JP2004504927A - 小型化した装着可能な酸素濃縮器 - Google Patents
小型化した装着可能な酸素濃縮器 Download PDFInfo
- Publication number
- JP2004504927A JP2004504927A JP2002515395A JP2002515395A JP2004504927A JP 2004504927 A JP2004504927 A JP 2004504927A JP 2002515395 A JP2002515395 A JP 2002515395A JP 2002515395 A JP2002515395 A JP 2002515395A JP 2004504927 A JP2004504927 A JP 2004504927A
- Authority
- JP
- Japan
- Prior art keywords
- container
- gas
- gas flow
- air compressor
- concentrator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000001301 oxygen Substances 0.000 title claims description 113
- 229910052760 oxygen Inorganic materials 0.000 title claims description 113
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 112
- 239000002808 molecular sieve Substances 0.000 claims abstract description 64
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 64
- 239000012530 fluid Substances 0.000 claims abstract description 23
- 238000004891 communication Methods 0.000 claims abstract description 21
- 239000007789 gas Substances 0.000 claims description 296
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 62
- 229910052757 nitrogen Inorganic materials 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 27
- 239000010457 zeolite Substances 0.000 claims description 11
- 229910021536 Zeolite Inorganic materials 0.000 claims description 10
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 10
- 239000002699 waste material Substances 0.000 claims description 8
- 238000001179 sorption measurement Methods 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 4
- 230000003252 repetitive effect Effects 0.000 claims description 4
- 238000013022 venting Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- 238000001514 detection method Methods 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 2
- 229910001882 dioxygen Inorganic materials 0.000 claims description 2
- 230000037237 body shape Effects 0.000 claims 3
- 230000001276 controlling effect Effects 0.000 claims 3
- 239000003570 air Substances 0.000 description 110
- 238000010586 diagram Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 239000012080 ambient air Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 229920002063 Sorbothane Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/1005—Preparation of respiratory gases or vapours with O2 features or with parameter measurement
- A61M16/101—Preparation of respiratory gases or vapours with O2 features or with parameter measurement using an oxygen concentrator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/12—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/102—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40003—Methods relating to valve switching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40007—Controlling pressure or temperature swing adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40007—Controlling pressure or temperature swing adsorption
- B01D2259/40009—Controlling pressure or temperature swing adsorption using sensors or gas analysers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/40013—Pressurization
- B01D2259/40015—Pressurization with two sub-steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/40028—Depressurization
- B01D2259/4003—Depressurization with two sub-steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/40011—Methods relating to the process cycle in pressure or temperature swing adsorption
- B01D2259/40058—Number of sequence steps, including sub-steps, per cycle
- B01D2259/40062—Four
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/402—Further details for adsorption processes and devices using two beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/45—Gas separation or purification devices adapted for specific applications
- B01D2259/4533—Gas separation or purification devices adapted for specific applications for medical purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/45—Gas separation or purification devices adapted for specific applications
- B01D2259/4541—Gas separation or purification devices adapted for specific applications for portable use, e.g. gas masks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0407—Constructional details of adsorbing systems
- B01D53/0446—Means for feeding or distributing gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
- B01D53/053—Pressure swing adsorption with storage or buffer vessel
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Emergency Medicine (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Analytical Chemistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Separation Of Gases By Adsorption (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
(技術分野)
本発明は、ガス濃縮器、特に小型化したポータブル型ガス濃縮器およびガス濃度を最小化する方法に関する。
【0002】
(背景技術)
加圧スイング吸着サイクルは、既知の方法である〔Sharles Skarstromによって開発〕。図Aおよび図Bは、非加熱乾燥器(Skarstrom)による操作の概要を示す。具体的には、周囲環境で湿潤させた空気を、吸入口からコンプレッサーによって装置中に吸引する。加圧空気流は、コンプレッサーから、管9を介し、切り替えバルブ4に流動する。図Aに示したバルブ配置では、加圧空気は、管5aを通って、圧力容器6aまで達する。圧力容器に入った加圧空気は、流れ抵抗オリフィス1aに供給される。流れ抵抗オリフィスの作用は、圧力容器から漏れ出すガスの流動に対して抵抗性を示すことである。圧力容器において圧力が上昇するにつれて、水蒸気がシーブ材料8上に濃縮される。湿度が低下した空気は、オリフィスを通って、管12に達する。管接合地点11において、少量の空気を、ガス抽出口2から抽出して使用する一方、残部の空気は、管13を通って流れ抵抗オリフィス1bに達する。オリフィス1bを通過した低湿潤度の空気を用いて、湿潤空気を、非加圧容器6bの外部に押出して、管5b、次いでバルブ4を経て、排出口7まで送る。図Bに示した配置にバルブ4を切り替えると、反対のサイクルが起こる。
【0003】
すなわち、バルブ4は、図Aの配置から図Bの配置に循環させているため、各サイクルごとに、抽出口2で採取した空気の湿度低下は、段階的である。同様に、選択的モレキュラーシーブにガス成分を吸着させることによって、ガスを分離することができる。
【0004】
実験室的観察によれば、前記Skarstromサイクルを、酸素分離器または濃縮器の操作過程で用い、窒素をモレキュラーシーブ床に吸収させて、酸素富化空気を徐々に製造し、そして、図1の濃縮器10に対し、プリカーサーを用いても、最小化したモレキュラーシーブ床12,14(この場合、NTPパイプ:公称3/4 in×6 in長さ)は、最大でも30%に濃縮または富化した酸素(ガス抽出口11で検出)に達するに過ぎないことが、観察された。この理由は、全ての窒素をモレキュラーシーブ床および消耗ラインの外部に排出する前に、実験室装置の制御バルブを、切り替えたためであると、考えられる。しかしながら、これらの場所の測定値によれば、酸素濃度は、通常よりもより高いことがわかった。したがって、これは、問題とはならない。
【0005】
また、モレキュラーシーブ床は、その完全な加圧がなされる前に、かかるモレキュラーシーブ床から多量の空気流が排出されることが、観察された。モレキュラーシーブ床は、その加圧が終了する前に、窒素で飽和されてしまうようである。図2は、このようなモレキュラーシーブ床16を模式的に示す。圧縮空気は、入口通路16aを介し、方向Aに沿ってモレキュラーシーブ床に入る。空気Bの体積は、床のキャビティ内に含まれる。モレキュラーシーブ加圧の間、所定体積割合の空気Cは、流出ニードルバルブから外部に放出される。放出される所定体積割合の空気Cは、床16内部の空気Bの体積よりも多量にすることができるようである。ここで、他の全てのものが同じままであるが、最小化の間に、モレキュラーシーブの体積を減少させた場合に何が起こるのか、という疑問がある。
【0006】
初期床体積Bと、最小化床体積とを比較する際に、ポイズオーイル(Poiseauille)の法則を用いて、小孔、例えばニードルバルブ18を通過する流体の流速を、差圧下に算出する。
【0007】
(1)Q=r4(P内側床−P外側床)/8ηL
上記式中、Qは流速(m3/秒)であり、rは小孔の半径である。(P床内部−P床外部)は、モレキュラーシーブ床内部とモレキュラーシーブ床外部との差圧に等しい。ηは、流体粘度で、Lは、小孔の深さを意味する。
速度Q(m3/秒)×時間(秒)は、流量(m3)に相当する。
【0008】
(2)V=Qt
前記式(1)の変数Qは、この式では一定である。
【0009】
(3)V=Kt
上記式中、Kは、一定の数値である。
【0010】
この情報を用い、流量および体積に関し、初期酸素濃縮器床体積と、新規酸素濃縮器床体積との比較は、次のようにして得ることができる。
(4)R=(V新規流量/V新規床体積)/(V初期流量/V初期床体積)
【0011】
モレキュラーシーブに対する加圧時間は、プログラマブル・ロジック・コントローラー(programmable logic controller)(PLC)タイマーを用い、正確に計測でき、次のように示される。
(5)R=(Kt新規/V新規床体積)/(Kt初期/V初期床体積)
または
(6)R=Kt新規×V初期床体積/Kt初期×V新規床体積=t新規×V初期床体積/t初期×V新規床体積
【0012】
比率は、先行技術のモレキュラーシーブ床および最小化モレキュラーシーブ床(この場合、NTPパイプ:3/4 in×6 in長さ)に関する代表値を代入することによって算出することができる。したがって、例えば、比率は、次のようして得られる。
(7)R=(1)(0.001885741)/(7)(0.0000434375)=6.2
【0013】
以上の結果から、モレキュラーシーブ床(NTPパイプ:公称3/4 in×6 in長さ)のモレキュラーシーブ材料は、加圧サイクルの間、先行技術の酸素濃縮器のモレキュラーシーブ材料よりも、約6.2倍量の空気がモレキュラーシーブ内を通過できると、結論することができる。
【0014】
この分析結果に基づき、先行技術の圧力スイング吸着(PSA)技術とは異なった方法でモレキュラーシーブ床を加圧および排気処理することが有利であることが、判明した。本発明の方法によれば、モレキュラーシーブ床は、完全に加圧されるまで排気処理がなされない。以下、この方法を、空気パケットシステムまたは空気パケット法と呼ぶ。
【0015】
(発明の概要)
要約すれば、ガス流中、標的成分のガス濃度、例えば酸素ガス濃度を富化し、廃棄成分のガス濃度、例えば窒素ガス濃度を最小化する、本発明のガス濃縮器、例えば酸素濃縮器は、エアーコンプレッサー、第1ガス管を介してエアーコンプレッサーに流体連通する気密性第1容器であって廃棄成分ガス吸着用の気密性第1容器、および第2ガス管を介して第1容器に流体連通する気密性第2容器を備える。ガス流量計、例えばPLCは、ガス管に取付けたバルブの作動を制御することができる。かかるバルブは、以下の反復サイクルにおける工程を連続的に実施しうるようにガス管通過の流量を調節することができる。
【0016】
(a)第1ガス加圧段階の間に、前記第1容器と前記第2容器との間のガス流動を防止して、前記エアーコンプレッサーからの圧縮ガスを前記第1容器内に移動させ、これにより、前記第1容器を、付加的に富化した標的成分ガス濃度を有するガスパケットを形成しうるような閾値圧力レベルに、加圧して、前記ガスパケットを形成し、
(b)ガスパケット移動段階の間に、前記エアーコンプレッサーから前記第1容器へのガス流動を防止して、前記第1容器から前記第2容器へのガス流動を可能にさせ、これにより、前記ガスパケットを、前記第2容器に移動させ、
(c)前記第1容器から前記第2容器へのガス流動を防止して、前記第1容器のベントバルブを介し、前記第1容器から大気中へのガス排気を可能にさせ、
(d)空気パケットの向流段階の間に、前記第2容器から前記第1容器へのこれら容器間のガス流動を可能にさせ、これにより、前記ガスパケットを、前記第2容器から、前記第1容器に流動させ、
(e)前記第1容器の前記ベントバルブを介する、前記第1容器からガス流の排気を防止する。
【0017】
ガス流スプリッターは、前記第2ガス管に取付けられ、前記ガスパケットの一部を、標的成分ガス富化空気(例えば、酸素富化空気)デリバリー用のガスラインに分離して、前記ガスラインに沿って下流において、例えば最終ユーザーが最終使用する。
【0018】
本発明の一具体例によれば、前記第1容器および前記第2容器の両者は、廃棄ガス成分ガス吸着用のモレキュラーシーブ床を含み、この場合、前記第2容器は、前記エアーコンプレッサーに、例えば第3ガス管を介して流体連通している。また、この場合、前記空気パケット移動段階の後であって前記第1容器から前記第2容器へのガス流動を防止した後で、第2ガス加圧段階の間に、前記ガス流量計によって、前記エアーコンプレッサーから前記第2容器への圧縮ガスの流動を可能にさせ、これにより、前記第2容器を、前記閾値圧力レベルに加圧する。前記第1容器の前記ベントバルブを介する、前記第1容器からのガス流の排気を防止した後であって前記第1容器と前記第2容器との間のガス流動を防止した後で、前記第1ガス加圧段階の間に、前記ガス流量計によって、前記第2容器のベントバルブを介する前記第2容器から大気中へのガス排気を可能にさせ、前記エアーコンプレッサーから前記第2容器へのガス流動を防止することができる。
【0019】
前記エアーコンプレッサーから、前記第1容器および前記第2容器の両者へのガス流動を防止する場合、前記ガス流量計は、前記エアーコンプレッサーと共働して前記エアーコンプレッサーを遮断するようなプロセッサであってよい。前記プロセッサおよび前記エアーコンプレッサーは、バッテリーによってバッテリー動力供給することができる。前記第1容器、前記第2容器、前記ガス管、前記ベントバルブ、前記プロセッサ、前記エアーコンプレッサーおよび前記バッテリーは、ハウジングに取付けることができる。
【0020】
前記第1容器および第2容器は、長尺中空の管であってよい。廃棄成分ガスが窒素である場合、前記モレキュラーシーブ床は、モレキュラーシーブ材料としてゼオライトを含むことができる。前記第1容器および前記第2容器は、ほぼ平行であって、平行配列で前記ハウジングに取付けることができる。前記第1容器および前記第2容器は、それらの間に溝を形成するように、前記容器の長さに対し横方向に間隔をおいて存在することができる。前記プロセッサおよび前記容器は、前記溝に取付けることができる。バルブ/マニホールドハウジングは、前記溝に取付けることができ、バルブは、前記バルブ/マニホールドハウジングに取付けることができる。前記バルブ/マニホールドハウジングは、前記バルブを前記第1容器、前記第2容器および前記エアーコンプレッサーに、前記ガス管を介して相互連結させるための相互連結マニホールドを有することができる。
【0021】
前記ガス流スプリッターに流体連通するガス溜めであって、バルブ/マニホールドハウジングの一部として形成されるガス溜めを設けることができる。ガス溜めは、備蓄、例えば前記最終使用へのデリバリー用の前記酸素富化空気の備蓄を含むための手段である。前記バルブの1つは、前記ガスラインと、前記ガス溜めとの間で共働する需要バルブであって、前記需要バルブのトリガー作動事象のトリガーによって前記備蓄を前記ガスラインに放出する需要バルブである。本発明の好適な一具体例によれば、感圧センサーは、前記ガスラインと共働し、前記トリガー事象は、前記感圧センサーによって検出されるガスラインにおける圧力降下である。前記感圧センサーは、前記圧力降下(例えば、前記感圧センサーが前記トリガー信号を発信する圧力よりも低い、設定下限閾値圧力)の検出による前記需要バルブの前記作動をトリガーするトリガー信号を発信する。
【0022】
本発明の好適な一具体例によれば、前記エアーコンプレッサーは、前記加圧段階を含め、必要な場合のみ作動するように、前記プロセッサからの作動信号によって、間欠的に作動する。
【0023】
患者のような最終ユーザーに対して酸素などのガスを供給して最終使用する、具体例によれば、前記第1容器および前記第2容器は、前記最終ユーザーが当該酸素濃縮器を使い切った際に、前記最終ユーザーの体型に適応するように、前記容器の長さに沿って湾曲し、かつ長尺であってよい。いずれにせよ、前記最終使用は、最終ユーザーへの酸素供給である場合、当該酸素濃縮器は、前記最終ユーザーが使い切れるような構造を有することができる。
【0024】
本発明の方法は、
(a)第1ガス加圧段階の間に、前記第1容器と前記第2容器との間のガス流動を防止して、前記エアーコンプレッサーからの圧縮ガスを前記第1容器内に移動させ、これにより、前記第1容器を、付加的に富化した標的成分のガス濃度を有するガスパケットを形成しうるような閾値圧力レベルに、加圧し、
(b)ガスパケット移動段階の間に、前記エアーコンプレッサーから前記第1容器へのガス流動を防止して、前記第1容器から前記第2容器へのガス流動を可能にさせ、これにより、前記ガスパケットを、前記第2容器に移動させ、
(c)前記第1容器から前記第2容器へのガス流動を防止して、前記第1容器のベントバルブを介し、前記第1容器から大気中へのガス排気を可能にさせ、
(d)空気パケットの向流段階の間に、前記第2容器から前記第1容器へのこれら容器間のガス流動を可能にさせ、これにより、前記ガスパケットを、前記第2容器から、前記第1容器に流動させ、
(e)前記第1容器の前記ベントバルブを介する、前記第1容器からガス流の排気を防止する、反復サイクルにおいて前記連続工程を含んでなる。
【0025】
前記ガス濃縮器が、さらに、前記第2容器において、廃棄成分ガス吸着用
モレキュラーシーブ床を含み、前記第2容器は、前記エアーコンプレッサーに、第3ガス管を介して流体連通しており、
当該方法は、さらに、
(a)ガスパケット移動段階の後であって前記第1容器から前記第2容器へのガス流動を防止した後で、第2ガス加圧段階の間に、前記ガス流量計によって、前記エアーコンプレッサーから前記第2容器への圧縮ガスの流動を可能にさせ、これにより、前記第2容器を、前記閾値圧力レベルに加圧し、
(b)前記第1容器の前記ベントバルブを介する、前記第1容器からのガス流の排気を防止した後であって前記第1容器と前記第2容器との間のガス流動を防止した後で、前記第1ガス加圧段階の間に、前記ガス流量計によって、前記第2容器のベントバルブを介する前記第2容器から大気中へのガス排気を可能にさせ、前記エアーコンプレッサーから前記第2容器へのガス流動を防止することを含んでなる。
【0026】
(図面の説明)
図Aおよび図Bは、Skarstrom非加熱型空気乾燥器を示す模式図、
図1は、本発明の濃縮器の試作品を示す斜視図、
図1aは、図1のモレキュラーシーブ床の一端を部分的に切欠した拡大図、
図2は、従来技術の圧力スイング吸着法において見られるような非制御出口オリフィスを有する単一モレキュラーシーブ床を示す模式図、
図3は、本発明の酸素濃縮器の一具体例を示すブロック線図、
図4は、初期加圧工程における第1モレキュラーシーブ加圧段階の本発明の酸素濃縮器の更なる具体例を示すブロック線図、
図5は、空気パケットの移動段階における図4の酸素濃縮器を示すブロック線図、
図6は、第2モレキュラーシーブ加圧段階における図5の酸素濃縮器を示すブロック線図、
図6aは、本発明の酸素濃縮器の一具体例を示すブロック線図、
図7は、本発明の酸素濃縮器の一具体例を示す分解斜視図、
図8は、本発明の酸素濃縮器の別の具体例を示す斜視図、
図8aは、図8の線8a−8aに沿って切欠した断面図、
図9は、本発明の酸素濃縮器の一具体例のハウジングをその端部から見た斜視図、
図10は、最終ユーザーが装着した本発明の酸素濃縮器の一具体例を示す斜視図、
図11は、本発明の酸素濃縮器を別の具体例を示すブロック線図、
図12は、本発明の酸素濃縮器の一具体例におけるバルブ/マニホールドハウジングを示す斜視図、
図13は、図12のバルブ/マニホールドハウジングの側面図、
図14は、図13のバルブ/マニホールドハウジングの平面図、
図15は、図12の線15−15に沿って切欠した断面図、
図16は、本発明の酸素濃縮器におけるモレキュラーシーブの別の具体例を示す、一部切欠斜視図、および
図16aは、図16のモレキュラーシーブの一端を示す、一部切欠拡大図である。
【0027】
(発明の詳説)
次に、添付の図面を参照しながら、本発明の濃縮方法および装置を更に詳しく説明する。各図面において、同様な部材には同じ符号を付した。なお、最終使用のガス(例えば、酸素)と、モレキュラーシーブ床によって吸着しうる廃棄ガス(例えば、窒素)とを含んでなるペアレントガス(例えば、周囲環境空気)を、本発明に従い分離または濃縮処理する限り、任意の最終使用に有利に使用しうる他の最終使用ガスも、請求の範囲も含む本明細書に記載の酸素および酸素富化に関する開示は、全て、包含する意図である。
【0028】
図3は、本発明の酸素濃縮器を操作する際の配置を示すブロック線図を示し、この図3に示すように、空気は、吸収フィルター20を介してろ過し、コンプレッサー22によって圧縮する。空気流は、圧縮床12に、床12用供給バルブ24の開口および床12用窒素ベントバルブ26の閉鎖によって、供給する。制御バルブ28は、閉鎖して、床12を、空気を排気せずに加圧する。バルブ24,26および28は、電磁バルブであってよい。床12を、加圧し(例えば、10 psi)、次いで供給バルブ24を閉じると、これ以上、空気は、床12内に流入しない。同時に、制御バルブ28を、所定の時間開口して、酸素富化空気を、空気管30および空気流スプリッター32を介し、流動させ、これにより、所定割合の空気流を、ガス抽出口および空気流管34を介し、分離し、これにより、酸素富化空気を、管34端部の最終ユーザー、例えば酸素富化空気流を吸入する患者に供給する。管34は、方向Dに沿って空気流を最終使用対象(例えば、酸素富化空気を必要とする機械または使用する機械)または最終ユーザー(例えば、図10参照)に、ニードルバルブ36を介して供給する。空気流の残部は、管38を介し、次いで開口制御バルブ40を介し、床14内に入り、そこに吸収される。酸素富化空気は、床14中に流入して床14の窒素をパージし、これは、窒素ベントバルブ42を介し、排気される。バッテリー寿命保持のため、コンプレッサースイッチのオンオフを行わない一具体例によれば、床12によって、酸素富化空気の生成の間、需要に応じたコンプレッサーの間欠的な操作(これは、以下に記載のように好適である。)を行わずに、圧力リリーフバルブ44によって、コンプレッサー22からの空気を排気させることができる。圧力は、PLC時間制御電磁バルブまたは圧力リリーフバルブの使用によって解放させることができる。10Åのゼオライト、例えばOxi−sive 5(13x)(登録商標)ゼオライト〔OUP, Calgary, Alberta, Canada〕の使用が有利であることが判明した。ただし、他の形態のゼオライトも使用することができる。
【0029】
酸素濃縮工程は、図4〜図6に図示した。第1工程は、周囲環境空気を床12(即ち、ゼオライトを満たしたチャンバー)の内部に導入し、次いで床12を加圧することである。
【0030】
図4は、床12の第1加圧段階を示す。この場合、太字で示した空気供給ライン50および黒色で塗りつぶした床12は、加圧した流れまたは加圧した固定ガスを示す。制御バルブ28、窒素ベント床26および床14の供給バルブ46を閉じる一方、供給バルブ24を開口する。この時点で、コンプレッサー22によって、周囲環境空気を床12内に導入し、床12を加圧する。これは、例えば、10 psi(圧力ゲージ52によって表示される圧力)に達するまで継続する。次に、供給バルブ24を閉じ、床12に含まれる加圧空気を、酸素と窒素に、粒状ゼオライトモレキュラーシーブ材料48(図1a、参照)によって分離する。分子レベルで、窒素は、ゼオライトにより吸着され、加圧下に床が保持されている限り、保持される。これは、加圧チャンバーまたは床キャビティ内の酸素富化ガスを放出する。この工程は、ほぼ瞬時に起こることが観察された。床12の圧力は、周囲環境の圧力(圧力ゲージ54によって表示される圧力)のままである。
【0031】
次に、図5に示すように、制御バルブ28を開口する。床12のチャンバー内で分離された酸素は、第1ガスであり、これは、圧力が制御バルブ28を介し、開口されるにつれて、床12から放出される。この酸素富化空気は、床12から床14内に、管30および38を介し、供給される。この移動段階の間、少量の酸素富化空気は、またスプリッター32を介し、管34を経て、最終使用または最終ユーザーまで、方向Dに沿った空気流として、調節自在なニードルバルブ36によって調節されながら、放出される。スプリッター32およびバルブ36は、分離した流れ速度制御用のニードルバルブを有するT型ジャンクションとすることができる。以下に詳述するように、これは、また、分離した流れ速度制御用の目盛付きオリフィスによっても達成することができる。酸素富化空気は、床14内に入るにつれて、床14内の周囲環境空気を、窒素ベントバルブ42の外部に排出置換させることができる。向流操作の停止の後、窒素の当該システムへの流入によって、酸素濃度の低下を防止することができる。例えば、床をまず、20 psiに加圧し、圧力が約7 psiに低下した際に向流を停止する。なぜなら、この時点で、窒素は、空気流に到達しはじめるからである。本発明のパケットシステムを大型床の用途に用いるような、工業的大規模生産による本発明の実施形態によれば、酸素または窒素センサーを用いて、最適な酸素濃度に達した時点(即ち、ピーク濃度に達した時点)を検出することができるか、または向流期間の制御するような窒素レベルの上昇開始時点を検出することができる。このようなセンサーは、例えば、隣接した制御バルブ、例えば制御バルブ28,40に設置することができる。
【0032】
次いで、以上の処理を、逆の順序で反復する。図6は、床14の加圧段階を示しこの図6に示すように、床14内に導入した酸素富化空気は、制御バルブ40および窒素ベントバルブ42の閉鎖によって、床14内に含まれた状態にする。次に、供給バルブ46を開口し、コンプレッサー22による酸素富化空気の圧縮を開始して、再度、例えば10 psiに圧縮し、空気管56を介し、床14に送る。また、この時点で、制御バルブ28および窒素ベントバルブ26を開口して残留窒素を床12から排気する。供給バルブ24を閉鎖する。
【0033】
床14内のモレキュラーシーブ材料48およびガスを加圧した後、制御バルブ40、制御バルブ28および窒素バルブ26を開口する。酸素富化空気を、次いで床14から床12に戻す。この空気を床12に導入するにつれて、残留窒素の床12からの窒素ベントバルブ26外部への置換が促進される。最適時間の経過の後、窒素ベントバルブ26を、制御バルブ28と共に閉鎖し、供給バルブ24を開口して、前記サイクルを開始時点から再度開始する。
【0034】
酸素富化空気の一方の床から他方の床への移動または分流は、向流法として知られている。各モレキュラーシーブ床の入口上流側に取付けたガス溜め58を用いて向流容量を(容量/最終ユーザーガス流)の比率にて増加させることができる。
【0035】
別法として、図6aに示すように、向流は、1つのみのモレキュラーシーブ床12’および1つのみのガス溜め14’の使用によって達成することができる。コンプレッサー22によって、空気流を、バルブ24’を介し、床12’内において加圧する。酸素富化空気は、バルブ28’を介し、床12’から、第2床に代えてガス溜め14’内に、分岐し、次いで、本発明のパケット空気流システムを用い、ガス溜めから床内に向流状態で流動させて戻すことができる。これは、また、床への供給分岐および床からの返却分岐される空気パケットの酸素濃度について、1サイクル当たりの付加的な増加を達成でき、これにより、最終ユーザーに酸素富化空気を、オリフィス128’およびバルブ134’を介し、分岐または流出供給させることができる。床12’の窒素は、バルブ26’を介し、パージまたは排気される。別法として、本発明の酸素濃度は、複数のモレキュラーシーブ床の使用によって達成することができる。
【0036】
向流工程は、所望により、時間調節して1サイクル当たりの酸素濃度の付加的な増加を達成することができる。この1つの方法によれば、酸素濃度センサーを最終ユーザー空気流管34に設置し、次いで、例えば調節自在または他の方法により制御自在なスプリッター32を用いて、最終ユーザーに方向Dに沿って分岐される空気流を変化させ、管34の酸素濃度割合をモニターすることによって、達成することができる。本発明者らによれば、この方式は、管34内を通過する最大酸素濃度割合を確保でき、これに対応して、スプリッター32の設定できることが、判明した。特定の配置に関し、最適な流速またはバルブ設定条件を確定できれば、スプリッター32は、予備設定または予備寸法化した最終ユーザーガス流ラインにおいて流動レストリクターを有する非調節型の流れスプリッターによって置換することができる。出願人は、過剰量の向流を用いて出発し、次いで向流の量(向流の時間)を減少させること、例えば、床を10 psiに加圧するのに要する時間の75%に等しい向流時間を用いて出発することによって向流を最適化すれば、有利であることが判明した。しかしながら、これは、加圧が、時間をベースとした方法を用いてのみ実施しうることを意味するのではない。なぜなら、本発明の技術的範囲は、時間よりも、むしろ圧力を基準とした空気パケット方法を用いることを意図しているからである。即ち、予備設定した時間、床を加圧または減圧するよりもむしろ、圧力をモニターし、空気パケットを、予備設定圧力閾値への適合によって分岐させる。また、出願人は、本発明の方法を用いることによって、モレキュラーシーブ床の寸法を、従来技術において現存する寸法よりも減少、例えば既知の寸法の75%に減少できることが判明した。また、出願人は、本発明の方法および装置を用いれば、最終ユーザーガス流動ラインの酸素レベルが、実用化されている酸素レベルの90%過剰、95%過剰に達しうることが判明した。
【0037】
図7の具体例からわかるように、モレキュラーシーブ12および14は、ハウジング60内に、間隔をあけて平行状態で、配置させて、床を、ハウジングキャビティ内において横方向に配置させ、これにより、ハウジングの長さ方向に形成される、床の間に空間をあける。この床間空間は、一具体例において、ハウジング60から面板62をはずし、この面板62を、ハウジング60に対し、例えばスクリューファスナー64によって着脱自在に取付けることによって、形成することができる。
【0038】
ハウジングの床12と、床14との間に、コンプレッサー66、バルブ/マニホールドハウジング68、スプリッターバルブ70(スプリッター32の機能を奏するもの)および種々のフレキシブルパイプまたは管(空気管として役立つもの、以下の記載、参照)を取付ける。バルブの作動時期およびコンプレッサーの作動時期は、PLCまたは他のプロセッサからの信号によって制御することができる。図7の具体例によれば、プロセッサは、ハウジング60から遠くに存在して、インターフェースプラグ74を介し、連通する。図8の具体例は、基本的に、図7と実質的に同じである。ただし、遠位PLCまたはプロセッサに代えて、回路ボード78に取付けたオンボードPLCまたはプロセッサ76を用いている。この回路ボード78は、コンプレッサー66と、バルブハウジング68との間に取付けられる。また、図8の具体例では、面板62に代えて、半割体型のカバー(図示せず)を用いている。即ち、ハウジングは、半割体カバー装置(図9、参照)として形成され、符号60’が付される。端部付設制御パネルは、オン/オフ電源スイッチ63、空気抽出口34’、穿孔付き空気吸入口または格子65および12 VのDCコネクター67を備えることができる。
【0039】
ハウジング60’は、ハンドル80を備えることができ、このハンドル80は、本発明の酸素濃縮器担持用の1つの横面に沿って取付けられる。ただし、本発明は、携帯担持型に制限することを意図しない。本発明は、また、別の具体例において、ユーザーが装着することを意図し、例えば、バックバッグまたは尻ポケットまたはいわゆるファニーバッグ(図10、参照)を用いて装着する。管34は、最終ユーザーにハウジングから延在し、最終ユーザーは、酸素富化空気の供給を必要とする患者であり、管34は、先行技術において汎用されている経鼻管35とすることができる。
【0040】
図7および図8の具体例において、床12および床14は、内径2 inのパイプであってよく、これは、約12 inの長さを有し、その内部に、モレキュラーシーブ材料を担持し、このモレキュラーシーブ材料は、一具体例では少なくとも9および0.5 inの長さを有し、これにより、90%を越える酸素濃度を得ることができる。床は、その端部で、端部キャップ82により密封され、キャップ82は、好ましくは、穿孔または他の手段による孔を有し、これにより、空気回路(図7では明確には図示せず)を形成する空気管と共働し、そして、端部キャップを、床パイプの端部に、例えば長尺ボルト84の使用によって締結させることができる(図7、参照)。ゼオライトモレキュラーシーブ材料48は、長手方向に沿って、各床の円筒状パイプ内に、一組の多孔質膜86の間にサンドイッチされ、これらは、それ自体、一組の多孔質のバッキングプレート88の間にサンドイッチされる。
多孔質バッキングプレート88のサンドイッチおよびモレキュラーシーブ材料48は、弾性的バイアス手段、例えば螺旋状スプリング90によって床の一端に対し弾性的に押圧することができる。多孔質膜86は、フェルト多孔質バッキング材料または他の材料であってよく、これは、多孔質バッキングプレート88の開口部を通過するモレキュラーシーブ床の材料を含み、円筒状床内の開口部全体をカバーするような寸法を有する。多孔質バッキングプレート88は、ドリル貫通孔を有する硬質プレートとすることができる。端部キャップ82は、Oリング92によって、床ハウジング形成管の端部上にシールすることができる。
【0041】
コンプレッサー66は、Thomas(登録商標)8009DCコンプレッサー(これは、ヘッドポートを90度回転しうるような間隔および構造を有する取付板を有する。)またはThomas(登録商標)7006系コンプレッサー(図8、参照)とすることができ、これらは、ハウジング60に、弾性取付板94によって取付けることができ、板94は、連続気泡高密度ホームまたはSorbothane(登録商標)または他の制振材料とすることができる。付加的な弾性取付板96は、連続気泡高密度ホームであってよく、この板96を用いて、バルブハウジング68をハウジング60に取付けることができる。図7の具体例によれば、バルブ/マニホールドハウジング68は、長尺ボルト98によって隣接配列にボルト絞めした、一連の7つのHumphery(登録商標)310系24ボルトスタンドアロンバルブを含む。図8に示すように、バルブは、Humphery(登録商標)HK5バルブとすることができる。
【0042】
バルブ/マニホールドハウジング68は、ブロック68aとして隣接して取付けたバルブ配列であり、このブロックの裏面に沿って、ガス溜めおよびマフラーマニホールド68bは、適切に配置される。空気管は、マフラーキャビティにつながり、これは、マニホールド68bとして形成した孔であってよく、また消音材料(例えば、セルロース繊維)によって充填処理されていてもよい。そして、管は、マフラーからコンプレッサーにつながり、これにより、空気をコンプレッサーに供給することができる。さらなる管は、次いでコンプレッサーからバルブブロック68aにつながり、これにより、圧縮空気を供給バルブに供給することができる。したがって、図8に示すように、カプラー100およびその対応する空気管は、ハウジングの外側から空気を引き込んで、マフラー102に供給することができる(点線による輪郭、参照)。マフラー102は、端部キャップ104を介して利用でき、これは、マフラー孔の端部に、ネジ手段により取付けることができる。空気吸入カプラーからの空気は、方向Fに沿ってマフラー102を通過し、これにより、マフラー送出カプラー106およびその対応する空気管(これは、コンプレッサー66、特にコンプレッサーシリンダーヘッド66aに空気を供給する)から、送出する。モーター66bの操作によりコンプレッサーシリンダーヘッドハウジング66a内に収納したコンプレッサーシリンダーの操作によって、空気を圧縮することにより、空気を圧縮し、コンプレッサー排出カプラー108およびその対応する空気管から送出する。
【0043】
図8aは、バルブブロック68aの前面を示し、この図からわかるように、7つの空気管カプラーを設ける。図示した配置に制限されないが、床12送込みカプラー110(供給バルブ24と、床12との間に存在)、共通窒素ベントカプラー112(これは、窒素ベント26および窒素ベント42の両者から同時に排気する)と、床14送込みカプラー116(床14と、供給バルブ46との間に存在)、床12送出カプラー118(床12と、制御バルブ28との間に存在)、送出カプラー120(床14と、制御バルブ40との間に存在)、および患者空気流カプラー122を備えている。これらカプラーは、図11の図面に示し、これは、また窒素ベント26および42の、ベントライン124を介する同時排気並びにコンプレッサー22のオンオフ切替えにより不要な図3の圧力リリーフバルブの省略を示す。図11は、またバルブ/マニホールドハウジング68の別の具体例の特徴、特に図12〜図16に示したバルブ/マニホールドハウジング126を示す。
【0044】
図11は、また本発明の酸素濃縮器のさらなる具体例を示す。調節自在な流れスプリッター32または調節自在なニードルバルブ36の使用に代えて、管34を介して方向Dに沿って流動する酸素富化空気の割合は、ガス溜め132内にチェックバルブ130を介して流入する予備設定最適化オリフィス128によって調節することができる。ガス溜め132からの流出物は、要求バルブ134によって制御することができる。次いで、空気流は、管136に沿った患者への空気流と、管138に沿った圧力センサー(図示せず)への空気流とに分割することができる。管138のセンサーは、ガス溜め132からの酸素富化空気の急激な放出を要求した場合を感知するのに使用することができる。すなわち、管136に適用した吸引作用により引起されるような、管136の圧力降下が患者によって形成された場合、センサーは、予備設定した閾値よりも低い圧力降下を感知し、プロセッサーによって、ガス溜め132内に収納した酸素富化空気の備蓄の放出を開始させることができる。別の具体例によれば、ガス溜めは、要求バルブ134を介する患者の要求による1回の吸引よりも多い酸素富化空気の充分な供給量を含むのに充分な寸法を有することができる。
【0045】
この具体例は、図12〜図16に反映されており、これらは、マフラー102に平行なマニホールドブロック126b内に穿孔した孔付きガス溜め132を示す。マフラーの場合と同様に、ガス溜めは、穿孔でき、またネジ付端部キャップ104を用いてシールすることができる。
【0046】
図16および図16aに示すように、モレキュラーシーブ床12’’および14’’は、直線状よりも曲線状とでき、これも、本発明の技術的範囲の一部を構成することができる。例えば、床12’’および14’’は、その長さに沿って湾曲して、それらをユーザーが腰の周囲に適合させ、より心地よく装着することができる(図10、参照)。端部板69は、ボルト孔71を介してフレームまたは床の各端部を各々シールするハウジング若しくは床のケースにボルト締めすることができる。床は、湾曲し隣接し平行である一組の床(図16、参照)として形成でき、また、前記した具体例と適合させて、ハウジング内で横方向に間隔をあけて平行状態にさせ、これは、また対応して湾曲した表面を有して、本発明の酸素濃縮器の装着を容易かつ心地よくさせることができる。このような装着に関する具体例において、制御スイッチ、例えばオンオフスイッチ、空気吸入口、最終ユーザー用空気流出口などを、担持媒体、例えばバックバック、ファニーバックなどに取付けて、担持媒体の一側面またはハウジングの一端から露出させることができる。すなわち、図10に示すように、ユーザーは、制御機能および空気流管が使用のため延在する空気流出口の利用が容易である。
【0047】
以上の開示から、当業者ならば、多数の変形例および改良例を、本発明の精神および技術的範囲を逸脱することなく、本発明の実施に適用することができる。したがって、本発明の技術的範囲は、特許請求の範囲に記載した実態に従い、構成されたものと、理解すべきである。
【図面の簡単な説明】
【図A】従来技術の非加熱型空気乾燥器を示す模式図。
【図B】従来技術の非加熱型空気乾燥器を示す模式図。
【図1】図1は、本発明の濃縮器の試作品を示す斜視図であり、図1aは、図1のモレキュラーシーブ床の一端を部分的に切欠した拡大図。
【図2】従来技術の圧力スイング吸着法において見られるような非制御出口オリフィスを有する単一モレキュラーシーブ床を示す模式図。
【図3】本発明の酸素濃縮器の一具体例を示すブロック線図。
【図4】初期加圧工程における第1モレキュラーシーブ加圧段階の本発明の酸素濃縮器の更なる具体例を示すブロック線図。
【図5】空気パケットの移動段階における図4の酸素濃縮器を示すブロック線図。
【図6】第2モレキュラーシーブ加圧段階における図5の酸素濃縮器を示すブロック線図。
【図6a】本発明の酸素濃縮器の一具体例を示すブロック線図。
【図7】本発明の酸素濃縮器の一具体例を示す分解斜視図。
【図8】本発明の酸素濃縮器の別の具体例を示す斜視図。
【図8a】図8の線8a−8aに沿って切欠した断面図。
【図9】本発明の酸素濃縮器の一具体例のハウジングをその端部から見た斜視図。
【図10】最終ユーザーが装着した本発明の酸素濃縮器の一具体例を示す斜視図。
【図11】本発明の酸素濃縮器を別の具体例を示すブロック線図。
【図12】本発明の酸素濃縮器の一具体例におけるバルブ/マニホールドハウジングを示す斜視図。
【図13】図12のバルブ/マニホールドハウジングの側面図。
【図14】図13のバルブ/マニホールドハウジングの平面図。
【図15】図12の線15−15に沿って切欠した断面図。
【図16】図16は、本発明の酸素濃縮器におけるモレキュラーシーブの別の具体例を示す一部切欠斜視図であり、図16aは、図16のモレキュラーシーブの一端を示す一部切欠拡大図。
Claims (40)
- ガス流中の、酸素ガス濃度を富化し、窒素ガス濃度を最小化するための酸素濃縮器であって、
上記酸素濃縮器は、
エアーコンプレッサーと、
第1ガス管を介して前記エアーコンプレッサーに流体連通し、かつ窒素吸着用のモレキュラーシーブを含む気密性の第1容器と、
第2ガス管を介して前記第1容器に流体連通する気密性の第2容器と、
前記ガス管に取付けたバルブの作動を制御するガス流量計と、
前記第2ガス管に取付けたガス流スプリッターであって、付加的酸素富化空気パケットの一部を、酸素富化空気デリバリー用のガスラインに分離して前記ガスラインに沿って下流において最終使用するためのガス流スプリッターと
を備えること、並びに
上記バルブは、
(a)第1ガス加圧段階の間に、前記第1容器と前記第2容器との間のガス流動を防止して、前記エアーコンプレッサーからの圧縮ガスを前記第1容器内に移動させ、これにより、前記第1容器を、前記付加的酸素富化空気パケットを形成しうるような閾値圧力レベルに、加圧し、
(b)空気パケット移動段階の間に、前記エアーコンプレッサーから前記第1容器へのガス流動を防止して、前記第1容器から前記第2容器へのガス流動を可能にさせ、これにより、前記付加的酸素富化空気パケットを、前記第2容器に移動させ、
(c)前記第1容器から前記第2容器へのガス流動を防止して、前記第1容器のベントバルブを介し、前記第1容器から大気中へのガス排気を可能にさせ、
(d)空気パケットの向流段階の間に、前記第2容器から前記第1容器へのこれら容器間のガス流動を可能にさせ、これにより、前記付加的酸素富化空気パケットを、前記第2容器から、前記第1容器に流動させ、
(e)前記第1容器の前記ベントバルブを介する、前記第1容器からガス流の排気を防止する、反復サイクルにおいて連続的に実施しうるように前記ガス管内を通過する空気流を調節しうることを特徴とする濃縮器。 - 前記第1容器および前記第2容器の両者は、窒素吸着用のモレキュラーシーブ床を含み、前記第2容器は、前記エアーコンプレッサーに、第3ガス管を介して流体連通し、
前記空気パケット移動段階の後であって前記第1容器から前記第2容器へのガス流動を防止した後で、第2ガス加圧段階の間に、前記ガス流量計によって、前記エアーコンプレッサーから前記第2容器への圧縮ガスの流動を可能にさせ、これにより、前記第2容器を、前記閾値圧力レベルに加圧し、
前記第1容器の前記ベントバルブを介する、前記第1容器からのガス流の排気を防止した後であって前記第1容器と前記第2容器との間のガス流動を防止した後で、前記第1ガス加圧段階の間に、前記ガス流量計によって、前記第2容器のベントバルブを介する前記第2容器から大気中へのガス排気を可能にさせ、前記エアーコンプレッサーから前記第2容器へのガス流動を防止する請求項1に記載の濃縮器。 - 前記エアーコンプレッサーから、前記第1容器および前記第2容器の両者へのガス流動を防止する場合、前記ガス流量計は、前記エアーコンプレッサーと共働して前記エアーコンプレッサーを遮断するようなプロセッサであり、
前記プロセッサおよび前記エアーコンプレッサーの両者は、バッテリーによってバッテリー動力供給され、前記第1容器、前記第2容器、前記ガス管、前記ベントバルブ、前記プロセッサ、前記エアーコンプレッサーおよび前記バッテリーは、ハウジングに取付けられている請求項2に記載の濃縮器。 - 前記第1容器は、長尺中空の管であり、前記モレキュラーシーブ床は、ゼオライトである請求項1に記載の濃縮器。
- 前記第1容器および前記第2容器は、長尺中空の管であり、前記モレキュラーシーブ床は、ゼオライトである請求項2に記載の濃縮器。
- 前記第1容器および前記第2容器は、長尺中空の管であり、前記モレキュラーシーブ床は、ゼオライトであり、前記第1容器および前記第2容器は、ほぼ平行であって、平行配列で前記ハウジングに取付けられている請求項3に記載の濃縮器。
- 前記平行配列は、前記第1容器と前記第2容器との間に溝を形成するように、前記容器の長さに対し横方向に間隔をおいて存在する請求項6に記載の濃縮器。
- 前記プロセッサおよび前記容器は、前記溝に取付けられる請求項7に記載の濃縮器。
- さらに、前記溝に取付けたバルブ/マニホールドハウジングと、前記バルブ/マニホールドハウジングに取付けたバルブとを備え、
前記バルブ/マニホールドハウジングは、前記バルブを前記第1容器、前記第2容器および前記エアーコンプレッサーに、前記ガス管を介して相互連結させるための相互連結マニホールドを有する請求項8に記載の濃縮器。 - さらに、前記ガス流スプリッターに流体連通するガス溜めであって、前記最終使用へのデリバリー用の前記酸素富化空気の備蓄を含むためのガス溜めを備え、
前記バルブの1つは、前記ガスラインと、前記ガス溜めとの間で共働する需要バルブであって、前記需要バルブのトリガー作動事象のトリガーによって前記備蓄を前記ガスラインに放出する需要バルブである請求項9に記載の濃縮器。 - さらに、前記ガスラインと共働する感圧センサーを備え、 前記トリガー事象は、前記感圧センサーによって検出されるガスラインにおける圧力降下であり、
前記感圧センサーは、前記圧力降下の検出によって前記需要バルブの前記作動をトリガーするトリガー信号を発信する請求項10に記載の濃縮器。 - 前記圧力降下は、前記感圧センサーが前記トリガー信号を発信する圧力よりも低い、設定下限閾値圧力に相当する請求項11に記載の濃縮器。
- 前記エアーコンプレッサーは、必要な場合のみ作動するように、前記プロセッサからの作動信号によって、間欠的に作動する請求項12に記載の濃縮器。
- 前記最終使用は、最終ユーザーへの酸素供給であり、
前記第1容器および前記第2容器は、前記最終ユーザーが当該酸素濃縮器を使い切った際に、前記最終ユーザーの体型に適応するように、前記容器の長さに沿って湾曲し、かつ長尺である請求項1に記載の濃縮器。 - 前記最終使用は、最終ユーザーへの酸素供給であり、
当該酸素濃縮器は、前記最終ユーザーが使い切れるような構造を有する請求項1に記載の濃縮器。 - 前記最終使用は、最終ユーザーへの酸素供給であり、
前記第1容器および前記第2容器は、前記最終ユーザーが当該酸素濃縮器を使い切った際に、前記最終ユーザーの体型に適応するように、前記容器の長さに沿って湾曲し、かつ長尺である請求項3に記載の濃縮器。 - 前記最終使用は、最終ユーザーへの酸素供給であり、
当該酸素濃縮器は、前記最終ユーザーが使い切れるような構造を有する請求項3に記載の濃縮器。 - エアーコンプレッサーと、
第1ガス管を介して前記エアーコンプレッサーに流体連通し、かつモレキュラーシーブ床を含む気密性の第1容器と、
第2ガス管を介して前記第1容器に流体連通する気密性の第2容器と、
前記ガス管に取付けたバルブの作動を制御するガス流量計と、
前記第2ガス管に取付けたガス流スプリッターであって、付加的酸素富化空気パケットの一部を、酸素富化空気デリバリー用のガスラインに分離して前記ガスラインに沿って下流において最終使用するためのガス流スプリッターと
を備える酸素濃縮器によって、酸素を富化する方法であって、
(a)第1ガス加圧段階の間に、前記第1容器と前記第2容器との間のガス流動を防止して、前記エアーコンプレッサーからの圧縮ガスを前記第1容器内に移動させ、これにより、前記第1容器を、前記付加的酸素富化空気パケットを形成しうるような閾値圧力レベルに、加圧し、
(b)空気パケット移動段階の間に、前記エアーコンプレッサーから前記第1容器へのガス流動を防止して、前記第1容器から前記第2容器へのガス流動を可能にさせ、これにより、前記付加的酸素富化空気パケットを、前記第2容器に移動させ、
(c)前記第1容器から前記第2容器へのガス流動を防止して、前記第1容器のベントバルブを介し、前記第1容器から大気中へのガス排気を可能にさせ、
(d)空気パケットの向流段階の間に、前記第2容器から前記第1容器へのこれら容器間のガス流動を可能にさせ、これにより、前記付加的酸素富化空気パケットを、前記第2容器から、前記第1容器に流動させ、
(e)前記第1容器の前記ベントバルブを介する、前記第1容器からガス流の排気を防止する、反復サイクルにおいて前記連続工程を含んでなることを特徴とする方法。 - 前記酸素濃縮器は、さらに、前記第2容器において、モレキュラーシーブ床を含み、前記第2容器は、前記エアーコンプレッサーに、第3ガス管を介して流体連通しており、
当該方法は、さらに、
前記空気パケット移動段階の後であって前記第1容器から前記第2容器へのガス流動を防止した後で、第2ガス加圧段階の間に、前記ガス流量計によって、前記エアーコンプレッサーから前記第2容器への圧縮ガスの流動を可能にさせ、これにより、前記第2容器を、前記閾値圧力レベルに加圧し、
前記第1容器の前記ベントバルブを介する、前記第1容器からのガス流の排気を防止した後であって前記第1容器と前記第2容器との間のガス流動を防止した後で、前記第1ガス加圧段階の間に、前記ガス流量計によって、前記第2容器のベントバルブを介する前記第2容器から大気中へのガス排気を可能にさせ、前記エアーコンプレッサーから前記第2容器へのガス流動を防止することを含んでなる請求項18に記載の方法。 - 前記ガス流量計は、前記エアーコンプレッサーと共働するプロセッサであり、
当該方法は、さらに、前記エアーコンプレッサーから前記第1容器および前記第2容器の両者にガス流動させる間に、前記エアーコンプレッサーを遮断する工程を含んでなる請求項19に記載の方法。 - ガス流中、標的成分のガス濃度を富化し、廃棄成分のガス濃度を最小化するためのガス濃縮器であって、
上記ガス濃縮器は、
エアーコンプレッサーと、
第1ガス管を介して前記エアーコンプレッサーに流体連通し、かつ廃棄成分吸着用のモレキュラーシーブを含む気密性の第1容器と、
第2ガス管を介して前記第1容器に流体連通する気密性の第2容器と、
前記ガス管に取付けたバルブの作動を制御するガス流量計と、
前記第2ガス管に取付けたガス流スプリッターであって、付加的に富化した標的成分のガス濃度を有するガスパケットの一部を、標的成分ガス富化空気デリバリー用のガスラインに分離して前記ガスラインに沿って下流において最終使用するためのガス流スプリッターと
を備えること、並びに
上記バルブは、
(a)第1ガス加圧段階の間に、前記第1容器と前記第2容器との間のガス流動を防止して、前記エアーコンプレッサーからの圧縮ガスを前記第1容器内に移動させ、これにより、前記第1容器を、前記ガスパケットを形成しうるような閾値圧力レベルに、加圧して、前記ガスパケットを形成し、
(b)空気パケット移動段階の間に、前記エアーコンプレッサーから前記第1容器へのガス流動を防止して、前記第1容器から前記第2容器へのガス流動を可能にさせ、これにより、前記ガスパケットを、前記第2容器に移動させ、
(c)前記第1容器から前記第2容器へのガス流動を防止して、前記第1容器のベントバルブを介し、前記第1容器から大気中へのガス排気を可能にさせ、
(d)空気パケットの向流段階の間に、前記第2容器から前記第1容器へのこれら容器間のガス流動を可能にさせ、これにより、前記ガスパケットを、前記第2容器から、前記第1容器に流動させ、
(e)前記第1容器の前記ベントバルブを介する、前記第1容器からガス流の排気を防止する、反復サイクルにおいて連続的に実施しうるように前記ガス管内を通過する空気流を調節しうることを特徴とする濃縮器。 - 前記第1容器および前記第2容器の両者は、モレキュラーシーブ床を含み、前記第2容器は、前記エアーコンプレッサーに、第3ガス管を介して流体連通し、
前記空気パケット移動段階の後であって前記第1容器から前記第2容器へのガス流動を防止した後で、第2ガス加圧段階の間に、前記ガス流量計によって、前記エアーコンプレッサーから前記第2容器への圧縮ガスの流動を可能にさせ、これにより、前記第2容器を、前記閾値圧力レベルに加圧し、
前記第1容器の前記ベントバルブを介する、前記第1容器からのガス流の排気を防止した後であって前記第1容器と前記第2容器との間のガス流動を防止した後で、前記第1ガス加圧段階の間に、前記ガス流量計によって、前記第2容器のベントバルブを介する前記第2容器から大気中へのガス排気を可能にさせ、前記エアーコンプレッサーから前記第2容器へのガス流動を防止する請求項21に記載の濃縮器。 - 前記エアーコンプレッサーから、前記第1容器および前記第2容器の両者へのガス流動を防止する場合、前記ガス流量計は、前記エアーコンプレッサーと共働して前記エアーコンプレッサーを遮断するようなプロセッサであり、
前記プロセッサおよび前記エアーコンプレッサーの両者は、バッテリーによってバッテリー動力供給され、前記第1容器、前記第2容器、前記ガス管、前記ベントバルブ、前記プロセッサ、前記エアーコンプレッサーおよび前記バッテリーは、ハウジングに取付けられている請求項22に記載の濃縮器。 - 前記第1容器は、長尺中空の管である請求項21に記載の濃縮器。
- 前記第1容器および前記第2容器は、長尺中空の管である請求項22に記載の濃縮器。
- 前記第1容器および前記第2容器は、長尺中空の管であり、前記第1容器および前記第2容器は、ほぼ平行であって、平行配列で前記ハウジングに取付けられている請求項23に記載の濃縮器。
- 前記平行配列は、前記第1容器と前記第2容器との間に溝を形成するように、前記容器の長さに対し横方向に間隔をおいて存在する請求項26に記載の濃縮器。
- 前記プロセッサおよび前記容器は、前記溝に取付けられる請求項27に記載の濃縮器。
- さらに、前記溝に取付けたバルブ/マニホールドハウジングと、前記バルブ/マニホールドハウジングに取付けたバルブとを備え、
前記バルブ/マニホールドハウジングは、前記バルブを前記第1容器、前記第2容器および前記エアーコンプレッサーに、前記ガス管を介して相互連結させるための相互連結マニホールドを有する請求項28に記載の濃縮器。 - さらに、前記ガス流スプリッターに流体連通するガス溜めであって、前記最終使用へのデリバリー用の前記標的成分富化空気の備蓄を含むためのガス溜めを備え、
前記バルブの1つは、前記ガスラインと、前記ガス溜めとの間で共働する需要バルブであって、前記需要バルブのトリガー作動事象のトリガーによって前記備蓄を前記ガスラインに放出する需要バルブである請求項29に記載の濃縮器。 - さらに、前記ガスラインと共働する感圧センサーを備え、 前記トリガー事象は、前記感圧センサーによって検出されるガスラインにおける圧力降下であり、
前記感圧センサーは、前記圧力降下の検出によって前記需要バルブの前記作動をトリガーするトリガー信号を発信する請求項30に記載の濃縮器。 - 前記圧力降下は、前記感圧センサーが前記トリガー信号を発信する圧力よりも低い、設定下限閾値圧力に相当する請求項31に記載の濃縮器。
- 前記エアーコンプレッサーは、必要な場合のみ作動するように、前記プロセッサからの作動信号によって、間欠的に作動する請求項32に記載の濃縮器。
- 前記最終使用は、最終ユーザーへの酸素供給であり、
前記第1容器および前記第2容器は、前記最終ユーザーが当該ガス濃縮器を使い切った際に、前記最終ユーザーの体型に適応するように、前記容器の長さに沿って湾曲し、かつ長尺である請求項21に記載の濃縮器。 - 前記最終使用は、最終ユーザーへの酸素供給であり、
当該ガス濃縮器は、前記最終ユーザーが使い切れるような構造を有する請求項21に記載の濃縮器。 - 前記最終使用は、最終ユーザーへの酸素供給であり、
前記第1容器および前記第2容器は、前記最終ユーザーが当該酸素濃縮器を使い切った際に、前記最終ユーザーの体型に適応するように、前記容器の長さに沿って湾曲し、かつ長尺である請求項23に記載の濃縮器。 - 前記最終使用は、最終ユーザーへの酸素供給であり、
当該酸素濃縮器は、前記最終ユーザーが使い切れるような構造を有する請求項23に記載の濃縮器。 - エアーコンプレッサーと、
第1ガス管を介して前記エアーコンプレッサーに流体連通し、かつ廃棄成分ガス吸着用のモレキュラーシーブ床を含む気密性の第1容器と、
第2ガス管を介して前記第1容器に流体連通する気密性の第2容器と、
前記ガス管に取付けたバルブであって前記ガス管を介して空気流量を制御するバルブの作動を制御するガス流量計と、
前記第2ガス管に取付けたガス流スプリッターであって、付加的に富化した標的成分ガス濃度を有するガスパケットの一部を、標的成分ガス富化空気デリバリー用のガスラインに分離して前記ガスラインに沿って下流において最終使用するためのガス流スプリッターと
を備える、ガス流中、標的成分のガス濃度を富化し、廃棄成分のガス濃度を最小化するためのガス濃縮器によって、酸素を富化する方法であって、
(a)第1ガス加圧段階の間に、前記第1容器と前記第2容器との間のガス流動を防止して、前記エアーコンプレッサーからの圧縮ガスを前記第1容器内に移動させ、これにより、前記第1容器を、前記ガスパケットを形成しうるような閾値圧力レベルに、加圧し、
(b)空気パケット移動段階の間に、前記エアーコンプレッサーから前記第1容器へのガス流動を防止して、前記第1容器から前記第2容器へのガス流動を可能にさせ、これにより、前記ガスパケットを、前記第2容器に移動させ、
(c)前記第1容器から前記第2容器へのガス流動を防止して、前記第1容器のベントバルブを介し、前記第1容器から大気中へのガス排気を可能にさせ、
(d)空気パケットの向流段階の間に、前記第2容器から前記第1容器へのこれら容器間のガス流動を可能にさせ、これにより、前記ガスパケットを、前記第2容器から、前記第1容器に流動させ、
(e)前記第1容器の前記ベントバルブを介する、前記第1容器からガス流の排気を防止する、反復サイクルにおいて前記連続工程を含んでなることを特徴とする方法。 - 前記ガス濃縮器は、さらに、前記第2容器において、モレキュラーシーブ床を含み、前記第2容器は、前記エアーコンプレッサーに、第3ガス管を介して流体連通しており、
当該方法は、さらに、
(a)前記空気パケット移動段階の後であって前記第1容器から前記第2容器へのガス流動を防止した後で、第2ガス加圧段階の間に、前記ガス流量計によって、前記エアーコンプレッサーから前記第2容器への圧縮ガスの流動を可能にさせ、これにより、前記第2容器を、前記閾値圧力レベルに加圧し、
(b)前記第1容器の前記ベントバルブを介する、前記第1容器からのガス流の排気を防止した後であって前記第1容器と前記第2容器との間のガス流動を防止した後で、前記第1ガス加圧段階の間に、前記ガス流量計によって、前記第2容器のベントバルブを介する前記第2容器から大気中へのガス排気を可能にさせ、前記エアーコンプレッサーから前記第2容器へのガス流動を防止することを含んでなる請求項38に記載の方法。 - 前記ガス流量計は、前記エアーコンプレッサーと共働するプロセッサであり、
当該方法は、さらに、前記エアーコンプレッサーから前記第1容器および前記第2容器の両者にガス流動させる間に、前記エアーコンプレッサーを遮断する工程を含んでなる請求項39に記載の方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22259100P | 2000-08-02 | 2000-08-02 | |
PCT/CA2001/001120 WO2002009848A2 (en) | 2000-08-02 | 2001-08-02 | Miniaturized wearable oxygen concentrator |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013130980A Division JP2013236941A (ja) | 2000-08-02 | 2013-06-21 | 小型化した装着可能な酸素濃縮器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004504927A true JP2004504927A (ja) | 2004-02-19 |
Family
ID=22832848
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002515395A Pending JP2004504927A (ja) | 2000-08-02 | 2001-08-02 | 小型化した装着可能な酸素濃縮器 |
JP2013130980A Pending JP2013236941A (ja) | 2000-08-02 | 2013-06-21 | 小型化した装着可能な酸素濃縮器 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013130980A Pending JP2013236941A (ja) | 2000-08-02 | 2013-06-21 | 小型化した装着可能な酸素濃縮器 |
Country Status (12)
Country | Link |
---|---|
US (1) | US6547851B2 (ja) |
EP (1) | EP1307277B9 (ja) |
JP (2) | JP2004504927A (ja) |
CN (1) | CN1221303C (ja) |
AT (1) | ATE311239T1 (ja) |
AU (1) | AU2001279527A1 (ja) |
CA (1) | CA2354795C (ja) |
DE (1) | DE60115458T2 (ja) |
ES (1) | ES2254458T3 (ja) |
HK (1) | HK1060860A1 (ja) |
IL (2) | IL154244A0 (ja) |
WO (1) | WO2002009848A2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018035854A (ja) * | 2016-08-30 | 2018-03-08 | Ckd株式会社 | 空圧バルブ、及びそれを備えた濃縮器 |
JP2018531630A (ja) * | 2015-06-29 | 2018-11-01 | ノヴァラング ゲゼルシャフト ミット ベシュレンクテル ハフツング | 気体交換装置の搬送装置 |
JP6466008B1 (ja) * | 2018-03-22 | 2019-02-06 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | 吸着塔の切替装置 |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7032589B2 (en) * | 2002-01-23 | 2006-04-25 | The Johns Hopkins University | Portable ventilator |
US6755895B2 (en) * | 2002-04-09 | 2004-06-29 | H2Gen Innovations, Inc. | Method and apparatus for pressure swing adsorption |
US7637989B2 (en) * | 2003-12-31 | 2009-12-29 | Merits Health Products Co., Ltd. | Rapid cycle pressure swing adsorption oxygen concentration method and mechanical valve for the same |
US7273051B2 (en) * | 2004-01-22 | 2007-09-25 | Air Products And Chemicals, Inc. | Dual mode medical oxygen concentrator |
US7279029B2 (en) * | 2004-05-21 | 2007-10-09 | Air Products And Chemicals, Inc. | Weight-optimized portable oxygen concentrator |
JP4898689B2 (ja) | 2004-10-12 | 2012-03-21 | エアーセップ・コーポレーション | 小型携帯酸素濃縮機 |
US7954490B2 (en) * | 2005-02-09 | 2011-06-07 | Vbox, Incorporated | Method of providing ambulatory oxygen |
US7402193B2 (en) * | 2005-04-05 | 2008-07-22 | Respironics Oxytec, Inc. | Portable oxygen concentrator |
US7368005B2 (en) * | 2005-04-05 | 2008-05-06 | Respironics Oxytec, Inc. | Portable oxygen concentrator |
US7329304B2 (en) | 2005-04-05 | 2008-02-12 | Respironics Oxytec, Inc. | Portable oxygen concentrator |
WO2007000050A1 (en) * | 2005-06-27 | 2007-01-04 | Wearair Oxygen Inc. | A process and apparatus for generating and delivering an enriched gas fraction |
US7771511B2 (en) * | 2006-08-28 | 2010-08-10 | Ric Investments, Llc | Oxygen concentration system and method |
FR2906160B1 (fr) | 2006-09-25 | 2009-06-05 | Air Liquide | Procede psa a lit d'adsorption composite forme d'un adsorbant et d'agglomerats de mcp |
NZ580515A (en) * | 2007-04-20 | 2012-12-21 | Invacare Corp | Apparatus for providing a concentrated product gas using two sieve tanks with two flow paths between them |
US20090065007A1 (en) | 2007-09-06 | 2009-03-12 | Wilkinson William R | Oxygen concentrator apparatus and method |
US20090205494A1 (en) * | 2008-02-20 | 2009-08-20 | Mcclain Michael S | Single manifold assembly for oxygen-generating systems |
US20090205493A1 (en) * | 2008-02-20 | 2009-08-20 | Thompson Loren M | Method of removing water from an inlet region of an oxygen generating system |
US20090211443A1 (en) * | 2008-02-21 | 2009-08-27 | Youngblood James H | Self-serviceable filter for an oxygen generating device |
US7722698B2 (en) * | 2008-02-21 | 2010-05-25 | Delphi Technologies, Inc. | Method of determining the purity of oxygen present in an oxygen-enriched gas produced from an oxygen delivery system |
US20090214393A1 (en) * | 2008-02-22 | 2009-08-27 | Chekal Michael P | Method of generating an oxygen-enriched gas for a user |
US8075676B2 (en) | 2008-02-22 | 2011-12-13 | Oxus America, Inc. | Damping apparatus for scroll compressors for oxygen-generating systems |
DE102008011827A1 (de) * | 2008-02-29 | 2009-09-10 | Fresenius Medical Care Deutschland Gmbh | Verfahren zur Ansteuerung von Ventilen zur Flusswegsteuerung und Maschinen, insbesondere medizinische Behandlungsmaschinen |
US20090229460A1 (en) * | 2008-03-13 | 2009-09-17 | Mcclain Michael S | System for generating an oxygen-enriched gas |
US8394178B2 (en) * | 2009-07-22 | 2013-03-12 | Vbox, Incorporated | Apparatus for separating oxygen from ambient air |
US8616207B2 (en) | 2010-09-07 | 2013-12-31 | Inova Labs, Inc. | Oxygen concentrator heat management system and method |
US8603228B2 (en) | 2010-09-07 | 2013-12-10 | Inova Labs, Inc. | Power management systems and methods for use in an oxygen concentrator |
CN102151351B (zh) * | 2011-03-09 | 2017-02-08 | 广州军区广州总医院 | 适用于麻醉机或呼吸机的便携式氧源供给装置 |
JP5908577B2 (ja) | 2011-04-08 | 2016-04-26 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | 適合密度を有する吸着剤と相変化材料の混合物 |
EP3578220B1 (en) | 2012-10-12 | 2023-05-24 | Inova Labs, Inc. | Oxygen concentrator systems and methods |
US9440036B2 (en) | 2012-10-12 | 2016-09-13 | InovaLabs, LLC | Method and systems for the delivery of oxygen enriched gas |
JP6336991B2 (ja) | 2012-10-12 | 2018-06-06 | イノヴァ ラボ,インコーポレイテッド | 酸素濃縮器二重化システムおよび方法 |
CN104968410B (zh) | 2013-01-30 | 2019-06-04 | 皇家飞利浦有限公司 | 氧气分离系统及生成富氧气体的流的方法 |
US9440179B2 (en) | 2014-02-14 | 2016-09-13 | InovaLabs, LLC | Oxygen concentrator pump systems and methods |
EP2997991A1 (en) * | 2014-09-19 | 2016-03-23 | Koninklijke Philips N.V. | Device for providing supplemental oxygen to a subject |
US10315002B2 (en) | 2015-03-24 | 2019-06-11 | Ventec Life Systems, Inc. | Ventilator with integrated oxygen production |
US11247015B2 (en) | 2015-03-24 | 2022-02-15 | Ventec Life Systems, Inc. | Ventilator with integrated oxygen production |
GB201507549D0 (en) * | 2015-04-29 | 2015-06-17 | Smiths Medical Int Ltd | Ventilator apparatus and systems |
US11458274B2 (en) | 2016-05-03 | 2022-10-04 | Inova Labs, Inc. | Method and systems for the delivery of oxygen enriched gas |
US10773049B2 (en) | 2016-06-21 | 2020-09-15 | Ventec Life Systems, Inc. | Cough-assist systems with humidifier bypass |
AU2019253967A1 (en) * | 2018-04-20 | 2020-12-10 | Roam Technologies Pty Ltd | Systems and methods for providing concentrated oxygen to a user |
JP2021524795A (ja) | 2018-05-13 | 2021-09-16 | サミール・サレハ・アフマド | ポータブル酸素濃縮器を使用するポータブル医療用人工呼吸器システム |
CN109305659A (zh) * | 2018-10-24 | 2019-02-05 | 江苏新颖氧科技发展有限公司 | 高压力分子筛制氧装置及具有升压功能的分子筛制氧模块 |
CN111689473A (zh) * | 2019-04-29 | 2020-09-22 | 中船重工(海南)工程有限公司 | 一种穿戴式制氧衣 |
CN114288574B (zh) * | 2021-12-31 | 2022-12-23 | 成都康拓兴业科技有限责任公司 | 一种可穿戴式制氧机 |
CN115076071B (zh) * | 2022-06-29 | 2024-05-24 | 中科美菱低温科技股份有限公司 | 压缩空气源装置及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04290514A (ja) * | 1991-03-19 | 1992-10-15 | Tokico Ltd | 気体分離装置 |
JPH0857241A (ja) * | 1994-08-19 | 1996-03-05 | Tokico Ltd | 気体分離装置及び気体分離方法 |
JPH09141038A (ja) * | 1995-11-17 | 1997-06-03 | Tokico Ltd | 気体分離装置 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2944627A (en) | 1958-02-12 | 1960-07-12 | Exxon Research Engineering Co | Method and apparatus for fractionating gaseous mixtures by adsorption |
US3400713A (en) * | 1966-10-12 | 1968-09-10 | James E. Finan | Apparatus for intermittently dispensing oxygen or other gas suitable for breathing |
US4222750A (en) * | 1976-08-16 | 1980-09-16 | Champion Spark Plug Company | Oxygen enrichment system for medical use |
JPS57106504A (en) * | 1980-12-22 | 1982-07-02 | Hitachi Ltd | Concentrating method for oxygen |
US4516424A (en) * | 1982-07-09 | 1985-05-14 | Hudson Oxygen Therapy Sales Company | Oxygen concentrator monitor and regulation assembly |
US4589888A (en) * | 1984-10-05 | 1986-05-20 | Union Carbide Corporation | Pressure swing adsorption process |
US4685939A (en) | 1985-03-19 | 1987-08-11 | Air Products And Chemicals, Inc. | Production of oxygen enriched air |
US4802899A (en) * | 1987-09-21 | 1989-02-07 | Airsep Corporation | Pressure swing adsorption apparatus |
JP3076912B2 (ja) * | 1989-11-08 | 2000-08-14 | 株式会社日立製作所 | 混合ガスの分離方法及び装置 |
EP0449448B1 (en) * | 1990-03-29 | 1997-01-22 | The Boc Group, Inc. | Process for producing oxygen enriched product stream |
US5340381A (en) * | 1993-05-17 | 1994-08-23 | Vorih Marc L | Operating system for dual-sieve oxygen concentrators |
US5540758A (en) * | 1994-02-03 | 1996-07-30 | Air Products And Chemicals, Inc. | VSA adsorption process with feed/vacuum advance and provide purge |
JP2593810B2 (ja) * | 1994-11-04 | 1997-03-26 | 日本ルフト株式会社 | 呼吸用酸素供給装置 |
US5531807A (en) | 1994-11-30 | 1996-07-02 | Airsep Corporation | Apparatus and method for supplying oxygen to passengers on board aircraft |
US5529607A (en) * | 1995-03-15 | 1996-06-25 | The Boc Group, Inc. | PSA process with dynamic purge control |
US5850833A (en) * | 1995-05-22 | 1998-12-22 | Kotliar; Igor K. | Apparatus for hypoxic training and therapy |
FR2751244B1 (fr) * | 1996-07-18 | 1998-09-04 | Air Liquide | Procede et installation de traitement d'un melange gazeux par adsorption a variation de pression |
US5912426A (en) * | 1997-01-30 | 1999-06-15 | Praxair Technology, Inc. | System for energy recovery in a vacuum pressure swing adsorption apparatus |
US5871564A (en) * | 1997-06-16 | 1999-02-16 | Airsep Corp | Pressure swing adsorption apparatus |
US6003744A (en) | 1998-04-01 | 1999-12-21 | Culjak; Iolanthe | Lumbar oxygen carrier |
FR2783723B1 (fr) * | 1998-09-25 | 2000-12-29 | Air Liquide | Procede de traitement d'un melange gazeux par adsorption a modulation de pression, a debit variable de production |
JP2000157824A (ja) * | 1998-11-26 | 2000-06-13 | Ikiken:Kk | 酸素濃縮器における騒音抑制装置 |
-
2001
- 2001-08-02 JP JP2002515395A patent/JP2004504927A/ja active Pending
- 2001-08-02 ES ES01957663T patent/ES2254458T3/es not_active Expired - Lifetime
- 2001-08-02 AU AU2001279527A patent/AU2001279527A1/en not_active Abandoned
- 2001-08-02 IL IL15424401A patent/IL154244A0/xx active IP Right Grant
- 2001-08-02 DE DE60115458T patent/DE60115458T2/de not_active Expired - Lifetime
- 2001-08-02 CA CA002354795A patent/CA2354795C/en not_active Expired - Fee Related
- 2001-08-02 AT AT01957663T patent/ATE311239T1/de not_active IP Right Cessation
- 2001-08-02 US US09/921,863 patent/US6547851B2/en not_active Expired - Lifetime
- 2001-08-02 WO PCT/CA2001/001120 patent/WO2002009848A2/en active IP Right Grant
- 2001-08-02 CN CNB018138543A patent/CN1221303C/zh not_active Expired - Fee Related
- 2001-08-02 EP EP01957663A patent/EP1307277B9/en not_active Expired - Lifetime
-
2003
- 2003-02-02 IL IL154244A patent/IL154244A/en not_active IP Right Cessation
-
2004
- 2004-06-02 HK HK04103942A patent/HK1060860A1/xx not_active IP Right Cessation
-
2013
- 2013-06-21 JP JP2013130980A patent/JP2013236941A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04290514A (ja) * | 1991-03-19 | 1992-10-15 | Tokico Ltd | 気体分離装置 |
JPH0857241A (ja) * | 1994-08-19 | 1996-03-05 | Tokico Ltd | 気体分離装置及び気体分離方法 |
JPH09141038A (ja) * | 1995-11-17 | 1997-06-03 | Tokico Ltd | 気体分離装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018531630A (ja) * | 2015-06-29 | 2018-11-01 | ノヴァラング ゲゼルシャフト ミット ベシュレンクテル ハフツング | 気体交換装置の搬送装置 |
JP2018035854A (ja) * | 2016-08-30 | 2018-03-08 | Ckd株式会社 | 空圧バルブ、及びそれを備えた濃縮器 |
JP6466008B1 (ja) * | 2018-03-22 | 2019-02-06 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | 吸着塔の切替装置 |
JP2019166421A (ja) * | 2018-03-22 | 2019-10-03 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | 吸着塔の切替装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2002009848A3 (en) | 2002-03-28 |
DE60115458D1 (de) | 2006-01-05 |
US6547851B2 (en) | 2003-04-15 |
ES2254458T3 (es) | 2006-06-16 |
EP1307277B1 (en) | 2005-11-30 |
EP1307277A2 (en) | 2003-05-07 |
IL154244A0 (en) | 2003-09-17 |
CN1460032A (zh) | 2003-12-03 |
AU2001279527A1 (en) | 2002-02-13 |
CA2354795A1 (en) | 2002-02-02 |
ATE311239T1 (de) | 2005-12-15 |
HK1060860A1 (en) | 2004-08-27 |
WO2002009848A2 (en) | 2002-02-07 |
JP2013236941A (ja) | 2013-11-28 |
US20020033095A1 (en) | 2002-03-21 |
CA2354795C (en) | 2010-02-02 |
EP1307277B9 (en) | 2007-10-17 |
CN1221303C (zh) | 2005-10-05 |
IL154244A (en) | 2007-05-15 |
DE60115458T2 (de) | 2006-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004504927A (ja) | 小型化した装着可能な酸素濃縮器 | |
US6478850B2 (en) | Miniaturized wearable oxygen concentrator | |
US7491261B2 (en) | Process and apparatus for generating and delivering an enriched gas fraction | |
JP4486170B2 (ja) | ベッドのデューティサイクル制御及び自己検査を伴う酸素濃縮器 | |
US8580015B2 (en) | Gas concentrator with improved water rejection capability | |
EP2059326A2 (en) | Oxygen concentration system | |
JPS60222129A (ja) | ガス状混合物を吸着分留する装置と方法 | |
KR101647017B1 (ko) | 응축 수분 배출 기능을 가지는 산소 농축 방법 및 장치 | |
AU629740B2 (en) | Economical air separator | |
KR100814965B1 (ko) | 제습장치를 구비하는 산소발생기 | |
CA2510863C (en) | A process and apparatus for generating and delivering an enriched gas fraction | |
KR20100066744A (ko) | 압축공기공급장치에서 발생되는 압축공기를 이용하여 호흡가능한 산소로 변환하여 공급하는 산소분리공급장치. | |
CA2369949C (en) | Miniaturized wearable oxygen concentrator | |
JP2006522729A (ja) | 酸素リッチガス供給装置 | |
JP3173818B2 (ja) | 医療用psa式酸素濃縮器 | |
JP2001000553A (ja) | 酸素療法用酸素濃縮装置 | |
JP2008061734A (ja) | 酸素濃縮装置及び医療用酸素濃縮装置 | |
JP5955554B2 (ja) | 酸素濃縮器 | |
JP5955555B2 (ja) | 酸素濃縮器 | |
KR200287012Y1 (ko) | 산소발생기의 수분 흡,탈착장치 | |
JP2000135287A (ja) | 酸素療法用酸素濃縮装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040317 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040707 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080619 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110916 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20111213 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20111220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121221 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130318 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130326 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130419 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130426 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131011 |