JP2004506468A - 低血糖事象の予測のための方法およびデバイス - Google Patents

低血糖事象の予測のための方法およびデバイス Download PDF

Info

Publication number
JP2004506468A
JP2004506468A JP2002520695A JP2002520695A JP2004506468A JP 2004506468 A JP2004506468 A JP 2004506468A JP 2002520695 A JP2002520695 A JP 2002520695A JP 2002520695 A JP2002520695 A JP 2002520695A JP 2004506468 A JP2004506468 A JP 2004506468A
Authority
JP
Japan
Prior art keywords
glucose
subject
measurements
series
time interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002520695A
Other languages
English (en)
Other versions
JP3647032B2 (ja
Inventor
ポッツ, ラッセル オー.
ティアニー, マイケル ジェイ.
Original Assignee
シグナス, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シグナス, インコーポレイテッド filed Critical シグナス, インコーポレイテッド
Publication of JP2004506468A publication Critical patent/JP2004506468A/ja
Application granted granted Critical
Publication of JP3647032B2 publication Critical patent/JP3647032B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Emergency Medicine (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Prostheses (AREA)
  • Adornments (AREA)

Abstract

本明細書中に記載されるものは、被験体において低血糖事象を予測するために有用な方法、デバイス、およびマイクロプロセッサーである。本明細書中に記載される低血糖予測アプローチは、初期の低血糖事象を予測するために、そして使用者に警告するために、データの流れ(例えば、頻繁に得られたグルコース値(現在のおよび/もしくは予測された)、体温、ならびに/または皮膚伝導性)から得られる情報を利用する低血糖予測アプローチである。

Description

【0001】
(技術分野)
被験体における低血糖事象を予測するために有用な方法、デバイス、およびマイクロプロセッサーが、本明細書中に開示される。低血糖事象の予測のための本発明は、代表的に、この予測において複数のパラメーターを利用する。このようなパラメーターとしては、グルコース読み取り(現在および/または予測)、体温、および/または皮膚の伝導性が挙げられるが、これらに限定されない。
【0002】
(発明の背景)
低血糖症は、糖尿病の最も重篤な急性合併症である。血糖の自己モニタリング(SMBG)の代表的に使用される現在の方法は、フィンガースティックから得られた血糖の周期的な測定を提供する。この方法は、非常に正確ではあるが、非常に頻度が少ないので低血糖症状の発現を検出し得ない測定値を提供する。しばしば、低血糖症を回避するために、糖尿病は、低い血糖レベルに対する「緩衝」を提供するために異常に高い血糖レベルを維持する。この一定の高い血糖レベルは、糖尿病のほとんどの長期合併症(すなわち、網膜症、ニューロパシー、ネフロパシー、および心血管疾患)の根本となる原因である。実際、現在のSMBG方法は、多くの糖尿病患者が、後の人生により高い割合の慢性合併症を伴う、より低い割合の急性合併症に苦しむことを強いる。
【0003】
糖尿病の制御および合併症試験(DCCT)(The Diabetes Control and Complications Trial Research Group.New Engl.J.Med.329,977−1036(1993))は、血糖のより多くの情報が、より良好な臨床結果に必須であることを示す。血糖が測定され、そしてインスリンをより頻繁に(1日につき3〜7回)を投与された被験体群は、試験され、かつあまり頻繁に注射されなかった群に対して、その研究の終わりに実質的に低い割合の合併症を有した。例えそうであっても、厳重に制御した群であっても、平均血糖を正常値よりも約50%上の値(153mg/mL)に低下し得ただけであった。同様に、HbA1cレベル(長期の平均血糖レベルの測定値)は、コントロール群に対して実質的に低下したが、正常範囲には入らなかった。より徹底的な治療の結果として、より厳密に制御された群は、コントロール群よりも、3回より頻繁に低血糖事象を経験した。これらの結果は、1日につき3〜7回の血糖測定が、より低い長期の合併症の割合に十分であるが、未だ血糖レベルを正常レベルにするため、または低血糖事象を回避するための十分な情報を提供しないということを実証する。類似の結果が、経口薬物に対して被験体から得られ(UK Prospective Diabetes Study(UKPDS)Group,Lancet 352:837−853(1998);Ohkubo Yら,Diabetes Research & Clinical Practice 28:10317(1995))、これは、糖尿病管理における頻繁なグルコースモニタリングの一般的な利点を実証する。しかし、Bolinderら(Diabetes Care 20:64−70(1997))は、1日につき7回であっても、全低血糖事象のうちの3分の1より多くを検出できないことを示す。
【0004】
(発明の要旨)
本発明は、被験体における低血糖事象を予測するための方法、デバイス、およびマイクロプロセッサーを記載する。本発明の方法は、代表的に、低血糖事象の予測に使用される複数のパラメーターを利用する。このようなパラメーターとしては、現在のグルコース読み取り(被験体中のグルコース量またはグルコース濃度を反映する)、1つ以上の予想される将来のグルコース読み取り、体温、および皮膚の伝導性が挙げられるが、これらに限定されない。
【0005】
1つの局面において、本発明は、被験体中の低血糖事象を予測するための方法を含む。この方法は、選択されたパラメーターについての閾値(または値の範囲)を決定する工程(例えば、(i)低血糖事象に対応する閾値グルコース値(または値の範囲)、および(ii)低血糖事象に関連する少なくとも1つの閾値パラメーター値を決定する工程(ここで、このパラメーターは、皮膚の伝導性読み取りまたは温度読み取りのいずれかであり得る))を包含し、ここで、この閾値(または値の範囲)は、その被験体における低血糖事象を示す。本発明の1つの実施形態において、皮膚の伝導性読み取りおよび温度読み取りの両方が利用される。一連のグルコース測定値は、代表的に、選択された時間間隔で得られる。1つの実施形態において、時間間隔は、均等に間隔を空ける。このような連続は、例えば、以下の工程を包含する方法を用いて入手することができる:被験体の皮膚または粘膜表面と接触して作動される経皮サンプリングシステムを用いて、グルコースを含むサンプルを、被験体から抽出する工程;この抽出されたグルコースから生の信号を入手する工程であって、ここで、この生の信号は、被験体中のグルコース量またはグルコール濃度と特異的に関連する、工程;生の信号を、抽出時点の被験体中に存在するグルコース量またはグルコース濃度を示すグルコース測定値と相関付ける工程;ならびに抽出する工程、入手する工程、および関連付ける工程を反復して、選択された時間間隔における一連の測定値を提供する工程。1つの実施形態において、このサンプリングシステムは、抽出する工程、入手する工程、および関連付ける工程の間に被験体の皮膚または粘膜表面と接触して動作を維持され、頻繁なグルコース測定を提供する。
【0006】
この方法のこの局面の実施において、現在のグルコース値(時間=n)または一連の測定後に続くさらなる時間間隔について推定された測定値(例えば、時間=n+1;すなわち、一連の測定値における最も新しい測定(時間=n)の後の、1時間間隔)が、閾値のグルコース値に対して比較される(ここで、閾値以下の測定値は、低血糖であることを示す)。
【0007】
パラメーター値またはパラメーター値の傾向が、一連のグルコース測定値を獲得しながら、共に、同時に、または連続して測定される。本発明の1つの実施形態において、パラメーター値またはパラメーター値の傾向は、被験体の皮膚伝導性読み取りまたは温度読み取りのいずれかを反映する。パラメーター値またはパラメーター値の傾向が、閾値のパラメーター値(または値の範囲)と比較され、パラメーター値またはパラメーター値の傾向が、低血糖事象を示すか否かを決定する。低血糖事象は、(i)閾値グルコース値に対して予測された測定値を比較することが、低血糖事象を示す場合、および(ii)1つ以上の他のパラメーター(例えば、体温および/または皮膚伝導性)を、閾値パラメーター値(または値の範囲)と比較することが、低血糖事象を示す場合、被験体において予測される。
【0008】
上記方法の1つの実施形態において、一連の測定値は、3つ以上の離散した値を含む。この実施形態において、さらなる時間間隔における測定値の推測は、以下:
【0009】
【数4】
Figure 2004506468
によって示される一連の関数において一連の3つ以上の測定値を用いて、実行され得る。ここで、yは、グルコースの測定値であり、nは、測定値の間の時間間隔であり、そしてαは、0と1との間の実数である。この一連の関数は、yn+1(ここで、時間間隔n+1は、一連の測定値が得られた後に1時間間隔で生じる)の値を推測するために使用され得る。
【0010】
皮膚伝導性が選択されたパラメーターである場合、サンプリングシステムは、代表的に、発汗プローブを含み、そして皮膚の伝導性読み取りは、この発汗プローブを用いて得られる。
【0011】
体温が選択されたパラメーターである場合、サンプリングシステムは、代表的に、温度プローブを含み、そして温度の読み取りは、温度プローブを用いて得られる。
【0012】
本発明の方法の1つの実施形態において、グルコースを含むサンプルが被験体から抽出され、回収レザバに入れられて、このレザバ中でグルコースの量またはグルコースの濃度が得られる。このような1つ以上の回収レザバは、代表的に、被験体の皮膚または粘膜表面と接触し、そしてサンプルは、皮膚または粘膜表面に提供されたイオン導入電流を用いて抽出される。さらに、少なくとも1つの回収レザバは、抽出されたグルコースと反応する酵素を含み、電気的に検出可能な信号(例えば、グルコースオキシダーゼ)を生成し得る。あるいは、一連のグルコース測定値は、異なるデバイス(例えば、近赤外分光計(near−IR spectrometer)を用いて)入手され得る。
【0013】
本発明はまた、本発明の方法を実行するために有用なグルコースモニタリングシステムを含む。1つの実施形態において、グルコースモニタリングシステムは、作動的な組合わせで、以下のものを備える:検出機構(被験体または被験体から抽出されたグルコース含有サンプルと接触して作動し、ここで、この検出機構は、被験体中のグルコース量またはグルコース濃度に特に関連する生の信号を得る)、被験体からの皮膚伝導性読み取りまたは温度読み取りのいずれかを得るためのデバイス、検出機構と連絡して動作する1つ以上のマイクロプロセッサー。このマイクロプロセッサーは、(i)検出機構を制御して、選択された時間間隔で一連の生の信号を得るため、(ii)この生の信号を被験体中に存在するグルコース量またはグルコース濃度を示す測定値と関連付けて、一連の測定値を得るため、(iii)必要がある場合、さらなる時間間隔における測定値を予測するため(これは、一連の測定値が得られた後に生じる)、(iv)予測された測定値を、予め決定された閾値または値の範囲と比較するため(ここで、予め決定された閾値よりも低い予測された測定値は、低血糖であることを示す)、(v)被験体の皮膚伝導性読み取りまたは温度読み取りを測定するためのデバイスを制御するため、(vi)皮膚伝導性読み取りまたは温度読み取りを、パラメーター閾値、パラメーター値の範囲、またはパラメーターの値の傾向と比較して、皮膚伝導性読み取りまたは温度読み取りが、低血糖事象を示すか否かを決定するため;そして(vii)(a)予測された測定値の閾値グルコース値(または値の範囲)に対する比較が、低血糖事象を示す場合、および(b)皮膚伝導性読み取りまたは温度読み取りと、閾値パラメーター値、パラメーター値の範囲、またはパラメーター値の傾向との比較が、低血糖事象を示す場合の両方である場合に、被験体における低血糖事象を予測するための、プログラミングを含む。
【0014】
モニタリングシステムの検出機構は、例えば、電気化学検出素子または近赤外放射分光計を有するバイオセンサーを備え得る。さらに、このモニタリングシステムは、皮膚伝導性読み取り(例えば、発汗プローブ)を得るためのデバイスおよび/または温度読み取り(例えば、温度プローブ)を得るためのデバイスを備え得る。
【0015】
モニタリングシステムの1つの実施形態において、さらなる時間間隔における測定値の予測は、以下:
【0016】
【数5】
Figure 2004506468
によって示される一連の関数において一連の3つ以上の測定値を用いて、実行される。ここで、yは、グルコースの測定値であり、nは、測定値の間の時間間隔であり、そしてαは、0と1との間の実数である。
【0017】
本発明の1つの局面において、低血糖事象の予測のための方法は、選択されたパラメーターの閾値の分類体系的な評価を利用するデシジョンツリーを使用し、ここで、この閾値は、低血糖事象を示す。このようなパラメーターとしては、現在のグルコース読み取り(被験体中のグルコース量またはグルコース濃度を反映する)、1つ以上の予想される将来のグルコース読み取り、体温、および皮膚の伝導性が挙げられるが、これらに限定されない。別の局面において、本発明は、上記の方法、測定サイクル、デバイス、機構、計算、予測、比較、評価などを制御するようにプログラムされた1つ以上のマイクロプロセッサを含む。このマイクロプロセッサはまた、予測された低血糖事象に関連する警報または警告に影響し得る。
【0018】
当業者は、本明細書中の開示を鑑みて、本発明のこれらの実施形態および他の実施形態を容易に思いつく。
【0019】
(発明の詳細な説明)
本発明の実施は、他に示されない限り、本明細書の教示を考慮して、当業者内の診断学、化学、生化学、電気化学、統計学、および薬理学の従来の方法を使用する。このような従来方法は、文献中に完全に説明される。
【0020】
本明細書および添付の特許請求の範囲中に使用される場合、単数形の「a」、「an」、および「the」は、その内容が明らかに他に示されない限り、複数指示を含む。従って、例えば、「レザバ(単数形)」は、2つ以上のこのような「レザバ」の組合わせを含み、「分析物(単数形)」は、分析物の混合物を含む、などである。
【0021】
(1.定義)
他に規定されない限り、本明細書中に使用される全ての技術用語および科学用語は、本発明が属する当業者によって通常理解される意味と同じ意味を有する。本明細書中に記載される方法および材料に類似または等価な他の方法および材料が、本発明の実施に使用され得るが、好ましい材料および方法は、本明細書中に記載される。
【0022】
本発明を記載または主張する場合、以下の用語が、以下に示される定義に従って使用される。
【0023】
用語「マイクロプロセッサー」は、集積回路チップ上に含まれるコンピュータープロセッサーをいい、このようなプロセッサーはまた、メモリーおよび関連する回路を含み得る。マイクロプロセッサーはさらに、選択された関数、計算方法、スイッチングなどを実行または制御するための、プログラムされた指示書を備え得る。マイクロプロセッサおよび関連するデバイスは、多数の供給源(Cypress Semiconductor Corporation,San Jose,CA;IBM Corporation,White Plains,New York;Applied Microsystems Corporation,Redmond,WA;Intel Corporation,Chandler,Arizona;NEC Corporation,New York,NY;およびNational Semiconductor,Santa Clara,CAが挙げられるが、これらに限定されない)から市販される。
【0024】
用語「分析物」および「標的分析物」は、化学分析、物理分析、酵素分析または光学分析において検出および/または測定される特異的な物質または成分である、任意の目的の生理学的分析物を示すために使用される。検出可能な信号(例えば、化学信号または電気化学信号)が、直接的または間接的に、このような分析物またはその誘導体から獲得され得る。さらに、用語「分析物」および「物質」は、本明細書中において交換可能に使用され、そして同じ意味を有することが意図され、ゆえに、目的の任意の物質を含む。好ましい実施形態において、分析物は、目的の生理学的分析物(例えば、グルコース)または生理学的機能を有する化学物質(例えば、薬物または薬理学的薬剤)である。
【0025】
「サンプリングデバイス」、「サンプリング機構」または「サンプリングシステム」は、目的の分析物の濃度を決定する目的のための、生物学的システムからサンプルを得るための任意のデバイスおよび/または関連する方法をいう。このような「生物学的システム」としては、目的の分析物が抽出され得る任意の生物学的システム(これには、間質液、汗および涙液が挙げられるが、これらに限定されない)が挙げられる。さらに、「生物学的システム」は、生存しているシステムおよび人工的に維持されたシステムの両方を含む。用語「サンプリング」機構は、一般的に、角質層または粘膜のような膜を介した生物学的システムからの物質の抽出をいい、ここで、このサンプリングは、侵襲性であるか、最小に侵襲性であるか、半分侵襲性であるか、または侵襲性ではない。膜は、天然であっても、人工であってもよく、そして天然の植物または動物の膜であり得る(例えば、天然または人工の、皮膚、血管組織、腸組織など)。代表的に、サンプリング機構は、「レザバ」または「回収レザバ」と接触して作動し、ここで、このサンプリング機構は、生物学的システムから分析物を抽出して、レザバに入れるために使用され、これによってレザバ中の分析物を得る。サンプリング技術の非限定的な例としては、イオン導入法、ソノフォロシス(sonophoresis)(例えば、国際公開 WO 91/12772(1991年9月5日公開);米国特許第5,636,632号)、吸引、エレクトロポレーション、温度ポレーション(thermal poration)、受動拡散(例えば、国際公開 WO 97/38126(1997年10月16日公開);WO 97/42888、WO 97/42886、WO 97/42885、およびWO 97/42882(全て1997年11月20日に公開された);ならびにWO 97/43962(1997年11月27日公開)を参照のこと)、ミクロファイン(ミニチュア)ランスまたはカニューレ、微粒子銃(例えば、高速に加速された粒子を用いて)、皮下移植または挿入、およびレーザーデバイス(例えば、Jacquesら(1978)J.Invest.Dermatology 88:88−93;国際公開 WO 99/44507(1999年9月10日公開;国際公開WO 99/44638(1999年9月10日公開);および国際公開 WO 99/40848(1999年8月19日公開)を参照のこと)が挙げられる。イオン導入サンプリングデバイスは、例えば、国際公開 97/24059(1997年7月10日公開);欧州特許出願 EP 0942 278(1999年9月15日公開);国際公開 96/00110(1996年1月4日公開);国際公開 WO 97/10499(1997年3月2日公開);米国特許第5,279,543号;同第5,362,307号;同第5,730,714号;同第5,771,890号;同第5,989,409号;同第5,735,273号;同第5,827,183号;同第5,954,685号および同第6,023,629号に記載される。さらに、重合膜が、例えば、電極表面に使用されて、電極の反応表面への妨害種のアクセスをブロックまたは阻害し得る。
【0026】
用語「生理学的流体」は、サンプルにされる任意の所望の流体をいい、そして、血液、脳脊髄液、間質液、精液、汗、唾液、尿などが挙げられるが、これらに限定されない。
【0027】
用語「人工膜」または「人工表面」は、例えば、重合膜またはインビボもしくはインビトロで増殖される単層の厚み以上の細胞の凝集体をいい、ここで、この膜または表面は、器官の組織としてはたらくが、前に存在していた供給源または宿主から実際に誘導または切除されてはない。
【0028】
「モニタリングシステム」または「分析物モニタリングデバイス」は、生物学的システム中に存在する生理学的分析物の頻繁な測定を得るために有用なシステムをいう。このようなデバイスは、例えば、被験体中の分析物の量または濃度をモニタリングするために有用である。このようなシステムは、サンプリング機構、検出機構、ならびにサンプリング機構および検出機構と接続して作動するマイクロプロセッサ機構を備えるが、これらに限定されない。このようなデバイスは、代表的に、被験体中の分析物の量または分析物の濃度の、頻繁な測定または決定を提供し、そしてモニタリングされる分析物のレベルが予め決定された範囲の外に下がった場合に警報または警告を提供する。このようなデバイスは、耐久性および消耗性(または使い捨ての)要素を含み得る。用語「グルコースモニタリングデバイス」は、被験体中のグルコース量またはグルコース濃度をモニタリングするためのデバイスをいう。このようなデバイスは、代表的に、被験体中のグルコース量またはグルコース濃度の頻繁な測定または決定を提供し、そして、グルコースレベルが予め決定された範囲の外に下がった場合に警報または警告を提供する。1つのこのような例示的グルコースモニタリングデバイスは、Cygnus,Inc.,Redwood City,CA,USから入手可能なGlucoWatch(登録商標)biographerである。このGlucoWatch biographerは、2つの主要な要素を備える:耐久性要素(ウォッチ型のハウジング、サーキットリー、表示要素、マイクロプロセッサー要素、電気接続エレメントを備え、そしてさらに、電源を備え得る)、および消耗性要素(すなわち、使い捨て要素(例えば、サンプリングおよび信号検出に関与するAutoSensor成分(例えば、WO 99/58190(1999年11月18日公開)を参照のこと))。このデバイスおよび類似のデバイスは、例えば、以下の刊行物に記載される:Tamadaら(1999)JAMA 282:1839−1844;米国特許第5,771,890号(1998年6月30日発行);米国特許第5,735,273号(1998年4月7日発行);米国特許第5,827,183号(1998年10月27日発行);米国特許第5,954,685号(1999年9月21日発行);米国特許第5,989,409号(1999年11月23日発行);米国特許第6,023,629号(2000年2月8日発行);欧州特許出願 EP 0 942 278 A2(1999年9月15日発行);PCT国際出願 WO 96/001100(1996年1月4日公開)PCT国際出願 WO 99/58190(1999年11月18日公開)。GlucoWatch biographerは、被験体からのグルコースの頻繁なサンプリングのために、体組織からサンプリングチャンバへのグルコース輸送を促進するための皮膚を横切った低い強度の電場の適用を、デバイスに提供する。さらに、グルコース濃度またはグルコース量が予め決定された範囲の値から外れて決定された場合、GlucoWatch biographerは、警報または警告を生成する。このような警報または警告は、GlucoWatch biographerの成分である。
【0029】
「測定サイクル」は代表的に、例えばサンプリングデバイスを使用した被験体からの分析物を抽出すること、および、例えば感知デバイスを使用して抽出分析物を感知(sensing)して、測定信号(例えば、測定信号応答曲線)を提供することを含む。完全な測定サイクルは、抽出および感知の1回以上のセットを含み得る。
【0030】
用語「頻繁な測定値(frequent measurement)」は、特定の生物系から得られた2回以上の一連の測定値をいい、この測定値は、一連の測定値が得られる期間(例えば、秒、分または時間の間隔)にわたって生物系と作動的に接触して維持されている単一のデバイスを使用して、得られる。従って、この用語は、継続的な(continual)測定値および連続的な(continuous)測定値を含む。
【0031】
用語「被験体」は、任意の温血動物(特に、哺乳動物網のメンバー(例えば、限定しないが、ヒトおよび非ヒト霊長類(例えば、チンパンジーおよび他の無尾猿ならびに有尾猿種);家畜(farm animal)(例えば、ウシ、ヒツジ、ブタ、ヤギ、およびウマ);家庭内動物(domestic mammal)(例えば、イヌおよびネコ);げっ歯類を含む実験動物(例えば、マウス、ラットおよびモルモット)など)が挙げられる)を含む。この用語は、特定の年齢も性別も意味せず、従って、オスであるかまたはメスであるかに関わらずに、成体および新生仔の被験体を含む。
【0032】
用語「経皮的な」は、経皮的技術および経粘膜的技術(すなわち、皮膚(例えば、角質層または粘膜組織)を横切る標的分析物の抽出)の両方をいう。「経皮的な」という文脈において本明細書中に記載される本発明の局面は、他に特定されない限り、経皮的技術および経粘膜的技術の両方へ適用することを意味する。
【0033】
用語「経皮的抽出」または「経皮的に抽出された」は、任意のサンプリング方法をいい、これは、組織表面の下から皮膚もしくは粘膜組織を横切って、分析物を抽出および/または輸送することを伴う。従って、この用語は、例えばイオン導入(逆イオン導入)、電気浸透、音響泳動(sonophoresis)、微小透析、吸引および受動拡散を使用する、分析物の抽出を含む。これらの方法は、皮膚浸透エンハンサーまたは皮膚透過性増強技術(例えば、種々の物質または物理的方法(例えば、テープストリッピングまたは顕微針を用いる穿刺))の適用と当然組み合わせられ得る。用語「経皮的に抽出された」は、熱穿孔(thermal poration)、レーザー微小穿孔(laser microporation)、電気穿孔、微細(microfine)ランス、微細カニューレ、皮下移植または皮下挿入、それらの組み合わせなどを使用する抽出技術もまた含む。
【0034】
用語「イオン導入」は、組織に対して電気エネルギーを適用することによって、物質をその組織を横切って輸送するための方法をいう。従来のイオン導入において、レザバは、輸送されるべき材料の容器として役立つように(または輸送されるべき材料の封じ込めを提供するように)、組織表面に提供される。イオン導入は、当業者に公知の標準的な方法を使用して(例えば、固定化されたアノード「イオン導入電極」とカソード「イオン導入電極」との間の直流(DC)を使用するか、アノード「イオン導入電極」とカソードイオン導入電極との間の直流を交互にするか、またはイオン導入電極の間に交流(AP)を適用すること(その結果、それぞれの電極は交互にアノードまたはカソードである)のようなより複雑な波形を使用して電位を確立することによって)、実行され得る。例えば、米国特許第5,771,890号および同第6,023,629号ならびにPCT公開WO96/00109(1996年1月4日公開)を参照のこと。
【0035】
用語「逆イオン導入」は、適用した電位または電流によって、生物学的流体から物質が膜を横切って移動することをいう。逆イオン導入において、レザバは、抽出した材料(GlucoWatchバイオグラファーグルコースモニター(例えば、Tamadaら(1999)JAMA 282:1839〜1844;Cygnus,Inc.、Redwood City,CA)を参照のこと)において使用されるような)を受容するための組織表面に提供される。
【0036】
「電気浸透」は、電界誘導性の対流によって、物質が膜を通って移動することをいう。用語イオン導入、逆イオン導入、および電気浸透は、電位をイオン導電性媒質を通して膜に適用する際に、イオン性に荷電したかまたは荷電していない任意の物質が膜(例えば、上皮膜)を横切って移動することをいうために、本明細書中で交換可能に使用される。
【0037】
用語「感知(sensing)デバイス」または「感知機構」は、目的の分析物またはその誘導体の濃度または量を測定するために使用され得る任意のデバイスを含む。この感知機構は、未加工の信号(ここで、未加工のシグナルは分析物の量または濃度に特異的に関連する)を提供する任意の適切な感知エレメントを使用し得る。この未加工の信号としては、物理的、化学的、電気化学的、光化学的、分光光度的、偏光分析的、比色分析的、放射分析的または他のエレメント、およびそれらの組み合わせが挙げられるが、これらに限定されない。電気化学的なデバイスの例としては、Clark電極系(例えば、Updikeら、(1967)Nature 214:986〜988を参照のこと)、および他の電流測定、電量測定または電位差測定の電気化学的デバイス、ならびに光学的な方法(例えば、UV検出または赤外線検出(例えば、米国特許第5,747,806号)が挙げられる。さらなる例としては、近IR放射線拡散反射レーザー分光学デバイス(例えば、Yangらに対する米国特許第5,267,152号に記載される)が挙げられる。同様の近IR分光学デバイスはまた、Rosenthalらに対する米国特許第5,086,229号、およびRobinsonらに対する米国特許第4,975,581号に記載される。これらの近IRデバイスは、反射的または伝達可能な近赤外線(近IR)分析の伝統的な方法を使用して1つ以上のグルコース特異的な波長で吸光度を測定し、そして、適切な位置(例えば、指先、皮膚のひだ、眼瞼、または前腕表面)で被験体と接触されて未加工の信号が得られ得る。本発明の好ましい実施形態において、電気化学的な感知エレメントを含むバイオセンサーが使用される。
【0038】
「バイオセンサー」または「バイオセンサーデバイス」としては、限定されないが、「センサーエレメント」(これには「バイオセンサー電極」もしくは「感知電極」または「作業電極」(これは、ある時点でまたは所定の期間にわたって電気信号の量を決定するためにモニターされ、次いでこの信号は、化学化合物の濃度と相関される電極をいう)が挙げられるがこれらに限定されない)が挙げられる。この感知電極は、分析物またはその誘導体を、電気信号に転換する反応性表面を含む。この反応性表面は、任意の導電性材料(例えば、限定されないが、白金族金属(白金、パラジウム、ロジウム、ルテニウム、オスミウムおよびイリジウムを含む)、ニッケル、銅、および銀、ならびにそれらの酸化物および二酸化物、ならびに前述の組み合せまたは合金が挙げられる)から構成され、これはまた、同様に炭素も含み得る。電流測定バイオセンサーの構築に適したいくつかの触媒材料、膜、および製造技術は、Newman,J.D.ら、(1995)Analytical Chemistry 67:4594〜4599によって記載される。
【0039】
「センサーエレメント」は、感知電極に加えて成分を含み得、例えば、これは「参照電極」および「対電極」を含み得る。用語「参照電極」は、参照電位を提供する電極を意味するために使用される(例えば、電位は、参照電極と作業電極との間に確立され得る)。用語「対電極」は、電流原または電流シンクとして作用して電気化学的な回路を完全にする、電気化学的な回路における電極を意味するために使用される。参照電極が回路に含まれ、かつこの電極が対電極の機能を果たし得る場合、対電極を用いることは必須ではないが、別々の対電極および参照電極を有することが好ましい。なぜなら、参照電極によって提供される参照電位は、平衡の場合に最も安定だからである。参照電極が、対電極としてさらに作用することが要求される場合、参照電極を通る電流が、この平衡を妨害し得る。従って、対電極および参照電極として機能する別々の電極が好ましい。
【0040】
1つの実施形態において、「センサーエレメント」の「対電極」は、「二峰性電極」を含む。用語「二峰性電極」は代表的に、例えば、(「センサーエレメント」の)対電極および(「サンプリング機構」の)イオン導入電極の両方として、同時にではなく機能し得る電極(例えば、米国特許第5,954,685号に記載されるような)をいう。
【0041】
用語「反応性表面」および「反応性面」は、以下である感知電極の表面を意味するために本明細書中で交換可能に使用される:(1)分析物を含むか、またはそれを通って分析物もしくはその誘導体がその供給源から流動する、イオン導電性材料の表面と接触している表面;(2)触媒材料(例えば、白金族金属(白金、パラジウム、ロジウム、ルテニウム)もしくはニッケルおよび/またはそれらの酸化物、二酸化物および組み合せもしくは合金)、あるいは電気化学的な反応のための部位を提供する材料から構成される表面;(3)化学的な信号(例えば、過酸化水素)を電気信号(例えば、電流)に転換する表面;ならびに(4)反応性材料から構成される場合、感知可能で、再現可能に測定可能である電気信号(これは電極において存在する分析物の量と相関する)を生成するのに十分な速度で、電気化学的な反応を駆動するのに十分である電極表面領域を規定する表面。
【0042】
「イオン導電性材料」は、イオン導電性を提供し、そしてそれを通して電気化学的に活性な種が拡散し得る任意の材料をいう。イオン導電性材料は、例えば、電解質を含む固体、液体、半固体(例えば、ゲルの形態)の材料であり得、これは主に水およびイオン(例えば、塩化ナトリウム)から構成され得、そして一般に50重量%以上の水を含む。この材料は、ヒドロゲル、スポンジまたはパッド(例えば、電解液で浸漬される)の形態であり得るか、または電解質を含み得、そして電気化学的に活性な種(特に目的の分析物)を通過させ得る任意の他の材料であり得る。いくつかの例示的なヒドロゲル処方物は、WO97/02811(1997年1月30日公開)に記載される。このイオン導電性材料は、殺生物剤を含み得る。例えば、AutoSensorアセンブリの製造の間、1つ以上の殺生物剤がイオン導電性材料中に取り込まれ得る。目的の殺生物剤としては、限定されないが、塩素化炭化水素;有機金属;水素放出化合物;金属塩;有機イオウ化合物;フェノール化合物(以下の商品名で登録される種々のNipa Hardwicke Inc.の液体防腐剤:Nipastat(登録商標)、Nipaguard(登録商標)、Phenosept(登録商標)、Phenonip(登録商標)、Phenoxetol(登録商標)およびNipacide(登録商標)が挙げられるがこれらに限定されない);四級アンモニウム化合物;界面活性剤および他の膜崩壊剤(ウンデシレン酸およびその塩が挙げられるがそれらに限定されない)、それらの組み合せなどの化合物が挙げられる。
【0043】
用語「緩衝剤」は、組成物のpHを調整するかまたは維持する目的で、その組成物に添加される1つ以上の成分をいう。
【0044】
用語「電解質」は、媒質中にイオン電流を流すことを可能にするイオン導電性媒質の成分をいう。イオン導電性媒質のこの成分は、1つ以上の塩または緩衝剤成分であり得るが、これらの材料に限定されない。
【0045】
用語「収集レザバ」は、生物系から抽出されたサンプルを含むための、適切な任意の封じ込め方法またはデバイスを記載するために使用される。例えば、収集レザバは、イオン導電性である材料(例えば、イオンをその中に有する水)を含む容器であり得るか、またはこの収集レザバは、水を適所に維持するために使用されるスポンジ様の材料もしくは親水性ポリマーのような材料であり得る。このような収集レザバは、ヒドロゲルの形態(例えば、ディスクまたはパッドの形態)であり得る。ヒドロゲルは代表的に、「収集挿入物」としていわれる。他の適切な収集レザバとしては、チューブ、バイアル、小片、毛細管収集デバイス、カニューレ、および小型化、エッチ化、切除または成形された流路が挙げられるが、これらに限定されない。
【0046】
「収集挿入層」は、例えば、マスク層と保持層との間に配置される収集レザバ(または収集挿入物)を構成する、組み立て体または積層する層である。
【0047】
「積層体」は、少なくとも2つの結合した層からなる構造体をいう。この層は、溶接によってか、または接着剤の使用を介して結合され得る。溶接の例としては以下が挙げられるがこれらに限定されない:超音波溶接、熱結合、および結合局在化過熱、続いて局在流動誘導。一般的な接着剤の例としては、限定されないが、化学化合物(例えば、シアノアクリレート接着剤およびエポキシ)、ならびに以下のような物理的な特性を有するがそれらに限定されない接着剤:感圧性接着剤、熱硬化性接着剤、接触接着剤(contact adhesive)、および感熱性接着剤が挙げられる。
【0048】
「収集アセンブリ」は、いくつかの層から構成される構造体をいい、ここでこのアセンブリは、少なくとも1つの収集挿入層(例えば、ヒドロゲル)を含む。本明細書中でいわれる収集アセンブリの例は、マスク層、収集挿入層、および、層がお互いに適切な機能的関係にあるが必ずしも積層体ではない保持層(すなわち、これらの層は互いに結合されないかもしれない。この層は、例えば、幾何的にかまたは摩擦でかみあうことで一緒に支持され得る)である。
【0049】
用語「マスク層」は、実質的に平面であって、かつ代表的に生物系および収集挿入層の両方と接触する収集アセンブリの成分をいう。例えば、米国特許第5,735,273号、同第5,827,183号、および同第6,201,979号を参照のこと。
【0050】
用語「ゲル保持層」または「ゲル保持物(gel retainer)」は、実質的に平面であって、かつ代表的に収集挿入層および電極アセンブリの両方と接触する収集アセンブリの成分をいう。
【0051】
用語「支持トレイ」は代表的に、強固で実質的に平面なプラットフォームをいい、そして電極アセンブリおよび収集アセンブリを支持および/または整列するために使用される。この支持トレイは、電極アセンブリおよび収集アセンブリを、サンプリングシステム中に配置する1つの方法を提供する。
【0052】
「オートセンサーアセンブリ」は、一般にマスク層、収集挿入層、ゲル保持層、電極アセンブリおよび支持トレイを含む構造体をいう。このオートセンサーアセンブリはまた、これらの層がお互いに適切で機能的な関係で支持されるライナーを含み得る。例示的な収集アセンブリおよびオートセンサー構造体は、例えば、国際公開WO99/58190(1999年11月18日公開);ならびに米国特許第5,735,273号および同第5,827,183号に記載される。このマスク層および保持層は、好ましくは、感知されるべき分析物(化学信号)が実質的に不浸透性である材料から構成される;しかし、この材料は、他の物質に対しては浸透性であり得る。「実質的に不浸透性」によって、材料が化学信号輸送を(例えば、拡散によって)減少または排除することが意味される。この材料は、低いレベルの化学信号輸送を可能にし得るが、ただし、この材料を通りぬける化学信号は、感知電極で有意なエッジ効果を引き起こさない。
【0053】
用語「およそ(about)」または「約(approximately)」は、数字の値に関する場合、その数字に10測定単位(すなわち、パーセント、グラム、温度またはボルト)をプラスまたはマイナスした数字の値、好ましくは5の測定単位をプラスまたはマイナスした値、より好ましくは2測定単位をプラスまたはマイナスした値、好ましくは1測定単位をプラスまたはマイナスした値をいう。
【0054】
用語「プリント(printed)」は、基材(すなわち、ベース支持体)の一方の表面上に対する電極処方物の実質的に均一の沈着を意味する。種々の技術を使用して、基質上に対する材料の実質的に均一の沈着(例えば、Gravure型プリント、射出コーティング、スクリーンコーティング、スプレー、ペインティング、電気メッキ、積層など)をもたらし得ることが、当業者によって理解される。
【0055】
用語「生理的な効果」は、治療の目的を達成する、被験体において生じる効果を含む。好ましい実施形態において、生理的な効果とは、処置された被験体の症状が予防または緩和されることを意味する。例えば、生理的な効果は、患者における生存の延長をもたらす効果である。
【0056】
「パラメーター」は、数学的表現で明らかであるように、このパラメーターを変化することで種々の場合の現象が表現される、任意の定数または変数をいう(McGraw−Hill Dictionary of Scientific and Technical Terms,S.P.Parker編、第5版、McGraw−Hill Inc.,1994)。パラメーターは、その値が何かの特徴または行動を決定する、特性のセットの1つである。
【0057】
「減衰」は、量(例えば、電流が特定の分析物の濃度に相関し、そして感知される電流が徐々に減少するが、分析物の濃度は徐々には減少しない、センサー電極を使用して感知される電流)の大きさにおける漸進的な減少をいう。
【0058】
「スキップ」または「スキップされた」信号は、所定の基準(例えば、米国特許第6,233,471号に記載されるような誤差関連基準)に一致しないデータをいう。スキップされた読み取り、信号、または測定値は、信頼性も妥当性もないので代表的に拒絶された(すなわち、「スキップ誤差」が生じた)。なぜなら、これらは、例えば貧弱であるかまたは不正確な信号を示す感知されたパラメータに基づいて不正確な信号を無効にするデータスクリーニングに、信号が供される場合、データ完全性チェックと一致していないからである。
【0059】
用語「テイラー級数指数平滑関数(「TSES」)」は、異なる時点で変数の挙動を予測するための数学関数(アルゴリズム)を含み、これは傾きおよび傾きの変化において因数分解する。本発明に関連して有用なTSES関数の例は、以下によって表されるTSES関数であり:
【0060】
【数6】
Figure 2004506468
ここで:αは、0と1との間の実数である最適化され得る変数であり、そして、得られた特定の測定値、およびその測定値と実際の結果との間の関係に基づいて調整され;nは、一様に間隔の開いた時間間隔であり;そしてyは、分析物の濃度、または、信号測定値が求められる結果に適するように最適化された分析物濃度に転換された信号(例えば、参照分析物濃度に相当する)(例えば、第6,272,364号(2001年8月7日発行);WO99 58973(1999年11月18日公開)を参照のこと)。
【0061】
「未来の時点(future time point)」は、目的の分析物の濃度または別のパラメータ値が予測される、未来における時点をいう。好ましい実施形態において、この用語は、時間間隔がサンプリングと感知事象との間の時間量である場合、時間間隔か1つ先の時点をいう。
【0062】
(2.0 発明の実施の形態)
本発明を詳細に記載する前に、本発明は特定の処方に限定されず、またはこのようなプロセスパラメータは、当然変更し得ることが理解されるべきである。本明細書中で使用される用語は、本発明の特定の実施形態を記載する目的のみであり、限定を意図するものではないこともまた理解されるべきである。
【0063】
本明細書中に記載される方法および材料に類似または等価な多くの方法およびに材料は、本発明の実施において使用され得るが、好ましい材料および方法が本明細書中に記載される。
【0064】
(2.1 発明の一般概要)
低血糖は、糖尿病の最も重大な急性の合併症であり、そして最適な血中グルコース制御を達成することに対する主な障壁である。夜間の低血糖は、多くの患者について特に面倒なことであり得る。ここで提案される研究は、データストリームから得られた情報(例えば、頻繁なサンプリングのグルコースモニタリングデバイス(例えば、初期低血糖事象を予測し、そして使用者に警告するために、時系列予測アプローチと組み合わせたGlucoWatchバイオグラファーシステム)によって得られる、頻繁に得られるグルコース値、皮膚伝導率または皮膚温度の読み取り)を利用する。
【0065】
本発明は、使用者についてのグルコース量またはグルコース濃度の頻繁な読み取りを提供し得る例示的なグルコースモニタリングシステムとして、GlucoWatchバイオグラファーシステムを参照して本明細書中に記載される。このGlucoWatchバイオグラファーシステムは、逆イオン導入を介して皮膚を通してグルコースを抽出し、そして電流測定バイオセンサーを用いて抽出されたグルコースを測定する。グルコース読み取りは、例えば、12時間の測定期間について20分毎に得られ得る。糖尿病被験体における、このデバイスの大規模な臨床試験が完了した(Tierney,M.J.ら、Annals of Medicine、32、632〜641(2000);Tierney,M.J.ら、Diabetes Technology and Therapeutics、2(2)、197〜205(2000);Tamada,J.A.ら、J.Am.Med.Assoc.282,1839〜44(1999))。
【0066】
糖尿病について血中グルコースレベルを自己モニタリング(SMBG)するために、別々の血中グルコース測定値の現在の実例の主な不都合は、1日当たりに行なわれる少数の測定(1日当たり平均1.8回の読み取り)は、測定の間に生じる血中グルコースの軌跡を追跡するのに不十分であることである。より頻繁なモニタリングが、日中の正常の血中グルコースプロフィールの決定について、および低血糖事象の感知についての両方に望ましい。GlucoWatchバイオグラファーシステムは、グルコースレベルを20分毎に測定し、そして血中グルコース濃度を正確に追跡することが示されている。さらに、GlucoWatchバイオグラファーシステムは、測定されたグルコースレベルが、使用者設定可能な低グルコース閾値未満に低下した場合、または測定されたグルコースレベルが連続的な読み取りの間に急激に低下した場合、警報音を鳴らす。現在のGlucoWatchバイオグラファーシステムは、低血糖の状態の存在を正確に感知し得るが、現在では前もって低血糖事象を予測し得ない。
【0067】
本発明の支持の下で実行される実験は、GlucoWatchバイオグラファーシステムの低血糖状態を予測する能力を、以下を組み合わせることで改良する方法を示す:(i)低血糖の指標である他の生理的な測定値を伴うグルコース読み取りの連続的ストリーム、例えば、(ii)皮膚温度、および/または(iii)発汗。好ましい実施形態において、これらの3つの生理的パラメータの組み合わせは、より強固な低血糖の予測物を生じる。
【0068】
さらに、本発明の方法は、時系列予報アルゴリズムを使用する。この技術は、いくつかの以前の読み取りを使用して、近い未来におけるグルコースレベルを十分正確に予測する。従って、この技術を使用して、初期低血糖を予測し得る。この時系列予報アルゴリズムは、共有に係る同時係属中のWO99/58973(1999年11月18日公開)に記載される。この方法に基づく予測は、上記の方法に基づく予測と組み合わされる。
【0069】
従って、本発明の1つの局面は、以下のように要約され得る。低血糖事象の予測を導く一連の条件文が確立される。このような条件文は、いくつかのプロセスに基づき得る。例えば、第1のプロセス(例えば、低血糖事象の予測)は、現在の血中グルコース値に基づく情報に関し、そして/または第2のプロセス(例えば、低血糖事象の予測)は、温度に基づく予測に関し、そして/または第3のプロセス(例えば、低血糖事象の予測)は、皮膚伝導率に基づく予測に関した。低血糖事象は、これらのプロセスのいずれかもしくは全てによって(またはこれらのプロセスの全てを組み合わせた1つのプロセスによって)予測され得る。次いでこの情報は、例えば、第4のプロセス(例えば時系列アルゴリズムによって予測された未来の値に基づく低血糖事象の予測)からの情報と組み合わせられる。次いで、これらのプロセスのいくつかまたは全てからの情報は、共に評価され得る。低血糖事象を予測するプロセスが多くなればなるほど、低血糖事象の予測はより正確になるようである。従って、これらのプロセスの予測を組み合わせることは、低血糖事象のより強固な予測を生じる。
【0070】
(2.2 例示的なグルコースモニタリングシステムの記述)
多くのグルコースモニタリングシステムが、本発明の実施において使用され得る。代表的に、標的システムにおける選択されたグルコースのレベルをモニタリングするために使用されるモニタリングシステムは、サンプリングデバイス(これはグルコースを含むサンプルを提供する)、および感知デバイス(これは、グルコース、またはサンプル中のグルコースの量もしくは濃度に関連する信号の、量または濃度を感知する)を含む。
【0071】
グルコースの量または濃度の頻繁な測定値を提供する例示的なグルコースモニタリングシステムは、GlucoWatchバイオグラファーシステムである。このシステムは、装着型の非侵襲性グルコースモニタリングシステムであり、20分毎に自動的にグルコースの読み取りを提供する。GlucoWatchバイオグラファーシステムは、いくつかの利点を有する。その利点とは、その非侵襲性および押し付けがましくない性質が、糖尿病を有するヒト(または動物)の間でのより頻繁なグルコース試験を奨励する、という事実を含むが、これだけに限定されない。頻繁に情報が提供される性質は、臨床的な関連性より大きい。GlucoWatchバイオグラファーシステムの前には、侵襲性手段(しばしば病院のケアを必要とする)を除いて、頻繁にグルコースを測定するための方法は存在しない(Mastrototaro,J.J.およびGross,T.M.「Clinical Results from the MiniMed Continuous Glucose Monitoring System」Proc.31st Annual Oak Ridge Conference、1999年4月)。このGlucoWatchバイオグラファーシステムは、自動的で、非侵襲性で、そして使い勝手のよい様式において、しばしば医師によって所望される、より頻繁なモニタリングを提供する。このシステムの自動的な性質はまた、使用者が寝ているか、またはさもなければ試験できない間でさえ、モニタリングを続けることを可能にする。
【0072】
GlucoWatchバイオグラファーシステムは、以下を含む:(a)非侵襲的にグルコースをサンプリングするための皮膚を介したグルコースのイオン泳動(iontophoretic)輸送、(b)グルコース濃度を測定するための電気化学的バイオセンサーおよび(c)グルコースの読み取りへと、生のバイオセンサーシグナルを変換し、その一方でデータポイントスクリーニングルーチンを通して、誤った結果に対しての防御を行う、インテリジェントデータ処理アルゴリズム。 本システムのそれらの局面は、以下のように簡潔に記載され、そして上記の「定義」の節で参照された刊行物によって、より広範に記載される。
【0073】
本システムの第1の局面は、グルコースのイオン泳動抽出である。多くの低分子は、受動的な手段または促進的な手段のいずれかによって皮膚を通して輸送される。化合物(例えば、ニコチン、エストラジオール、テストステロンなど)の受動輸送は、経皮的薬物送達(皮膚パッチ)の基礎である。ヒト皮膚を通した輸送は、電場勾配の適用によって非常に増強され得る。輸送を増強するための低レベルの電流の使用は、総称して、イオン泳動として公知である。
【0074】
皮膚を通るイオン泳動輸送は、いずれの方向にも起こり得る(Glikfeld,P.ら Pharm.Res.6,988〜990(1989))。特に、低分子(例えば、グルコース、エタノール、およびテオフィリン)が、外部回収チャンバへ皮膚を通して容易に輸送されることが示されている。皮膚を通した輸送は、イオン泳動薬物送達で使用される輸送とは逆方向であるので、この効果は、「逆イオン泳動」として記載される(米国特許第5,362,307号(1994年11月8日発行);米国特許第5,279,543号(1994年1月18日発行);米国特許第5,730,714号(1998年3月24日発行))。実際、グルコースは非荷電分子であるので、輸送は、電気浸透(electro−osmosis)を通して達成される。GlucoWatchバイオグラファーシステムを使用した分析から得られた結果によって、抽出されたグルコースは血糖と相関することが示しめされた(Tamada,J.A.ら JAMA 282:1839〜1844、1999)。
【0075】
本システムの第2の局面は、電気化学グルコースバイオセンサーの使用を含む。GlucoWatchバイオグラファーシステムは、電気化学バイオセンサーアセンブリを使用して、皮膚を通して抽出されたグルコースを定量化する。2つのバイオセンサーが、GlucoWatchバイオグラファーシステム中に存在する(図1)。各バイオセンサーは、酵素である、グルコースオキシダーゼ(GOx)および1組の電極を含むヒドロゲルパッドからなる。ヒドロゲルパッドの1つの表面は皮膚と接触し、一方、逆の表面はバイオセンサーおよびイオン泳動(iontophoresis)電極と接触する。このヒドロゲルパッドは、2つの機能を担う。イオン泳動の間、このパッドは、皮膚および抽出したグルコースのための収集リザーバとの電気的接触の役割を果たす。このサイクルの感知部分の間、皮膚を通して抽出されたグルコースは、以下の反応を介してヒドロゲルパッド中のGOと反応する。:
GO
グルコース + O→グルコン酸 + H
次いで、この反応で生成されたHは、このセンサーの白金/炭素作用電極において電流測定的に感知される。測定された一体化されたセンサーの電流は、H濃度に比例し、そして最終的に抽出されたグルコースの量に比例する。このサイクルの抽出部分および感知部分は、連続して生じ、そしてこのサイクルは繰り返し、20分ごとのグルコース測定を与える。
【0076】
ユーザにとって便利なように、GlucoWatchバイオグラファーシステムを、手首、前腕、上腕、または体の他の部位に装着し得る小型化したデバイスとして開発した。GlucoWatchバイオグラファーシステムの耐久性構成要素は、バイオセンサーおよびイオン泳動、マイクロプロセッサ、データ記憶メモリ、およびLCDディスプレイについてのエレクトロニクスを含む。2組のバイオセンサーおよびイオン泳動電極は、このデバイス(例えば、消耗性の構成要素、AutoSensor)の皮膚側に装備される。GlucoWatchバイオグラファーシステムのAutoSensorの概略図を図1に示す。
【0077】
図1を参照すると、イオン泳動サンプリングシステム中の使用についてのAutoSensorの1つの実施形態を含む例示的な構成要素の分解図が提示されている。このAutoSensor構成要素は2つのバイオセンサー/イオン泳動電極アセンブリ(104および106)を含み、これらの各々は、(それぞれ108および110に示すように)環状のイオン泳動電極を有する。この環状のイオン泳動電極は、バイオセンサー電極(112および114)を取り囲む。この電極アセンブリ(104および106)は、ポリマー基材116上にプリントされ、このポリマー基材116は、センサートレイ118中に維持される。収集リザーバセンブリ120は、電極アセンブリ上に配置されれ、ここでこの収集リザーバセンブリは、ゲル保持層126およびマスク層128によって保持されている2つのヒドロゲル挿入物(122および124)を含む。さらに剥離ライナーがこのアセンブリに含まれ得る(例えば、患者ライナー(patient liner)130、およびすき様折り畳みライナー(plow−fold liner)132)。1つの実施形態において、この電極アセンブリは、二モードの(bimodal)電極を含む。マスク層128(例えば、PCT公開番号WO 97/10356(1997年3月20日)ならびに米国特許第5,735,273号,同第5,827,183号,同第6,141,573号,および同第6,201,979号に記載されているような)が存在し得る。他のAutoSensorの実施形態はWO 99/58190(1999年11月18日に発行)記載される。
【0078】
このマスク層および保持層は、好ましくは、感知される検体(例えば、グルコース)に対して実質的に不浸透性である物質からなる(例えば、米国特許第5,735,273号、および同第5,827,183号を参照のこと)。「実質的に不浸透性」とは、この物質が、検体輸送(例えば、拡散による)を減少させるか、または検体輸送を排除することを意味する。この物質は、低いレベルの検体輸送を可能にし得る。但し、この物質を通過する検体は、マスク層および保持層に結合して使用された感知電極において有意なエッジ効果を生じない。この層を形成するのに使用され得る物質の例としては、以下が挙げられるが、これらに限定されない:ポリエステル、ポリエステル誘導体、他のポリエステル様物質、ポリウレタン、ポリウレタン誘導体および他のポリウレタン様物質。
【0079】
図1の分解図に示された構成要素は自動サンプリングシステムに使用される。この自動サンプリングシステムは、(例えば、PCT公開番号WO 96/00110(1996年1月4日発行)において記載されるように)通常の腕時計が装着されるように配置される。この腕時計ハウジングは、自動サンプリングシステムを操作するための適切なエレクトロニクス(例えば、1つ以上のマイクロプロセッサ、メモリ、ディスプレイおよび他の構成要素)および電源をさらに備え得る。この1つ以上のマイクロプロセッサは、様々な機能を制御し得る。この機能としては、以下が挙げられるが、これらに限定されない:サンプリングデバイスの制御、感知デバイスの制御、測定サイクルの局面(例えば、サンプリングおよび感知のタイミングならびに電極間の極性の変更)の制御、接続性の制御、計算方法の制御、データ操作の異なった局面(例えば、収集、記録、再生、比較、および報告)の制御など。
【0080】
本システムの第3の局面は、生のバイオセンサーシグナルをグルコース読み取りへと変換するインテリジェントデータ処理アルゴリズムであり、これは一方で、データポイントスクリーニングルーチンを通して、誤った結果に対する防御を行う。バイオセンサーから得られた生の電流データは、等価な血糖値へと変換されなければならない。このデータ変換を実行するための式がこれまで開発され、最適化され、そして膨大なデータセットに基づいて確認された。これらのデータセットは、GlucoWatchバイオグラファーおよび糖尿病の被験体においての臨床試験による参照血糖読み取りからなる(例えば、WO 018289A1(2000年4月6日)を参照のこと)。このデータ変換アルゴリズムは、GlucoWatchバイオグラファーシステム中の専用のマイクロプロセッサの中にプログラムされる。このソフトウエアは、客観的で、先験的な(a priori)基準(例えば、特定の閾値を超えるノイズを含むデータ)に対して適合しない偽のデータポイントを排除するための選別を含む。例示的なシグナル処理の応用例としては、以下に教示されるもが挙げられるが、これらに限定されない:米国特許第6,144,869号、同第6,233,471号、同第6,180,416号。
【0081】
この2つのグルコースバイオセンサーに加え、GlucoWatchバイオグラファーシステムはまた、温度センサーおよび皮膚伝導性センサーを備える。前者からの入力を使用して、熱力学的暴走(large thermal excursions)の間に得られたデータポイントを排除する。この皮膚伝導性入力を使用して、被験体が過度に発汗したときに得たデータを排除する。なぜならば、汗が、抽出されたサンプルに対して得られた値を混乱させるグルコースを含むからである。従って、これらの様々な選別は、誤ったグルコース情報を提供するデータポイントを拒否する。従って、残りのデータポイントは臨床用途に対して適切である。
【0082】
GlucoWatchバイオグラファーシステムを、適当な位置(代表的には、リストバンドを用いて代表的には腕)に固定されたプラスチックケースの中にハウジングする。単一のAAA電源を、さらなるバックアップ電源を有する1次電源として使用した。GlucoWatchバイオグラファー回路構成は、マイクロプロセッサならびにイオン泳動機能およびバイオセンサー機能の両方を実行する回路を含むカスタムのアプリケーション特異的集積回路(application specific integrated circuit;ASIC)チップを含む。4000までのグルコース読み取りを記憶するのに十分なメモリが存在する。この4000までのグルコース読み取りは、毎日の使用する状態で約3ヶ月分であるデータを表す。GlucoWatchバイオグラファーシステムの表面上に有る、LCDディスプレイおよび4つの押しボタンは、これのユーザインターフェイスを構成し、そしてユーザがモニター機能を制御し、そしてカスタマイズし、そしてクロックタイムおよび日付、グルコース読み取り、ならびにGlucoWatchバイオグラファー操作状態を表示することを可能にする。データはまた、シリアルインターフェイスアダプターを介してPCにダウンロードし得る。
【0083】
ソフトウエアコントロールに含まれるのは、ユーザが高グルコース警告レベルおよび低グルコース警告レベルを選択する能力である。GlucoWatchバイオグラファーシステムが、これらの警告レベルから逸脱した血糖値を測定した場合に、アラームが鳴り、ユーザに状況を知らせる。
【0084】
GlucoWatchバイオグラファーシステムの使い捨て部分は、AutoSensorであり、これは、2セットのバイオセンサーおよびイオン泳動電極ならびにマスク層によって前整列配置でハウジング固定された対応するヒドロゲルディスクを備える。AutoSensorは、GlucoWatchバイオグラファーシステムの皮膚側へとすばやく動き、2つの部分間で必要な電気的接続をもたらす。
【0085】
GlucoWatchバイオグラファーシステムはまた、皮膚温度を測定するためのサーミスタを備え、そして皮膚伝導性、発汗の度合いを測定するために皮膚表面上に置かれている1組の伝導性プローブを備える。上記のように、温度および汗のデータを本発明のデバイスで使用し、読取り期間内の大きな温度変化または発汗によってバイオセンサーデータが影響を受けないことを確認する。
【0086】
システムモニターする別の実施形態において、このサンプリング/感知メカニズムおよびユーザインターフェイスを別個の構成要素上に見出し得る(例えば、WO 00/47109、2000年8月17日発行)。従って、モニターシステムは、少なくとも2つの構成要素を備え得る。これらの構成要素中で、第1の構成要素は、検体(例えば、グルコース)を抽出し、そして感知するのに使用される、サンプリングメカニズムおよび感知メカニズムを含む。そして検体データを第1の構成要素から受け取る第2の構成要素は、検体データについてデータ処理を実施して検体濃度を決定し、次いで、検体濃度データを表示する。代表的には,マイクロプロセッサ機能(例えば、サンプリングデバイスの制御、感知デバイスの制御、測定サイクルの局面の制御、計算方法の制御、データ操作もしく記録の異なった局面の制御など)が両方の構成要素において見出される。あるいは、マイクロプロセッシング構成要素は、1つまたは他の少なくとも2つの構成要素の中に位置付けられ得る。モニターシステムの第2の構成要素は、多くの形態を想定し得る。この形態としては、以下を含むが、これらに限定されない:腕時計、クレジットカード形状デバイス(例えば、米国特許第5,892,661号に記載されたような、マイクロプロセッサ内蔵の「スマートカード」または「ユニバーサルカード(universal card)」)、ポケットベル様デバイス、携帯電話様デバイスまたはユーザと視覚的、聴覚的もしくは運動感覚的に情報を通信する他のこのようなデバイス。
【0087】
さらに、さらなる構成要素を、このシステムに付加し得る(例えば、検体値のディスプレイまたは検体濃度に関連するアラームを備える第3の構成要素を、使用し得る)。特定の実施形態において、送達ユニットは、本システム中に含まれる。例示的な送達ユニットは、インスリン送達ユニットである。インスリン送達単位(移植可能および外部の両方)は、当該分野で公知であり、そして、例えば、米国特許第5,995,860;同第5,112,614号および同第5,062,841号に記載されている。好ましくは、本発明の構成要素として含まれる場合に、この送達ユニットは抽出メカニズムおよび/または感知メカニズムと通信状態(例えば、ワイヤ様通信またはワイヤレス通信)にあり、その結果、感知メカニズムは、インシュリンポンプを制御し得、そして被験体への適切な量のインシュリンの送達を制御し得る。
【0088】
第1の構成要素(例えば、バイオセンサー機能およびイオン泳動機能を含む)を、第2の構成要素(例えば、幾つかのマイクロプロセッサ機能およびディスプレイ機能を含む)から分離することの利点としては、ユーザに対するより大きな、柔軟性、自由裁量性、プライバシーおよび簡便性が挙げられる。小さくそして軽い測定単位を持つことによって、より広範な体の部分におけるこのシステムの2つの構成要素の配置が可能になる。例えば、第1の構成要素を、腹部または上腕上に配置し得る。このより広い範囲の配置の選択肢によって、最適な抽出部位の選択(例えば、四肢よりはむしろ胴)およびより大きな温度安定性(衣服による断熱効果)を通して精度の改善し得る。従って、回収アセンブリおよび感知アセンブリをより広い範囲の体の部分において配置し得る。同様に、より小さくかつより目立たない、マイクロプロセッサおよびディスプレイユニット(第2の構成要素)は、便利で別個であるシステムを提供し、このシステムによって検体をモニターする。このバイオセンサーの読み取りおよび制御シグナルは、小さな腕時計、ポケットベル、またはクレジットカード大のデバイスを形づくる、回収および感知アセンブリとディスプレイユニットの間で、ワイヤ様技術またはワイヤレス技術を介して中継される。このシステムはまた、夜間の使用の間の警告メッセージまたはシグナルを、例えば、モニターされている被験体から離れた場所へ中継する能力を提供する。
【0089】
1つの実施形態において、本デバイスの2つの構成要素は、ワイヤ通信またはケーブル様通信を介して有効な通信状態にあり得る。構成要素間の有効な通信は、ワイヤレスリンクであり得る(すなわち、「仮想ケーブル」(例えば、遠隔測定リンク)により与えらる)。このワイヤレスリンクは、2つの構成要素間で単指向性または双方向性であり得る。2つを超える構成要素である場合、リンクは、ワイヤ様とワイヤレスとの組み合わせであり得る)。
【0090】
(2.3 グルコースレベルのモニタリング)
グルコースレベルをモニターするときのGlucoWatchバイオグラファーシステムの有用性を評価するために、90人を超える糖尿病を有する被験体を、合衆国中の3つの医療施設で登録した。被験体は、GlucoWatchバイオグラファーシステムを、臨床環境にある間、手首に15時間装着した。被験体は、断食した状態で診療所を朝早くに訪れた。GlucoWatchバイオグラファーシステムを適用し、そして175分間の「ウォームアップ」手順を開始した。ウォームアップ期間の終りに、被験体は、指一本を穿刺する(single finger−stick)血糖測定を行った。この測定を使用して、GlucoWatchバイオグラファー読み取りを較正した。この時点以降、GlucoWatchバイオグラファーシステムによって、本研究の残りの間、1時間毎の測定を行った。全てのデータを、内部に(すなわち、バイオグラファーのメモリの中に)記憶した。さらに、2つの標準的血液測定値を、各時間の0分目および40分目において得た。従って、各被験体から得られた、36もの多くのGlucoWatchバイオグラファーデータポイントおよび24もの多くの一致した血液データポイントが存在した。
【0091】
次いで、GlucoWatchバイオグラファー読み取りおよび血液データを、アルゴリズム開発およびそれに続くデータ解析のためにコンピュータへ移す。このデータを、2つのグループに無作為に分けた。このデータセットの一部からのデータ(46のGlucoWatchバイオグラファーシステム)を使用して、アルゴリズム(Mixtures of Expertsアルゴリズム、例えば、WO 018289A1(2000年4月6日発行)参照のこと)を「訓練(train)」し、すなわち、GlucoWatchバイオグラファーシステム予測グルコース値と血糖値との間の誤差を最小化するのに必要な最適な関数形式およびパラメータセットを決定した。次いで、最適化したアルゴリズムを、使用して、全てのその後のデータについてGlucoWatchバイオグラファーシステム値を予測した。この「サンプルからの(「out of sample」)」予測技術は、バイアスを減少させ、そしてアルゴリズムの普遍的な性質を実証した。1つの個体から得られるデータは図2に示した。
【0092】
「サンプルからの」試験グループにおける109のGlucoWatchバイオグラファーシステムについての解析結果によって、血糖と比較して抽出されたグルコースには約15分間の時間的遅延があることが示された。対にしたGlucoWatchバイオグラファー測定−血液測定データを使用することによって、平均の相関係数0.88を得、そして97%の結果は、Clarke Error Grid Analysis(Clarke,W.L.ら Diabetes Care 10:622〜628(1987))の臨床的に受容可能な領域にあった。さらに、この平均絶対誤差は、15.6%であった。データの8%未満を、「温度」データ、「発汗」データおよび「ノイズ」データの全体的な選別によって取り除いた。これらおよび他の統計解析によって、GlucoWatchバイオグラファーシステムが、広い範囲の値(これらの研究における40〜400mg/dL)にまたがる市販の血液モニターデバイスに匹敵することが示唆された。
【0093】
上記で引用された臨床的結果によって、GlucoWatchバイオグラファーシステムは、糖尿病を有するヒト被験体中のグルコースを追跡することが明確に実証される。
【0094】
(2.4 低血糖症の徴候としての温度および発汗)
皮膚温度および皮膚伝導性と低血糖の血糖レベルとの間の相関ついての予備試験を、1つの臨床試験から得られたデータに基づいて実施した。GlucoWatchバイオグラファーシステムからの温度データおよび発汗データを、121人の糖尿病被験体における総数213のGlucoWatchバイオグラファーシステムの適用に対して分析した。このデータセットは、5346のGlucoWatchバイオグラファー測定サイクルについて温度、発汗の度合いおよび参照血糖値からなる。この試験について、被験体を臨床環境で試験したが、家庭環境をシミュレートする一般的な自由は許可された。
【0095】
皮膚温度および発汗と低血糖症との間の相関が存在するか否かを決定するために、<40mg/dL〜240mg/dLである参照血糖範囲内の区分け(bin)の中へデータを分類した。各区分け中の各測定サイクルについての最低皮膚温度を平均化し、そして図3にプロットした。図に提示された結果から見出せるように、GlucoWatchバイオグラファーシステムにより測定された皮膚温度は、参照血糖が120mg/dLより低い場合に平均より低く、そして血糖が最も低糖である範囲にある場合に最も低かった。この予備的な結果によって、より低い皮膚温度と低糖である血糖レベルとの間の相関を示された。
【0096】
従って、本発明の1つの局面において、低血糖事象の予測に使用され得る1つのパラメータは、平均未満の皮膚温度である。理想的には、平均皮膚温度は、長期間(例えば、数日間、数週間、または数ヶ月)にまたがる皮膚温度読取りデータセットの収集によって各被験体について決定され得る。付随する標準偏差および/または平均変化は、皮膚温度読取りデータセットに適用される標準的な統計方法を用いて、平均皮膚温度と関連し得る。この平均温度はまた、例えば、真昼期間および睡眠時間期間に関連する、正常な皮膚温度変化を説明するために、1日の時間、例えば、1〜8時間の区切り(この範囲にある全ての時間値(例えば、2.5時間)を含む)で分解された1日と関連し得る。このような関連は、標準的な統計操作(例えば、分散の傾向分析または多変量解析)を使用して確立され得る。さらに、一連の皮膚温度読み取りに基づき、傾向分析または本明細書中に記載のTSES式を使用して、未来の時点における皮膚温度読み取りを予測また外挿し得る。本発明の1つの局面において、この皮膚温度読み取りパラメータは、被験体について平均の体温未満の場合、可能性のある低血糖事象の指標である。上述のように、標準偏差(および/または分散)は、参照範囲を提供するための被験体の平均体温と関連し得る。被験体の体温が、(統計的変化(例えば、標準偏差)を考慮に入れて)このような参照範囲未満にある場合、それは、可能性のある低血糖事象の指標である。例えば、図3で提示された累積データについて、このような参照範囲は31℃±0.05℃(またより一般的に述べると、被験体の平均体温±平均体温に関する標準偏差または分散)であり得る。信頼区間はまた、このような範囲を確立するために使用され得る。
【0097】
同様に、体温を低下させる傾向が(例えば、回帰分析または他の傾向分析を使用して)感知さる場合、このような体温を低下する傾向は、低血糖事象の指標として使用され得る。
【0098】
別の局面においても、体温のゆらぎを、低血糖事象の指標として使用し得る:例えば、このようなゆらぎは、参照範囲と比較して決定され得る。
【0099】
GlucoWatchバイオグラファーシステム上の皮膚伝導性センサーからのデータを同様の様式でプロットした。GlucoWatchバイオグラファー皮膚伝導性測定を、0〜10の任意のスケールへと変換した。データ統合スクリーニング目的のために、1を超える皮膚伝導性読み取りを発汗が生じた指標と考えた。図4は、各参照血糖範囲内のすべての測定サイクルに対する平均皮膚伝導性読み取りを示す。この傾向は、正常血糖範囲および高血糖範囲にわたって比較的に平坦であって、この最も高い平均は低血糖領域にある、「<40 mg/dL」の範囲、「40−59mg/dL」の範囲、および「60−79 mg/dL」の範囲に存在した。このことは低血糖領域における発汗より高い発汗の程度を示す。
【0100】
図4に示されるデータは、1より大きい(それゆえ、推測的に決定された発汗閾値を超える)皮膚伝導性読み取りを有する読み取りの全ての割合をとることおよび同じ参照血糖範囲(図5を参照のこと)を参照してこれらをプロットすることによって、異なった様式で提示される。図5で提示されたこのデータは、60mg/dL未満である低血糖領域におけるポジティブ発汗指標の百分率において顕著な増加を示した。
【0101】
従って、本発明の1つの局面において、低血糖事象を予測するために使用され得る1つのパラメータが、平均を超えるか、またはそれ未満である発汗センサー読み取り(すなわち、皮膚コンダクタンス)である。本発明の1つの実施形態において、予め決定された発汗閾値(または範囲)を超える皮膚コンダクタンスは、低血糖事象の予測するものである。(例えば、図4および図5中の参照データを参照のこと)。理想的には、平均皮膚コンダクタンス読み取りは、長期間(例えば、数日間、数週間、または数ヶ月間)にわたって皮膚コンダクタンス読み取りデータセットを収集することによって各被験体について決定される。付随する標準偏差および/または平均変化は、皮膚コンダクタンス読取りデータセットに適用される標準的な統計方法を用いて、平均皮膚コンダクタンスと関連し得る。この平均皮膚コンダクタンスはまた、例えば、真昼期間および睡眠時間期間に関連する、通常の皮膚コンダクタンス変化を説明するために、1日の時間、例えば、1〜8時間区切り(この範囲にある全ての時間値(例えば、2.5時間)を含む)で分解された1日と関連し得る。このような関連は、標準的な統計操作(例えば、分散の傾向分析または多変量解析)を使用して確立され得る。さらに、一連の皮膚コンダクタンス読み取りに基づき、傾向分析または本明細書中に記載のTSES式を使用して、未来の時点における皮膚コンダクタンス読み取りを予測また外挿し得る。本発明の1つの局面において、この皮膚コンダクタンス読み取りパラメータは、被験体について平均皮膚コンダクタンスを超えるかまたはそれ未満である場合、可能性のある低血糖事象の指標である。上述のように、標準偏差(および/または分散)は、被験体の平均皮膚コンダクタンスと関連して参照範囲を提供し得る。被験体の皮膚コンダクタンスが、(統計的変化(例えば、標準偏差)考慮に入れて)このような参照範囲の外側にある場合、それは、可能性のある低血糖事象の指標である。例えば、図4で提示された累積データについて、このような参照範囲は0.15±0.025平均汗センサー読み取りの皮膚コンダクタンス読み取りであり得る(またより一般的に述べると、被験体の平均皮膚コンダクタンス±平均皮膚コンダクタンスに関する標準偏差または分散)。信頼区間はまた、このような範囲を確立するために使用され得る。
【0102】
同様に、皮膚コンダクタンスを上昇または低下させる傾向が(例えば、回帰分析または他の傾向分析を使用して)感知さる場合、このような皮膚コンダクタンスを上昇または低下する傾向は、低血糖事象の指標として使用され得る。
【0103】
別の局面においても、皮膚コンダクタンスのゆらぎを、低血糖事象の指標として使用し得る:例えば、このようなゆらぎは、参照範囲と比較して決定され得る。
【0104】
体温(または体温の傾向)および/または皮膚伝導性(または皮膚伝導性の傾向)は、共にかまたは単独で、低血糖事象の予測のために有用なパラメータとして使用され得る。代表的に、このようなパラメータの使用は、以下に記載される時系列予測(time series forecasting)方法と組み合わせられる。
【0105】
選択されたパラメータの閾値(値の範囲)は、低血糖事象の予測において用いられ得る。このような閾値は、例えば、被験体のグルコース値、体温、および皮膚伝導性の記録の再検討および分析に基づき確立され得る。統計学的なプログラムが用いられて、既知の低血糖事象(これは頻繁なグルコース、温度、および皮膚伝導性の読み取りを提供し得るグルコースモニタリングデバイスを用いて作成される被験体の記録から得られる)と選択されたパラメータとの間の相関関係を提供する。このような統計学的なプログラムは当該分野で公知であり、例えば、決定樹およびROC分析が挙げられる(以下を参照のこと)。
【0106】
(2.5 時系列予測)
時系列予測(過去の観察からの変数の未来の値の予測)は、データ系列の推定のために用いられる手順である。時系列予測に用いられ得る多くの方法が存在し、以下の方法が挙げられるがこれらに限定されない:直線回帰または多項式回帰の推定、自己回帰移動平均、および指数平滑法。
【0107】
時系列予測のための方法(テイラー級数指数平滑法(Taylor Series Exponential Smoothing)(TSES)と呼ばれる)が開発され、そして共有に係る、同時係属中のWO99/58973(1999年11月18日公開)に開示された。1つの実施形態において、この方法は、次のデータポイントの値を予測するために、過去の60分間からのデータポイント、ならびに関係する一時導関数値および二次導関数値を使用した。指数平滑の方法は、現時点n、ならびに2つの過去の時点n−1およびn−2での変数の関数として、時間n+1での予測される変数yの値を算出した。代表的に等間隔の時点の場合に用いられる等式を、以下の等式(1)に示す。
n+1=βy+β(1−β)yn−1+β(1−β)n−2     (1)
この等式において、βは、実験データ(代表的には0と1との間である)から獲得される経験的なパラメータである。
【0108】
等式(1)に対する改善は以下のようなものである:第1に、等式1と等式(2)に示すテイラー級数展開との間の相似性が存在する。
【0109】
【数7】
Figure 2004506468
従って、変数yn−1をy’(時間に関するyでの一次導関数)により置換し、そしてyn−2
【0110】
【数8】
Figure 2004506468
(時間に関するyでの二次導関数)により置換し、等式(3)を得た。
【0111】
【数9】
Figure 2004506468
ここで、この導関数は以下の2つの等式により算出され:
【0112】
【数10】
Figure 2004506468
そしてΔtは等間隔の時間間隔である。
【0113】
等式(3)とテイラー級数と等式(2)との間の相似は、等式(3)の右手側をβで除することによりさらに改善されて、等式(6)を与え得る(ここで、定義α=1−βが用いられる)。
【0114】
【数11】
Figure 2004506468
等式(4)および等式(5)を等式(6)に置き換えることは、以下のようなテイラー級数指数平滑法(TSES)等式の最終的な式を与える。
【0115】
【数12】
Figure 2004506468
TSES等式は、本質的に、最初の2つの項のテイラー級数を用いる指数平滑された移動平均テイラー級数展開である。この技術は、少なくとも1つの測定サイクル前でのグルコースレベルを予測するためのGluco Watchバイオグラファーシステムにより生成された測定と共に働くために適合され得る(WO99/58973、1999年11月18日公開)。
【0116】
(2.6 低血糖事象の改善された予測)
本発明は、低血糖症を予測する改善された能力に関する方法を包含し、この方法は二重のアプローチを含む。第1に、付加的な生理学的データ(すなわち、皮膚温度および皮膚伝導性)が、高頻度のグルコース値の読み取り(例えば、Gluco Watchバイオグラファーシステムを用いて獲得される)と組み合わせて用いられ、任意の変数を単独で用いることにより達成され得るよりも強力な予測アルゴリズムを生成する。第2に、時系列予測技術が、高頻度のグルコース測定(例えば、Gluco Watchバイオグラファーシステムを用いて獲得される)を含むデータストリームと組み合わせて用いられ、さらにグルコースレベルを予測し、そして初期の低血糖事象の早期の警告を提供する。これら2つの異なるアプローチの相乗効果は、低血糖事象を予測するための改善された能力を提供する。
【0117】
(2.7 低血糖症予測アルゴリズムへの発汗および温度測定の組込み)
およそ16,000対のGluco Watchバイオグラファーデータおよびおよそ450人の糖尿病患者の参照血糖値から構成されるデータセットを、本発明を補助して作成した。広範な人口統計学的背景と共に1型糖尿病および2型糖尿病の両方をこのデータセットに示す。このデータセットは、低血糖症予測アルゴリズムへの皮膚温度および伝導性の読み取りの組込みを開発し、そして洗練するための試験土台として用いられ得る。このデータセットは、低血糖症予測アルゴリズムが無作為なデータのサブセット上で訓練され、そして別個の「サンプル以外(out of sample)」のサブセットにおいて試験されることを可能にするのに十分大きい。この生のデータのセットを用いることで、Gluco Watchバイオグラファーシステムの出力が、このデバイス操作を完全に模倣するエミュレータプログラムを用いて生成され得る。皮膚温度および伝導性の読み取りを、エミュレータにおいて低血糖症警告機能に組込み、そしてシミュレートされた結果(グルコース読み取り、低血糖症警告音の発生など)を記録し、そして予測の有効性を評価する。
【0118】
多くの異なる機能を、皮膚温度、皮膚伝導性、およびグルコースデータを用いて低血糖症を正確に予測する能力について評価する。図3〜5に示される予備データおよび上記の予備データは、これらの機能の中の最も単純な機能(すなわち、各Gluco Watchバイオグラファー測定サイクルでの別個のデータポイントの使用)を表わす。より複雑なアルゴリズムは、例えば、移動平均基準値(sliding average baseline value)からの種々の温度および伝導性パラメータ、これらのパラメータにおける傾向のモニタリング、またはより複雑な神経ネットワークアプローチを用い得る。
【0119】
本発明の実施において有用な多くの適切な推定技術は、当該分野で公知である。これらの技術を用いて、相関因子(例えば、定数)を提供し得、次いでこれらの相関因子は、低血糖事象を示す測定値を獲得するために数学的変換において用いられる。特定の実施形態において、低血糖症推定アルゴリズムは、数学、統計学、および/またはパターン認識技術を、例えば、神経ネットワーク、遺伝子アルゴリズムシグナルプロセシング、直線回帰、多重線形回帰、統計学的(試験)測定の主成分分析、決定樹、またはそれらの組み合わせを用いる化学分析におけるシグナルプロセシングの問題に適用し得る。本発明の実施に用いられる特定の神経ネットワークアルゴリズムの構造は広範に変化し得るが;しかし、このネットワークは、例えば、入力レイヤー、1つ以上の隠れレイヤー、および1つの出力レイヤーを含み得る。このようなネットワークは、試験データセットで訓練され、次いで集団に適用され得る。本明細書を読んだ当業者が思い浮かべる多くの適切なネットワーク型、伝達関数、訓練基準、試験および適用方法が存在する。このような評価方法の1つは、専門的アルゴリズムの混合(Mixture of Experts algorithm)(例えば、WO018289A1(2000年4月6日公開);米国特許第6,180,416号(2001年1月30日発行)を参照のこと)。専門的アルゴリズムの混合において、皮膚伝導性および/または体温は、血糖のより正確な予測、特に潜在的な低血糖事象のより正確な予測を提供するためのパラメータとして含まれ得る。
【0120】
提案される低血糖症警告機能の有効性を評価するための1つの方法は、低血糖症警告機能が低血糖症の存在または非存在を正確に予測するか否かを決定するために、対になったGluco Watchバイオグラファー/参照血液点の各セットを試験する。偽陽性(低血糖症が存在しない場合の低血糖症の予測)または偽陰性(低血糖症が存在した場合の低血糖症の見落とし)の数を表にし、そして警告機能の感度および特異性を算出するために使用する。
【0121】
第2の分析は、各低血糖症の発症が、Gluco Watchバイオグラファーシステムの連続的なデータストリームにおけるいくつかの読み取りにより予測され得ることに関する。このような分析について、Gluco Watchバイオグラファーシステムの低血糖症警告機能により予測される(および予測されない)低血糖症現象の数を表にし、そして低血糖症警告機能の予測値を算出するために使用する。このようなアプローチを用いて、低血糖症警告機能は既存のデータセットに最適化され、次いで糖尿病患者に対する臨床試験において試験される。
【0122】
従って、グルコースレベル予測アルゴリズムへの発汗プローブおよび温度プローブからのデータの取り込みは、既存の臨床データベースを用いて試験される。アルゴリズムパラメータの最適化は、グルコースの読み取りにおける誤差を最小化し、そして低血糖警告機能の正確性を最大化するために実施される。
【0123】
(2.8 時系列予測アルゴリズム)
Gluco Watchバイオグラファーシステムが高頻度の基準でグルコースデータを獲得する能力は、以前は患者または臨床医に利用不可能だった大きなデータベースを作成する。上述の時系列予測アルゴリズムは、未来の読み取りを「予測」するために、一連の狭い間隔のグルコース読み取りを使用する。このアルゴリズムは、初期の低血糖症現象(糖尿病の最も深刻な急性の合併症)の早期の警告を提供する。
【0124】
順応性のある神経ネットワーク技術は、時間予測概念と組み合わされて、個々の患者の生理状態にカスタマイズされたシステムを提供し得る。このプロセスは、十分な数の対になったモニターおよび所定の患者由来の参照血糖値を用いて神経ネットワークを訓練する工程を包含する。この方法において、神経ネットワークは、個々の血糖変化のパターンを「学習」する。このアプローチは、低血糖事象の予測における誤差を減少させる。
【0125】
予測アルゴリズムの最適化を、皮膚温度−伝導性データを調査するために、本質的には上述のような「データ模倣」アプローチを用いて実行する。この時系列予測アルゴリズムを訓練し、そしてGluco Watchバイオグラファーシステム値、および臨床試験の間に獲得されかつ上述の対応する血糖グルコース参照値のデータセットに対して試験する。正確な種々の統計学的測定を用いて、異なる統計(平均誤差、平均相対誤差、平均絶対誤差)、RMS誤差、およびClarke Error Grid Analysisを含む予測アルゴリズムを評価および最適化する。次いで、この最適化された予測アルゴリズムは、本質的に以下のように臨床試験において先を見越して試験される。
【0126】
初期臨床試験は、改変されたGluco Watchバイオグラファーシステムが適切に機能することを確認するために、非糖尿病の志願者で実施される。このような試験はまた、低血糖症警告機能の能力の早期の評価を提供する。臨床プロトコルは、本質的に以下のように実施される。歴史的に、100gの経口グルコース耐性試験(OGTT)は、糖尿病を有する被験体集団におけるデバイスの性能を予測した。さらにOGTTに続いて、グルコースピークの後に、非糖尿病被験体は、内因性のインシュリン産生から50〜70mg/dL程度に低い血糖レベルを達成し、それによって、低血糖症の予測を試験するためのデータを提供し得る。さらに、1人の被験体は複数のGluco Watchバイオグラファーシステムを装着し得るので、有意なデータが、10人の被験体程度に少ない人数で獲得され得る。
【0127】
非糖尿病被験体での試験に続いて、改善された低血糖症警告機能を備える改変されたGluco Watchバイオグラファーシステムは、糖尿病を有する被験体に対して試験される。代表的には、少なくとも5日間の連続的な日数にわたる最小20人の被験体からの結果を用いて、このアルゴリズムを開発および最適化するのに十分なデータを作成する。これらの臨床試験に関与する被験体の人口統計学的プロフィールは多様である。なぜならば、可能な限り広範な人口統計学的サンプルに対する性能を調査することが有益であるからである。これらの試験は代表的に、相対的に等しい数の1型および2型の両方を有する被験体を研究する。男性および女性被験体は、ほぼ同様に示される。被験体集団は広範な年齢にわたる。代表的な大きな臨床試験の民族的背景を、例として以下の表1に示す。ここで、120人の被験体が女性であり、111人が男性であった。代表的に、この試験集団は18歳以上の被験体を含む。
【0128】
【表1】
Figure 2004506468
この研究日数の一般的な設計は、以下の通りである。被験体は、午前中に診療所に到着し、その前の真夜中から絶食させ、そしてその朝のインシュリン注射を受けさせない。2つのGluco Watchバイオグラファーシステムを被験体の腕に適用し、時計時間に合わせ、そして開始する。この研究の過程にわたり(およそ15時間)、毛細血サンプルを1時間毎に2度獲得し、そしてGluco Watchバイオグラファーの測定と比較するために参照方法を用いて測定する。測定期間の過程の間、インシュリン投薬は研究者により調節され、穏やかな低血糖症および高血糖症のグルコースレベルを達成する。標的の血糖範囲は40〜450mg/dLである。15時間の研究の終わりに、Gluco Watchバイオグラファーシステムは研究者により取り除かれる。
【0129】
各患者から収集されるデータは、人口統計学的情報、医学的スクリーニングデータ、参照血糖測定、およびGluco Watchバイオグラファーシステム測定から構成される。これらのデータを、低血糖症予測アルゴリズムを評価する目的のために用いる。
【0130】
従って、このモデルにおいて用いられるべき最適な時系列アルゴリズムモデルおよび変数を、臨床的Gluco Watchバイオグラファーシステムデータの大きなデータベースに対して「訓練」および試験することにより決定する。このアルゴリズムは、グルコースの読み取りにおける誤差を最小化し、そして低血糖警告機能の正確性を最大化するように最適化される。この最適化された時系列予測モデルは、例えば、上記のような予測アルゴリズムに基づく発汗プローブおよび温度プローブを用いて、低血糖症現象の1つ以上の予測と組み合わされる。本明細書中に記載される低血糖症予測アプローチは、時系列予測アプローチと組み合わせて、高頻度サンプリンググルコースモニタリングデバイス(例えば、Gluco Watchバイオグラファーシステム)により作成されるデータストリーム(例えば、高頻度に獲得されるグルコース値、皮膚伝導性、または温度の読み取り)から獲得される情報を利用して、初期の低血糖症現象を予測し、そして使用者を警告する。
【0131】
1つ以上のマイクロプロセッサーを用いて、サンプリングデバイス、検出デバイス、および予測アルゴリズムの機能を協調し得る。このようなマイクロプロセッサーは一般的に、一連のプログラムシーケンスを用いてサンプリングデバイスの操作を制御する。このプログラムシーケンスは、マイクロプロセッサーの読み出し専用メモリー(ROM)に保存され得る。組込まれたソフトウェア(ファームウェア)は、測定および表示操作の起動、分析物の読み取りの較正、高い分析物値および低い分析物値の警告の設定および表示、時間およびデータ機能の表示および設定、警告時間、ならびに保存された読み取りの表示を制御する。センサ電極から獲得されるセンサシグナルは、組込まれたソフトウェアに保存されている1つ以上のシグナル処理機能またはアルゴリズムにより保存および表示前に処理され得る。マイクロプロセッサーはまた、較正パラメータ、ユーザー設定、および全てのダウンロード可能なシーケンスを保存するための、電気的に消去可能、プログラム可能な、読み出し専用メモリー(EEPROM)を含み得る。シリアルコミュニケーションポートもまた用いられて、例えば、モニタリングデバイスが、関連の電子機器と連絡することを可能にし得る。例えば、ここで、このデバイスは、フィードバック制御アプリケーションにおいて用いられ、インシュリンのような医薬の送達(例えば、インシュリンポンプを用いる)のためのポンプを制御する。
【0132】
従って、本発明の1つの局面は、被験体における低血糖症現象を予測するための方法を提供する。代表的には、低血糖症現象に対応する閾値グルコース値またはグルコース値の範囲が決定される。低血漿グルコースレベルを生じる症候は、個体および異なる生理学的状態で変化する。異常に低い血漿グルコースは、通常、男性では約50mg/dL以下、女性では約45mg/dL以下、および幼児および子供において約40mg/dLと規定される。低血糖症現象の予測のための本発明の方法は、一般的に、被験体においてグルコースレベルがそのような低いレベルに低下することを回避するためである。従って、低血糖症現象の指標となるグルコース測定値の閾値を、応答するための十分な時間を被験体に与え、そしてグルコースレベルが低血糖症の範囲に低下することを予防するために、より高く(例えば、約80〜約100mg/dLの間)設定し得る。さらに、例えば、パラメータが皮膚伝導性の読み取りまたは体温の読み取りである場合、低血糖事象と相関する少なくとも1つの閾値パラメータ値(または値の範囲)をまた決定する。
【0133】
選択された時間間隔での一連のグルコース測定値を、選択されたグルコースサンプリングシステム(例えば、Gluco Watchバイオグラファー)を用いて獲得する。この一連の測定を用いることで、代表的には、一連の少なくとも3つのグルコース測定値、一連の測定値に続くさらなる時間間隔(例えば、n+1、ここで、このシリーズの最後のグルコース測定値はnであった)でのグルコース測定値を予測する。この予測されるグルコース測定値を、例えば、上記の時系列予測方法を用いて獲得し得る。他の予測アルゴリズムもまた、同様に用い得る。
【0134】
さらに、別のパラメータ値またはパラメータ値の傾向を、一連のグルコース測定値の獲得と同時発生的に(concurrently)か、同時に(simultaneously)か、または連続的に測定する。皮膚伝導性および体温が、2つの好ましいパラメータである。パラメータ値(例えば、時点nでの値か、または後の時点(例えば、n+1)でのパラメータについて予測される値)かまたはパラメータ値の傾向のいずれかを、閾値パラメータ値(または値の範囲)と比較し、測定されたパラメータ値またはパラメータ値の傾向が低血糖症現象を示唆するか否かを決定する。低血糖症現象は、(i)予測されたグルコース測定値と閾値グルコース値とを比較する工程が、時間間隔n+1での低血糖症現象を示す場合、および(ii)上記パラメータと上記閾値パラメータ値とを比較する工程が、時間間隔nまたはn+1での低血糖症現象を示す場合、の両方の場合に、被験体について示される。代表的に、1つ以上のマイクロプロセッサーは、必要とされるデータポイントを収集し得るデバイスを制御するようプログラムされることにより、データ獲得(例えば、グルコース測定サイクルならびに皮膚伝導性および/または体温の読み取りの獲得)を制御するようプログラムされる。この1つ以上のマイクロプロセッサーはまた、代表的には、アルゴリズムが種々の予測方法および比較方法を制御するようにプログラム工程を包含する。
【0135】
(2.9 決定樹モデルを用いる低血糖症現象の予測)
本発明の1つの局面において、低血糖症現象の予測のための方法は、閾値の階層的評価を用いる決定樹(分類樹とも呼ばれる)を用いる(例えば、J.J.Oliverら、Proceedings of the 5th Australian Joint Conference on Artificial Intelligence、361〜367頁、A.AdamsおよびL.Sterling(編集者)、World Scientific、Singapore、1992;D.J.Handら、Pattern Recognition、31(5):641−650、1998;J.J.OliverおよびD.J.Hand、Jornal of Classification、13:281−297、1996;W.Buntine、Statistics and Computing、2:63−73、1992;L.Breimanら、「Classification and Regression Trees」Wadsworth、Belmont、CA、1984;C4.5:Programs for Machine Learning、J.Ross Quinlan、The Morgan Kaufmann Series in Machine Learning、Pat Langley、Series Editor、October 1992、ISBN 1−55860−238−0を参照のこと)。決定樹を構築および実行するための市販のソフトウェアが入手可能であり(例えば、CART(5)、Salford Systems、San Diego、CA;C4.5(6)、RuleQuest Research Pty Ltd.、St Ives NSW Australia;およびDgraph(1,3)、Jon Oliver、Cygnus、Redwood City、CA)、そして本明細書の教示の観点において本発明の方法に用いられ得る。このような決定樹の単純なバージョンは、現在のグルコース値読み取りの閾値、体温閾値、および皮膚伝導性(発汗)閾値を選択することである;現在の(または予測される)グルコース値の読み取りがグルコース閾値以下である場合、次いで、体温が評価される。体温が体温閾値以下である場合、次いで皮膚伝導性が評価される。皮膚伝導性が皮膚伝導性閾値より大きい場合、次いで低血糖症現象が予測される。
【0136】
例えば、第1レベルの決定は、低血糖症現象を示し得る初期閾値と比較した、モニタリングデバイスにより獲得される最新のグルコース値に基づくアルゴリズムによってなされる。例えば、このアルゴリズムは、現在の血糖値(時間=n)または予測されるグルコース値(時間=n+1)と閾値(例えば、100mg/dL)とを比較し得る。グルコース値が閾値よりも大きい場合、次いで、アルゴリズムによりモニタリングを継続する決定がなされる。グルコースレベルがグルコース閾値レベル以下の場合、次いで、アルゴリズムは、次のレベルの決定樹を用いて継続する。
【0137】
次のレベルの決定樹は、時間(n)における被験体の体温読み取りの評価であり得、これは体温閾値と比較される。例えば、体温が体温閾値(例えば、33.95℃)よりも大きい場合、次いで、アルゴリズムによりモニタリングを継続する決定がなされる。体温が体温閾値(例えば、33.95℃)以下である場合、次いで、アルゴリズムは、次のレベルの決定樹を用いて継続する。
【0138】
次のレベルの決定樹は、時間(n)における被験体の皮膚伝導性読み取りの評価であり得、これは皮膚伝導性閾値と比較される。例えば、皮膚伝導性(すなわち、発汗の読み取り)が皮膚伝導性閾値(例えば、0.137発汗センサ読み取り)よりも小さい場合、次いで、アルゴリズムによりモニタリングを継続する決定がなされる。皮膚伝導性が皮膚伝導性閾値以上である場合、次いで、アルゴリズムは、低血糖症現象を予測する。
【0139】
この決定樹はさらに、さらなるレベルの追加により組み立てられ得る。例えば、低血糖症現象の可能性があるという決定の後、次のグルコースレベルが、閾値よりも上か下かを見るために評価され得る。体温および皮膚伝導性の両方は、上述のように再度試験され、低血糖事象の予測を確認する。
【0140】
最も重要な属性(attribute)は、代表的に、決定樹の根に配置される。本発明の1つの実施形態において、根の条件は現在のグルコース読み取りである。別の実施形態において、未来の時点で予測されるグルコース読み取りは根の属性であり得る。あるいは、体温または皮膚伝導性が、根の属性として用いられ得る。
【0141】
さらに、閾値は、推測的に確立される必要はない。アルゴリズムは、個々の被験体のグルコース読み取り、体温、および皮膚伝導性のデータベース記録から学習し得る。アルゴリズムは、それ自体を、例えば、決定樹アルゴリズムを用いてデータベース記録のデータに基づき閾値を構築するよう訓練し得る。
【0142】
さらに決定樹は、上述の単一のシナリオよりも複雑であり得る。例えば、皮膚伝導性(すなわち、発汗)が非常に高い場合、アルゴリズムは、通常よりも高い体温についての第1の閾値を設定し得、皮膚伝導性読み取りが中程度である場合、アルゴリズムは、比較的低い体温閾値を設定し得る、など。
【0143】
パラメーター(例えば、現在のまたは将来のグルコース読み取り、体温、皮膚伝導性)を選択し、そして個々の被験体についてのこれらのパラメーターのデータベース記録に基づいてアルゴリズム自体のトレーニングを可能にすることによって、このアルゴリズムは、独立してか、または低血糖の予測因子と組み合わせて各パラメーターを評価し得る。従って、低血糖予測モデルは、トレーニングされており、そしてこのアルゴリズムは、どのパラメーターが最も重要な指示因子であるかを決定する。この決定樹は、帰納的パーティショニングアルゴリズムのようなアルゴリズムを使用して、データから自動的な方法で学習され得る。この帰納的パーティショニングアルゴリズムは、ルートノード(root node)において全てのトレーニング例で開始することによって、樹を成長する。このルートノードは、例えば、以下のような3工程のプロセスを使用して「分割」され得る。(1)ルートノードは、全ての利用可能な属性で、全ての利用可能な閾値(例えば、トレーニングデータベースにおける)で分割され得る。各々の考慮された分割に、基準(例えば、GINI指数、データのエントロピー、またはデータのメッセージ長)を適用する。(2)基準を最適化する属性(A)および閾値(T)を選択する。これは、1つの分割ノードおよび2つのリーフを有する決定樹を生じる。(3)トレーニングデータベースにおける各例は、(トレーニング例の測定に基づいて)これらの2つのリーフのうち1つに関連する。次いで、各リーフノードを、3工程のプロセスを使用して帰納的に分割する。分割は、停止基準が適用されるまで続けられる。停止基準の例は、ノードが、これに関連するトレーニングデータベースから、50未満の例を有する場合である。
【0144】
さらなる実施形態において、決定樹における決定の各レベルで、このアルゴリズムソフトウェアは、決定の可能性に関連し得る。決定の各レベルでの可能性は、評価され得(例えば、合計され得)、そして累積する可能性は、低血糖事象を示す警報を作動させるか否かを決定するために使用され得る。
【0145】
レシーバー動作特性(Receiver Operating Characteristic)(ROC)曲線分析は、上記の決定樹分析に適用され得る。ROC分析は、別の閾値最適化手段である。これは、最適な真の正の割合を決定するが偽の正の割合を最小化するための方法を提供する。ROC分析を使用して、2つの分類スキームを比較し得、そしてどのスキームが選択された事象(例えば、低血糖事象)のより良い全体的な予測因子であるかを決定し得る;例えば、ROC分析を使用して、決定樹を用いて単純な閾値分類因子を比較し得る。ROCソフトウェアパッケージは、代表的には以下のための手順を含む:相関し、連続的に分散した、かつ固有にカテゴリー的な定格規模データ(inherently categorical rating scale data);2つの従法線RCO曲線の間の統計学的比較;連続する、かつカテゴリー的なデータのセットからの従法線ROC曲線の、最大の可能性の推定;ならびにROC曲線の比較についての統計学的検出力の分析。ROCの構築および実行のための商業的ソフトウェアが、利用可能である(例えば、Analyse−It for Microsoft Excel、Analyse−It Software、Ltd.、Leeds LS12 5XA、England、UK;MedCalc(登録商標)、MedCalc Software、Mariakerke、Belguim;AccuROC、Accumetric Corporation、Montreal、Quebec、CA)。
【0146】
上記の分析に適用され得る関連技術としては、Decision Graphs、Decision Rules(Rules Inductionとまた呼ばれる)、Discriminant Analysis(Stepwise Discriminant Analysisを含む)、Logistic Regression、Nearest Neighbor Classification、Neural Networks、およびNaive Bayes Classifierが挙げられるが、これらに限定されない。
【0147】
本発明の好ましい実施形態を、いくらか詳細に記載してきたが、添付の特許請求の範囲によって規定される本発明の精神および範囲から逸脱することなく、明らかな改変がなされ得ることが、理解される。
【図面の簡単な説明】
【図1】
図1は、GlucoWatch(登録商標)(Cygnus,Inc.,Redwood City,CA,US)biographerシステムの皮膚側図の模式図を示す。
【図2】
図2は、1被験体についての14時間にわたる、従来の血糖測定を用いたGlucoWatch biographerシステムの比較を示す。
【図3】
図3は、各GlucoWatch biographer測定サイクルの間の平均最低温度 対 参照血糖を示すデータを表す。
【図4】
図4は、平均皮膚伝導性読み取り 対 血糖範囲を示すデータを表す。
【図5】
図5は、発汗を示す皮膚伝導性読み取りのパーセンテージ 対 血糖範囲を示すデータを表す。

Claims (35)

  1. 1以上のマイクロプロセッサーであって、該マイクロプロセッサーは以下のためにプログラムされている:
    (i)選択された時間間隔で一連の生のシグナルを獲得するために検出機構を制御するためであって、ここで、該生のシグナルが被験体におけるグルコースの量または濃度に関する、
    (ii)一連のグルコース測定値を獲得するために、該生のシグナルを、該被験体に存在する該グルコースの量または濃度を示す測定値と相関させるため、
    (iii)さらなる時間間隔でグルコース測定値を予測するためであって、該時間間隔は、該一連の測定値が獲得された後に生じる、
    (iv)該予測された測定値を所定の値と比較するためであって、ここで、該所定の値よりも低い予測された測定値が、低血糖であることを示す、
    (v)該被験体由来の一連の皮膚伝導性読み取りまたは一連の温度読み取りのいずれかを獲得するために、デバイスを制御するため、
    (vi)該皮膚伝導性読み取りまたは温度読み取りが低血糖事象を示すか否かを決定するために、該皮膚伝導性読み取りまたは温度読み取りを、閾値パラメーター値またはパラメーター値の傾向と比較するため、ならびに
    (vii)該被験体において、以下の両方の場合に低血糖事象を予測するためであって、
    (a)時間間隔n+1で、該予測された測定値を、低血糖事象を示す該閾値グルコース値と比較する工程、および
    (b)該皮膚伝導性読み取りまたは温度読み取りを、低血糖事象を示す閾値パラメーター値またはパラメーター値の傾向と比較する工程。
  2. 前記検出機構が、電気化学的検出要素を有するバイオセンサーを備える、請求項1に記載の1以上のマイクロプロセッサー。
  3. 前記検出機構が、近IR分光計を備える、請求項1に記載の1以上のマイクロプロセッサー。
  4. 前記選択された時間間隔が、等間隔である、請求項1に記載の1以上のマイクロプロセッサー。
  5. 得られる前記一連の測定値が、3以上の別個の値を含む、請求項1に記載の1以上のマイクロプロセッサー。
  6. 前記さらなる時間間隔が、前記一連の測定値の後に1つの時間間隔を生じる、請求項1に記載の1以上のマイクロプロセッサー。
  7. 皮膚伝導性読み取りおよび温度読み取りの両方が、前記さらなる時間間隔で低血糖事象の可能性を予測するために使用される、請求項1に記載の1以上のマイクロプロセッサー。
  8. 請求項5に記載の1以上のマイクロプロセッサーであって、ここで、さらなる時間間隔でグルコース測定値を予測する前記工程が、
    Figure 2004506468
    によって表される一連の関数で、3以上の該一連の測定値を使用して実行され、
    ここで、yは、前記グルコースの測定値であり、nは、測定値の間の前記時間間隔であり、そしてαは、0〜1の間の実数である、1以上のマイクロプロセッサー。
  9. 前記一連の関数が、yn+1の値を予測するために使用され、そして前記時間間隔n+1が、前記一連の測定値が得られた後に1つの時間間隔を生じる、請求項8に記載の1以上のマイクロプロセッサー。
  10. 被験体においてグルコースを測定するためのグルコースモニタリングシステムであって、該システムは、
    請求項1に記載の1以上のマイクロプロセッサー;
    前記検出機構であって、該検出機構が、該被験体と、または該被験体から抽出されるグルコース含有サンプルと有効に接触して配置されるように適合されており、ここで、該検出機構が、該被験体におけるグルコースの量または濃度に特異的に関連する生のシグナルを獲得する、検出機構;および
    デバイスであって、該被験体から皮膚伝導性読み取りまたは温度読み取りのいずれかを獲得するための、デバイス、
    を、有効な組み合わせで備える、グルコースモニタリングシステム。
  11. 前記検出機構が、電気化学的検出要素を有するバイオセンサーを備える、請求項10に記載のモニタリングシステム。
  12. 前記検出機構が、近IR分光計を備える、請求項10に記載のモニタリングシステム。
  13. 前記皮膚伝導性読み取りを獲得するための前記デバイスが、発汗プローブである、請求項10に記載のモニタリングシステム。
  14. 前記温度読み取りを獲得するための前記デバイスが、温度プローブである、請求項10に記載のモニタリングシステム。
  15. 前記選択された時間間隔が、等間隔である、請求項10に記載のモニタリングシステム。
  16. 得られる前記一連の測定値が、3以上の別個の値を含む、請求項10に記載のモニタリングシステム。
  17. 前記さらなる時間間隔が、前記一連の測定値の後に1つの時間間隔を生じる、請求項16に記載のモニタリングシステム。
  18. 皮膚伝導性読み取りおよび温度読み取りの両方が、前記さらなる時間間隔で低血糖事象の可能性を予測するために使用される、請求項10に記載のモニタリングシステム。
  19. 請求項16に記載のモニタリングシステムであって、ここで、さらなる時間間隔で測定値を予測する前記工程が、
    Figure 2004506468
    によって表される一連の関数で、3以上の該一連の測定値を使用して実行され、
    ここで、yは、前記グルコースの測定値であり、nは、測定値の間の前記時間間隔であり、そしてαは、0〜1の間の実数である、モニタリングシステム。
  20. 前記一連の関数が、yn+1の値を予測するために使用され、そして前記時間間隔n+1が、前記一連の測定値が獲得された後に1つの時間間隔を生じる、請求項19に記載のモニタリングシステム。
  21. 被験体において低血糖事象を予測するための方法であって、該方法は、
    以下:
    (i)該低血糖事象に対応する閾値グルコース値、および
    (ii)該低血糖事象に相関する少なくとも1つの閾値パラメーター値であって、ここで、該パラメーターが、皮膚伝導性読み取りまたは温度読み取りのいずれかである、閾値パラメーター値
    を決定する、工程;
    以下:
    該被験体の皮膚または粘膜表面に有効に接触する経皮的サンプリングシステムを使用して、該被験体からグルコースを含むサンプルを抽出する工程;
    該抽出されたグルコースから生のシグナルを獲得する工程であって、ここで、該生のシグナルが、該被験体におけるグルコースの量または濃度に特異的に関連する、工程;
    該生のシグナルを、抽出の時点で該被験体に存在するグルコースの量または濃度を示すグルコース測定値と相関させる工程;
    選択された時間間隔で一連の測定値を提供するために該抽出工程、獲得工程、および相関工程を繰り返す工程であって、ここで、該サンプリングシステムが、頻繁なグルコース測定を提供するために、該抽出工程、獲得工程、および相関工程の間に、該被験体の皮膚または粘膜表面に有効に接触したまま維持される、工程;
    該一連の測定値に続くさらなる時間間隔で測定値を予測する工程であって、該さらなる時間間隔はn+1で表される、工程;および
    前記予測された測定値を、前記閾値グルコース値と比較する工程であって、ここで、前記閾値よりも低い測定値は、低血糖であることを示す、工程;
    を包含する方法を使用して、選択された時間間隔で一連のグルコース測定値を獲得する工程;
    該一連の測定値を獲得する前記工程と同時発生的に、同時に、または連続的にパラメーター値またはパラメーター値の傾向を測定する工程であって、ここで、該パラメーター値またはパラメーター値の傾向は、該被験体の皮膚伝導性読み取りまたは温度読み取りのいずれかを反映する、工程、および該パラメーター値またはパラメーター値の傾向が低血糖事象を示すか否かを決定するために、該パラメーター値またはパラメーター値の傾向を、該閾値パラメーター値と比較する工程;ならびに
    該被験体において、以下の両方の場合に低血糖事象を予測する工程、
    (i)時間間隔n+1で、該予測された測定値を低血糖事象を示す該閾値グルコース値と比較する場合、および
    (ii)該パラメーターを、低血糖事象を示す該閾値パラメーター値と比較する場合、
    を包含する、方法。
  22. 該被験体において、以下:
    (i)被験体の皮膚または粘膜表面に有効に接触して初めから終わりまで維持される経皮的サンプリングシステムを使用して、選択された時間間隔で該被験体から抽出されたグルコースを含む一連のサンプル、
    (ii)該一連のサンプルの抽出と同時発生的に、同時に、または連続して測定されたパラメーター値またはパラメーター値の傾向であって、ここで、該パラメーター値またはパラメーター値の傾向が、該被験体の皮膚伝導性読み取りまたは温度読み取りのいずれかを反映する、パラメーター値またはパラメーター値の傾向、
    から低血糖事象を予測するための方法であって、該方法は、
    以下:
    (i)該低血糖事象に対応する閾値グルコース値、および
    (ii)該低血糖事象に相関する少なくとも1つの閾値パラメーター値、を決定する工程であって、ここで、該パラメーターが、皮膚伝導性読み取りまたは温度読み取りのいずれかである、工程;
    以下:
    抽出されたグルコースの各サンプルから生のシグナルを獲得する工程であって、ここで、該生のシグナルは、該被験体におけるグルコースの量または濃度に特異的に関連する、工程;
    該生のシグナルを、対応する抽出の時間で、該被験体に存在するグルコースの量または濃度を示すグルコース測定値と相関させる工程;
    該一連の測定値に続くさらなる時間間隔で測定値を予測する工程であって、該さらなる時間間隔が、n+1で表される、工程、
    を包含する方法を使用して、該選択された時間間隔にわたって一連のグルコース測定値を獲得する工程;ならびに
    該予測された測定値を、該閾値グルコース値と比較する工程であって、ここで、該閾値よりも低い測定値が、低血糖であることを示す、工程;
    該パラメーター値またはパラメーター値の傾向が低血糖事象を示すか否かを決定するために、該パラメーター値またはパラメーター値の傾向を閾値パラメーター値と比較する工程;ならびに
    該被験体において、以下の両方の場合に低血糖事象を予測する工程、
    (i)時間間隔n+1で、該予測された測定値を低血糖事象を示す該閾値グルコース値と比較する場合、および
    (ii)該パラメーター値またはパラメーター値の傾向を、低血糖事象を示す該閾値パラメーター値と比較する場合;
    を包含する、方法。
  23. 前記選択された時間間隔が、等間隔である、請求項21または請求項22に記載の方法。
  24. 前記一連の測定値が、3以上の別個の値を含む、請求項21または請求項22に記載の方法。
  25. 前記さらなる時間間隔n+1が、前記一連の測定値の後に1つの時間間隔を生じる、請求項24に記載の方法。
  26. 皮膚伝導性読み取りおよび温度読み取りの両方が、時間間隔n+1で低血糖事象の可能性を予測するために使用される、請求項21または請求項22に記載の方法。
  27. 請求項24に記載の方法であって、ここで、さらなる時間間隔で測定値を予測する前記工程が、
    Figure 2004506468
    によって表される一連の関数で、3以上の該一連の測定値を使用して実行され、
    ここで、yは、前記グルコースの測定値であり、nは、測定値の間の前記時間間隔であり、そしてαは、0〜1の間の実数である、方法。
  28. 前記一連の関数が、yn+1の値を予測するために使用され、そして前記時間間隔n+1が、前記一連の測定値が得られた後に1つの時間間隔を生じる、請求項27に記載の方法。
  29. 前記サンプリングシステムが発汗プローブを含み、そして前記皮膚伝導性読み取りが該発汗プローブを使用して獲得される、請求項21に記載の方法。
  30. 前記サンプリングシステムが温度プローブを備え、そして前記温度読み取りが該温度プローブを使用して獲得される、請求項21に記載の方法。
  31. レザバ中のグルコースの量または濃度を獲得するために、1以上の収集レザバ中に、前記被験体から前記サンプルを抽出する、請求項21に記載の方法。
  32. 前記1以上の収集レザバが、前記被験体の皮膚または粘膜表面に接触し、そして前記サンプルが、該皮膚または粘膜表面に適用されるイオン泳動的な流れを使用して抽出される、請求項31に記載の方法。
  33. 少なくとも1つの収集レザバが、抽出されたグルコースと反応して、電気化学的な検出可能なシグナルを生成する酵素を備える、請求項32に記載の方法。
  34. 前記酵素が、グルコースオキシダーゼである、請求項32に記載の方法。
  35. 前記一連のグルコース測定値を獲得する工程が、近IR分光計を使用して実行される、請求項21に記載の方法。
JP2002520695A 2000-08-18 2001-08-10 低血糖事象の予測のためのマイクロプロセッサーおよびデバイス Expired - Lifetime JP3647032B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22643100P 2000-08-18 2000-08-18
PCT/US2001/025147 WO2002015777A1 (en) 2000-08-18 2001-08-10 Methods and devices for prediction of hypoglycemic events

Publications (2)

Publication Number Publication Date
JP2004506468A true JP2004506468A (ja) 2004-03-04
JP3647032B2 JP3647032B2 (ja) 2005-05-11

Family

ID=22848881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002520695A Expired - Lifetime JP3647032B2 (ja) 2000-08-18 2001-08-10 低血糖事象の予測のためのマイクロプロセッサーおよびデバイス

Country Status (8)

Country Link
US (2) US6882940B2 (ja)
EP (1) EP1309271B1 (ja)
JP (1) JP3647032B2 (ja)
AT (1) ATE392178T1 (ja)
CA (1) CA2408338C (ja)
DE (1) DE60133653T2 (ja)
ES (1) ES2304394T3 (ja)
WO (1) WO2002015777A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106446A1 (ja) * 2004-04-30 2005-11-10 Matsushita Electric Industrial Co., Ltd. 血糖値計測装置
JP2007523709A (ja) * 2004-02-26 2007-08-23 ダイアベティス ツールズ スウェーデン アーベー 被検者の健康に関連する状態を表示するための代謝監視、方法および装置
JP2007536645A (ja) * 2004-05-07 2007-12-13 インターメッド アドバイザー,インコーポレイティド 慢性疾患患者のためのリアルタイム予測モデル化方法及び装置
JP2008079994A (ja) * 2006-09-28 2008-04-10 Nipro Corp 血糖測定装置
JP2008253560A (ja) * 2007-04-05 2008-10-23 Shinichi Yoshida 擬似低血糖検知・警報発信装置
JP2009519048A (ja) * 2005-12-03 2009-05-14 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト 分析方法と調査システム
JP2010500052A (ja) * 2006-06-15 2010-01-07 ヒポ−セイフ エイ/エス 低血糖症を検出するための脳波信号解析
JP2010500078A (ja) * 2006-08-08 2010-01-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 生理パラメータを監視する方法および装置
JP2010514498A (ja) * 2006-12-27 2010-05-06 カーディアック ペースメイカーズ, インコーポレイテッド 代償不全を管理する患者内アルゴリズム
JP2013503712A (ja) * 2009-09-02 2013-02-04 ユニバーシティ オブ ヴァージニア パテント ファウンデーション 自己監視血糖(smbg)データからの糖尿病における差し迫った低血糖の可能性の観測
WO2013146242A1 (ja) * 2012-03-27 2013-10-03 テルモ株式会社 アナライトのモニタシステム及びモニタ方法

Families Citing this family (415)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6787363B2 (en) * 1999-02-22 2004-09-07 Haemoscope Corporation Method and apparatus for hemostasis and blood management
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
SK12272003A3 (en) 2001-03-06 2004-06-08 Pendragon Medical Ltd Method and device for determining the concentration of a substance in body liquid
US7315767B2 (en) 2001-03-06 2008-01-01 Solianis Holding Ag Impedance spectroscopy based systems and methods
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
JP4209767B2 (ja) 2001-06-12 2009-01-14 ペリカン テクノロジーズ インコーポレイテッド 皮膚の性状の一時的変化に対する適応手段を備えた自動最適化形切開器具
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
DE60234597D1 (de) 2001-06-12 2010-01-14 Pelikan Technologies Inc Gerät und verfahren zur entnahme von blutproben
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
AU2002348683A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
DE60238119D1 (de) 2001-06-12 2010-12-09 Pelikan Technologies Inc Elektrisches betätigungselement für eine lanzette
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
AU2002344825A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7011630B2 (en) 2001-06-22 2006-03-14 Animas Technologies, Llc Methods for computing rolling analyte measurement values, microprocessors comprising programming to control performance of the methods, and analyte monitoring devices employing the methods
IL155682A0 (en) * 2001-08-20 2003-11-23 Inverness Medical Ltd Wireless diabetes management devices and methods for using the same
US20030108976A1 (en) * 2001-10-09 2003-06-12 Braig James R. Method and apparatus for improving clinical accuracy of analyte measurements
US7022072B2 (en) * 2001-12-27 2006-04-04 Medtronic Minimed, Inc. System for monitoring physiological characteristics
US7497827B2 (en) 2004-07-13 2009-03-03 Dexcom, Inc. Transcutaneous analyte sensor
ATE482649T1 (de) 2002-03-22 2010-10-15 Animas Technologies Llc Leistungsverbesserung einer analytenüberwachungsvorrichtung
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7198606B2 (en) 2002-04-19 2007-04-03 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with analyte sensing
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US20030211617A1 (en) * 2002-05-07 2003-11-13 International Business Machines Corporation Blood glucose meter that reminds the user to test after a hypoglycemic event
GB2418258B (en) * 2002-06-05 2006-08-23 Diabetes Diagnostics Inc Analyte testing device
JP5072182B2 (ja) * 2002-08-13 2012-11-14 ユニヴァースティ オブ ヴァージニア パテント ファウンデイション 糖尿病自己管理を推進するための自己モニタリング血糖(smbg)データを処理するための方法、システムおよびコンピュータ・プログラム・プロダクト
US20050288571A1 (en) * 2002-08-20 2005-12-29 Welch Allyn, Inc. Mobile medical workstation
US20040186357A1 (en) * 2002-08-20 2004-09-23 Welch Allyn, Inc. Diagnostic instrument workstation
ATE446045T1 (de) * 2002-09-04 2009-11-15 Solianis Holding Ag Verfahren und vorrichtung zur glukosemessung
EP1691672B1 (en) * 2002-09-24 2009-01-07 Solianis Holding AG Device for the measurement of glucose concentrations
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US7052472B1 (en) * 2002-12-18 2006-05-30 Dsp Diabetes Sentry Products, Inc. Systems and methods for detecting symptoms of hypoglycemia
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US20040132171A1 (en) * 2003-01-06 2004-07-08 Peter Rule Wearable device for measuring analyte concentration
JP2004248793A (ja) * 2003-02-19 2004-09-09 Philips Japan Ltd ベッドサイド情報システム
WO2004107964A2 (en) 2003-06-06 2004-12-16 Pelikan Technologies, Inc. Blood harvesting device with electronic control
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US8160669B2 (en) * 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US8761856B2 (en) 2003-08-01 2014-06-24 Dexcom, Inc. System and methods for processing analyte sensor data
US7778680B2 (en) 2003-08-01 2010-08-17 Dexcom, Inc. System and methods for processing analyte sensor data
US8845536B2 (en) * 2003-08-01 2014-09-30 Dexcom, Inc. Transcutaneous analyte sensor
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US20070208245A1 (en) * 2003-08-01 2007-09-06 Brauker James H Transcutaneous analyte sensor
US20050033133A1 (en) * 2003-08-06 2005-02-10 Clifford Kraft Implantable chip medical diagnostic device for bodily fluids
WO2005018443A1 (en) * 2003-08-15 2005-03-03 Animas Technologies Llc Microprocessors, devices, and methods for use in monitoring of physiological analytes
US20070185390A1 (en) * 2003-08-19 2007-08-09 Welch Allyn, Inc. Information workflow for a medical diagnostic workstation
US6954662B2 (en) * 2003-08-19 2005-10-11 A.D. Integrity Applications, Ltd. Method of monitoring glucose level
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US7239926B2 (en) * 2003-09-15 2007-07-03 Medtronic, Inc. Selection of neurostimulator parameter configurations using genetic algorithms
US7617002B2 (en) * 2003-09-15 2009-11-10 Medtronic, Inc. Selection of neurostimulator parameter configurations using decision trees
US7252090B2 (en) * 2003-09-15 2007-08-07 Medtronic, Inc. Selection of neurostimulator parameter configurations using neural network
US7184837B2 (en) * 2003-09-15 2007-02-27 Medtronic, Inc. Selection of neurostimulator parameter configurations using bayesian networks
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
ES2349174T3 (es) * 2003-10-13 2010-12-28 Novo Nordisk A/S Aparato y método para la determinación de una condición fisiológica.
WO2005037092A1 (en) * 2003-10-13 2005-04-28 Novo Nordisk A/S Apparatus and method for determining a physiological condition
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US7299082B2 (en) 2003-10-31 2007-11-20 Abbott Diabetes Care, Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
JP4594236B2 (ja) * 2003-11-27 2010-12-08 ソリアニス・ホールディング・アーゲー グルコースレベルを測定するための方法
WO2005053523A1 (en) * 2003-12-02 2005-06-16 Solianis Holding Ag A device and method for measuring a property of living tissue
EP2316331B1 (en) * 2003-12-09 2016-06-29 Dexcom, Inc. Signal processing for continuous analyte sensor
WO2005065414A2 (en) 2003-12-31 2005-07-21 Pelikan Technologies, Inc. Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US8491492B2 (en) 2004-02-05 2013-07-23 Earlysense Ltd. Monitoring a condition of a subject
JP4809779B2 (ja) * 2004-02-05 2011-11-09 アーリーセンス・リミテッド 呼吸に現れる臨床的発症の予測及びモニタリング技術
US8403865B2 (en) 2004-02-05 2013-03-26 Earlysense Ltd. Prediction and monitoring of clinical episodes
US20070118054A1 (en) * 2005-11-01 2007-05-24 Earlysense Ltd. Methods and systems for monitoring patients for clinical episodes
US8942779B2 (en) 2004-02-05 2015-01-27 Early Sense Ltd. Monitoring a condition of a subject
US10194810B2 (en) * 2004-02-05 2019-02-05 Earlysense Ltd. Monitoring a condition of a subject
CA2556331A1 (en) 2004-02-17 2005-09-29 Therasense, Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US8554486B2 (en) * 2004-02-20 2013-10-08 The Mathworks, Inc. Method, computer program product, and apparatus for selective memory restoration of a simulation
DE102004020160A1 (de) * 2004-04-24 2005-11-10 Roche Diagnostics Gmbh Verfahren und Vorrichtung zum Überwachen einer Konzentration eines Analyten im lebenden Körper eines Menschen oder Tieres
US20060025931A1 (en) * 2004-07-30 2006-02-02 Richard Rosen Method and apparatus for real time predictive modeling for chronically ill patients
US7251516B2 (en) * 2004-05-11 2007-07-31 Nostix Llc Noninvasive glucose sensor
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US20060010098A1 (en) 2004-06-04 2006-01-12 Goodnow Timothy T Diabetes care host-client architecture and data management system
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US8886272B2 (en) * 2004-07-13 2014-11-11 Dexcom, Inc. Analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US7574382B1 (en) 2004-08-03 2009-08-11 Amazon Technologies, Inc. Automated detection of anomalous user activity associated with specific items in an electronic catalog
US7323036B2 (en) * 2004-08-27 2008-01-29 Alstom Technology Ltd Maximizing regulatory credits in controlling air pollution
US20060047607A1 (en) * 2004-08-27 2006-03-02 Boyden Scott A Maximizing profit and minimizing losses in controlling air pollution
US7113835B2 (en) * 2004-08-27 2006-09-26 Alstom Technology Ltd. Control of rolling or moving average values of air pollution control emissions to a desired value
US7634417B2 (en) * 2004-08-27 2009-12-15 Alstom Technology Ltd. Cost based control of air pollution control
US7522963B2 (en) * 2004-08-27 2009-04-21 Alstom Technology Ltd Optimized air pollution control
US7117046B2 (en) * 2004-08-27 2006-10-03 Alstom Technology Ltd. Cascaded control of an average value of a process parameter to a desired value
US7536232B2 (en) * 2004-08-27 2009-05-19 Alstom Technology Ltd Model predictive control of air pollution control processes
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US8545403B2 (en) 2005-12-28 2013-10-01 Abbott Diabetes Care Inc. Medical device insertion
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US8613703B2 (en) 2007-05-31 2013-12-24 Abbott Diabetes Care Inc. Insertion devices and methods
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
ITBO20050002A1 (it) * 2005-01-04 2006-07-05 Giacomo Vespasiani Metodo e sistema per la gestione interattiva di dati relativi ad una terapia insulinica in autocontrollo per un paziente diabetico
JP2006217167A (ja) * 2005-02-02 2006-08-17 Sharp Corp Ip電話装置およびipアダプタ装置
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US7610214B1 (en) * 2005-03-24 2009-10-27 Amazon Technologies, Inc. Robust forecasting techniques with reduced sensitivity to anomalous data
US7739143B1 (en) 2005-03-24 2010-06-15 Amazon Technologies, Inc. Robust forecasting techniques with reduced sensitivity to anomalous data
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
CA2620586A1 (en) 2005-08-31 2007-03-08 Boris P. Kovatchev Improving the accuracy of continuous glucose sensors
WO2007030457A1 (en) * 2005-09-07 2007-03-15 Bayer Healthcare Llc Test meter having time and date correction and method for correcting the same
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
WO2007053963A1 (en) * 2005-11-10 2007-05-18 Solianis Holding Ag Device for determining the glucose level in body tissue
US7963917B2 (en) * 2005-12-05 2011-06-21 Echo Therapeutics, Inc. System and method for continuous non-invasive glucose monitoring
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US8640698B2 (en) * 2006-02-17 2014-02-04 Redmed Limited Method and apparatus for monitoring the condition of a patient with diabetes
US7981034B2 (en) 2006-02-28 2011-07-19 Abbott Diabetes Care Inc. Smart messages and alerts for an infusion delivery and management system
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US7618369B2 (en) 2006-10-02 2009-11-17 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US7630748B2 (en) 2006-10-25 2009-12-08 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US7715920B2 (en) 2006-04-28 2010-05-11 Medtronic, Inc. Tree-based electrical stimulator programming
US8306624B2 (en) 2006-04-28 2012-11-06 Medtronic, Inc. Patient-individualized efficacy rating
US8380300B2 (en) 2006-04-28 2013-02-19 Medtronic, Inc. Efficacy visualization
US20080064937A1 (en) 2006-06-07 2008-03-13 Abbott Diabetes Care, Inc. Analyte monitoring system and method
US9119582B2 (en) 2006-06-30 2015-09-01 Abbott Diabetes Care, Inc. Integrated analyte sensor and infusion device and methods therefor
US8206296B2 (en) 2006-08-07 2012-06-26 Abbott Diabetes Care Inc. Method and system for providing integrated analyte monitoring and infusion system therapy management
US8932216B2 (en) 2006-08-07 2015-01-13 Abbott Diabetes Care Inc. Method and system for providing data management in integrated analyte monitoring and infusion system
US7996077B2 (en) * 2006-09-06 2011-08-09 Encore Medical Asset Corporation Iontophoresis apparatus and method
US8214030B2 (en) 2006-09-06 2012-07-03 Encore Medical Asset Corporation Iontophoresis apparatus and method
WO2008052199A2 (en) 2006-10-26 2008-05-02 Abbott Diabetes Care, Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US8439837B2 (en) * 2006-10-31 2013-05-14 Lifescan, Inc. Systems and methods for detecting hypoglycemic events having a reduced incidence of false alarms
US8214007B2 (en) 2006-11-01 2012-07-03 Welch Allyn, Inc. Body worn physiological sensor device having a disposable electrode module
GB2443434A (en) * 2006-11-02 2008-05-07 Richard Butler Method for predicting nocturnal hypoglycaemia
US20080306353A1 (en) * 2006-11-03 2008-12-11 Douglas Joel S Calculation device for metabolic control of critically ill and/or diabetic patients
US20080114215A1 (en) * 2006-11-09 2008-05-15 Isense Corporation Shape recognition of hypoglycemia and hyperglycemia
US20080199894A1 (en) 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US8121857B2 (en) 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US20080228056A1 (en) 2007-03-13 2008-09-18 Michael Blomquist Basal rate testing using frequent blood glucose input
US8758245B2 (en) * 2007-03-20 2014-06-24 Lifescan, Inc. Systems and methods for pattern recognition in diabetes management
ES2461090T3 (es) 2007-04-14 2014-05-16 Abbott Diabetes Care Inc. Procedimiento y aparato para proporcionar tratamiento y control de datos en un sistema de comunicación médica
CA2683962C (en) 2007-04-14 2017-06-06 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
CA2683959C (en) 2007-04-14 2017-08-29 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US10111608B2 (en) 2007-04-14 2018-10-30 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
CA2683930A1 (en) 2007-04-14 2008-10-23 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US7768387B2 (en) 2007-04-14 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US9125602B2 (en) * 2007-04-27 2015-09-08 Arkray, Inc. Measurement device
US8585607B2 (en) * 2007-05-02 2013-11-19 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US10002233B2 (en) 2007-05-14 2018-06-19 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
WO2008144616A1 (en) * 2007-05-18 2008-11-27 Heidi Kay Lipid raft, caveolin protein, and caveolar function modulation compounds and associated synthetic and therapeutic methods
US7751907B2 (en) 2007-05-24 2010-07-06 Smiths Medical Asd, Inc. Expert system for insulin pump therapy
US8221345B2 (en) 2007-05-30 2012-07-17 Smiths Medical Asd, Inc. Insulin pump based expert system
EP3533387A3 (en) 2007-06-21 2019-11-13 Abbott Diabetes Care, Inc. Health management devices and methods
JP2010531169A (ja) 2007-06-21 2010-09-24 アボット ダイアベティス ケア インコーポレイテッド 健康監視装置
US8641618B2 (en) 2007-06-27 2014-02-04 Abbott Diabetes Care Inc. Method and structure for securing a monitoring device element
US8712748B2 (en) 2007-06-27 2014-04-29 Roche Diagnostics Operations, Inc. Medical diagnosis, therapy, and prognosis system for invoked events and methods thereof
ES2845400T3 (es) * 2007-06-27 2021-07-26 Hoffmann La Roche Sistema para determinar una administración de insulina y comunicar una dosis en un programa informático de páncreas automatizado
US8085151B2 (en) 2007-06-28 2011-12-27 Abbott Diabetes Care Inc. Signal converting cradle for medical condition monitoring and management system
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US7768386B2 (en) 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7731659B2 (en) * 2007-10-18 2010-06-08 Lifescan Scotland Limited Method for predicting a user's future glycemic state
US7695434B2 (en) * 2007-10-19 2010-04-13 Lifescan Scotland, Ltd. Medical device for predicting a user's future glycemic state
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US20090164239A1 (en) 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US20090164482A1 (en) * 2007-12-20 2009-06-25 Partha Saha Methods and systems for optimizing projection of events
WO2009081343A1 (en) * 2007-12-20 2009-07-02 Koninklijke Philips Electronics N.V. Electrode diversity for body-coupled communication systems
US20090177147A1 (en) 2008-01-07 2009-07-09 Michael Blomquist Insulin pump with insulin therapy coaching
CA2721214A1 (en) 2008-04-10 2009-10-15 Abbott Diabetes Care Inc. Method and system for sterilizing an analyte sensor
EP2265324B1 (en) 2008-04-11 2015-01-28 Sanofi-Aventis Deutschland GmbH Integrated analyte measurement system
US9883809B2 (en) 2008-05-01 2018-02-06 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US8882684B2 (en) 2008-05-12 2014-11-11 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US8133197B2 (en) 2008-05-02 2012-03-13 Smiths Medical Asd, Inc. Display for pump
CN102113034A (zh) * 2008-05-12 2011-06-29 阿列森斯有限公司 监测、预测和处理临床发作
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US20100010320A1 (en) * 2008-07-07 2010-01-14 Perkins David G Mobile medical workstation and a temporarily associating mobile computing device
US8876755B2 (en) 2008-07-14 2014-11-04 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US20110160555A1 (en) * 2008-07-31 2011-06-30 Jacques Reifman Universal Models for Predicting Glucose Concentration in Humans
US8762306B2 (en) * 2008-08-14 2014-06-24 The University Of Toledo Neural network for glucose therapy recommendation
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
DE102008061900A1 (de) * 2008-12-11 2010-06-17 Trout Gmbh Verfahren zur nicht invasiven Bestimmung des Blutzuckergehalts
EP2196140B1 (de) 2008-12-11 2014-03-19 Trout GmbH Verfahren und Einrichtung zur nicht invasiven Bestimmung des Blutzuckergehalts im Blut
US10456036B2 (en) * 2008-12-23 2019-10-29 Roche Diabetes Care, Inc. Structured tailoring
US20120011125A1 (en) 2008-12-23 2012-01-12 Roche Diagnostics Operations, Inc. Management method and system for implementation, execution, data collection, and data analysis of a structured collection procedure which runs on a collection device
US8849458B2 (en) * 2008-12-23 2014-09-30 Roche Diagnostics Operations, Inc. Collection device with selective display of test results, method and computer program product thereof
CA2747332C (en) 2008-12-23 2015-01-27 F. Hoffmann-La Roche Ag Management method and system for implementation, execution, data collection, and data analysis of a structured collection procedure which runs on a collection device
US9918635B2 (en) * 2008-12-23 2018-03-20 Roche Diabetes Care, Inc. Systems and methods for optimizing insulin dosage
US9117015B2 (en) 2008-12-23 2015-08-25 Roche Diagnostics Operations, Inc. Management method and system for implementation, execution, data collection, and data analysis of a structured collection procedure which runs on a collection device
US10437962B2 (en) * 2008-12-23 2019-10-08 Roche Diabetes Care Inc Status reporting of a structured collection procedure
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US20100198034A1 (en) 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
WO2010121084A1 (en) 2009-04-15 2010-10-21 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
EP2419015A4 (en) 2009-04-16 2014-08-20 Abbott Diabetes Care Inc ANALYTE SENSOR CALIBRATION MANAGEMENT
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
WO2010127187A1 (en) 2009-04-29 2010-11-04 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
EP2425209A4 (en) 2009-04-29 2013-01-09 Abbott Diabetes Care Inc METHOD AND SYSTEM FOR REAL-TIME CALIBRATION OF AN ANALYTICAL SENSOR WITH RETROACTIVE FILLING
US9184490B2 (en) 2009-05-29 2015-11-10 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
EP4289355A3 (en) 2009-07-23 2024-02-28 Abbott Diabetes Care Inc. Continuous analyte measurement system
EP4276652A3 (en) 2009-07-23 2024-01-31 Abbott Diabetes Care, Inc. Real time management of data relating to physiological control of glucose levels
EP2932994B1 (en) 2009-07-30 2017-11-08 Tandem Diabetes Care, Inc. New o-ring seal, and delivery mechanism and portable infusion pump system related thereto
WO2011014851A1 (en) 2009-07-31 2011-02-03 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
US20110034792A1 (en) * 2009-08-05 2011-02-10 Williams Ronald L Noninvasive Body Chemistry Monitor and Method
EP2290371A1 (de) * 2009-08-27 2011-03-02 F. Hoffmann-La Roche AG Kalibrierverfahren zur prospektiven Kalibrierung eines Messgeräts
EP3001194B1 (en) 2009-08-31 2019-04-17 Abbott Diabetes Care, Inc. Medical devices and methods
DK3988470T3 (da) 2009-08-31 2023-08-28 Abbott Diabetes Care Inc Visningsindretninger til en medicinsk indretning
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
EP2473099A4 (en) 2009-08-31 2015-01-14 Abbott Diabetes Care Inc ANALYTICAL SUBSTANCE MONITORING SYSTEM AND METHODS OF MANAGING ENERGY AND NOISE
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US8690820B2 (en) * 2009-10-06 2014-04-08 Illinois Institute Of Technology Automatic insulin pumps using recursive multivariable models and adaptive control algorithms
US8185181B2 (en) * 2009-10-30 2012-05-22 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
US20120277723A1 (en) * 2009-11-04 2012-11-01 Aimedics Pty Ltd System and method for the integration of fused-data hypoglycaemia alarms into closed-loop glycaemic control systems
US8335592B2 (en) 2009-11-24 2012-12-18 Pepsico, Inc. Beverage dispensing device
US8490829B2 (en) * 2009-11-24 2013-07-23 Pepsico, Inc. Personalized beverage dispensing device
US8882701B2 (en) 2009-12-04 2014-11-11 Smiths Medical Asd, Inc. Advanced step therapy delivery for an ambulatory infusion pump and system
WO2011091336A1 (en) * 2010-01-22 2011-07-28 Abbott Diabetes Care Inc. Method and apparatus for providing notification in analyte monitoring systems
US8843321B2 (en) * 2010-01-26 2014-09-23 Roche Diagnostics Operations, Inc. Methods and systems for processing glucose data measured from a person having diabetes
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
US8306943B2 (en) * 2010-03-04 2012-11-06 NTelx, Inc. Seasonality-based rules for data anomaly detection
US20130226660A1 (en) * 2010-03-04 2013-08-29 Lusine Yepremyan Cyclicality-Based Rules for Data Anomaly Detection
WO2011112753A1 (en) * 2010-03-10 2011-09-15 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
ES2881798T3 (es) 2010-03-24 2021-11-30 Abbott Diabetes Care Inc Insertadores de dispositivos médicos y procedimientos de inserción y uso de dispositivos médicos
JP5419771B2 (ja) 2010-03-26 2014-02-19 シスメックス株式会社 診断支援方法、診断支援システム及び診断支援装置
WO2011129679A1 (en) * 2010-04-12 2011-10-20 Saad Abdulamir Abbas Alarming system for a low sugar level (hypoglycemia) "hypometer"
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8235897B2 (en) 2010-04-27 2012-08-07 A.D. Integrity Applications Ltd. Device for non-invasively measuring glucose
US8532933B2 (en) 2010-06-18 2013-09-10 Roche Diagnostics Operations, Inc. Insulin optimization systems and testing methods with adjusted exit criterion accounting for system noise associated with biomarkers
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US10092229B2 (en) 2010-06-29 2018-10-09 Abbott Diabetes Care Inc. Calibration of analyte measurement system
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US20120006100A1 (en) * 2010-07-06 2012-01-12 Medtronic Minimed, Inc. Method and/or system for determining blood glucose reference sample times
EP2624745A4 (en) 2010-10-07 2018-05-23 Abbott Diabetes Care, Inc. Analyte monitoring devices and methods
US10292625B2 (en) 2010-12-07 2019-05-21 Earlysense Ltd. Monitoring a sleeping subject
US20120173151A1 (en) 2010-12-29 2012-07-05 Roche Diagnostics Operations, Inc. Methods of assessing diabetes treatment protocols based on protocol complexity levels and patient proficiency levels
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
CA3115682A1 (en) 2011-02-28 2012-11-15 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
EP3575796B1 (en) 2011-04-15 2020-11-11 DexCom, Inc. Advanced analyte sensor calibration and error detection
US8755938B2 (en) 2011-05-13 2014-06-17 Roche Diagnostics Operations, Inc. Systems and methods for handling unacceptable values in structured collection protocols
US8766803B2 (en) * 2011-05-13 2014-07-01 Roche Diagnostics Operations, Inc. Dynamic data collection
US9069536B2 (en) 2011-10-31 2015-06-30 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
WO2013066849A1 (en) 2011-10-31 2013-05-10 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
US9980669B2 (en) 2011-11-07 2018-05-29 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
WO2013078426A2 (en) 2011-11-25 2013-05-30 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
US9734304B2 (en) 2011-12-02 2017-08-15 Lumiradx Uk Ltd Versatile sensors with data fusion functionality
US9700222B2 (en) 2011-12-02 2017-07-11 Lumiradx Uk Ltd Health-monitor patch
FI3300658T3 (fi) 2011-12-11 2024-03-01 Abbott Diabetes Care Inc Analyyttianturimenetelmiä
EP2791782B1 (en) 2011-12-15 2018-10-03 Becton, Dickinson and Company Near field telemetry link for passing a shared secret to establish a secure radio frequency communication link in a physiological condition monitoring system
EP2797660B1 (en) * 2011-12-30 2019-10-02 Abbott Diabetes Care Inc. Method and apparatus for determining medication dose information
US9433376B2 (en) 2012-03-16 2016-09-06 Dexcom, Inc. Systems and methods for processing analyte sensor data
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
US9238100B2 (en) 2012-06-07 2016-01-19 Tandem Diabetes Care, Inc. Device and method for training users of ambulatory medical devices
EP2890297B1 (en) 2012-08-30 2018-04-11 Abbott Diabetes Care, Inc. Dropout detection in continuous analyte monitoring data during data excursions
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US20140088372A1 (en) * 2012-09-25 2014-03-27 Google Inc. Information processing method
EP2901153A4 (en) 2012-09-26 2016-04-27 Abbott Diabetes Care Inc METHOD AND DEVICE FOR IMPROVING DELAY CORRECTION FUNCTION DURING IN VIVO MEASUREMENT OF ANALYZ CONCENTRATION WITH ANALYZ CONCENTRATION VARIABILITY AND RANGE DATA
WO2014055718A1 (en) 2012-10-04 2014-04-10 Aptima, Inc. Clinical support systems and methods
WO2014060938A1 (en) * 2012-10-16 2014-04-24 Night-Sense, Ltd Comfortable and personalized monitoring device, system, and method for detecting physiological health risks
US10067054B2 (en) 2012-10-16 2018-09-04 K Sciences Gp, Llc Simple sugar concentration sensor and method
US9119528B2 (en) 2012-10-30 2015-09-01 Dexcom, Inc. Systems and methods for providing sensitive and specific alarms
US9486578B2 (en) * 2012-12-07 2016-11-08 Animas Corporation Method and system for tuning a closed-loop controller for an artificial pancreas
US9351670B2 (en) 2012-12-31 2016-05-31 Abbott Diabetes Care Inc. Glycemic risk determination based on variability of glucose levels
US10383580B2 (en) 2012-12-31 2019-08-20 Abbott Diabetes Care Inc. Analysis of glucose median, variability, and hypoglycemia risk for therapy guidance
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US10433773B1 (en) 2013-03-15 2019-10-08 Abbott Diabetes Care Inc. Noise rejection methods and apparatus for sparsely sampled analyte sensor data
EP3409201B1 (en) 2013-03-15 2024-04-10 Abbott Diabetes Care, Inc. System and method to manage diabetes based on glucose median, glucose variability, and hypoglycemic risk
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
US10076285B2 (en) 2013-03-15 2018-09-18 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US9536053B2 (en) 2013-06-26 2017-01-03 WellDoc, Inc. Systems and methods for managing medication adherence
US20160043819A1 (en) * 2013-06-26 2016-02-11 Thomson Licensing System and method for predicting audience responses to content from electro-dermal activity signals
US11361857B2 (en) 2013-06-26 2022-06-14 WellDoc, Inc. Systems and methods for creating and selecting models for predicting medical conditions
EP3041528A4 (en) 2013-09-06 2017-04-26 Tandem Diabetes Care, Inc. System and method for mitigating risk in automated medicament dosing
DK3069279T3 (da) * 2013-11-14 2020-11-30 Dexcom Inc Indretninger og fremgangsmåder til kontinuerlig analytovervågning
US20150173674A1 (en) * 2013-12-20 2015-06-25 Diabetes Sentry Products Inc. Detecting and communicating health conditions
JP6571089B2 (ja) 2013-12-31 2019-09-04 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. 電源内蔵式分析物センサ及びそれを使用するデバイス
US20150269355A1 (en) * 2014-03-19 2015-09-24 Peach Intellihealth, Inc. Managing allocation of health-related expertise and resources
US20170185748A1 (en) 2014-03-30 2017-06-29 Abbott Diabetes Care Inc. Method and Apparatus for Determining Meal Start and Peak Events in Analyte Monitoring Systems
EP3174577A4 (en) 2014-07-30 2018-04-18 Tandem Diabetes Care, Inc. Temporary suspension for closed-loop medicament therapy
US10120979B2 (en) * 2014-12-23 2018-11-06 Cerner Innovation, Inc. Predicting glucose trends for population management
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
AU2016260547B2 (en) 2015-05-14 2020-09-03 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
US10646650B2 (en) 2015-06-02 2020-05-12 Illinois Institute Of Technology Multivariable artificial pancreas method and system
CA2991716A1 (en) 2015-07-10 2017-01-19 Abbott Diabetes Care Inc. System, device and method of dynamic glucose profile response to physiological parameters
WO2017027432A1 (en) 2015-08-07 2017-02-16 Aptima, Inc. Systems and methods to support medical therapy decisions
US11426100B1 (en) * 2015-12-08 2022-08-30 Socrates Health Solutions, Inc. Blood glucose trend meter
US10569016B2 (en) 2015-12-29 2020-02-25 Tandem Diabetes Care, Inc. System and method for switching between closed loop and open loop control of an ambulatory infusion pump
GB201601140D0 (en) 2016-01-21 2016-03-09 Oxehealth Ltd Method and apparatus for estimating heart rate
GB201601143D0 (en) 2016-01-21 2016-03-09 Oxehealth Ltd Method and apparatus for health and safety monitoring of a subject in a room
GB201601217D0 (en) * 2016-01-22 2016-03-09 Oxehealth Ltd Signal processing method and apparatus
US10575790B2 (en) 2016-03-02 2020-03-03 Roche Diabetes Care, Inc. Patient diabetes monitoring system with clustering of unsupervised daily CGM profiles (or insulin profiles) and method thereof
US10478556B2 (en) 2016-03-04 2019-11-19 Roche Diabetes Care, Inc. Probability based controller gain
US9918128B2 (en) * 2016-04-08 2018-03-13 Orange Content categorization using facial expression recognition, with improved detection of moments of interest
US10311976B2 (en) 2016-04-28 2019-06-04 Roche Diabetes Care, Inc. Bolus calculator with probabilistic carbohydrate measurements
US10888281B2 (en) 2016-05-13 2021-01-12 PercuSense, Inc. System and method for disease risk assessment and treatment
US10332632B2 (en) 2016-06-01 2019-06-25 Roche Diabetes Care, Inc. Control-to-range failsafes
US10332633B2 (en) 2016-06-01 2019-06-25 Roche Diabetes Care, Inc. Control-to-range aggressiveness
US10297350B2 (en) 2016-06-01 2019-05-21 Roche Diabetes Care, Inc. Risk-based control-to-range
GB201615899D0 (en) 2016-09-19 2016-11-02 Oxehealth Ltd Method and apparatus for image processing
EP3539082A1 (en) 2016-11-08 2019-09-18 Oxehealth Limited Method and apparatus for image processing
US10956821B2 (en) 2016-11-29 2021-03-23 International Business Machines Corporation Accurate temporal event predictive modeling
US10783801B1 (en) 2016-12-21 2020-09-22 Aptima, Inc. Simulation based training system for measurement of team cognitive load to automatically customize simulation content
CN115444410A (zh) 2017-01-23 2022-12-09 雅培糖尿病护理公司 用于插入体内分析物传感器的施加器及组件
WO2018175489A1 (en) 2017-03-21 2018-09-27 Abbott Diabetes Care Inc. Methods, devices and system for providing diabetic condition diagnosis and therapy
GB201706449D0 (en) 2017-04-24 2017-06-07 Oxehealth Ltd Improvements in or realting to in vehicle monitoring
US10692065B2 (en) * 2017-06-19 2020-06-23 Accenture Global Solutions Limited Using a mixture model to generate simulated transaction information
AU2017420200A1 (en) * 2017-06-20 2020-01-16 Sidney Soong-Ling CHAN Method and system for monitoring a diabetes treatment plan
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
KR102003667B1 (ko) * 2017-08-21 2019-07-25 포항공과대학교 산학협력단 저혈당 예측 장치, 방법 및 프로그램과, 저혈당 예측 모델 생성 장치, 방법 및 프로그램
DK3700416T3 (da) 2017-10-24 2024-09-30 Dexcom Inc På forhånd forbundne analytsensorer
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
US11213230B2 (en) * 2017-12-13 2022-01-04 Medtronic Minimed, Inc. Optional sensor calibration in continuous glucose monitoring
US11471082B2 (en) 2017-12-13 2022-10-18 Medtronic Minimed, Inc. Complex redundancy in continuous glucose monitoring
US11559230B2 (en) 2018-01-23 2023-01-24 Dexcom, Inc. Systems, devices, and methods to compensate for temperature effects on sensors
CA3089818A1 (en) 2018-01-29 2019-08-01 Stratuscent Inc. Chemical sensing system
KR102511670B1 (ko) * 2018-02-01 2023-03-21 삼성전자주식회사 생체 정보를 감지하기 위한 전자 장치 및 그 제어 방법
GB201803508D0 (en) 2018-03-05 2018-04-18 Oxehealth Ltd Method and apparatus for monitoring of a human or animal subject
US11224693B2 (en) 2018-10-10 2022-01-18 Tandem Diabetes Care, Inc. System and method for switching between medicament delivery control algorithms
US10891551B2 (en) 2018-10-30 2021-01-12 ICE Benchmark Administration Limited Projecting data trends using customized modeling
GB201900034D0 (en) 2019-01-02 2019-02-13 Oxehealth Ltd Method and apparatus for monitoring of a human or animal subject
GB201900033D0 (en) 2019-01-02 2019-02-13 Oxehealth Ltd Mrthod and apparatus for monitoring of a human or animal subject
GB201900032D0 (en) 2019-01-02 2019-02-13 Oxehealth Ltd Method and apparatus for monitoring of a human or animal subject
WO2020170036A1 (en) 2019-02-22 2020-08-27 Stratuscent Inc. Systems and methods for learning across multiple chemical sensing units using a mutual latent representation
EP3716579B1 (en) 2019-03-29 2022-08-10 Sony Group Corporation Method and device for monitoring
USD1002852S1 (en) 2019-06-06 2023-10-24 Abbott Diabetes Care Inc. Analyte sensor device
EP4013297A4 (en) * 2019-08-16 2023-12-13 Poltorak Technologies, LLC DEVICE AND METHOD FOR MEDICAL DIAGNOSIS
US20220361780A1 (en) * 2019-10-18 2022-11-17 The Texas A&M University System Glucose prediction systems and associated methods
US11982630B2 (en) 2020-04-29 2024-05-14 DataGarden, Inc. Method and apparatus for cleanliness determination of areas and objects via video monitoring
US20210396592A1 (en) * 2020-06-22 2021-12-23 DataGarden, Inc. Method and Apparatus for Non-Contact Temperature Measurement and Analysis for Detection of Symptomatic Conditions
KR20220046167A (ko) * 2020-10-07 2022-04-14 삼성전자주식회사 생체정보 추정 장치 및 방법과, 온도 변화 특성에 기초한 생체정보 추정 모델 최적화 방법
USD999913S1 (en) 2020-12-21 2023-09-26 Abbott Diabetes Care Inc Analyte sensor inserter

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4509531A (en) * 1982-07-28 1985-04-09 Teledyne Industries, Inc. Personal physiological monitor
JP2907342B2 (ja) * 1988-01-29 1999-06-21 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア イオン滲透非侵襲的サンプリングまたは送出装置
US5362307A (en) * 1989-01-24 1994-11-08 The Regents Of The University Of California Method for the iontophoretic non-invasive-determination of the in vivo concentration level of an inorganic or organic substance
US5115805A (en) 1990-02-23 1992-05-26 Cygnus Therapeutic Systems Ultrasound-enhanced delivery of materials into and through the skin
US5144869A (en) * 1992-03-09 1992-09-08 Jessie Chow Control device for ratchet wrenches
DE4221848C2 (de) 1992-07-03 2001-04-12 Eckhard Salzsieder Verfahren und Anordnung zur selbsttätigen in situ Kalibrierung von intrakorporalen Glukosemeßeinrichtungen
US5792668A (en) * 1993-08-06 1998-08-11 Solid State Farms, Inc. Radio frequency spectral analysis for in-vitro or in-vivo environments
US5771890A (en) 1994-06-24 1998-06-30 Cygnus, Inc. Device and method for sampling of substances using alternating polarity
PT840597E (pt) 1995-07-12 2004-02-27 Cygnus Therapeutic Systems Penso de hidrogel
US5735273A (en) * 1995-09-12 1998-04-07 Cygnus, Inc. Chemical signal-impermeable mask
CA2212826C (en) * 1995-12-28 2002-02-19 Cygnus, Inc. Methods for monitoring a physiological analyte
US5747806A (en) * 1996-02-02 1998-05-05 Instrumentation Metrics, Inc Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy
US5962215A (en) 1996-04-05 1999-10-05 Mercury Diagnostics, Inc. Methods for testing the concentration of an analyte in a body fluid
WO1997043962A1 (en) 1996-05-17 1997-11-27 Mercury Diagnostics, Inc. Methods and apparatus for expressing body fluid from an incision
WO1997042882A1 (en) 1996-05-17 1997-11-20 Mercury Diagnostics, Inc. Methods and apparatus for sampling and analyzing body fluid
US5954685A (en) * 1996-05-24 1999-09-21 Cygnus, Inc. Electrochemical sensor with dual purpose electrode
US5760714A (en) 1996-11-20 1998-06-02 Motorola, Inc. Interrupt-driven keypad scanning method and apparatus
DE19652596C2 (de) * 1996-12-18 1999-02-25 Heraeus Electro Nite Int Verfahren und Tauchmeßfühler zum Messen einer elektrochemischen Aktivität
JP3057019B2 (ja) * 1997-01-24 2000-06-26 キヤノン株式会社 部品選定装置及びcad機能を備えた部品選定システム
US6139718A (en) * 1997-03-25 2000-10-31 Cygnus, Inc. Electrode with improved signal to noise ratio
DK1077636T3 (da) * 1998-05-13 2004-05-24 Cygnus Therapeutic Systems Signalbehandling til måling af fysiologiske analytter
JP3507437B2 (ja) 1998-05-13 2004-03-15 シグナス, インコーポレイテッド 経皮サンプリング系のための収集アセンブリ
CA2330629C (en) 1998-05-13 2007-04-03 Cygnus, Inc. Method and device for predicting physiological values
DE69910003T2 (de) * 1998-05-13 2004-04-22 Cygnus, Inc., Redwood City Überwachung physiologischer analyte
JPH11328689A (ja) * 1998-05-21 1999-11-30 Samsung Electronics Co Ltd ディスク状記録媒体の再生装置におけるシーク制御方法
US6180416B1 (en) * 1998-09-30 2001-01-30 Cygnus, Inc. Method and device for predicting physiological values
DE69908602T2 (de) * 1998-09-30 2004-06-03 Cygnus, Inc., Redwood City Verfahren und vorrichtung zum vorhersagen von physiologischen messwerten

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523709A (ja) * 2004-02-26 2007-08-23 ダイアベティス ツールズ スウェーデン アーベー 被検者の健康に関連する状態を表示するための代謝監視、方法および装置
WO2005106446A1 (ja) * 2004-04-30 2005-11-10 Matsushita Electric Industrial Co., Ltd. 血糖値計測装置
JP2007536645A (ja) * 2004-05-07 2007-12-13 インターメッド アドバイザー,インコーポレイティド 慢性疾患患者のためのリアルタイム予測モデル化方法及び装置
JP2009519048A (ja) * 2005-12-03 2009-05-14 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト 分析方法と調査システム
JP2010500052A (ja) * 2006-06-15 2010-01-07 ヒポ−セイフ エイ/エス 低血糖症を検出するための脳波信号解析
JP2010500078A (ja) * 2006-08-08 2010-01-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 生理パラメータを監視する方法および装置
JP2008079994A (ja) * 2006-09-28 2008-04-10 Nipro Corp 血糖測定装置
JP2010514498A (ja) * 2006-12-27 2010-05-06 カーディアック ペースメイカーズ, インコーポレイテッド 代償不全を管理する患者内アルゴリズム
US8456309B2 (en) 2006-12-27 2013-06-04 Cardiac Pacemakers, Inc. Within-patient algorithm to predict heart failure decompensation
US9629548B2 (en) 2006-12-27 2017-04-25 Cardiac Pacemakers, Inc. Within-patient algorithm to predict heart failure decompensation
JP2008253560A (ja) * 2007-04-05 2008-10-23 Shinichi Yoshida 擬似低血糖検知・警報発信装置
JP2013503712A (ja) * 2009-09-02 2013-02-04 ユニバーシティ オブ ヴァージニア パテント ファウンデーション 自己監視血糖(smbg)データからの糖尿病における差し迫った低血糖の可能性の観測
WO2013146242A1 (ja) * 2012-03-27 2013-10-03 テルモ株式会社 アナライトのモニタシステム及びモニタ方法
JPWO2013146242A1 (ja) * 2012-03-27 2015-12-10 テルモ株式会社 アナライトのモニタシステム及びモニタ方法

Also Published As

Publication number Publication date
CA2408338C (en) 2009-09-08
US20050119540A1 (en) 2005-06-02
CA2408338A1 (en) 2002-02-28
DE60133653D1 (de) 2008-05-29
DE60133653T2 (de) 2009-06-04
ES2304394T3 (es) 2008-10-16
JP3647032B2 (ja) 2005-05-11
EP1309271B1 (en) 2008-04-16
US6882940B2 (en) 2005-04-19
US20020106709A1 (en) 2002-08-08
ATE392178T1 (de) 2008-05-15
EP1309271A1 (en) 2003-05-14
WO2002015777A1 (en) 2002-02-28

Similar Documents

Publication Publication Date Title
JP3647032B2 (ja) 低血糖事象の予測のためのマイクロプロセッサーおよびデバイス
JP4083689B2 (ja) 分析物モニタリングデバイスの性能の改良
US6941163B2 (en) Formulation and manipulation of databases of analyte and associated values
US6180416B1 (en) Method and device for predicting physiological values
CA2311487C (en) Signal processing for measurement of physiological analytes
CA2330629C (en) Method and device for predicting physiological values
WO2005018443A1 (en) Microprocessors, devices, and methods for use in monitoring of physiological analytes

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Ref document number: 3647032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term