭 구조를 이용한 emi 노이즈 저감 기판
KR101055483B1 (ko) * 2009-04-07 2011-08-08 포항공과대학교 산학협력단 전자기 밴드갭 구조물 및 이를 포함하는 인쇄회로기판
KR101072591B1 (ko) * 2009-08-10 2011-10-11 삼성전기주식회사 Emi 노이즈 저감 인쇄회로기판
KR101021548B1 (ko) * 2009-09-18 2011-03-16 삼성전기주식회사 전자기 밴드갭 구조를 구비하는 인쇄회로기판
KR20110062100A (ko) * 2009-12-02 2011-06-10 엘지전자 주식회사 안테나 장치 및 이를 포함하는 이동 단말기
US8957831B1 (en) 2010-03-30 2015-02-17 The Boeing Company Artificial magnetic conductors
US9190738B2 (en) * 2010-04-11 2015-11-17 Broadcom Corporation Projected artificial magnetic mirror
US8786496B2 (en) 2010-07-28 2014-07-22 Toyota Motor Engineering & Manufacturing North America, Inc. Three-dimensional array antenna on a substrate with enhanced backlobe suppression for mm-wave automotive applications
US8952266B2 (en) * 2010-09-28 2015-02-10 Nec Corporation Structural body and interconnect substrate
US9386688B2 (en) 2010-11-12 2016-07-05 Freescale Semiconductor, Inc. Integrated antenna package
US9553371B2 (en) 2010-11-12 2017-01-24 Nxp Usa, Inc. Radar module
US8842055B2 (en) * 2011-05-26 2014-09-23 Texas Instruments Incorporated High impedance surface
GB201112740D0 (en) * 2011-07-25 2011-09-07 Qinetiq Ltd Radiation absorption
US9431709B2 (en) * 2012-04-03 2016-08-30 Wemtec, Inc. Artificial magnetic conductor antennas with shielded feedlines
US10312596B2 (en) 2013-01-17 2019-06-04 Hrl Laboratories, Llc Dual-polarization, circularly-polarized, surface-wave-waveguide, artificial-impedance-surface antenna
US9072156B2 (en) 2013-03-15 2015-06-30 Lawrence Livermore National Security, Llc Diamagnetic composite material structure for reducing undesired electromagnetic interference and eddy currents in dielectric wall accelerators and other devices
FR3017493B1 (fr) * 2014-02-07 2017-06-23 Thales Sa Antenne filaire compacte a motifs resistifs
WO2015122203A1 (ja) 2014-02-12 2015-08-20 株式会社村田製作所 プリント基板
JP6202112B2 (ja) 2014-02-12 2017-09-27 株式会社村田製作所 ノイズ低減用電子部品
JP2015185946A (ja) * 2014-03-20 2015-10-22 キヤノン株式会社 アンテナ装置
US10983194B1 (en) 2014-06-12 2021-04-20 Hrl Laboratories, Llc Metasurfaces for improving co-site isolation for electronic warfare applications
FR3032556B1 (fr) 2015-02-11 2017-03-17 Commissariat Energie Atomique Dispositif de transmission rf a reflecteur d'ondes electromagnetiques integre
US20160301130A1 (en) * 2015-04-13 2016-10-13 United States Of America As Represented By The Secretary Of The Navy Radio Frequency Hat System
US20170133754A1 (en) * 2015-07-15 2017-05-11 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Near Field Scattering Antenna Casing for Arbitrary Radiation Pattern Synthesis
DE102015223482B4 (de) * 2015-11-26 2021-02-25 Ihp Gmbh - Innovations For High Performance Microelectronics / Leibniz-Institut Für Innovative Mikroelektronik Millimeterwellen-Antennenmodul
US10224629B2 (en) * 2016-05-20 2019-03-05 Rockwell Collins, Inc. Systems and methods for ultra-ultra-wide band AESA
US10980107B2 (en) * 2016-06-30 2021-04-13 Kyocera Corporation Electromagnetic blocking structure, dielectric substrate, and unit cell
US20180108979A1 (en) * 2016-10-18 2018-04-19 United States Of America As Represented By The Secretary Of The Navy Radio Frequency QUAD Hat System
US10439291B2 (en) 2017-04-04 2019-10-08 The Johns Hopkins University Radio frequency surface wave attenuator structures and associated methods
US11245195B2 (en) * 2017-10-23 2022-02-08 Nec Corporation Phase control plate
KR102532360B1 (ko) 2018-12-28 2023-05-16 생-고뱅 퍼포먼스 플라스틱스 코포레이션 연속 유전율 적응 레이돔 설계
CN112701480B (zh) * 2019-10-22 2023-05-05 Oppo广东移动通信有限公司 天线装置及电子设备
US11378683B2 (en) * 2020-02-12 2022-07-05 Veoneer Us, Inc. Vehicle radar sensor assemblies
US11349220B2 (en) 2020-02-12 2022-05-31 Veoneer Us, Inc. Oscillating waveguides and related sensor assemblies
US11668788B2 (en) 2021-07-08 2023-06-06 Veoneer Us, Llc Phase-compensated waveguides and related sensor assemblies
US20230253702A1 (en) * 2022-02-10 2023-08-10 Swiftlink Technologies Co., Ltd. Periodic Mode-Selective Structure for Surface Wave Scattering Mitigation in Millimeter Wave Antenna Arrays
KR20240002542A (ko) * 2022-06-29 2024-01-05 삼성전자주식회사 다중 공진을 형성하는 재구성가능한 지능형 표면

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3267480A (en) 1961-02-23 1966-08-16 Hazeltine Research Inc Polarization converter
US3810183A (en) 1970-12-18 1974-05-07 Ball Brothers Res Corp Dual slot antenna device
US4150382A (en) 1973-09-13 1979-04-17 Wisconsin Alumni Research Foundation Non-uniform variable guided wave antennas with electronically controllable scanning
US3961333A (en) 1974-08-29 1976-06-01 Texas Instruments Incorporated Radome wire grid having low pass frequency characteristics
FR2382109A1 (fr) 1977-02-25 1978-09-22 Thomson Csf Transformateur de polarisation hyperfrequence
DE3023562C2 (de) 1980-06-24 1982-10-28 Siemens AG, 1000 Berlin und 8000 München Einrichtung zur Polarisationsumwandlung elektromagnetischer Wellen
US4749996A (en) 1983-08-29 1988-06-07 Allied-Signal Inc. Double tuned, coupled microstrip antenna
US4594595A (en) 1984-04-18 1986-06-10 Sanders Associates, Inc. Circular log-periodic direction-finder array
FI92596C (fi) 1985-10-28 1994-12-12 Sumitomo Chemical Co Menetelmä hartsin valmistamiseksi paperin päällystämistä varten
US4782346A (en) 1986-03-11 1988-11-01 General Electric Company Finline antennas
US4737795A (en) 1986-07-25 1988-04-12 General Motors Corporation Vehicle roof mounted slot antenna with AM and FM grounding
US4829309A (en) * 1986-08-14 1989-05-09 Matsushita Electric Works, Ltd. Planar antenna
US5325094A (en) 1986-11-25 1994-06-28 Chomerics, Inc. Electromagnetic energy absorbing structure
US4835541A (en) 1986-12-29 1989-05-30 Ball Corporation Near-isotropic low-profile microstrip radiator especially suited for use as a mobile vehicle antenna
DE3722046C1 (de) 1987-07-03 1988-11-10 Magenwirth Gmbh Co Gustav Steuerknueppel zur Erzeugung elektrischer Steuersignale
US4843403A (en) 1987-07-29 1989-06-27 Ball Corporation Broadband notch antenna
US4905014A (en) 1988-04-05 1990-02-27 Malibu Research Associates, Inc. Microwave phasing structures for electromagnetically emulating reflective surfaces and focusing elements of selected geometry
US4843400A (en) 1988-08-09 1989-06-27 Ford Aerospace Corporation Aperture coupled circular polarization antenna
US5021795A (en) 1989-06-23 1991-06-04 Motorola, Inc. Passive temperature compensation scheme for microstrip antennas
CA2030963C (en) 1989-12-14 1995-08-15 Robert Michael Sorbello Orthogonally polarized dual-band printed circuit antenna employing radiating elements capacitively coupled to feedlines
AT393762B (de) 1989-12-18 1991-12-10 Akg Akustische Kino Geraete Als wendelantenne ausgebildete uhf-sendeund/oder empfangsantenne
US5023623A (en) 1989-12-21 1991-06-11 Hughes Aircraft Company Dual mode antenna apparatus having slotted waveguide and broadband arrays
US5081466A (en) 1990-05-04 1992-01-14 Motorola, Inc. Tapered notch antenna
US5208603A (en) 1990-06-15 1993-05-04 The Boeing Company Frequency selective surface (FSS)
GB2246474A (en) 1990-07-24 1992-01-29 British Aerospace A layered frequency selective surface assembly
CA2049597A1 (en) 1990-09-28 1992-03-29 Clifton Quan Dielectric flare notch radiator with separate transmit and receive ports
US5115217A (en) 1990-12-06 1992-05-19 California Institute Of Technology RF tuning element
US5519408A (en) 1991-01-22 1996-05-21 Us Air Force Tapered notch antenna using coplanar waveguide
FR2683050B1 (fr) 1991-10-25 1994-03-04 Commissariat A Energie Atomique Dispositif a surface selective en frequence accordable.
WO1993009577A1 (en) * 1991-11-08 1993-05-13 Calling Communications Corporation Terrestrial antennas for satellite communication system
US5268701A (en) 1992-03-23 1993-12-07 Raytheon Company Radio frequency antenna
WO1994000891A1 (en) 1992-06-29 1994-01-06 Loughborough University Of Technology Reconfigurable frequency selective surfaces
KR960700533A (ko) 1992-12-01 1996-01-20 스티븐 에이취 앤드레이드 고온 초전도 및 강유전막을 통합한 동조식 마이크로파 기구(TUNABLE MICROWAVE DEVICES INCORPORATING HIFH RWMPWEruew SUPERCONDUCTING AND FERROELECTRIC FILMS)
US5472935A (en) 1992-12-01 1995-12-05 Yandrofski; Robert M. Tuneable microwave devices incorporating high temperature superconducting and ferroelectric films
US5402134A (en) 1993-03-01 1995-03-28 R. A. Miller Industries, Inc. Flat plate antenna module
JPH07106815A (ja) 1993-08-09 1995-04-21 Oki Electric Ind Co Ltd ストリップライン共振器
FR2709833B1 (fr) 1993-09-07 1995-10-20 Alcatel Espace Instrument d'écoute large bande et bande basse pour applications spatiales.
US5531018A (en) 1993-12-20 1996-07-02 General Electric Company Method of micromachining electromagnetically actuated current switches with polyimide reinforcement seals, and switches produced thereby
DE4414968A1 (de) 1994-04-28 1995-11-02 Siemens Ag Mikrosystem mit integrierter Schaltung und mikromechanischem Bauteil und Herstellverfahren
GB2328319B (en) 1994-06-22 1999-06-02 British Aerospace A frequency selective surface
US5532709A (en) 1994-11-02 1996-07-02 Ford Motor Company Directional antenna for vehicle entry system
WO1996029621A1 (en) 1995-03-17 1996-09-26 Massachusetts Institute Of Technology Metallodielectric photonic crystal
US5541614A (en) 1995-04-04 1996-07-30 Hughes Aircraft Company Smart antenna system using microelectromechanically tunable dipole antennas and photonic bandgap materials
US5557291A (en) 1995-05-25 1996-09-17 Hughes Aircraft Company Multiband, phased-array antenna with interleaved tapered-element and waveguide radiators
US5965494A (en) * 1995-05-25 1999-10-12 Kabushiki Kaisha Toshiba Tunable resonance device controlled by separate permittivity adjusting electrodes
US5917458A (en) 1995-09-08 1999-06-29 The United States Of America As Represented By The Secretary Of The Navy Frequency selective surface integrated antenna system
DE19600609B4 (de) 1995-09-30 2004-02-19 Eads Deutschland Gmbh Polarisator zur Umwandlung von einer linear polarisierten Welle in eine zirkular polarisierte Welle oder in eine linear polarisierte Welle mit gedrehter Polarisation und umgekehrt
US6208316B1 (en) 1995-10-02 2001-03-27 Matra Marconi Space Uk Limited Frequency selective surface devices for separating multiple frequencies
US5638946A (en) 1996-01-11 1997-06-17 Northeastern University Micromechanical switch with insulated switch contact
AU3580897A (en) 1996-06-28 1998-01-21 Superconducting Core Technologies, Inc. Near resonant cavity tuning devices
US6005519A (en) 1996-09-04 1999-12-21 3 Com Corporation Tunable microstrip antenna and method for tuning the same
DE19730715C1 (de) 1996-11-12 1998-11-26 Fraunhofer Ges Forschung Verfahren zum Herstellen eines mikromechanischen Relais
US5892485A (en) 1997-02-25 1999-04-06 Pacific Antenna Technologies Dual frequency reflector antenna feed element
US5874915A (en) 1997-08-08 1999-02-23 Raytheon Company Wideband cylindrical UHF array
US5894288A (en) 1997-08-08 1999-04-13 Raytheon Company Wideband end-fire array
GB2328748B (en) 1997-08-30 2002-02-20 Ford Motor Co Improvements in sensor assemblies for automotive collision warning systems
US5945951A (en) 1997-09-03 1999-08-31 Andrew Corporation High isolation dual polarized antenna system with microstrip-fed aperture coupled patches
US6127908A (en) 1997-11-17 2000-10-03 Massachusetts Institute Of Technology Microelectro-mechanical system actuator device and reconfigurable circuits utilizing same
US5923303A (en) 1997-12-24 1999-07-13 U S West, Inc. Combined space and polarization diversity antennas
US6040803A (en) 1998-02-19 2000-03-21 Ericsson Inc. Dual band diversity antenna having parasitic radiating element
US6054659A (en) 1998-03-09 2000-04-25 General Motors Corporation Integrated electrostatically-actuated micromachined all-metal micro-relays
US6262495B1 (en) 1998-03-30 2001-07-17 The Regents Of The University Of California Circuit and method for eliminating surface currents on metals
US6081235A (en) 1998-04-30 2000-06-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High resolution scanning reflectarray antenna
US6154176A (en) 1998-08-07 2000-11-28 Sarnoff Corporation Antennas formed using multilayer ceramic substrates
US6097343A (en) 1998-10-23 2000-08-01 Trw Inc. Conformal load-bearing antenna system that excites aircraft structure
US6246377B1 (en) 1998-11-02 2001-06-12 Fantasma Networks, Inc. Antenna comprising two separate wideband notch regions on one coplanar substrate
US6075485A (en) 1998-11-03 2000-06-13 Atlantic Aerospace Electronics Corp. Reduced weight artificial dielectric antennas and method for providing the same
FR2785476A1 (fr) 1998-11-04 2000-05-05 Thomson Multimedia Sa Dispositif de reception de signaux multi-faisceaux
US6118406A (en) 1998-12-21 2000-09-12 The United States Of America As Represented By The Secretary Of The Navy Broadband direct fed phased array antenna comprising stacked patches
DE10080131D2 (de) 1999-01-25 2002-04-25 Gfd Ges Fuer Diamantprodukte M Mikroschaltkontakt
US6191724B1 (en) 1999-01-28 2001-02-20 Mcewan Thomas E. Short pulse microwave transceiver
ES2153323B1 (es) 1999-06-07 2001-07-16 Univ Madrid Politecnica Reflectores planos en tecnologia impresa multicapa y su procedimiento de diseño.
US6166705A (en) 1999-07-20 2000-12-26 Harris Corporation Multi title-configured phased array antenna architecture
US6118410A (en) 1999-07-29 2000-09-12 General Motors Corporation Automobile roof antenna shelf
US6175337B1 (en) 1999-09-17 2001-01-16 The United States Of America As Represented By The Secretary Of The Army High-gain, dielectric loaded, slotted waveguide antenna

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544671A (ja) * 2005-06-25 2008-12-04 オムニ−アイ・デイ・リミテツド 電磁放射デカップラー
KR101312099B1 (ko) * 2005-06-25 2013-09-25 옴니-아이디 케이만, 엘티디. 전자기 방사 디커플러
JP2007135178A (ja) * 2005-10-25 2007-05-31 Tatung Co 部分反射面アンテナ
WO2008050441A1 (fr) * 2006-10-26 2008-05-02 Panasonic Corporation Dispositif d'antenne
JP2008219125A (ja) * 2007-02-28 2008-09-18 Toyota Central R&D Labs Inc 電波反射板及びアンテナ
JP2009218970A (ja) * 2008-03-11 2009-09-24 Nec Tokin Corp アンテナ装置
JP2009225159A (ja) * 2008-03-17 2009-10-01 Mitsubishi Electric Corp 電磁波反射面
JP5463354B2 (ja) * 2009-05-29 2014-04-09 株式会社Nttドコモ リフレクトアレイ
JP2011109414A (ja) * 2009-11-17 2011-06-02 Toshiba Tec Corp 周期構造体
US8988287B2 (en) 2010-02-26 2015-03-24 Ntt Docomo, Inc. Apparatus having mushroom structures
US8847822B2 (en) 2010-02-26 2014-09-30 Ntt Docomo, Inc. Apparatus having mushroom structures
WO2013128744A1 (ja) * 2012-02-29 2013-09-06 株式会社 エヌ・ティ・ティ・ドコモ リフレクトアレー及び設計方法
WO2013128745A1 (ja) * 2012-02-29 2013-09-06 株式会社 エヌ・ティ・ティ・ドコモ リフレクトアレー、設計方法およびシステム
WO2013128743A1 (ja) * 2012-02-29 2013-09-06 株式会社 エヌ・ティ・ティ・ドコモ リフレクトアレー及び設計方法
US9425512B2 (en) 2012-02-29 2016-08-23 Ntt Docomo, Inc. Reflectarray and design method
US9531079B2 (en) 2012-02-29 2016-12-27 Ntt Docomo, Inc. Reflectarray and design method
US9620864B2 (en) 2012-02-29 2017-04-11 Ntt Docomo, Inc. Reflectarray and design method
WO2014020969A1 (ja) * 2012-07-31 2014-02-06 株式会社 エヌ・ティ・ティ・ドコモ リフレクトアレー
JP2015142223A (ja) * 2014-01-28 2015-08-03 キヤノン株式会社 セル及び電磁バンドギャップ構造体
WO2020045237A1 (ja) * 2018-08-27 2020-03-05 京セラ株式会社 共振構造体、アンテナ、無線通信モジュール及び無線通信機器
JP6659920B1 (ja) * 2018-08-27 2020-03-04 京セラ株式会社 アンテナ、無線通信モジュール及び無線通信機器
JP2020078087A (ja) * 2018-08-27 2020-05-21 京セラ株式会社 共振構造体、アンテナ、無線通信モジュール及び無線通信機器
US11031687B2 (en) 2018-08-27 2021-06-08 Kyocera Corporation Antenna, wireless communication module, and wireless communication device
JP7361620B2 (ja) 2018-08-27 2023-10-16 京セラ株式会社 共振構造体、アンテナ、無線通信モジュール及び無線通信機器
US11870144B2 (en) 2018-08-27 2024-01-09 Kyocera Corporation Antenna, wireless communication module, and wireless communication device
JP2020072452A (ja) * 2018-11-02 2020-05-07 京セラ株式会社 アンテナ素子、アレイアンテナ、通信ユニット、移動体及び基地局
WO2020090630A1 (ja) * 2018-11-02 2020-05-07 京セラ株式会社 アンテナ素子、アレイアンテナ、通信ユニット、移動体及び基地局
CN112930623A (zh) * 2018-11-02 2021-06-08 京瓷株式会社 天线元件、阵列天线、通信单元、移动体以及基站
JP7064428B2 (ja) 2018-11-02 2022-05-10 京セラ株式会社 アンテナ素子、アレイアンテナ、通信ユニット、移動体及び基地局
CN112930623B (zh) * 2018-11-02 2024-03-12 京瓷株式会社 天线元件、阵列天线、通信单元、移动体以及基站

Also Published As

Publication number Publication date
US6483481B1 (en) 2002-11-19
GB0310485D0 (en) 2003-06-11
GB2385994B (en) 2004-06-09
JP3935072B2 (ja) 2007-06-20
TW543237B (en) 2003-07-21
AU2001296656A1 (en) 2002-05-27
GB2385994A (en) 2003-09-03
WO2002041447A1 (en) 2002-05-23
DE10196911T1 (de) 2003-10-02

Similar Documents

Publication Publication Date Title
JP3935072B2 (ja) 多重周波数帯域における電磁インピーダンスの大きいテクスチャ化表面
EP3639324B1 (en) Liquid-crystal reconfigurable multi-beam phased array related applications
Pham et al. Dual-band transmitarrays with dual-linear polarization at Ka-band
US6897831B2 (en) Reconfigurable artificial magnetic conductor
US6917343B2 (en) Broadband antennas over electronically reconfigurable artificial magnetic conductor surfaces
Haider et al. Recent developments in reconfigurable and multiband antenna technology
JP5527316B2 (ja) 共振器アンテナ
US8319698B2 (en) Reflector array and antenna comprising such a reflector array
KR101527190B1 (ko) 재구성가능한 안테나의 개량 및 해당 안테나와 관련된 개량
EP0962033B1 (en) Base station antenna arrangement
Cheng et al. Study of 2-bit antenna–filter–antenna elements for reconfigurable millimeter-wave lens arrays
JP2019533925A (ja) 開口面アンテナ用のインピーダンス整合
Gu et al. 3-D coverage beam-scanning antenna using feed array and active frequency-selective surface
KR20180030213A (ko) 다중 빔 안테나 어레이 어셈블리를 위한 메타물질 기반 트랜스밋어레이
JP2004328717A (ja) ダイバーシティアンテナ装置
WO1999017397A1 (en) An antenna unit with a multilayer structure
JP2000514614A (ja) 二重周波数平面アレイアンテナ
TW200830634A (en) Compact dual-band resonator using anisotropic metamaterial
CA2917385A1 (en) Meander line circular polariser
EP3750212B1 (en) Interleaved array of antennas operable at multiple frequencies
CN115668641A (zh) 单层广角阻抗匹配(waim)
US6504508B2 (en) Printed circuit variable impedance transmission line antenna
Costanzo et al. Bandwidth performances of reconfigurable reflectarrays: state of art and future challenges
WO2022105999A1 (en) A low profile device comprising layers of coupled resonance structures
US20220278450A1 (en) Low-Profile Low-Cost Phased-Array Antenna-in-Package

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees