JP2004356356A - Method for judging completion of cleaning and cleaning apparatus - Google Patents

Method for judging completion of cleaning and cleaning apparatus Download PDF

Info

Publication number
JP2004356356A
JP2004356356A JP2003151890A JP2003151890A JP2004356356A JP 2004356356 A JP2004356356 A JP 2004356356A JP 2003151890 A JP2003151890 A JP 2003151890A JP 2003151890 A JP2003151890 A JP 2003151890A JP 2004356356 A JP2004356356 A JP 2004356356A
Authority
JP
Japan
Prior art keywords
cleaning
sensor
cleaning liquid
cleaned
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003151890A
Other languages
Japanese (ja)
Inventor
Kazuhisa Takayama
和久 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2003151890A priority Critical patent/JP2004356356A/en
Priority to US10/854,672 priority patent/US20040238005A1/en
Publication of JP2004356356A publication Critical patent/JP2004356356A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for judging the completion of cleaning by which the completion of cleaning treatment can be judged without repeating experiments and a cleaning apparatus adopting the method for judging the completion of cleaning. <P>SOLUTION: The cleaning apparatus 10 uses a cyclic-use cleaning liquid to remove an adherent sticking to an object to be cleaned, and it is provided with a first sensor 11 that generates a signal indicating the contamination status of the cleaning liquid before the object is cleaned, a second sensor 13 that generates a signal indicating the contamination status of the cleaning liquid after the object is cleaned by using the cleaning liquid, and a completion judging part 20 that obtains a difference between the signals from the first and second sensors, and judges that the cleaning is completed when the obtained difference is smaller than a specified threshold. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造において付着する付着物を洗浄する洗浄処理に関し、特に洗浄処理の洗浄終了判定方法と洗浄装置とに関する。
【0002】
【従来の技術】
半導体集積回路や液晶表示回路などの半導体装置の製造工程で、パターン加工を施すべくレジストを用いたエッチング処理や、アッシングと称される灰化処理などで前記半導体装置(以降、単に被洗浄物と称す)に付着する付着物を洗浄する方法が特許文献1、特許文献2および特許文献3に開示されている。
特許文献1は、洗浄液で被洗浄物を洗浄することで発生する気体の濃度を測定し、該測定値と所定の値とを比較判定することにより洗浄処理の終了を判断することを開示しており、また特許文献2は循環利用する洗浄液で被洗浄物を洗浄し、被洗浄物から剥離した付着物の粒子数をカウントし、該カウント値と所定の値とを比較判定することにより、洗浄処理の終了を判断することを開示している。
【0003】
更に、特許文献3は洗浄機能を有する気体を用いて被洗浄物を洗浄することで生じる過酸化水素濃度を測定し、該測定値と所定の値とを比較することにより、洗浄処理の終了を判定することを開示している。
【0004】
【特許文献1】
特開平6−168929号公報
【特許文献2】
特開平10−321589号公報
【特許文献3】
特開平8−236494号公報
【0005】
【発明が解決しようとする課題】
ところで、前記した洗浄処理における終了の判定方法は、測定値と、所定の値つまり洗浄終了のための基準値とを比較判定することにより洗浄処理の終了を判断する。
従って、前記基準値は、例えば付着物の量、付着物の成分、洗浄液の成分、洗浄液の温度および一括的に洗浄する被洗浄物の個数など、多種多様な条件に基づいて決定する必要があることから、様々な条件毎に基準値を決定するための多くのサンプルを用いて洗浄処理の終了を見極める実験を繰り返す必要があった。
【0006】
従って、本発明の目的は、実験を繰り返すことなく洗浄処理の終了を見極め得る洗浄終了判定方法と、該洗浄終了判定方法を採用した洗浄装置とを提供することにある。
【0007】
【課題を解決するための手段】
本発明は、以上の点を解決するために、次の構成を採用する。
本発明の洗浄終了判定方法は、循環利用する前記洗浄液を用いて被洗浄物に付着する付着物を取り除く洗浄処理の終了を判定する方法であって、前記被洗浄物を洗浄液により洗浄する前後の該洗浄液の汚染状態の差を取得すること、取得した差が所定の閾値以下のとき、洗浄処理の終了と判定することを特徴とする。
【0008】
本発明の洗浄終了判定方法は、循環利用する洗浄液を用いて被洗浄物に付着する付着物を取り除く洗浄処理の終了を判定する方法であって、前記被洗浄物を前記洗浄液により洗浄する前後の該洗浄液の汚染状態の差を取得すること、取得した差に変化が見られないとき、洗浄処理の終了と判定することを特徴とする。
【0009】
前記汚染状態は、前記洗浄液に含まれる残渣物の量であることを特徴とする。
前記汚染状態は、前記洗浄液のpH値であることを特徴とする。
前記汚染状態は、前記洗浄液の成分比であることを特徴とする。
【0010】
本発明の洗浄装置は、循環利用する洗浄液を用いて、被洗浄物に付着する付着物を取り除く洗浄装置であって、前記被洗浄物を洗浄する前の該洗浄液の汚染状態を示す信号を生成する第1のセンサと、前記被洗浄物を洗浄した後の該洗浄液の汚染状態を示す信号を生成する第2のセンサと、前記第1のセンサからの信号と前記第2のセンサからの信号との差を求め、求めた差が所定の閾値以下のとき、洗浄処理の終了と判定する終了判定部と、を備えることを特徴とする。
【0011】
本発明の洗浄装置は、循環利用する洗浄液を用いて、被洗浄物に付着する付着物を取り除く洗浄装置であって、前記被洗浄物を洗浄する前の該洗浄液の汚染状態を示す信号を出力する第1のセンサと、前記被洗浄物を洗浄した液の該洗浄液の汚染状態を示す信号を出力する第2のセンサと、前記第1のセンサからの信号と前記第2のセンサからの信号との差を求め、求めた差に変化が見られないとき、洗浄処理の終了と判定する終了判定部と、を備えることを特徴とする。
【0012】
前記第1のセンサおよび前記第2のセンサは、前記洗浄液に含まれる残渣物の量を示す信号を出力することを特徴とする。
前記第1のセンサおよび前記第2のセンサは、前記洗浄液のpH値を示す信号を出力することを特徴とする。
前記第1のセンサおよび前記第2のセンサは、前記洗浄液の成分比を示す信号を出力することを特徴とする。
【0013】
前記第1のセンサおよび前記第2のセンサは、光源からの光の強さに基づいて汚染状態を示す信号を出力する測定装置であって、該測定装置は、前記光源を前記第1のセンサと前記第2のセンサとに共用するための光源共用部を備えることを特徴とする。
前記第1のセンサおよび前記第2のセンサは、光源からの光の強さに基づいて汚染状態を示す信号を出力する測定装置であって、該測定装置は、前記第1のセンサと前記第2のセンサとに前記光源を均等に分配する光源分配部を備えることを特徴とする。
【0014】
【発明の実施の形態】
〈具体例1〉
以下、本発明の実施形態を図を用いて詳細に説明する。
本発明の洗浄装置10は、図1に示されているように、循環利用される洗浄液に含まれる塵片(パーティクル)の量を測定する第1のセンサ11と、該第1のセンサ11で測定された後の洗浄液が供給され、被洗浄物である半導体装置を洗浄するための洗浄槽12と、該洗浄槽12から排出された洗浄液に含まれるパーティクルの量を測定する第2のセンサ13と、該センサで測定された洗浄液を廃棄または循環利用するための三方弁14と、該三方弁14の制御により循環利用すべき洗浄液を備蓄するタンク15と、該タンク15の洗浄液を圧送するためのポンプ16と、該ポンプ16により圧送される洗浄液に含まれるパーティクルを濾過するためのフィルタ17と、該フィルタ17を経た洗浄のパーティクルを希釈すべく新規な洗浄液を備蓄する洗浄液供給タンク18とを備え、これらの各構成が循環パイプで接続されている。
更に本発明の洗浄装置10は、第1のセンサ11および第2のセンサ13のそれぞれから出力される信号に基づいて洗浄処理の終了を判定する終了判定部20を備える。
【0015】
前記洗浄液は、例えば、商品名「ST−106」(東京応化工業株式会社製)などの薬液である。該薬液の温度を適宜調整する温度調整部を洗浄装置10に設けることにより、洗浄効率の向上を図ることができる。
第1のセンサ11および第2のセンサ13は、共に所定量の洗浄液に含まれるパーティクルの量を測定し、測定量に対応させて電気的な信号で出力する機能を有しており、例えば洗浄液に含まれるパーティクル量の増加に伴い、出力する信号レベル(信号強度)が低減する。
洗浄槽12は、洗浄液で洗浄すべき半導体装置を収容するための槽であり、収容する半導体装置の数は、一つでも複数でもよく、収容する半導体装置の一部、または全体が洗浄液に浸される。この洗浄槽12内の洗浄液を流動させる流動部を洗浄槽12に設けることにより、洗浄効果を向上させることができる。また、洗浄槽12内に浸された半導体装置を揺動させる揺動部を洗浄槽12に設けることにより、同様な効果を得ることができる。
洗浄槽12は、前記した半導体装置を洗浄液に浸すバス式に限ることなく、洗浄液を半導体装置にスプレーするスプレー式でもよい。
【0016】
フィルタ17は、洗浄液で半導体装置を洗浄することにより、該半導体装置から剥離する付着物、つまりパターンニングで用いたレジスト片や、アッシングと称される灰化処理で生成される物質片などを除去する機能を有する。このフィルタ17で除去しきれない微塵がパーティクルとして循環利用する洗浄液に含まれており、該パーティクルの量を示す信号が前記した第1のセンサ11および第2のセンサ13により出力される。
【0017】
洗浄液供給タンク18は新規な洗浄液を備蓄しており、該タンク18の洗浄液をパーティクルを含む洗浄液に供給することにより、単位量あたりのパーティクル量を低減することができ、パーティクルで汚染された洗浄液の汚染状態を改善することができる。
タンク15、ポンプ16、フィルタ17および洗浄液供給タンク18のそれぞれは、洗浄液のパーティクル数をカウントする第1のセンサ11から洗浄槽12で洗浄された洗浄液のパーティクル数をカウントする第2のセンサ13までの間以外であれば、循環利用のためのパイプ間の何れの箇所に配置してもよい。
終了判定部20は、第1のセンサ11から出力される信号強度と第2のセンサ13から出力される信号強度との差を求める比較部21と、該比較部21で求めた信号強度の差が所定の閾値以下のとき、洗浄処理の終了と判定する判定部22とで構成されている。
【0018】
次に、本発明の洗浄装置10の動作を説明する。
タンク15に保持される循環利用される洗浄液が、ポンプ16によりフィルタ17を介して圧送される。このとき、圧送される洗浄液に洗浄液供給タンク18で保持する新規な洗浄液が供給される。この供給される新規な洗浄液により、循環利用される洗浄液の汚染状態が改善、つまり単位量あたりに含まれるパーティクル量の濃度が希釈される。この循環利用される洗浄液に対し、第1のセンサ11は該洗浄液に含まれるパーティクルを示す信号(パーティクルの量の増加に伴い信号強度が低減する信号)を終了判定部20へ出力する。第1のセンサ11を経た洗浄液は、被洗浄物としての半導体装置を収容した洗浄槽12へ注がれる。洗浄槽12に収容された半導体装置が洗浄液にさらされることにより、該半導体装置に付着する付着物が剥離する。剥離した付着物はパーティクルとして洗浄液に含まれており、該洗浄液が洗浄槽12の排出口から排出され、第2のセンサ13を介して三方弁14に送られる。三方弁14に送られた洗浄液は、該三方弁の制御により、廃棄処分されるべく廃液処理装置(図示せず)へ送られるか、もしくは再利用するためのタンク15へ送られる。
第2のセンサ13は、洗浄槽12から排出された洗浄液に含まれるパーティクルの量を示す信号(パーティクル量の増加に伴い信号強度が低減する信号)を終了判定部20へ出力する。
【0019】
次に、第1のセンサ11からの信号と第2のセンサ13からの信号とを受ける終了判定部20の動作を図2のフローと図3の信号強度を示すグラフとに沿って説明する。
終了判定部20は、各センサ11および13からの信号を取得する(ステップS11)。第1のセンサ11からの信号強度を時系列に示すグラフが図3(a)に示されている。図3(a)のグラフに示されているように、該洗浄時間の経過に伴い、循環利用される洗浄液の信号強度が次第に低減した後、ある期間を過ぎると一定の強度を保持する。
【0020】
一方、第2のセンサ13からの信号強度を時系列に示すグラフが図3(b)に示されている。図3(b)のグラフに示されているように、洗浄時間の経過に伴い、図3(a)のグラフより急激に信号強度が低減する。これは、第1のセンサ11からの信号は、循環利用される洗浄液をフィルタ17で濾し、かつ新規な洗浄液で希釈した後のパーティクルの量を示しているのに対し、第2のセンサ13からの信号は、濾過も希釈もされていない洗浄直後の洗浄液に含まれるパーティクルの量を示しているからである。また、図3(b)のグラフが次第に上昇するのは、前回測定した単位量あたりのパーティクル量よりも、付着物が半導体装置から洗浄されつつも濾過され希釈されたことにより今回測定した単位量あたりのパーティクル量が低減したことにより、洗浄液の汚染状態が改善されているからである。この汚染状態が所定の状態まで改善されたところで希釈を中止すると、フィルタ17の濾過規格よりも微細なパーティクルが含まれる洗浄液で洗浄処理が行われる。このとき、半導体装置から洗浄すべき付着物が取り除かれていれば、該洗浄液を循環利用しても、新たなパーティクルが発生しないので汚染状態が変化することがない。よって、単位量あたりのパーティクル量が一定となり、第2のセンサ13からの信号強度は一定の値となる。
【0021】
受信した信号が、終了判定部20の比較部21へ送られ、該比較部21は、第1のセンサ11からの信号強度と第2のセンサ13からの信号強度との差を算出する(ステップS12)。この算出結果を時間経過で示すグラフが図3(c)に示されている。
求めた信号強度の差が比較部21から判定部22へ送られ、該判定部22は、図3(c)のa′に示されているように、求めた信号強度の差と予め保持する閾値とを比較し、信号強度差が閾値以下であるか否かを判定し(ステップS13)、この判定で信号強度差が閾値以下であるとき、図3(c)のb′に示す時間で洗浄処理の終了と判断する(ステップS14)。一方、判定部22は、求めた差が所定の閾値以上のとき、洗浄処理の継続と判断する(ステップS14)。
判定部22での判定結果が図示しない制御部に送られ、該制御部は判定結果に基づいて洗浄処理の継続制御か洗浄処理の終了制御かの何れか一方の制御を行う。
【0022】
本発明の洗浄装置10によれば、洗浄液で半導体装置を洗浄する前後で、該洗浄液に含まれるパーティクルの量を示す信号の差を求め、求めた差が所定の閾値以下であるとき、洗浄処理の終了と判定することから、使用する洗浄液の成分や、洗浄液の温度毎にサンプルを用意して洗浄処理の終了を見極めるための実験を行う必要がないことから、経済的であり効率的である。
【0023】
〈具体例2〉
具体例1では、閾値を用いて終了判定を行ったが、閾値を用いず終了判定を行う具体例2の洗浄装置30を説明する。
具体例2の洗浄装置30の構成は、図4に示されているように、具体例1と同じ第1のセンサ11と、洗浄槽12と、第2のセンサ13と、三方弁14と、タンク15と、ポンプ16と、フィルタ17と、洗浄液供給タンク18と、具体例1の終了判定部20に代わる終了判定部31とで構成されている。
終了判定部31の構成以外は、前記した具体例1と同じであることから、同じ構成の説明は割愛し、具体例2の特徴である終了判定部31を説明する。
【0024】
具体例2の終了判定部31は、第1のセンサ11からの信号強度と第2のセンサ13からの信号強度との差を求める比較部32と、該比較部32で求めた差に変化が見られないとき、洗浄処理の終了と判定する判定部33とを備える。
比較部32は、前記した具体例1と同じ機能であり、図3(a)のグラフで示される信号強度と、図3(b)のグラフで示される信号強度と差を算出し、図3(c)のグラフで示される算出結果が判定部33へ出力される。
判定部33は、比較部32からの差に対する時間変化を求める。すなわち、所定の時間T1における信号強度をD1、そこからΔT時間経過した信号強度をD2とすると、ΔTでの信号強度の変化量dD1は、次の式で表すことができる。
dD1=(D2−D1)/(ΔT)
【0025】
dD1の値は、ΔT時間における信号強度差の変化量を示しており、dD1が大きければ、ΔT時間における信号強度差の変化量が大きくなり、dD1が小さければ、ΔT時間における信号強度差の変化量が小さい。判定部33は、この変化量が0のとき、つまり信号強度差の変化がなくなったとき、洗浄処理の終了と判定する。すなわち、図7のグラフに示すように、第1のセンサ11から出力するパーティクルの量を示す信号強度と、第2のセンサ13から出力するパーティクルの量を示す信号強度との差に変化が見られないとき、洗浄処理の終了(図7のb′に対応)と判定する。
【0026】
前記した具体例2の洗浄装置30によれば、洗浄液で半導体装置を洗浄する前後で、該洗浄液に含まれるパーティクルの量を示す信号の差を求め、求めた差に変化が見られないとき、洗浄処理の終了と判定することから、付着物の量、付着物の成分、洗浄液の成分、洗浄液の温度、および洗浄物の個数など多種多様な条件毎にサンプルを用意して、洗浄処理の終了を見極めるための実験を行う必要がなく、経済的かつ効率的である。
【0027】
〈具体例3〉
前記した具体例の第1のセンサ11および第2のセンサ13は、洗浄液に含まれる単位量あたりのパーティクル量を示す信号を出力したが、これに代えて例えば、洗浄液の過酸化水素水の濃度、つまりpH値を示す信号を出力するセンサを用いる構成であってもよい。
例えば、半導体装置に付着する付着物が鉄であり、洗浄液が硫酸であるとき、鉄は硫酸と反応する。この時の反応式は、以下のように書き表すことができる。
Fe+HSO(液中では、2H+SO −2) → FeSO+H
つまり、鉄と硫酸が反応した場合、水素が発生し、液中のH濃度(pH)が減少する。
従って、洗浄前のpH値を示す信号強度と洗浄後のpH値を示す信号強度との差を求め、該信号強度差が所定の閾値以下のとき、または該信号強度差に変化が見られないとき、洗浄処理の終了と判断する。これにより、多くのサンプルを用意して実験を行い、洗浄処理の終了を見極める必要がなく、実験のための費用と時間とを低減することができ、経済的であり効率的である。
【0028】
〈具体例4〉
更に、前記したpH値を示す信号に基づいて終了を判定する以外に、洗浄液の成分を示す信号に基づいて、洗浄処理の終了を判定してもよい。洗浄液の成分を検出するセンサが特開平6−331541号公報に開示されている。該センサは、洗浄液に照射した光源の透過光強度信号から各波長の光の吸光度を演算するとともに、演算した各波長の光の吸光度と多量解析法により予め求めた検量線式に基づいて洗浄液の成分を測定する。具体例4の洗浄装置は、被洗浄物を洗浄する前の洗浄液の成分を測定する第1のセンサと、洗浄した後の洗浄液の成分を検出する第2のセンサとの光源を共用する測定装置40を備えることを特徴とする。
測定装置40以外の構成は、前記した具体例と同じであることからその説明を割愛し、本発明の測定装置40の特徴を示すブロック図を用いて、該測定装置を説明する。
【0029】
測定装置40は、図5に示されているように第1のセンサ41と、第2のセンサ42と、各センサ41および42に供給する光源を発生する光源部43と、該光源部43からの光源を第1のセンサ41および第2のセンサ42で共用するための共用部44とを備える。光源部43からの光源の光路46は、プリズムやミラーや光ファイバーなどにより形成され、該光路46が光源部43からの光を各センサに設けられた受光部47もしくは48に向かって定められている。
受光部47および48は、光源が洗浄液を透過する吸光度を測定し、その測定値を図示しない演算部に出力する。測定値に基づいて演算部は演算を行い、演算結果を洗浄液の成分を示す信号として前記した具体例の終了判定部へ出力する。
【0030】
共用部44は、光源部43からの光、つまり光路が第1のセンサ41の受光部47もしくは第2のセンサ42の受光部48の何れか一方へ向かうように選択的に切り替えるべく、例えば光路を制御可能なミラーやプリズムなどにより光の反射角度を調整したり、光源を受け入れた光ファイバーの出力端を、何れか一方の受光部へ光路が向かうように向きを変えたりする機能を有する。これにより、第1のセンサ41の受光部47、もしくは第2のセンサ42の受光部48へ光路を選択的に変更することができることから、センサ毎に光源部を設ける必要がなく、測定装置40の簡素化を図ることができる。
更に、第1のセンサ41および第2のセンサ42は同じ光源を用いて測定を行うことから、光源の違いで生じる光強度の差を補正する必要がなく、洗浄前の洗浄液と洗浄後の洗浄液との成分差を正確に測定することができる。
【0031】
前記したように、第1のセンサ41と第2のセンサ42で光源を共有する共用部44を設けた測定装置を洗浄装置に備えることにより、洗浄前の洗浄液と洗浄後の洗浄液との成分差を正確に測定することができることから、該測定結果に基づいて終了判定を正確に行うことができる。
【0032】
〈具体例5〉
次に、光源を共用する共用部44に代えて光源を均等に分配する分配部51を設けた測定装置50を図を用いて説明する。
測定装置50は、図6に示されているように、第1のセンサ41と、第2のセンサ42と、各センサ41および42に供給する光源を発生する光源部43と、該光源部43からの光源を第1のセンサ41および第2のセンサ42に分配するための分配部51とを備える。
【0033】
分配部51は、光源部43からの光源の光路49を第1のセンサ41の受光部47と第2のセンサ42の受光部とに分配すべく、例えば光ファイバー内を伝送する光を分岐するためのプリズムや、半透過型プリズムに照射されて分岐した光の光路を変えるためのミラーなどで構成される。
分配部51は、光源部43からの光源の光路49上に設けられており、分配部51は、前記光源を均等に分配し、図6に示されているように分配された一方の光路49′を第1のセンサ41の受光部47へ向かって定め、分配された他方の光路49″を第2のセンサ42の受光部48へ向かって定める。
これにより、センサ毎に光源部を設けなくてもよく、測定装置40の簡素化を図ることができる。また、光源の違いで生じる光強度の差を補正する必要がなく、洗浄前の洗浄液と洗浄後の洗浄液との成分差を正確に測定することができる。更に、光源からの光を分光することにより、各センサ41および42に継続的に光源を供給することができることから、連続的に洗浄液の成分を測定することができる。
【0034】
前記したように、第1のセンサ41および第2のセンサ42へ光源を均等に分配する分配部51を設けた測定装置を洗浄装置に備えることにより、洗浄前の洗浄液と洗浄後の洗浄液との成分差を正確かつ連続的に測定することができることから、該測定結果に基づいて終了判定を正確、かつ速やかに行うことができる。
【0035】
前記した具体例の各センサから出力される信号強度は、図3(a)および図3(b)に示したように、洗浄液の汚染状態の悪化に伴って信号強度が低減する例で説明したが、これに限ることなく、例えば図8(a)および図8(b)に示すように、各センサは、汚染状態の悪化に伴って信号強度が増大するような信号を出力してもよく、該各センサからの信号を受ける終了判定部の比較部は、図8(c)に示されているように、汚染状態の悪化に伴って増大する信号強度に基づいて、その差を取得してもよい。
【0036】
【発明の効果】
本発明の洗浄終了判定方法および洗浄装置によれば、被洗浄物に付着する付着物を洗浄する前の洗浄液の汚染状態を示す信号と、洗浄後の洗浄液の汚染状態を示す信号との差を求め、求めた差が所定の閾値以下のとき、もしくは求めた差に変化が見られないとき、洗浄処理の終了と判定することにより、様々な条件を再現するための多くのサンプルを用意して実験を行い、洗浄処理の終了を見極める必要がないことから、実験のための費用と時間とを低減することができ、経済的かつ作業効率を向上することができる。
【図面の簡単な説明】
【図1】具体例1の洗浄装置を示すブロック図である。
【図2】終了判定部の動作フローを示す図である。
【図3】(a)第1のセンサから出力される信号強度を示すグラフである。
(b)第2のセンサから出力される信号強度を示すグラフである。
(c)信号強度差の時間変化を示すグラフである。
【図4】具体例2の洗浄装置を示すブロック図である。
【図5】具体例4の測定装置の特徴を示すブロック図である。
【図6】具体例5の測定装置の特徴を示すブロック図である。
【図7】信号強度差の時間微分を示すグラフである。
【図8】(a)汚染状態の悪化に伴って信号強度が増大する第1のセンサから出力される信号強度を示すグラフである。
(b)汚染状態の悪化に伴って信号強度が増大する第2のセンサから出力される信号強度を示すグラフである。
(c)汚染状態の悪化に伴って信号強度が増大する信号強度の差を時間変化と共に示したグラフである。
【符号の説明】
10 洗浄装置
11 第1のセンサ
12 洗浄槽
13 第2のセンサ
14 三方弁
15 タンク
16 ポンプ
17 フィルタ
18 洗浄液供給タンク
20 終了判定部
21 比較部
22 判定部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cleaning process for cleaning adhered substances in the manufacture of a semiconductor device, and more particularly to a cleaning end determination method and a cleaning apparatus for a cleaning process.
[0002]
[Prior art]
In the process of manufacturing a semiconductor device such as a semiconductor integrated circuit or a liquid crystal display circuit, the semiconductor device (hereinafter simply referred to as an object to be cleaned) is subjected to an etching process using a resist to perform pattern processing or an ashing process called ashing. Patent Document 1, Patent Document 2, and Patent Document 3 disclose a method for cleaning the deposits adhering to (hereinafter, referred to as).
Patent Document 1 discloses that the concentration of gas generated by cleaning an object to be cleaned with a cleaning liquid is measured, and the measured value is compared with a predetermined value to determine the end of the cleaning process. Patent Document 2 discloses a method of cleaning an object to be cleaned by circulating the cleaning liquid, counting the number of particles of the adhered substance peeled off from the object to be cleaned, and comparing and determining the count value with a predetermined value. It is disclosed that the end of the processing is determined.
[0003]
Further, Patent Document 3 measures the concentration of hydrogen peroxide generated by cleaning an object to be cleaned using a gas having a cleaning function, and compares the measured value with a predetermined value to terminate the cleaning process. It discloses discriminating.
[0004]
[Patent Document 1]
JP-A-6-168929 [Patent Document 2]
JP-A-10-321589 [Patent Document 3]
JP-A-8-236494 [0005]
[Problems to be solved by the invention]
In the above-described method of determining the end of the cleaning process, the end of the cleaning process is determined by comparing the measured value with a predetermined value, that is, a reference value for completing the cleaning.
Therefore, the reference value needs to be determined based on various conditions, for example, the amount of the deposit, the component of the deposit, the component of the cleaning liquid, the temperature of the cleaning liquid, and the number of the objects to be cleaned collectively. Therefore, it was necessary to repeat the experiment for determining the end of the cleaning process using many samples for determining the reference value for each of various conditions.
[0006]
Accordingly, it is an object of the present invention to provide a cleaning end determination method capable of determining the end of a cleaning process without repeating an experiment, and a cleaning apparatus employing the cleaning end determination method.
[0007]
[Means for Solving the Problems]
The present invention employs the following configuration to solve the above points.
The cleaning end determination method of the present invention is a method of determining the end of a cleaning process for removing adhered substances adhered to an object to be cleaned using the circulating cleaning liquid, before and after cleaning the object to be cleaned with a cleaning liquid. The method is characterized in that a difference between the contaminated states of the cleaning liquid is obtained, and when the obtained difference is equal to or smaller than a predetermined threshold value, it is determined that the cleaning process is completed.
[0008]
The cleaning end determination method of the present invention is a method of determining the end of a cleaning process for removing adhered substances on an object to be cleaned using a cleaning liquid to be circulated, and before and after cleaning the object to be cleaned with the cleaning liquid. The method is characterized in that the difference in the state of contamination of the cleaning liquid is obtained, and when no change is found in the obtained difference, it is determined that the cleaning process has been completed.
[0009]
The contamination state is an amount of a residue contained in the cleaning liquid.
The contamination state is a pH value of the cleaning liquid.
The contamination state is a component ratio of the cleaning liquid.
[0010]
The cleaning device of the present invention is a cleaning device that removes deposits adhering to an object to be cleaned by using a cleaning solution that is circulated, and generates a signal indicating a contamination state of the cleaning solution before cleaning the object to be cleaned. A first sensor, a second sensor for generating a signal indicating a contaminated state of the cleaning liquid after cleaning the object to be cleaned, a signal from the first sensor, and a signal from the second sensor. And an end determination unit that determines that the cleaning process has ended when the obtained difference is equal to or smaller than a predetermined threshold value.
[0011]
The cleaning apparatus of the present invention is a cleaning apparatus that removes deposits adhered to an object to be cleaned by using a circulating cleaning liquid, and outputs a signal indicating a contamination state of the cleaning liquid before cleaning the object to be cleaned. A first sensor, a second sensor that outputs a signal indicating a state of contamination of the cleaning liquid with the liquid that has cleaned the object to be cleaned, a signal from the first sensor, and a signal from the second sensor. And an end determination unit that determines that the cleaning process has ended when no change is found in the obtained difference.
[0012]
The first sensor and the second sensor output a signal indicating an amount of a residue contained in the cleaning liquid.
The first sensor and the second sensor output a signal indicating a pH value of the cleaning liquid.
The first sensor and the second sensor output a signal indicating a component ratio of the cleaning liquid.
[0013]
The first sensor and the second sensor are measuring devices that output a signal indicating a contamination state based on the intensity of light from a light source, and the measuring device controls the light source with the first sensor. And a second light source shared by the light source and the second sensor.
The first sensor and the second sensor are measurement devices that output a signal indicating a contamination state based on the intensity of light from a light source, and the measurement device includes the first sensor and the second sensor. A light source distribution unit that evenly distributes the light source to the two sensors.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
<Specific example 1>
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the cleaning device 10 of the present invention includes a first sensor 11 for measuring the amount of dust particles included in the circulating cleaning liquid, and a first sensor 11 for measuring the amount of particles. The cleaning liquid after the cleaning is supplied and the cleaning tank 12 for cleaning the semiconductor device to be cleaned, and the second sensor 13 for measuring the amount of particles contained in the cleaning liquid discharged from the cleaning tank 12 A three-way valve 14 for discarding or circulating the cleaning liquid measured by the sensor, a tank 15 for storing a cleaning liquid to be circulated and used by controlling the three-way valve 14, and a pump for pumping the cleaning liquid in the tank 15. Pump 16, a filter 17 for filtering particles contained in the cleaning liquid pumped by the pump 16, and a new cleaning liquid for diluting the cleaning particles passing through the filter 17. And a cleaning liquid supply tank 18 to stockpile, the structure of which are connected in a circular pipe.
Further, the cleaning device 10 of the present invention includes an end determination unit 20 that determines the end of the cleaning process based on signals output from each of the first sensor 11 and the second sensor 13.
[0015]
The cleaning liquid is, for example, a chemical such as “ST-106” (trade name, manufactured by Tokyo Ohka Kogyo Co., Ltd.). By providing the cleaning device 10 with a temperature adjusting section for appropriately adjusting the temperature of the chemical solution, the cleaning efficiency can be improved.
Each of the first sensor 11 and the second sensor 13 has a function of measuring the amount of particles contained in a predetermined amount of the cleaning liquid and outputting an electric signal corresponding to the measured amount. The signal level (signal intensity) to be output decreases with an increase in the amount of particles contained in.
The cleaning tank 12 is a tank for storing a semiconductor device to be cleaned with a cleaning liquid. The number of semiconductor devices to be stored may be one or more. A part or the whole of the stored semiconductor device is immersed in the cleaning liquid. Is done. By providing a flow portion in the cleaning tank 12 for flowing the cleaning liquid in the cleaning tank 12, the cleaning effect can be improved. The same effect can be obtained by providing a swing unit for swinging the semiconductor device immersed in the washing tank 12 in the washing tank 12.
The cleaning tank 12 is not limited to the bath type in which the semiconductor device is immersed in the cleaning liquid, but may be a spray type in which the cleaning liquid is sprayed on the semiconductor device.
[0016]
The filter 17 cleans the semiconductor device with a cleaning liquid to remove deposits that are separated from the semiconductor device, that is, a resist piece used for patterning and a substance piece generated by ashing called ashing. It has a function to do. Fine particles that cannot be completely removed by the filter 17 are contained in the cleaning liquid that is circulated and used as particles, and a signal indicating the amount of the particles is output by the first sensor 11 and the second sensor 13 described above.
[0017]
The cleaning liquid supply tank 18 stores a new cleaning liquid. By supplying the cleaning liquid in the tank 18 to the cleaning liquid containing particles, the amount of particles per unit amount can be reduced, and the cleaning liquid contaminated with particles can be reduced. The pollution state can be improved.
Each of the tank 15, the pump 16, the filter 17, and the cleaning liquid supply tank 18 ranges from a first sensor 11 for counting the number of particles of the cleaning liquid to a second sensor 13 for counting the number of particles of the cleaning liquid cleaned in the cleaning tank 12. As long as it is not between the pipes, it may be arranged at any place between the pipes for circulating use.
The end determination unit 20 includes a comparison unit 21 that calculates a difference between the signal strength output from the first sensor 11 and the signal strength output from the second sensor 13, and a difference between the signal strengths calculated by the comparison unit 21. Is smaller than or equal to a predetermined threshold, and a determination unit 22 that determines that the cleaning process has been completed.
[0018]
Next, the operation of the cleaning apparatus 10 of the present invention will be described.
The circulating cleaning liquid held in the tank 15 is pumped through the filter 17 by the pump 16. At this time, a new cleaning liquid held in the cleaning liquid supply tank 18 is supplied to the cleaning liquid to be fed under pressure. The supplied new cleaning liquid improves the state of contamination of the circulating cleaning liquid, that is, dilutes the concentration of the amount of particles contained per unit amount. The first sensor 11 outputs a signal indicating the particles contained in the cleaning liquid (a signal in which the signal intensity decreases as the amount of the particles increases) to the end determination unit 20 with respect to the cleaning liquid that is circulated. The cleaning liquid having passed through the first sensor 11 is poured into a cleaning tank 12 containing a semiconductor device as an object to be cleaned. When the semiconductor device accommodated in the cleaning tank 12 is exposed to the cleaning liquid, a substance attached to the semiconductor device is separated. The exfoliated matter is contained in the cleaning liquid as particles, and the cleaning liquid is discharged from the discharge port of the cleaning tank 12 and sent to the three-way valve 14 via the second sensor 13. The washing liquid sent to the three-way valve 14 is sent to a waste liquid treatment device (not shown) to be discarded or sent to a tank 15 for reuse by controlling the three-way valve.
The second sensor 13 outputs to the end determination unit 20 a signal indicating the amount of particles contained in the cleaning liquid discharged from the cleaning tank 12 (a signal in which the signal intensity decreases as the amount of particles increases).
[0019]
Next, the operation of the end determination unit 20 that receives the signal from the first sensor 11 and the signal from the second sensor 13 will be described with reference to the flow of FIG. 2 and the graph showing the signal strength of FIG.
The end determination unit 20 acquires signals from the sensors 11 and 13 (Step S11). FIG. 3A is a graph showing the signal intensity from the first sensor 11 in time series. As shown in the graph of FIG. 3A, the signal intensity of the circulating cleaning liquid gradually decreases as the cleaning time elapses, and then maintains a constant intensity after a certain period.
[0020]
On the other hand, a graph showing the signal intensity from the second sensor 13 in time series is shown in FIG. As shown in the graph of FIG. 3B, the signal intensity decreases more rapidly with the elapse of the cleaning time than in the graph of FIG. This is because the signal from the first sensor 11 indicates the amount of particles after the circulating cleaning liquid is filtered by the filter 17 and diluted with the new cleaning liquid, whereas the signal from the second sensor 13 is Is indicative of the amount of particles contained in the cleaning liquid immediately after the cleaning, which has not been filtered or diluted. In addition, the graph of FIG. 3B gradually increases because the unit amount measured this time because the attached matter is filtered and diluted while being washed from the semiconductor device than the particle amount per unit amount measured last time. This is because the contamination amount of the cleaning liquid is improved by reducing the amount of particles per unit. If the dilution is stopped when the contaminated state is improved to a predetermined state, the cleaning process is performed using a cleaning liquid containing particles finer than the filtration standard of the filter 17. At this time, if the deposit to be cleaned has been removed from the semiconductor device, even if the cleaning liquid is recycled, no new particles are generated, so that the contamination state does not change. Therefore, the amount of particles per unit amount is constant, and the signal intensity from the second sensor 13 has a constant value.
[0021]
The received signal is sent to the comparison unit 21 of the termination determination unit 20, and the comparison unit 21 calculates the difference between the signal intensity from the first sensor 11 and the signal intensity from the second sensor 13 (step S12). FIG. 3C shows a graph showing the result of the calculation over time.
The obtained difference in signal strength is sent from the comparing section 21 to the determination section 22, and the determination section 22 previously holds the obtained difference in signal strength as shown by a 'in FIG. 3 (c). By comparing the signal strength difference with the threshold value, it is determined whether or not the signal strength difference is equal to or less than the threshold value (step S13). It is determined that the cleaning process has been completed (step S14). On the other hand, when the obtained difference is equal to or larger than the predetermined threshold, the determination unit 22 determines that the cleaning process is to be continued (Step S14).
The determination result of the determination unit 22 is sent to a control unit (not shown), and the control unit performs one of control of continuation control of the cleaning process and control of termination of the cleaning process based on the determination result.
[0022]
According to the cleaning apparatus 10 of the present invention, before and after cleaning the semiconductor device with the cleaning liquid, a difference between signals indicating the amount of particles contained in the cleaning liquid is determined. When the determined difference is equal to or smaller than a predetermined threshold, the cleaning process is performed. It is economical and efficient because there is no need to prepare a sample for each component of the cleaning solution to be used or the temperature of the cleaning solution and perform an experiment to determine the end of the cleaning process. .
[0023]
<Specific example 2>
Although the end determination is performed using the threshold value in the specific example 1, the cleaning device 30 according to the specific example 2 that determines the end without using the threshold value will be described.
As shown in FIG. 4, the configuration of the cleaning device 30 of the specific example 2 includes the same first sensor 11, cleaning tank 12, second sensor 13, three-way valve 14, The tank 15, the pump 16, the filter 17, the cleaning liquid supply tank 18, and an end determination unit 31 that replaces the end determination unit 20 of the first embodiment.
Except for the configuration of the end determination unit 31, the configuration is the same as that of the specific example 1 described above. Therefore, the description of the same configuration is omitted, and the end determination unit 31 which is a feature of the specific example 2 is described.
[0024]
The end determination unit 31 of the specific example 2 includes a comparison unit 32 that calculates a difference between the signal intensity from the first sensor 11 and the signal intensity from the second sensor 13, and a change in the difference calculated by the comparison unit 32. A determination unit that determines that the cleaning process is to be terminated when not being seen;
The comparison unit 32 has the same function as that of the first embodiment, and calculates a difference between the signal strength shown in the graph of FIG. 3A and the signal strength shown in the graph of FIG. The calculation result shown in the graph of (c) is output to the determination unit 33.
The determination unit 33 obtains a time change with respect to the difference from the comparison unit 32. That is, assuming that the signal strength at a predetermined time T1 is D1 and the signal strength at which ΔT time has elapsed therefrom is D2, the variation dD1 of the signal strength at ΔT can be expressed by the following equation.
dD1 = (D2-D1) / (ΔT)
[0025]
The value of dD1 indicates the amount of change in the signal intensity difference at the time ΔT. If the value of dD1 is large, the amount of change of the signal intensity difference at the time ΔT is large. The amount is small. When the change amount is 0, that is, when there is no change in the signal intensity difference, the determination unit 33 determines that the cleaning process is completed. That is, as shown in the graph of FIG. 7, a change is observed in the difference between the signal intensity indicating the amount of particles output from the first sensor 11 and the signal intensity indicating the amount of particles output from the second sensor 13. If not, it is determined that the cleaning process is completed (corresponding to b 'in FIG. 7).
[0026]
According to the cleaning apparatus 30 of the above-described specific example 2, before and after cleaning the semiconductor device with the cleaning liquid, a difference between signals indicating the amount of particles contained in the cleaning liquid is obtained. When no change is found in the obtained difference, Since it is determined that the cleaning process is completed, a sample is prepared for each of a variety of conditions such as the amount of the deposit, the components of the deposit, the components of the cleaning solution, the temperature of the cleaning solution, and the number of the cleaning products, and the cleaning process is completed It is economical and efficient because there is no need to perform experiments to determine
[0027]
<Specific example 3>
The first sensor 11 and the second sensor 13 of the specific example described above output a signal indicating the amount of particles per unit amount contained in the cleaning liquid. Alternatively, for example, the concentration of the hydrogen peroxide solution in the cleaning liquid may be changed. That is, a configuration using a sensor that outputs a signal indicating the pH value may be used.
For example, when the deposit attached to the semiconductor device is iron and the cleaning solution is sulfuric acid, the iron reacts with sulfuric acid. The reaction equation at this time can be written as follows.
Fe + H 2 SO 4 (in the liquid, 2H + + SO 4 -2) → FeSO 4 + H 2
That is, when iron reacts with sulfuric acid, hydrogen is generated, and the H + concentration (pH) in the liquid decreases.
Therefore, the difference between the signal strength indicating the pH value before washing and the signal strength indicating the pH value after washing is determined, and when the signal strength difference is equal to or less than a predetermined threshold value, or the signal strength difference does not change. At this time, it is determined that the cleaning process is completed. Thereby, it is not necessary to prepare many samples and conduct an experiment to determine the end of the washing process, and it is possible to reduce the cost and time for the experiment, which is economical and efficient.
[0028]
<Specific example 4>
Further, in addition to determining the end based on the signal indicating the pH value, the end of the cleaning process may be determined based on the signal indicating the component of the cleaning liquid. A sensor for detecting the components of the cleaning liquid is disclosed in Japanese Patent Application Laid-Open No. Hei 6-331541. The sensor calculates the absorbance of light of each wavelength from the transmitted light intensity signal of the light source irradiated to the cleaning liquid, and calculates the absorbance of each wavelength of light and the calculated amount of light of the cleaning liquid based on the calibration curve equation obtained in advance by the mass analysis method. Measure the components. The cleaning device according to the fourth embodiment is a measuring device that shares a light source with a first sensor that measures a component of a cleaning solution before cleaning an object to be cleaned and a second sensor that detects a component of the cleaning solution after cleaning. 40 is provided.
Since the configuration other than the measuring device 40 is the same as that of the above-described specific example, the description thereof will be omitted, and the measuring device will be described using a block diagram showing the characteristics of the measuring device 40 of the present invention.
[0029]
As shown in FIG. 5, the measuring device 40 includes a first sensor 41, a second sensor 42, a light source unit 43 that generates a light source to be supplied to each of the sensors 41 and 42, and a light source unit 43. And a common unit 44 for sharing the light source with the first sensor 41 and the second sensor 42. The optical path 46 of the light source from the light source unit 43 is formed by a prism, a mirror, an optical fiber, or the like, and the optical path 46 is set so that the light from the light source unit 43 is directed toward the light receiving unit 47 or 48 provided in each sensor. .
The light receiving units 47 and 48 measure the absorbance at which the light source passes through the cleaning liquid, and output the measured values to a calculation unit (not shown). The calculation unit performs calculation based on the measured value, and outputs the calculation result as a signal indicating the component of the cleaning liquid to the end determination unit in the above-described specific example.
[0030]
The common unit 44 selectively switches the light from the light source unit 43, that is, the optical path to one of the light receiving unit 47 of the first sensor 41 and the light receiving unit 48 of the second sensor 42, for example, the optical path. It has a function of adjusting the reflection angle of light by a mirror or a prism capable of controlling the wavelength, or changing the output end of the optical fiber that has received the light source so that the optical path is directed to one of the light receiving units. Accordingly, the optical path can be selectively changed to the light receiving unit 47 of the first sensor 41 or the light receiving unit 48 of the second sensor 42. Therefore, it is not necessary to provide a light source unit for each sensor, and the measuring device 40 Can be simplified.
Further, since the first sensor 41 and the second sensor 42 perform measurement using the same light source, there is no need to correct the difference in light intensity caused by the difference between the light sources, and the cleaning solution before cleaning and the cleaning solution after cleaning. Can be accurately measured.
[0031]
As described above, by equipping the cleaning device with the measuring device provided with the common unit 44 that shares the light source between the first sensor 41 and the second sensor 42, the component difference between the cleaning liquid before cleaning and the cleaning liquid after cleaning is provided. Can be accurately measured, so that the end determination can be accurately performed based on the measurement result.
[0032]
<Example 5>
Next, a measuring device 50 provided with a distribution unit 51 for uniformly distributing the light sources instead of the common unit 44 for sharing the light sources will be described with reference to the drawings.
As shown in FIG. 6, the measuring device 50 includes a first sensor 41, a second sensor 42, a light source 43 for generating a light source to be supplied to each of the sensors 41 and 42, And a distribution unit 51 for distributing the light source from the first sensor 41 and the second sensor 42.
[0033]
The distribution unit 51 distributes the light path 49 of the light source from the light source unit 43 to the light receiving unit 47 of the first sensor 41 and the light receiving unit of the second sensor 42, for example, to split light transmitted through an optical fiber. , And a mirror for changing the optical path of the light radiated to the transflective prism and branched.
The distribution unit 51 is provided on the light path 49 of the light source from the light source unit 43, and the distribution unit 51 distributes the light source uniformly, and as shown in FIG. ′ Is defined toward the light receiving portion 47 of the first sensor 41, and the other distributed optical path 49 ″ is defined toward the light receiving portion 48 of the second sensor 42.
Thus, the light source unit does not need to be provided for each sensor, and the measurement device 40 can be simplified. Further, there is no need to correct the difference in light intensity caused by the difference in light source, and the component difference between the cleaning liquid before cleaning and the cleaning liquid after cleaning can be accurately measured. Further, by separating the light from the light source, the light source can be continuously supplied to each of the sensors 41 and 42, so that the components of the cleaning liquid can be continuously measured.
[0034]
As described above, by equipping the cleaning device with the measuring device provided with the distribution unit 51 for uniformly distributing the light source to the first sensor 41 and the second sensor 42, the cleaning liquid before cleaning and the cleaning liquid after cleaning can be used. Since the component difference can be measured accurately and continuously, the termination determination can be performed accurately and promptly based on the measurement result.
[0035]
As shown in FIGS. 3A and 3B, the signal intensity output from each sensor in the specific example described above has been described in the example in which the signal intensity decreases as the contamination state of the cleaning liquid worsens. However, the present invention is not limited to this. For example, as shown in FIGS. 8A and 8B, each sensor may output a signal whose signal strength increases with the deterioration of the contamination state. As shown in FIG. 8 (c), the comparison unit of the termination determination unit that receives the signal from each sensor acquires the difference based on the signal strength that increases with the deterioration of the contamination state. You may.
[0036]
【The invention's effect】
According to the cleaning end determination method and the cleaning apparatus of the present invention, the difference between the signal indicating the contamination state of the cleaning liquid before cleaning the adhered substance adhering to the object to be cleaned and the signal indicating the contamination state of the cleaning liquid after cleaning is determined. When the obtained difference is equal to or less than a predetermined threshold, or when there is no change in the obtained difference, by determining that the cleaning process has been completed, many samples for reproducing various conditions are prepared. Since there is no need to conduct an experiment to determine the end of the washing process, the cost and time for the experiment can be reduced, and the economy and work efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a cleaning apparatus according to a first embodiment.
FIG. 2 is a diagram illustrating an operation flow of an end determination unit.
FIG. 3A is a graph showing a signal intensity output from a first sensor.
(B) A graph showing the signal intensity output from the second sensor.
(C) is a graph showing a time change of a signal intensity difference.
FIG. 4 is a block diagram illustrating a cleaning apparatus according to a second embodiment.
FIG. 5 is a block diagram showing characteristics of the measuring device of Example 4;
FIG. 6 is a block diagram showing the characteristics of the measuring device of Example 5.
FIG. 7 is a graph showing a time derivative of a signal intensity difference.
FIG. 8A is a graph showing the signal intensity output from the first sensor whose signal intensity increases with the deterioration of the contamination state.
(B) It is a graph which shows the signal intensity outputted from the 2nd sensor whose signal intensity increases with the deterioration of a contamination state.
(C) is a graph showing a difference in signal intensity with an increase in signal intensity with deterioration of the contamination state with time.
[Explanation of symbols]
Reference Signs List 10 cleaning device 11 first sensor 12 cleaning tank 13 second sensor 14 three-way valve 15 tank 16 pump 17 filter 18 cleaning liquid supply tank 20 end determination unit 21 comparison unit 22 determination unit

Claims (12)

循環利用する洗浄液を用いて被洗浄物に付着する付着物を取り除く洗浄処理の終了を判定する方法において、
前記被洗浄物を前記洗浄液により洗浄する前後の該洗浄液の汚染状態の差を取得すること、
取得した差が所定の閾値以下のとき、洗浄処理の終了と判定することを特徴とする洗浄終了判定方法。
In the method of determining the end of the cleaning process to remove the adhered substance to the object to be cleaned using the cleaning liquid to be circulated,
Acquiring the difference between the state of contamination of the cleaning liquid before and after cleaning the object to be cleaned with the cleaning liquid,
When the obtained difference is equal to or less than a predetermined threshold value, it is determined that the cleaning process is completed.
循環利用する洗浄液を用いて被洗浄物に付着する付着物を取り除く洗浄処理の終了を判定する方法において、
前記被洗浄物を前記洗浄液により洗浄する前後の該洗浄液の汚染状態の差を取得すること、
取得した差に変化が見られないとき、洗浄処理の終了と判定することを特徴とする洗浄終了判定方法。
In the method of determining the end of the cleaning process to remove the adhered substance to the object to be cleaned using the cleaning liquid to be circulated,
Acquiring the difference between the state of contamination of the cleaning liquid before and after cleaning the object to be cleaned with the cleaning liquid,
When no change is found in the acquired difference, it is determined that the cleaning process has been completed.
前記汚染状態は、前記洗浄液に含まれる残渣物の量であることを特徴とする請求項1および請求項2記載の洗浄終了判定方法。The method according to claim 1, wherein the contamination state is an amount of a residue contained in the cleaning liquid. 前記汚染状態は、前記洗浄液のpH値であることを特徴とする請求項1および請求項2記載の洗浄終了判定方法。The method according to claim 1, wherein the contamination state is a pH value of the cleaning liquid. 前記汚染状態は、前記洗浄液の成分比であることを特徴とする請求項1および請求項2記載の洗浄終了判定方法。The method according to claim 1, wherein the contamination state is a component ratio of the cleaning liquid. 循環利用する洗浄液を用いて、被洗浄物に付着する付着物を取り除く洗浄装置において、
前記被洗浄物を洗浄する前の該洗浄液の汚染状態を示す信号を生成する第1のセンサと、
前記被洗浄物を洗浄した後の該洗浄液の汚染状態を示す信号を生成する第2のセンサと、
前記第1のセンサからの信号と前記第2のセンサからの信号との差を求め、求めた差が所定の閾値以下のとき、洗浄処理の終了と判定する終了判定部と、を備えることを特徴とする洗浄装置。
In a cleaning device that removes deposits attached to an object to be cleaned using a cleaning solution that is circulated,
A first sensor that generates a signal indicating a contamination state of the cleaning liquid before cleaning the object to be cleaned;
A second sensor that generates a signal indicating a state of contamination of the cleaning liquid after cleaning the object to be cleaned;
An end determination unit that determines a difference between a signal from the first sensor and a signal from the second sensor, and determines that the cleaning process is completed when the obtained difference is equal to or less than a predetermined threshold. Characterized cleaning equipment.
循環利用する洗浄液を用いて、被洗浄物に付着する付着物を取り除く洗浄装置において、
前記被洗浄物を洗浄する前の該洗浄液の汚染状態を示す信号を出力する第1のセンサと、
前記被洗浄物を洗浄した液の該洗浄液の汚染状態を示す信号を出力する第2のセンサと、
前記第1のセンサからの信号と前記第2のセンサからの信号との差を求め、求めた差に変化が見られないとき、洗浄処理の終了と判定する終了判定部と、を備えることを特徴とする洗浄装置。
In a cleaning device that removes deposits attached to an object to be cleaned using a cleaning solution that is circulated,
A first sensor that outputs a signal indicating a contamination state of the cleaning liquid before cleaning the object to be cleaned;
A second sensor that outputs a signal indicating a state of contamination of the cleaning liquid with the liquid that has cleaned the object to be cleaned;
An end determination unit that determines a difference between a signal from the first sensor and a signal from the second sensor, and determines that the cleaning process is completed when no change is found in the obtained difference. Characterized cleaning equipment.
前記第1のセンサおよび前記第2のセンサは、前記洗浄液に含まれる残渣物の量を示す信号を出力することを特徴とする請求項6および請求項7記載の洗浄装置。The cleaning device according to claim 6, wherein the first sensor and the second sensor output a signal indicating an amount of a residue contained in the cleaning liquid. 前記第1のセンサおよび前記第2のセンサは、前記洗浄液のpH値を示す信号を出力することを特徴とする請求項6および請求項7記載の洗浄装置。The cleaning apparatus according to claim 6, wherein the first sensor and the second sensor output a signal indicating a pH value of the cleaning liquid. 前記第1のセンサおよび前記第2のセンサは、前記洗浄液の成分比を示す信号を出力することを特徴とする請求項6および請求項7記載の洗浄装置。The cleaning device according to claim 6, wherein the first sensor and the second sensor output a signal indicating a component ratio of the cleaning liquid. 前記第1のセンサおよび前記第2のセンサは、光源からの光の強さに基づいて汚染状態を示す信号を出力する測定装置であって、
該測定装置は、前記光源を前記第1のセンサと前記第2のセンサとに共用するための光源共用部を備えることを特徴とする請求項6および請求項7記載の洗浄装置。
The first sensor and the second sensor are a measurement device that outputs a signal indicating a contamination state based on the intensity of light from a light source,
The cleaning device according to claim 6, wherein the measurement device includes a light source sharing unit for sharing the light source with the first sensor and the second sensor.
前記第1のセンサおよび前記第2のセンサは、光源からの光の強さに基づいて汚染状態を示す信号を出力する測定装置であって、
該測定装置は、前記第1のセンサと前記第2のセンサとに前記光源を均等に分配する光源分配部を備えることを特徴とする請求項6および請求項7記載の洗浄装置。
The first sensor and the second sensor are a measurement device that outputs a signal indicating a contamination state based on the intensity of light from a light source,
The cleaning device according to claim 6, wherein the measurement device includes a light source distribution unit that evenly distributes the light source to the first sensor and the second sensor.
JP2003151890A 2003-05-29 2003-05-29 Method for judging completion of cleaning and cleaning apparatus Abandoned JP2004356356A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003151890A JP2004356356A (en) 2003-05-29 2003-05-29 Method for judging completion of cleaning and cleaning apparatus
US10/854,672 US20040238005A1 (en) 2003-05-29 2004-05-27 Method of judging end of cleaning treatment and device for the cleaning treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151890A JP2004356356A (en) 2003-05-29 2003-05-29 Method for judging completion of cleaning and cleaning apparatus

Publications (1)

Publication Number Publication Date
JP2004356356A true JP2004356356A (en) 2004-12-16

Family

ID=33447774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151890A Abandoned JP2004356356A (en) 2003-05-29 2003-05-29 Method for judging completion of cleaning and cleaning apparatus

Country Status (2)

Country Link
US (1) US20040238005A1 (en)
JP (1) JP2004356356A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449700C (en) * 2005-12-19 2009-01-07 中芯国际集成电路制造(上海)有限公司 Steam drying system and its water draining device and method
US8908733B2 (en) 2009-03-30 2014-12-09 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP2015049395A (en) * 2013-09-02 2015-03-16 信越化学工業株式会社 Production method of resist composition
JP2015054314A (en) * 2013-09-13 2015-03-23 株式会社リコー Cleaning device
KR20190138267A (en) * 2018-06-04 2019-12-12 세메스 주식회사 an apparatus for treating a substrate and Method for treating a substrate

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837556B2 (en) 2003-04-11 2011-12-14 株式会社ニコン Optical element cleaning method in immersion lithography
TW201806001A (en) 2003-05-23 2018-02-16 尼康股份有限公司 Exposure device and device manufacturing method
WO2005122218A1 (en) 2004-06-09 2005-12-22 Nikon Corporation Exposure system and device production method
JP4752473B2 (en) * 2004-12-09 2011-08-17 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
DE102005049473B4 (en) 2005-10-13 2009-08-27 BvL Oberflächentechnik GmbH Surface cleaning apparatus
EP1977835B1 (en) * 2007-04-06 2009-06-24 BvL Oberflächentechnik GmbH Surface cleaning device
US8863763B1 (en) * 2009-05-27 2014-10-21 WD Media, LLC Sonication cleaning with a particle counter
US8404056B1 (en) * 2009-05-27 2013-03-26 WD Media, LLC Process control for a sonication cleaning tank
US9676011B2 (en) * 2011-08-29 2017-06-13 Sealed Air Corporation (Us) Control technique for multistep washing process using a plurality of chemicals
CN104391433A (en) * 2014-12-05 2015-03-04 合肥鑫晟光电科技有限公司 Spraying system and using method thereof
US10512946B2 (en) * 2015-09-03 2019-12-24 Taiwan Semiconductor Manufacturing Co., Ltd. Gigasonic cleaning techniques
US10337101B2 (en) * 2016-12-13 2019-07-02 The Boeing Company System and process for chemical vapor deposition
CA3098886A1 (en) 2018-06-27 2020-01-02 Salvus, Llc System and method for chemical contamination detection and decontamination certification
CN110749730B (en) * 2018-07-23 2023-09-15 深圳市帝迈生物技术有限公司 Sample analysis device and cleaning method thereof
KR20220000409A (en) * 2019-05-23 2022-01-03 램 리써치 코포레이션 Chamber component cleanliness measurement system
CN113267431A (en) * 2021-05-13 2021-08-17 北京北方华创微电子装备有限公司 Particulate matter cleanliness detection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640719A (en) * 1985-07-01 1987-02-03 Petroleum Fermentations N.V. Method for printed circuit board and/or printed wiring board cleaning
US5845660A (en) * 1995-12-07 1998-12-08 Tokyo Electron Limited Substrate washing and drying apparatus, substrate washing method, and substrate washing apparatus
JPH09270385A (en) * 1996-03-29 1997-10-14 Nikon Corp Environmental control device for exposure device
US6241827B1 (en) * 1998-02-17 2001-06-05 Tokyo Electron Limited Method for cleaning a workpiece

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449700C (en) * 2005-12-19 2009-01-07 中芯国际集成电路制造(上海)有限公司 Steam drying system and its water draining device and method
US8908733B2 (en) 2009-03-30 2014-12-09 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
JP2015049395A (en) * 2013-09-02 2015-03-16 信越化学工業株式会社 Production method of resist composition
JP2015054314A (en) * 2013-09-13 2015-03-23 株式会社リコー Cleaning device
KR20190138267A (en) * 2018-06-04 2019-12-12 세메스 주식회사 an apparatus for treating a substrate and Method for treating a substrate
KR102250369B1 (en) * 2018-06-04 2021-05-11 세메스 주식회사 an apparatus for treating a substrate and Method for treating a substrate

Also Published As

Publication number Publication date
US20040238005A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP2004356356A (en) Method for judging completion of cleaning and cleaning apparatus
AU736380B2 (en) A fluorometric method for increasing the efficiency of the rinsing and water recovery process in the manufacture of semiconductor chips
JP2000233020A (en) Washing method and washing device for blood treating device
US20160056061A1 (en) Real time liquid particle counter (lpc) end point detection system
KR20130132277A (en) Ultrasonic cleaning method and ultrasonic cleaning apparatus
JP2006339598A (en) Cleaning arrangement of semiconductor substrate
KR20100048403A (en) Apparatus for sensing flowmeter, and substrate treating apparatus with it and method for controlling alarm
JP4299515B2 (en) Hydrogen water production equipment
JP2005274216A (en) Fouling detection method of sensor, and cleaning method of sensor
JPH11147068A (en) Treatment apparatus and method
JP4253914B2 (en) Gas dissolution cleaning water evaluation device
JPH10143255A (en) Liquid managing device
JP6643710B2 (en) Photoresist component concentration measuring device and concentration measuring method
JPH10244265A (en) Magnetic field treatment device for liquid in piping
JP3559355B2 (en) Liquid particle detection device and processing device
EP2656064B1 (en) Dissolved nitrogen concentration monitoring method and substrate cleaning method
CN117413169A (en) Water quality analysis device
JPH11138113A (en) Method of removing fine particles
JPH10321589A (en) Method for removing residue from wafer
JPH0737857A (en) Treating liquid monitor
KR20210016663A (en) System for removing photoresist having polyimide and recycling filter and method performing thereof
KR0173947B1 (en) Cleaning Solution Concentration Detection Device for Wafer Cleaning System
JP2003033771A (en) Drainage disinfection apparatus having abnormarity detection mechanism
JP2003337127A (en) Ammonia meter
JP2003249488A (en) Plasma processing system and method for fabricating semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20080205