JP2003337127A - Ammonia meter - Google Patents

Ammonia meter

Info

Publication number
JP2003337127A
JP2003337127A JP2002145634A JP2002145634A JP2003337127A JP 2003337127 A JP2003337127 A JP 2003337127A JP 2002145634 A JP2002145634 A JP 2002145634A JP 2002145634 A JP2002145634 A JP 2002145634A JP 2003337127 A JP2003337127 A JP 2003337127A
Authority
JP
Japan
Prior art keywords
sample water
meter
gas
ammonia
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002145634A
Other languages
Japanese (ja)
Other versions
JP4013647B2 (en
Inventor
Miyoko Kusumi
美代子 久住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2002145634A priority Critical patent/JP4013647B2/en
Publication of JP2003337127A publication Critical patent/JP2003337127A/en
Application granted granted Critical
Publication of JP4013647B2 publication Critical patent/JP4013647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precise measurement value with keeping a flow rate always constant. <P>SOLUTION: A flow meter 31 is arranged between an injection pump 11 for sample water and a six-way valve 12. A measurement signal of the flow rate measured with this flow meter 31 is introduced into a controller 32, and therein the measurement signal is arithmetically processed. When the measurement value lowers than a set flow rate from the result of the arithmetic process, the flow rate of the sample water is maintained constant by providing a control signal from the controller 32 to the injection pump 11 to increase the set value of the pump 11. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、FIA法(フロ
ーインジェクション法)・化学発光法を用いたアンモニ
ア計に関するものである。
TECHNICAL FIELD The present invention relates to an ammonia meter using the FIA method (flow injection method) / chemiluminescence method.

【0002】[0002]

【従来の技術】出願人は、浄水原水や工程水などに溶存
するアンモニア性窒素を測定できるアンモニア計を開発
した。このアンモニア計の測定方式は、FIA法・化学
発光法を使用している。
2. Description of the Related Art The applicant has developed an ammonia meter capable of measuring ammoniacal nitrogen dissolved in purified water, process water and the like. The measurement method of this ammonia meter uses the FIA method / chemiluminescence method.

【0003】この測定原理は、試料水中のアンモニアが
試薬(次亜塩素酸ナトリウム)と反応してクロラミンを
生成する。クロラミンは、気液分離管で気相へ移り、気
体として加熱酸化炉内で一酸化窒素NOとなる。その
後、一酸化窒素NOは、化学発光部に導入され、オゾン
ガスと反応して発光する。この発光を検出器により化学
発光強度として検出して、試料水中のアンモニウムイオ
ン濃度を定量する。
The principle of this measurement is that ammonia in sample water reacts with a reagent (sodium hypochlorite) to produce chloramine. Chloramine moves to the gas phase in the gas-liquid separation tube and becomes nitric oxide NO in the heating oxidation furnace as a gas. After that, nitric oxide NO is introduced into the chemiluminescent section and reacts with ozone gas to emit light. This luminescence is detected as chemiluminescence intensity by a detector to quantify the ammonium ion concentration in the sample water.

【0004】この測定原理の特徴は、(a)FIA法を
用いているために、応答性が極めて速く、且つ検出方法
に化学発光法を用いているため、高感度であること、
(b)気体を測定するため検出器が直接、試料水の影響
を受けないこと、などが上げられる。
The characteristic of this measurement principle is that (a) the FIA method is used, the response is extremely fast, and the chemiluminescence method is used for the detection method, so that the sensitivity is high.
(B) The fact that the detector is not directly affected by the sample water for measuring the gas can be mentioned.

【0005】また、性能検証を実施した結果から、試薬
を変更した新たなアンモニウムイオン濃度測定装置を提
案している(特願平11-366711号参照)。その
測定装置の概略構成を図8に示すに、図8は、ガス化反
応部(液相反応部)1と化学発光測定部(気相反応部)
2から構成されている。以下図8によりアンモニウムイ
オン濃度測定の流れについて述べる。
Further, based on the results of performance verification, a new ammonium ion concentration measuring device in which the reagent is changed is proposed (see Japanese Patent Application No. 11-366711). A schematic configuration of the measuring device is shown in FIG. 8. FIG. 8 shows a gasification reaction part (liquid phase reaction part) 1 and a chemiluminescence measurement part (gas phase reaction part).
It consists of two. The flow of ammonium ion concentration measurement will be described below with reference to FIG.

【0006】図8において、試料水は、試料水注入ポン
プ(P1)11の駆動によって、流量5mL/分で常
時、六方バルブ12に通水される。また、試薬は、六方
バルブ12が切り替わると同時に、試薬注入ポンプ(P
2)13が駆動して、細管流路14に試薬が50μL注
入される。試料水と試薬は、流路14から混合コイル1
5に流入し、その混合コイル15を流れる過程で混合さ
れ、試料水中のアンモニウムイオンと試薬中の次亜塩素
酸が反応し、クロラミンを生成する。
In FIG. 8, the sample water is constantly passed through the hexagonal valve 12 at a flow rate of 5 mL / min by driving the sample water injection pump (P1) 11. In addition, as for the reagent, the reagent injection pump (P
2) 13 is driven to inject 50 μL of the reagent into the capillary channel 14. The sample water and the reagent flow from the flow path 14 to the mixing coil 1
5 and mixed in the process of flowing through the mixing coil 15, ammonium ions in the sample water react with hypochlorous acid in the reagent to produce chloramine.

【0007】混合コイル15から送出された混合液は、
気液分離管16に流入され、ここで、混合液から試料水
中のアンモニウムイオン濃度に応じたクロラミン(試料
ガス)が空気中に逃げ出す。
The mixed liquid sent from the mixing coil 15 is
The gas is introduced into the gas-liquid separation tube 16, where chloramine (sample gas) corresponding to the ammonium ion concentration in the sample water escapes from the mixed solution into the air.

【0008】この試料ガスを加熱酸化炉17へ導入す
る。加熱酸化炉17に導入された試料ガスは、一酸化窒
素NOに変換された後、水分除去チューブ18を経て、
化学発光部19に一定流量で導入される。
This sample gas is introduced into the heating oxidation furnace 17. The sample gas introduced into the heating oxidation furnace 17 is converted into nitric oxide NO, and then passes through the water removal tube 18,
It is introduced into the chemiluminescent unit 19 at a constant flow rate.

【0009】化学発光部19には、一定流量でオゾン発
生器20からオゾンが通気され、試料ガス中の一酸化窒
素NOとオゾンが化学発光部19で反応し、化学発光強
度が検出される。この化学発光強度から試料水中のアン
モニウムイオン濃度が算出され、電気信号として変換器
表示部21に供給されて、その濃度が表示される。
Ozone is aerated from the ozone generator 20 at a constant flow rate to the chemiluminescent section 19, and nitric oxide NO and ozone in the sample gas react at the chemiluminescent section 19 to detect chemiluminescent intensity. From this chemiluminescence intensity, the ammonium ion concentration in the sample water is calculated and supplied to the converter display unit 21 as an electric signal to display the concentration.

【0010】イオン濃度算出後のオゾンと試料ガスの混
合ガスは、減圧ポンプ(P4)22を経て、排オゾン処
理器23に導入され、オゾンを除去した後、最終的に廃
ガス排出口から排出される。なお、24はガス乾燥器、
25は気液分離管16から排出される廃液を排出する廃
液排出ポンプ(P3)である。
The mixed gas of ozone and the sample gas after the calculation of the ion concentration is introduced into the exhaust ozone treatment device 23 through the decompression pump (P4) 22, and after the ozone is removed, it is finally discharged from the exhaust gas exhaust port. To be done. In addition, 24 is a gas dryer,
Reference numeral 25 is a waste liquid discharge pump (P3) for discharging the waste liquid discharged from the gas-liquid separation pipe 16.

【0011】[0011]

【発明が解決しようとする課題】上述したFIA法は、
細管の中を流れている試料水に試薬を注入し、細管内で
試料水と試薬が混合反応し、検出器である化学発光部1
9で目的のものを測定する方法である。また、混合コイ
ル15で試料水と試薬が速やかに混合するために、通常
は内径0.5〜1.0mm程度の細管を用いている。
The above-mentioned FIA method is
The reagent is injected into the sample water flowing in the narrow tube, the sample water and the reagent are mixed and reacted in the narrow tube, and the chemiluminescent unit 1 which is a detector.
9 is a method for measuring a desired object. Further, in order to quickly mix the sample water and the reagent in the mixing coil 15, a thin tube having an inner diameter of about 0.5 to 1.0 mm is usually used.

【0012】ところで、アンモニア計は、浄水工程水
(原水、凝集沈殿処理水、ろ過水など)中のアンモニア
濃度の監視や、その濃度を基にした塩素注入量制御に用
いられる。原水、凝集沈殿処理水、ろ過水などの試料水
は浮遊物質を含んでいるため、細管が詰まりやすくな
る。
By the way, the ammonia meter is used for monitoring the concentration of ammonia in water for purification process (raw water, treated water for coagulating sedimentation, filtered water, etc.) and controlling the amount of chlorine injection based on the concentration. Sample water such as raw water, coagulation-sedimentation-treated water, and filtered water contains suspended solids, and thus the capillaries are easily clogged.

【0013】このため、アンモニア計には、除濁装置を
設置し、アンモニア計に入ってくる試料水の浮遊物質を
取り除いて運転を行う。しかし、除濁装置では、取りき
れない浮遊物質が徐々にアンモニア計に入り込み細管に
蓄積されて行くと、細管を詰まらせることになる。細管
が詰まると、混合コイル15などの細管内の流量が落ち
てくる。流量が一定していないと、前述したように測定
値に影響が生じてくる。
For this reason, a turbidity eliminator is installed in the ammonia meter to remove suspended solids of the sample water entering the ammonia meter for operation. However, in the turbidity eliminator, when suspended solids that cannot be completely removed gradually enter the ammonia meter and accumulate in the tubule, the tubule is clogged. When the thin tube is clogged, the flow rate in the thin tube such as the mixing coil 15 decreases. If the flow rate is not constant, the measured value will be affected as described above.

【0014】また、試料水中のアンモニアは、次亜塩素
酸ナトリウムと反応してクロラミンが生成する。さら
に、加熱酸化炉17内では、以下の反応によりアンモニ
ア濃度に比例した一酸化窒素NOが発生する。
Ammonia in the sample water reacts with sodium hypochlorite to produce chloramine. Further, in the heating oxidation furnace 17, nitric oxide NO, which is proportional to the ammonia concentration, is generated by the following reaction.

【0015】クロラミン + O2 → NO↑ 一酸化窒素NOは、図9に示すように、水分除去チュー
ブ18と化学発光部19とを接続するために、試料用キ
ャピラリ26が使用されている。このため、一酸化窒素
NOは、キャピラリ26を通って化学発光部19の発光
チャンバーに導入される。このとき、試薬の次亜塩素酸
ナトリウムが結晶化してキャピラリ26を詰まらせる恐
れがある。キャピラリ26が詰まると、気体の流量が落
ちることになり、気体の流量が一定しなくなって測定値
に影響が発生し、アンモニウムイオン濃度の計測値が不
正確になる恐れがある。
Chloramine + O 2 → NO ↑ Nitric oxide NO uses a sample capillary 26 to connect the water removal tube 18 and the chemiluminescent section 19 as shown in FIG. Therefore, the nitric oxide NO is introduced into the light emitting chamber of the chemiluminescent unit 19 through the capillary 26. At this time, the reagent sodium hypochlorite may crystallize and clog the capillary 26. If the capillary 26 is clogged, the gas flow rate will drop, the gas flow rate will not be constant, and the measurement value will be affected, and the ammonium ion concentration measurement value may be inaccurate.

【0016】この発明は上記の事情に鑑みてなされたも
ので、液体流路あるいは気体流路に流量計を設けて、流
量を常に一定となるようにして正確な計測値を得るよう
にしたアンモニア計を提供することを課題とする。
The present invention has been made in view of the above circumstances. Ammonia is provided with a flow meter in the liquid flow path or the gas flow path so that the flow rate is always constant and an accurate measured value is obtained. The challenge is to provide a total.

【0017】[0017]

【課題を解決するための手段】この発明は、上記の課題
を達成するために、第1発明は、試料水流路に設けた試
料水注入ポンプの駆動により試料水を流下させながら、
その試料水に試薬を注入混合し、気液分離管により液体
から分離した気体を一酸化窒素に転換し、気体流路を介
して化学発光部に供給し化学発光させ、その発光強度か
らアンモニア性窒素を測定するアンモニア計において、
前記試料水流路に流量計を設け、その流量計の計測信号
をコントローラにて演算処理して、試料水の流量が一定
値を保持するように前記試料水注入ポンプを、コントロ
ーラからの演算処理結果により制御することを特徴とす
るアンモニア計である。
In order to achieve the above-mentioned object, the present invention relates to a first invention, in which a sample water injection pump provided in a sample water channel is driven to flow down the sample water,
A reagent is injected and mixed into the sample water, the gas separated from the liquid is converted into nitric oxide by a gas-liquid separation tube, and it is supplied to the chemiluminescent part through the gas flow path to cause chemiluminescence. In an ammonia meter that measures nitrogen,
A flow meter is provided in the sample water flow path, the measurement signal of the flow meter is arithmetically processed by the controller, and the sample water injection pump is operated so that the flow rate of the sample water maintains a constant value. The ammonia meter is characterized by being controlled by.

【0018】第2発明は、前記試料水流路に洗浄水流路
が接続された切替バルブを設け、この切替バルブを、前
記流量計が流量を一定値に保持できなくなった時に、コ
ントローラからの切替信号により切替バルブを洗浄水流
路に切り替えて洗浄水を試料水流路に通流させるように
したことを特徴とするアンモニア計である。
In a second aspect of the present invention, a switching valve having a washing water flow channel connected to the sample water flow channel is provided, and a switching signal from the controller is supplied to the switching valve when the flow meter cannot keep the flow rate at a constant value. The ammonia meter is characterized in that the switching valve is switched to the wash water flow path to allow the wash water to flow through the sample water flow path.

【0019】第3発明は、前記流量計が流量を一定値に
保持できなくなった時に、コントローラから試料水流路
の交換を促すことを表示する表示部を設けたことを特徴
とするアンモニア計である。
A third aspect of the present invention is an ammonia meter, characterized in that a display unit is provided for displaying that the controller prompts replacement of the sample water flow channel when the flow meter cannot maintain the flow rate at a constant value. .

【0020】第4発明は、前記試料水流路を交換するま
での間、測定が停止しないように、試料水を供給する別
系統の試料水流路を設置したことを特徴とするアンモニ
ア計である。
A fourth aspect of the invention is an ammonia meter characterized in that a sample water channel of another system for supplying sample water is installed so that the measurement is not stopped until the sample water channel is replaced.

【0021】第5発明は、試料水流路に設けた試料水注
入ポンプの駆動により試料水を流下させながら、その試
料水に試薬を注入混合し、気液分離管により液体から分
離した気体を一酸化窒素に転換し、気体流路を介して化
学発光部に供給し化学発光させ、その発光強度からアン
モニア性窒素を測定するアンモニア計において、前記気
体流路に気体流量計を設け、その気体流量計の計測信号
をコントローラにて演算処理して、気体の流量が一定値
を保持するように前記化学発光部の出力側に設けた減圧
ポンプを、コントローラからの演算処理結果により制御
することを特徴とするアンモニア計である。
A fifth aspect of the invention is to drive a sample water injection pump provided in a sample water flow path to cause the sample water to flow down, mix and mix a reagent into the sample water, and remove a gas separated from a liquid by a gas-liquid separation tube. In an ammonia meter that converts to nitric oxide, supplies it to a chemiluminescent portion through a gas flow path to cause chemiluminescence, and measures ammonia nitrogen from the emission intensity thereof, a gas flow meter is provided in the gas flow path, and the gas flow rate thereof is increased. The measurement signal of the meter is arithmetically processed by the controller, and the decompression pump provided on the output side of the chemiluminescent unit is controlled by the arithmetic processing result from the controller so that the flow rate of the gas maintains a constant value. It is an ammonia meter.

【0022】第6発明は、前記気体流量計が流量を一定
値に保持できなくなった時に、コントローラから気体流
路の交換を促すことを表示する表示部を設けたことを特
徴とするアンモニア計である。
A sixth aspect of the present invention is an ammonia meter characterized in that a display unit is provided for displaying a message prompting replacement of the gas flow path from the controller when the gas flow meter cannot maintain the flow rate at a constant value. is there.

【0023】第7発明は、試料水流路に設けた試料水注
入ポンプの駆動により試料水を流下させながら、その試
料水に試薬を注入混合し、気液分離管により液体から分
離した気体を一酸化窒素に転換し、気体流路を介して化
学発光部に供給し化学発光させ、その発光強度からアン
モニア性窒素を測定するアンモニア計において、前記試
料水流路に液体流量計を、前記気体流路に気体流量計を
それぞれ設け、校正液を前記試料水流路と切り替えて注
入し、校正液の発光強度を定期的に測定し、初回校正時
の値と比較して、その比較結果に応じて、前記試料水注
入ポンプ及び化学発光部の出力側に設けた減圧ポンプ
を、コントローラからの演算処理結果により制御して安
定した測定値を得るようにしたことを特徴とするアンモ
ニア計である。
A seventh aspect of the invention is to drive a sample water injection pump provided in a sample water flow path to allow the sample water to flow down while injecting and mixing a reagent into the sample water, and to remove the gas separated from the liquid by a gas-liquid separation tube. In an ammonia meter for converting to nitric oxide, supplying it to a chemiluminescent part through a gas flow path to cause chemiluminescence, and measuring ammoniacal nitrogen from the emission intensity thereof, a liquid flow meter is provided in the sample water flow path, and a gas flow path is provided in the gas flow path. Each gas flow meter is provided in, the calibration solution is switched to the sample water flow channel and injected, the emission intensity of the calibration solution is regularly measured, and compared with the value at the time of the initial calibration, depending on the comparison result, The ammonia meter is characterized in that the sample water injection pump and the decompression pump provided on the output side of the chemiluminescent unit are controlled by a calculation processing result from a controller to obtain a stable measured value.

【0024】[0024]

【発明の実施の形態】以下この発明の実施の形態を図面
に基づいて説明するに、図8、図9と同一部分には同一
符号を付して詳細な説明を省略して述べる。図1は、こ
の発明の実施の第1形態を示す概略構成説明図で、この
第1形態の構成は、試料水注入ポンプ11と六方バルブ
12との流路に、液体流量計31を介挿したものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The same portions as those in FIGS. 8 and 9 are designated by the same reference numerals and detailed description thereof will be omitted. FIG. 1 is a schematic configuration explanatory view showing a first embodiment of the present invention. In the configuration of the first embodiment, a liquid flow meter 31 is inserted in a flow path between a sample water injection pump 11 and a hexagonal valve 12. It is a thing.

【0025】この流量計31で測定した流量計測信号
は、コントローラ32に導入されて、ここで、計測信号
は演算処理される。この処理により、流量計測値が設定
流量値より低下したとき、コントローラ32から制御信
号が試料水注入ポンプ11に与えられ、ポンプ11の設
定値を上昇させて、試料水の流量を一定にする。
The flow rate measurement signal measured by the flow rate meter 31 is introduced into the controller 32, where the measurement signal is arithmetically processed. By this processing, when the flow rate measurement value becomes lower than the set flow rate value, a control signal is given from the controller 32 to the sample water injection pump 11, and the set value of the pump 11 is increased to make the flow rate of the sample water constant.

【0026】ここで、試料水をポンプ11から注入し、
六方バルブ12を経て混合コイル15内で試薬と混合さ
せ、気液分離管16で得られた試料ガスを、化学発光測
定部2に導入してアンモニアイオン濃度を測定している
ときに、試料水の流路が詰まって来たとする。
Here, the sample water is injected from the pump 11,
When the sample gas obtained by mixing with the reagent in the mixing coil 15 through the hexagonal valve 12 and obtained by the gas-liquid separation tube 16 is introduced into the chemiluminescence measuring unit 2 to measure the ammonia ion concentration, the sample water Suppose that the flow path of is getting blocked.

【0027】すると、流量計31の計測値が低下してく
る。このため、試料水の流量を一定にするために、ポン
プ11の設定値を上昇させるようにコントローラ32か
ら制御信号がポンプ11に与えられる。試料水の流量が
一定になったら、コントローラ32は、ポンプ11への
制御信号を停止する。
Then, the measured value of the flow meter 31 decreases. Therefore, in order to keep the flow rate of the sample water constant, the controller 32 gives a control signal to the pump 11 so as to increase the set value of the pump 11. When the flow rate of the sample water becomes constant, the controller 32 stops the control signal to the pump 11.

【0028】図2はこの発明の実施の第2形態を示す概
略構成説明図で、この第2形態の構成は、試料水注入ポ
ンプ11の手前の試料水用流路33に、試料水と洗浄水
を切り替える切替バルブ34と洗浄水用流路35を設置
し、試料水注入ポンプ11と六方バルブ12との流路に
流量計31を介挿したもので、流量計31からの計測信
号をコントローラ32で演算処理してポンプ11へ制御
信号を与えるとともに、切替バルブ34へ切替信号を与
える。
FIG. 2 is a schematic configuration explanatory view showing a second embodiment of the present invention. In the configuration of the second embodiment, the sample water flow path 33 before the sample water injection pump 11 is washed with the sample water. A switching valve 34 for switching water and a washing water flow passage 35 are installed, and a flow meter 31 is inserted in the flow passage between the sample water injection pump 11 and the hexagonal valve 12, and a measurement signal from the flow meter 31 is controlled by the controller. The arithmetic processing is performed in 32 to give a control signal to the pump 11 and a switching signal to the switching valve 34.

【0029】上記のように構成した第2形態において、
試料水は、試料水注入ポンプ11により試料水用流路3
3から六方バルブ12をへて、第1形態と同様に混合コ
イル15内で試薬(次亜塩素酸ナトリウム)と混合され
て処理される。
In the second embodiment configured as described above,
The sample water is supplied from the sample water injection pump 11 to the sample water flow path 3
From 3 to the hexagonal valve 12, mixed with a reagent (sodium hypochlorite) in the mixing coil 15 and processed as in the first embodiment.

【0030】このようにして計測しているときに、試料
水の流路が次第に詰まってくると、流量計31の計測値
が低下してくる。このため、試料水の流量を一定に維持
するために、ポンプ11の設定値を上昇するように制御
する。試料水の流量が一定になったら、ポンプ11の制
御を停止する。
When the flow path of the sample water is gradually clogged during the measurement in this way, the measurement value of the flow meter 31 decreases. Therefore, in order to keep the flow rate of the sample water constant, the set value of the pump 11 is controlled to increase. When the flow rate of the sample water becomes constant, the control of the pump 11 is stopped.

【0031】その後、試料水用流路33が汚濁により詰
まってくると、ポンプ11の設定値を最大値まで上昇さ
せても、流量計31の設定流量まで達しなくなる。その
ときには、切替バルブ34にコントローラ32から切替
信号を与えて、洗浄水用流路35に切り替える。
After that, when the sample water flow path 33 becomes clogged due to contamination, even if the set value of the pump 11 is increased to the maximum value, the set flow rate of the flow meter 31 cannot be reached. At that time, a switching signal is given from the controller 32 to the switching valve 34 to switch to the flush water flow path 35.

【0032】これにより、洗浄水が、洗浄水用流路35
から切替バルブ34を経て試料水用流路33に流れ込
み、その流路33を洗浄する。試料水用流路33が洗浄
され、流量計31の計測値が設定値に戻ったなら、コン
トローラ32から切替バルブ34へ切替信号を与えて、
試料水を試料水用流路33に供給する。
As a result, the cleaning water flows through the cleaning water flow path 35.
Through the switching valve 34 to flow into the sample water channel 33, and the channel 33 is washed. When the sample water flow path 33 is washed and the measured value of the flow meter 31 returns to the set value, a switching signal is given from the controller 32 to the switching valve 34,
The sample water is supplied to the sample water flow path 33.

【0033】上記のように、第2形態は、第1形態に洗浄
水用流路35と切替バルブ34を設置し、流量が低下し
て来て、試料水注入ポンプ11の設定値を最大限まで上
昇させても流量計31の設定流量まで上昇しないとき、
試料水用流路33を洗浄して試料水の流量を確保するよ
うにしたものである。
As described above, in the second embodiment, the washing water flow path 35 and the switching valve 34 are installed in the first embodiment, and the flow rate decreases, so that the set value of the sample water injection pump 11 is maximized. When the flow rate does not reach the set flow rate of the flow meter 31 even if
The sample water flow path 33 is cleaned to ensure the flow rate of the sample water.

【0034】図3はこの発明の実施の第3形態を示す概略
構成説明図で、この第3形態は、第2形態において、試
料水用流路33を洗浄しても流量計31の計測値が設定
値に戻らないときには、試料水用流路33の交換を促す
ことを表示する信号をコントローラ32から表示部36
に与えるように構成したものである。その他の構成及び
作用は、第2形態と同様である。
FIG. 3 is a schematic configuration explanatory view showing a third embodiment of the present invention. In the third embodiment, the measurement value of the flow meter 31 is obtained even if the sample water flow path 33 is washed in the second embodiment. Is not returned to the set value, the controller 32 issues a signal indicating that the sample water flow path 33 should be replaced.
It is configured to give to. Other configurations and operations are similar to those of the second embodiment.

【0035】図4はこの発明の実施の第4形態を示す概
略構成説明図で、この第4形態は、第3形態において、
表示部36に試料水用流路交換の表示が出たときに、試
料水用流路33を交換するまでの時間、測定が停止しな
いように試料水用流路37を別に設けて、六方バルブ1
2に試料水を供給するように構成したものである。
FIG. 4 is a schematic structural explanatory view showing a fourth embodiment of the present invention. This fourth embodiment is the same as the third embodiment.
When the display section 36 indicates that the sample water flow path should be replaced, a sample water flow path 37 is separately provided so that the measurement does not stop until the sample water flow path 33 is replaced. 1
The sample water is supplied to the No. 2 sample.

【0036】図5はこの発明の実施の第5形態を示す概
略構成説明図で、この第5形態は、化学発光測定部2へ
の気体の供給流量を一定にするために、水分除去チュー
ブ18と化学発光部19とを結ぶ試料用キャピラリ26
に、気体流量計41を介挿したものである。
FIG. 5 is a schematic structural explanatory view showing a fifth embodiment of the present invention. In the fifth embodiment, in order to make the gas supply flow rate to the chemiluminescence measuring unit 2 constant, the water removal tube 18 is provided. And a sample-capillary 26 connecting the chemiluminescent section 19
In addition, the gas flow meter 41 is inserted.

【0037】図5において、ガス化反応部1によりガス
になった試料は、加熱酸化炉17内で一酸化窒素NOに
なり、水分除去チューブ18、試料用キャピラリ26、
気体流量計41をへて化学発光部19に導入される。一
方、オゾン発生器20より発生されたオゾンガスも化学
発光部19に導入され、一酸化窒素NOと反応して発光
する。その発光光線を検出器により化学発光強度として
検出して、試料水中のアンモニウムイオン濃度を定量
し、その定量結果を表示部21に表示する。
In FIG. 5, the sample gasified by the gasification reaction section 1 becomes nitric oxide NO in the heating oxidation furnace 17, and the water removal tube 18, the sample capillary 26,
The gas flow meter 41 is introduced to the chemiluminescent unit 19. On the other hand, the ozone gas generated by the ozone generator 20 is also introduced into the chemiluminescent section 19 and reacts with the nitric oxide NO to emit light. The emitted light is detected as chemiluminescence intensity by a detector to quantify the ammonium ion concentration in the sample water, and the quantitative result is displayed on the display unit 21.

【0038】なお、反応で使用されなかったオゾンガス
は、排オゾンとして排オゾン処理器23で処理されて外
部ヘ放出される。
The ozone gas not used in the reaction is treated as waste ozone by the waste ozone treatment device 23 and released to the outside.

【0039】アンモニウムイオン濃度測定中に、試料ガ
スの流路、すなわち試料用キャピラリ26がガスの結晶
化により詰まってくると、流量計41の計測値が低下し
てくる。この計測値は、コントローラ42で演算処理し
ていて、計測値が低下してくると、試料ガスの流量を一
定に保持するために、コントローラ42から減圧ポンプ
22に設定値を上昇させる制御信号を与える。この制御
信号によりポンプ22が制御されて設定値を上昇させ、
試料ガスの流量が一定に達したなら、減圧ポンプ22の
制御をコントローラ42からの停止信号により停止させ
る。
When the flow path of the sample gas, that is, the sample capillary 26 is clogged due to the crystallization of the gas during the ammonium ion concentration measurement, the measurement value of the flow meter 41 decreases. This measured value is being processed by the controller 42, and when the measured value decreases, a control signal for increasing the set value is sent from the controller 42 to the decompression pump 22 in order to keep the flow rate of the sample gas constant. give. The pump 22 is controlled by this control signal to increase the set value,
When the flow rate of the sample gas reaches a constant value, the control of the decompression pump 22 is stopped by the stop signal from the controller 42.

【0040】図6はこの発明の実施の第6形態を示す概
略構成説明図で、この第6形態は、第5形態の改良に関
する。この第6形態では、化学発光測定部2への気体の
供給流量を一定にするために、試料用キャピラリ26
に、気体流量測定用流量計41を介挿している。流量計
41で気体(ガス)の流量測定中に、ガス流量が低下し
たときに、減圧ポンプ22の設定値を最大限まで上昇さ
せる。しかし、最大限まで流量を上昇させても流量計4
1の設定流量まで達しないときには、試料用キャピラリ
26の交換を促すことを、コントローラ42から表示部
43に表示させるようにしたものである。
FIG. 6 is a schematic structural explanatory view showing a sixth embodiment of the present invention, and the sixth embodiment relates to an improvement of the fifth embodiment. In the sixth embodiment, in order to make the gas supply flow rate to the chemiluminescence measurement unit 2 constant, the sample capillary 26
A gas flow rate measuring flow meter 41 is inserted in the above. When the flow rate of gas decreases while the flow meter 41 is measuring the flow rate of gas, the set value of the decompression pump 22 is increased to the maximum. However, even if the flow rate is increased to the maximum, the flow meter 4
When the set flow rate of 1 is not reached, the controller 42 displays on the display unit 43 that the replacement of the sample capillary 26 is prompted.

【0041】図7はこの発明の実施の第7形態を示す概
略構成説明図で、この第7形態は、校正液(アンモニア
性窒素濃度2.0mg/L)と試料水とを切替バルブ4
4で切り替えて、校正液の発光強度を、定期的に測定で
きるようにしたものである。例えば、初回校正時より発
光強度が低下していたら、試料注入ポンプ11あるいは
減圧ポンプ22の設定値を上昇させることにより安定し
た発光強度(測定値)得るようにした。
FIG. 7 is a schematic configuration explanatory view showing a seventh embodiment of the present invention. In the seventh embodiment, a calibration liquid (ammonia nitrogen concentration of 2.0 mg / L) and a sample water are switched valve 4.
By switching in step 4, the emission intensity of the calibration solution can be measured periodically. For example, if the emission intensity is lower than that at the time of the initial calibration, the emission intensity (measurement value) is stabilized by increasing the set value of the sample injection pump 11 or the decompression pump 22.

【0042】図7において、試料の測定を行なう際、同
じ濃度の試料の時には、試料が一定の量で化学発光部1
9に導入されてこないと、発光強度は低下する。そこ
で、定期的に、切替バルブ44を校正液側の流路に切り
替えて、校正液による測定を行なう。この測定におい
て、測定値(発光強度)が初期校正時の値より低下して
いたら、流量計31と気体流量計41の計測値を、1つ
のコントローラ45に導入して演算処理する。
In FIG. 7, when a sample is measured and the samples have the same concentration, the chemiluminescent unit 1 is used in a constant amount.
If it is not introduced into 9, the emission intensity will decrease. Therefore, the switching valve 44 is periodically switched to the flow path on the calibration liquid side to perform measurement with the calibration liquid. In this measurement, if the measured value (emission intensity) is lower than the value at the time of initial calibration, the measured values of the flow meter 31 and the gas flow meter 41 are introduced into one controller 45 and arithmetic processing is performed.

【0043】この演算処理結果から設定流量より低下し
ている方の流量計31あるいは41の流量を上昇させる
(試料水注入ポンプ11あるいは減圧ポンプ22を操作
する)。このようにして両流量計31,41を制御する
ことにより、安定した測定値(発光強度)が得ることが
できる。
From the result of this arithmetic processing, the flow rate of the flow meter 31 or 41 which is lower than the set flow rate is increased (the sample water injection pump 11 or the decompression pump 22 is operated). By controlling both flowmeters 31 and 41 in this manner, a stable measurement value (emission intensity) can be obtained.

【0044】[0044]

【発明の効果】以上述べたように、この発明によれば、
アンモニア計及びアンモニウムイオン濃度測定方法に流
量計を設置したので、以下のような効果が得られる。 (1)試料の流量を一定にすることが可能なため、常に
正確で安定した測定値を得ることができ、装置の信頼性
の向上を図ることができる。 (2)装置に使用される部品の交換が、直感や目視に頼
るのではなく、定量的に示されるので、無駄なく正確に
行うことができ、コストダウンに寄与する。 (3)定期的に装置の校正を行なうので、常に正確で安
定した測定値を得ることができる。
As described above, according to the present invention,
Since the flowmeter is installed in the ammonia meter and the ammonium ion concentration measuring method, the following effects can be obtained. (1) Since the flow rate of the sample can be kept constant, accurate and stable measurement values can always be obtained, and the reliability of the device can be improved. (2) Since the replacement of the components used in the device is quantitatively shown rather than relying on intuition or visual inspection, it can be performed accurately without waste and contributes to cost reduction. (3) Since the apparatus is calibrated periodically, it is possible to always obtain accurate and stable measured values.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の第1形態を示す概略構成説明
図。
FIG. 1 is a schematic configuration explanatory view showing a first embodiment of the present invention.

【図2】この発明の実施の第2形態を示す概略構成説明
図。
FIG. 2 is a schematic configuration explanatory view showing a second embodiment of the present invention.

【図3】この発明の実施の第3形態を示す概略構成説明
図。
FIG. 3 is a schematic configuration explanatory view showing a third embodiment of the invention.

【図4】この発明の実施の第4形態を示す概略構成説明
図。
FIG. 4 is a schematic configuration explanatory view showing a fourth embodiment of the invention.

【図5】この発明の実施の第5形態を示す概略構成説明
図。
FIG. 5 is a schematic configuration explanatory view showing a fifth embodiment of the present invention.

【図6】この発明の実施の第6形態を示す概略構成説明
図。
FIG. 6 is a schematic configuration explanatory view showing a sixth embodiment of the invention.

【図7】この発明の実施の第7形態を示す概略構成説明
図。
FIG. 7 is a schematic configuration explanatory view showing a seventh embodiment of the invention.

【図8】従来のアンモニウムイオン濃度測定措置の概略
構成説明図。
FIG. 8 is a schematic configuration explanatory view of a conventional ammonium ion concentration measuring device.

【図9】化学発光測定部の概略構成説明図。FIG. 9 is a schematic configuration explanatory view of a chemiluminescence measurement unit.

【符号の説明】[Explanation of symbols]

1…ガス化反応部 2…化学発光測定部 11…試料水注入ポンプP1 12…六方バルブ 13…試薬注入ポンプP2 15…混合コイル 16…気液分離管 17…加熱酸化炉 18…水分除去チューブ 19…化学発光部 20…オゾン発生器 21…変換器表示部 22…減圧ポンプP4 25…廃液排出ポンプP3 26…試料用キャピラリ 31…液体流量計 32、42、45…コントローラ 33、37…試料水用流路 34…切替バルブ 35…洗浄水用流路 36…表示部 41…気体流量計 1 ... Gasification reaction section 2 ... Chemiluminescence measurement unit 11 ... Sample water injection pump P1 12 ... Hexagon valve 13 ... Reagent injection pump P2 15 ... Mixing coil 16 ... Gas-liquid separation tube 17 ... Heating oxidation furnace 18 ... Water removal tube 19 ... Chemiluminescent part 20 ... Ozone generator 21 ... Converter display section 22 ... Decompression pump P4 25 ... Waste liquid discharge pump P3 26 ... Capillary for sample 31 ... Liquid flow meter 32, 42, 45 ... Controller 33, 37 ... Flow path for sample water 34 ... Switching valve 35 ... Flow path for washing water 36 ... Display 41 ... Gas flow meter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 33/18 G01N 33/18 C Fターム(参考) 2G042 AA01 BB06 CA02 CB03 DA03 DA08 DA09 EA05 FA04 FA19 FB01 FB02 GA10 2G052 AA06 AB01 AD26 AD42 CA03 CA12 CA35 EB11 FB03 FC07 FC11 FC15 FD18 GA11 HA15 HB08 HB10 HC08 HC28 JA08 JA20 JA30 2G054 AA01 BB02 CA05 CD01 CD04 EA01 FB01 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 33/18 G01N 33/18 C F term (reference) 2G042 AA01 BB06 CA02 CB03 DA03 DA08 DA09 EA05 FA04 FA19 FB01 FB02 GA10 2G052 AA06 AB01 AD26 AD42 CA03 CA12 CA35 EB11 FB03 FC07 FC11 FC15 FD18 GA11 HA15 HB08 HB10 HC08 HC28 JA08 JA20 JA30 2G054 AA01 BB02 CA05 CD01 CD04 EA01 FB01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 試料水流路に設けた試料水注入ポンプの
駆動により試料水を流下させながら、その試料水に試薬
を注入混合し、気液分離管により液体から分離した気体
を一酸化窒素に転換し、気体流路を介して化学発光部に
供給し化学発光させ、その発光強度からアンモニア性窒
素を測定するアンモニア計において、 前記試料水流路に流量計を設け、その流量計の計測信号
をコントローラにて演算処理して、試料水の流量が一定
値を保持するように前記試料水注入ポンプを、コントロ
ーラからの演算処理結果により制御することを特徴とす
るアンモニア計。
1. A sample water injection pump provided in a sample water flow channel is driven to allow a sample water to flow down while a reagent is injected and mixed into the sample water, and a gas separated from a liquid by a gas-liquid separation tube is converted into nitric oxide. In an ammonia meter that converts and supplies chemiluminescence by supplying it to a chemiluminescence part through a gas flow path and measures ammonia nitrogen from the emission intensity, a flow meter is provided in the sample water flow path, and a measurement signal of the flow meter is supplied. An ammonia meter characterized in that the sample water injection pump is controlled by the controller so that the flow rate of the sample water is kept constant by the controller.
【請求項2】 前記試料水流路に洗浄水流路が接続され
た切替バルブを設け、この切替バルブを、前記流量計が
流量を一定値に保持できなくなった時に、コントローラ
からの切替信号により切替バルブを洗浄水流路に切り替
えて洗浄水を試料水流路に通流させるようにしたことを
特徴とする請求項1記載のアンモニア計。
2. A switching valve having a washing water channel connected to the sample water channel is provided, and the switching valve is switched by a switching signal from a controller when the flow meter cannot maintain a constant flow rate. 2. The ammonia meter according to claim 1, wherein the washing water is switched to the washing water channel to pass the washing water to the sample water channel.
【請求項3】 前記流量計が流量を一定値に保持できな
くなった時に、コントローラから試料水流路の交換を促
すことを表示する表示部を設けたことを特徴とする請求
項2記載のアンモニア計。
3. The ammonia meter according to claim 2, further comprising a display unit for displaying that the controller prompts replacement of the sample water flow channel when the flow meter cannot maintain the flow rate at a constant value. .
【請求項4】 前記試料水流路を交換するまでの間、測
定が停止しないように、試料水を供給する別系統の試料
水流路を設置したことを特徴とする請求項3記載のアン
モニア計。
4. The ammonia meter according to claim 3, wherein a sample water channel of another system for supplying sample water is installed so that the measurement is not stopped until the sample water channel is replaced.
【請求項5】 試料水流路に設けた試料水注入ポンプの
駆動により試料水を流下させながら、その試料水に試薬
を注入混合し、気液分離管により液体から分離した気体
を一酸化窒素に転換し、気体流路を介して化学発光部に
供給し化学発光させ、その発光強度からアンモニア性窒
素を測定するアンモニア計において、 前記気体流路に気体流量計を設け、その気体流量計の計
測信号をコントローラにて演算処理して、気体の流量が
一定値を保持するように前記化学発光部の出力側に設け
た減圧ポンプを、コントローラからの演算処理結果によ
り制御することを特徴とするアンモニア計。
5. A sample water injection pump provided in a sample water flow path is driven to flow the sample water while a reagent is injected and mixed into the sample water, and the gas separated from the liquid by a gas-liquid separation tube is converted into nitric oxide. In an ammonia meter that converts and supplies chemiluminescence through a gas flow path to cause chemiluminescence, and measures ammonia nitrogen from the emission intensity thereof, a gas flow meter is provided in the gas flow path, and measurement of the gas flow meter is performed. Ammonia characterized in that a signal is processed by a controller, and a decompression pump provided on the output side of the chemiluminescent unit so that the gas flow rate maintains a constant value is controlled by the calculation processing result from the controller. Total.
【請求項6】 前記気体流量計が流量を一定値に保持で
きなくなった時に、コントローラから気体流路の交換を
促すことを表示する表示部を設けたことを特徴とする請
求項5記載のアンモニア計。
6. The ammonia according to claim 5, further comprising a display unit for displaying a message prompting replacement of the gas flow path from the controller when the gas flow meter cannot maintain the flow rate at a constant value. Total.
【請求項7】 試料水流路に設けた試料水注入ポンプの
駆動により試料水を流下させながら、その試料水に試薬
を注入混合し、気液分離管により液体から分離した気体
を一酸化窒素に転換し、気体流路を介して化学発光部に
供給し化学発光させ、その発光強度からアンモニア性窒
素を測定するアンモニア計において、 前記試料水流路に液体流量計を、前記気体流路に気体流
量計をそれぞれ設け、 校正液を前記試料水流路と切り替えて注入し、校正液の
発光強度を定期的に測定し、初回校正時の値と比較し
て、その比較結果に応じて、 前記試料水注入ポンプ及び化学発光部の出力側に設けた
減圧ポンプを、コントローラからの演算処理結果により
制御して安定した測定値を得るようにしたことを特徴と
するアンモニア計。
7. A sample water injection pump provided in a sample water flow channel is driven to allow a sample water to flow down while a reagent is injected and mixed into the sample water, and a gas separated from a liquid by a gas-liquid separation tube is converted into nitric oxide. In an ammonia meter that converts and supplies chemiluminescence through a gas flow path to a chemiluminescence unit to measure ammonia nitrogen, a liquid flow meter in the sample water flow path and a gas flow rate in the gas flow path Each of them is equipped with a meter, and the calibration solution is injected by switching it to the sample water flow path, and the emission intensity of the calibration solution is measured periodically, compared with the value at the time of initial calibration, and the sample water is compared depending on the comparison result. An ammonia meter characterized in that a stable measurement value is obtained by controlling an injection pump and a decompression pump provided on the output side of the chemiluminescence unit according to the calculation processing result from the controller.
JP2002145634A 2002-05-21 2002-05-21 Ammonia meter Expired - Fee Related JP4013647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002145634A JP4013647B2 (en) 2002-05-21 2002-05-21 Ammonia meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002145634A JP4013647B2 (en) 2002-05-21 2002-05-21 Ammonia meter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006342035A Division JP4424347B2 (en) 1999-06-04 2006-12-20 Ammonia meter

Publications (2)

Publication Number Publication Date
JP2003337127A true JP2003337127A (en) 2003-11-28
JP4013647B2 JP4013647B2 (en) 2007-11-28

Family

ID=29704863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002145634A Expired - Fee Related JP4013647B2 (en) 2002-05-21 2002-05-21 Ammonia meter

Country Status (1)

Country Link
JP (1) JP4013647B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008113A (en) * 2008-06-25 2010-01-14 Hitachi High-Technologies Corp Flow injection analyzer
CN106680037A (en) * 2017-03-01 2017-05-17 中国人民解放军空军勤务学院 Microsampling and constant temperature maintaining device applied to on-line analysis of liquid and method thereof
WO2022201888A1 (en) * 2021-03-26 2022-09-29 横河電機株式会社 Control device and control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008113A (en) * 2008-06-25 2010-01-14 Hitachi High-Technologies Corp Flow injection analyzer
CN106680037A (en) * 2017-03-01 2017-05-17 中国人民解放军空军勤务学院 Microsampling and constant temperature maintaining device applied to on-line analysis of liquid and method thereof
WO2022201888A1 (en) * 2021-03-26 2022-09-29 横河電機株式会社 Control device and control method
JP2022151201A (en) * 2021-03-26 2022-10-07 横河電機株式会社 Control device and control method
JP7192906B2 (en) 2021-03-26 2022-12-20 横河電機株式会社 Control device and control method

Also Published As

Publication number Publication date
JP4013647B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
JP5367710B2 (en) Carbon measurement in aqueous samples using oxidation at high temperature and pressure
KR101723883B1 (en) Apparatus and method for measuring total organic carbon with integrated oxidation reactor
US11293912B2 (en) TOC measurement method and TOC measurement apparatus used therefor
JP2003337127A (en) Ammonia meter
JP3931592B2 (en) Ammonia measurement waste liquid treatment method and ammonia measurement device
JP4424347B2 (en) Ammonia meter
JPS61172058A (en) Method and device for continuously monitoring organic compound in water current
JP3320050B2 (en) Method and apparatus for measuring organic carbon content
JP2007147633A6 (en) Ammonia meter
JP3896795B2 (en) Nitrogen concentration measuring device
CN112305036B (en) Method for determining a measurement point of the chemical intake capacity of a process medium and measurement point
JPH1194820A (en) Method for especially measuring amount of caco3 of cleaning suspension from absorbing device of exhaust gas desulfurizer
CN209372694U (en) A kind of sewage monitoring system
JP2002177944A (en) Treatment equipment for waste ammonium ion measure liquid and ammonium ion measuring instrument having the same
JPH03152445A (en) Method and apparatus for chemical emission quantification of ammonia
JP2001349866A (en) Apparatus for measuring residual chlorine
JP2010249612A (en) Pure water analyzer and method for cleaning water collecting channel of the same
JP3931602B2 (en) Calibration method for concentration measuring device
JP2001183299A (en) Nitrogen concentration measuring device and three-state nitrogen concentration measuring device
JP2009204431A (en) Measuring method of chemical oxygen demand
JP2009014382A (en) Trihalomethane measuring instrument
JP3911820B2 (en) Ion concentration measuring device
US20090246882A1 (en) System for Measurement of Dissolved Organic Compounds in Water
JP4486742B2 (en) Liquid concentration meter
JPH1151931A (en) Water quality continuous analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees