JP2009014382A - Trihalomethane measuring instrument - Google Patents

Trihalomethane measuring instrument Download PDF

Info

Publication number
JP2009014382A
JP2009014382A JP2007173955A JP2007173955A JP2009014382A JP 2009014382 A JP2009014382 A JP 2009014382A JP 2007173955 A JP2007173955 A JP 2007173955A JP 2007173955 A JP2007173955 A JP 2007173955A JP 2009014382 A JP2009014382 A JP 2009014382A
Authority
JP
Japan
Prior art keywords
carrier liquid
trihalomethane
mixing tank
sodium hydroxide
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007173955A
Other languages
Japanese (ja)
Other versions
JP4850788B2 (en
Inventor
Katsuji Yokoyama
勝治 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2007173955A priority Critical patent/JP4850788B2/en
Publication of JP2009014382A publication Critical patent/JP2009014382A/en
Application granted granted Critical
Publication of JP4850788B2 publication Critical patent/JP4850788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a trihalomethane measuring instrument that sufficiently mixes a fluorescent analyzing reagent and sodium hydroxide, and eliminates the irregularity of the sensor output of the detection part without extending a measuring time to enhance the sensitivity. <P>SOLUTION: The trihalomethane measuring instrument is equipped with a sample solution sending part 10 for sending out a sample solution containing trihalomethane, a carrier liquid sending part 20 for sending out a carrier liquid, a separation and dissolution part 30 for dissolving and transferring trihalomethane in the sample solution in the carrier liquid, a reaction part 40 for producing a fluorescent substance from trihalomethane and the fluorescence analyzing reagent, and the detection part 50 for measuring the fluorescence intensity of the fluorescent substance. The carrier liquid sending part 20 is equipped with a mixing tank 23 into which the fluorescence analyzing reagent and sodium hydroxide are introduced, an air pump 25 for depressurizing the mixing tank to introduce the two liquids into the mixing tank, air blowing-in piping 28 for blowing air into the mixing tank to mix two liquids to prepare the carrier liquid and a liquid sending pump 29 for sending the carrier liquid to the separation and dissolution part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水中に含まれる低融点有機塩素化合物であるトリハロメタンの濃度を測定するトリハロメタン測定装置に関する。   The present invention relates to a trihalomethane measuring apparatus for measuring the concentration of trihalomethane, which is a low melting point organic chlorine compound contained in water.

トリハロメタン測定装置としては、特開平2−145961号公報や、特開平3−218461号公報、特開平4−158261号公報、特開平6−160370号公報などに記載されているように、蛍光分析法を用いて水中のトリハロメタンを精度良く連続分析する装置が開発され、実用化されている。これらの従来の装置の例を図4に示す。   As a trihalomethane measuring apparatus, as described in JP-A-2-145916, JP-A-3-218461, JP-A-4-158261, JP-A-6-160370, etc., a fluorescence analysis method is used. An apparatus for continuously analyzing trihalomethane in water with high accuracy has been developed and put into practical use. Examples of these conventional devices are shown in FIG.

図5に示すように、この装置では、先ず、送液ポンプ13を用いて、支管11から供給されるトリハロメタンを含む試料水と、支管12から供給される酸性還元剤溶液とを混合して試料溶液とし、主管14を介してこれを分離溶解部30の試料溶液流路33に送る。また、送液ポンプ63を用いて、支管61から供給されるトリハロメタン用蛍光分析試薬と、支管62から供給される水酸化ナトリウムとを混合してキャリア液とし、主管65を介してこれを分離溶解部30のキャリア液流路34に送る。   As shown in FIG. 5, in this apparatus, first, a sample water containing trihalomethane supplied from the branch pipe 11 and an acidic reducing agent solution supplied from the branch pipe 12 are mixed using a liquid feed pump 13. This is made into a solution and sent to the sample solution flow path 33 of the separation and dissolution unit 30 via the main pipe 14. In addition, the liquid analysis pump 63 is used to mix the trihalomethane fluorescence analysis reagent supplied from the branch pipe 61 and sodium hydroxide supplied from the branch pipe 62 to form a carrier liquid, which is separated and dissolved via the main pipe 65. To the carrier liquid channel 34 of the unit 30.

分離溶解部30では、試料溶液流路33を流れる試料溶液を、ヒータ35で約70℃に加熱し、試料溶液中からトリハロメタンガスを分離除去する。このトリハロメタンガスは、試料溶液流路33からガス分離用微孔性平膜31およびガス分離用微孔性チューブ32の各微孔を通過して、キャリア液流路34を流れるキャリア液に溶解する。   In the separation and dissolution unit 30, the sample solution flowing through the sample solution flow path 33 is heated to about 70 ° C. by the heater 35 to separate and remove the trihalomethane gas from the sample solution. This trihalomethane gas passes through the micropores of the gas separation microporous flat membrane 31 and the gas separation microporous tube 32 from the sample solution flow path 33 and dissolves in the carrier liquid flowing in the carrier liquid flow path 34.

次に、このトリハロメタンが溶解したキャリア液を反応部40に導入し、約90℃まで加温することで、キャリア液中のトリハロメタンと蛍光分析試薬が反応して蛍光物質が生成する。この蛍光物質を含むキャリア液を検出部50に導入し、キャリア液中の蛍光物質の蛍光強度を測定することで、トリハロメタンの定量を行う。
特開平4−158261号公報 特開平6−160370号公報
Next, the carrier liquid in which the trihalomethane is dissolved is introduced into the reaction unit 40 and heated to about 90 ° C., whereby the trihalomethane in the carrier liquid reacts with the fluorescence analysis reagent to generate a fluorescent substance. The carrier liquid containing the fluorescent substance is introduced into the detection unit 50, and the fluorescence intensity of the fluorescent substance in the carrier liquid is measured, thereby quantifying trihalomethane.
Japanese Patent Laid-Open No. 4-158261 JP-A-6-160370

このような蛍光分析法を用いたトリハロメタン測定装置では、以下の二つの課題がある。先ず、第一番目の課題として、配管61から供給されるトリハロメタン用蛍光分析試薬と、配管62から供給される水酸化ナトリウムとを混合したキャリア液が、配管60を介して分離溶解部30のキャリア液流路34に供給されるが、これら2液の粘度は極端に異なることから、混合が不十分であるという問題がある。   The trihalomethane measuring apparatus using such a fluorescence analysis method has the following two problems. First, as a first problem, a carrier liquid in which a fluorescent analysis reagent for trihalomethane supplied from the pipe 61 and sodium hydroxide supplied from the pipe 62 is mixed with the carrier of the separation and dissolution unit 30 via the pipe 60. Although supplied to the liquid flow path 34, since the viscosity of these two liquids is extremely different, there is a problem that mixing is insufficient.

蛍光分析試薬用および水酸化ナトリウム用の支管61、62は、通常、内直径が1mmと細く、0.75ml/分の低流量で液体を連続的に流すために、2液ともに層流域である。一般に層流域での液体が混合するには両者の拡散によるため、短時間での混合は難しい。従って、蛍光分析試薬と水酸化ナトリウムが送液ポンプ63直後で合流するが、混合は不十分な状態である。このようにキャリア液の混合が不十分な状態で、分離溶解部30のキャリア液流路34においてトリハロメタンガスが溶解した場合、特にトリハロメタンの定量下限に近い低濃度域で、トリハロメタンと蛍光分析試薬との反応が不十分となり、蛍光強度の測定値に大きなばらつきがでるという問題がある。トリハロメタン濃度が5μg/lの試料水を、図5に示す構成の測定装置で測定した際の検出器50のセンサ出力結果を図6に示す。   The branch tubes 61 and 62 for the fluorescence analysis reagent and sodium hydroxide are usually laminar in both the two liquids in order to allow the liquid to flow continuously at a low flow rate of 0.75 ml / min. . In general, mixing of liquids in a laminar flow region is difficult due to the diffusion of both. Therefore, the fluorescence analysis reagent and sodium hydroxide merge immediately after the liquid feed pump 63, but the mixing is insufficient. When the trihalomethane gas is dissolved in the carrier liquid flow path 34 of the separation and dissolution unit 30 in such a state that the carrier liquid is not sufficiently mixed, the trihalomethane, the fluorescence analysis reagent, There is a problem that this reaction becomes insufficient, and the measured values of fluorescence intensity vary greatly. FIG. 6 shows a sensor output result of the detector 50 when the sample water having a trihalomethane concentration of 5 μg / l is measured by the measuring apparatus having the configuration shown in FIG.

この問題の対策として、層流でも攪拌混合できるコイルタイプやTタイプのインラインミキサーが市販されているが、高価である上に、装置サイズが大きい等の問題の他、本装置で扱う試薬および溶媒の液量が一回の測定で数十ml程度と非常に少ないことや、流速が1.6cm/秒と遅いことなどから、図5のように市販のインラインミキサー64を用いても、攪拌混合が不充分であるという問題がある。   As countermeasures against this problem, coil-type and T-type in-line mixers that can be stirred and mixed even in a laminar flow are commercially available, but they are expensive and have problems such as a large apparatus size, as well as reagents and solvents used in this apparatus. Since the amount of liquid is very small, such as several tens of ml in one measurement, and the flow rate is as slow as 1.6 cm / second, even if a commercially available inline mixer 64 is used as shown in FIG. Is inadequate.

第二番目の課題として、キャリア液と、トリハロメタンガスとの接触時間、反応時間が長いほうが(すなわち、分離溶解部30におけるキャリア液の流速が遅い方が)、検出部50のセンサの感度が上昇するという新たな知見が得られた。しかしながら、送液ポンプ63の流量を下げてキャリア液の流速を現行より更に下げてしまうと、蛍光分析試薬と水酸化ナトリウムの混合が一層不十分になる他、図5に示すように、1台の送液ポンプ63によって、蛍光分析試薬と水酸化ナトリウムの分離溶解部30への供給からキャリア液の検出部50への送液まで行っているため、一回当たりの測定時間が長くなるという問題がある。   The second problem is that the longer the contact time and the reaction time between the carrier liquid and the trihalomethane gas (that is, the slower the carrier liquid flow rate in the separation and dissolution unit 30), the higher the sensitivity of the sensor of the detection unit 50. New knowledge was obtained. However, if the flow rate of the liquid feeding pump 63 is lowered to further reduce the flow rate of the carrier liquid from the current level, the mixing of the fluorescence analysis reagent and sodium hydroxide becomes further insufficient, as shown in FIG. Since the liquid feeding pump 63 performs the process from the supply of the fluorescence analysis reagent and sodium hydroxide to the separation / dissolution unit 30 to the feeding of the carrier liquid to the detection unit 50, the measurement time per measurement becomes long. There is.

そこで本発明は、上記の問題点に鑑み、トリハロメタン用蛍光分析試薬と水酸化ナトリウムとを十分に混合することができ、且つ測定時間を長くすることなく、検出部のセンサ出力のばらつき及び感度を向上することができるトリハロメタン測定装置を提供することを目的とする。   Therefore, in view of the above problems, the present invention can sufficiently mix the fluorescence analysis reagent for trihalomethane and sodium hydroxide, and can reduce variations in sensor output and sensitivity of the detection unit without increasing the measurement time. An object of the present invention is to provide a trihalomethane measuring apparatus that can be improved.

上記の目的を達成するために、本発明に係るトリハロメタン測定装置は、トリハロメタンを含む試料水と酸性還元剤溶液とを混合した試料溶液を送り出す試料送液部と、トリハロメタン用蛍光分析試薬と水酸化ナトリウムとを混合したキャリア液を送り出すキャリア液送液部と、前記試料溶液と前記キャリア液が供給され、前記試料溶液中のトリハロメタンを前記キャリア液中に溶解移行させる分離溶解部と、前記トリハロメタンが溶解移行したキャリア液が供給され、このキャリア液中のトリハロメタンと蛍光分析試薬とから蛍光物質を生成する反応部と、前記蛍光物質を含むキャリア液が供給され、このキャリア液中の蛍光物質の蛍光強度を測定することで、トリハロメタンを定量する検出部とを備えたトリハロメタン測定装置であって、前記キャリア液送液部が、前記蛍光分析試薬と前記水酸化ナトリウムとが導入される混合タンクと、前記混合タンク内を負圧にすることで、前記混合タンク内に前記蛍光分析試薬と前記水酸化ナトリウムを導入するエアポンプと、前記混合タンク内に導入された前記蛍光分析試薬と前記水酸化ナトリウムとに空気を吹き込んで撹拌混合して前記キャリア液とする空気吹込み用配管と、前記混合タンク内のキャリア液を前記分離溶解部に送り出す送液ポンプとを備えたことを特徴とする。   In order to achieve the above object, a trihalomethane measuring apparatus according to the present invention includes a sample feeding section for feeding a sample solution in which sample water containing trihalomethane and an acidic reducing agent solution are mixed, a fluorescence analysis reagent for trihalomethane, and hydroxylation. A carrier liquid feeding part for feeding out a carrier liquid mixed with sodium; a separation and dissolution part for feeding and transferring the trihalomethane in the sample solution into the carrier liquid, wherein the sample solution and the carrier liquid are supplied; and A carrier liquid that has been dissolved and transferred is supplied, a reaction unit that generates a fluorescent substance from trihalomethane and a fluorescence analysis reagent in the carrier liquid, and a carrier liquid containing the fluorescent substance are supplied, and the fluorescence of the fluorescent substance in the carrier liquid is supplied. A trihalomethane measuring device comprising a detector for measuring trihalomethane by measuring intensity. The carrier liquid feeding section has a mixing tank into which the fluorescence analysis reagent and the sodium hydroxide are introduced, and a negative pressure in the mixing tank so that the fluorescence analysis reagent and the water are contained in the mixing tank. An air pump for introducing sodium oxide, an air blowing pipe for stirring and mixing air into the fluorescence analysis reagent and the sodium hydroxide introduced into the mixing tank to form the carrier liquid, and the mixing tank And a liquid feed pump for feeding the inner carrier liquid to the separation and dissolution section.

このように、エアポンプによって蛍光分析用試薬と水酸化ナトリウムを混合タンク内に一時的に貯留するとともに、空気吹込み用配管から空気を吹込むことで、粘度が極端に異なる蛍光分析用試薬と水酸化ナトリウムをインラインで十分に撹拌混合することができる。よって、試料水中のトリハロメタンが低濃度であっても、反応部におけるトリハロメタンと蛍光分析用試薬との反応効率が向上することから、検出部における蛍光強度のセンサ出力のばらつきを低減することができる。   In this way, the fluorescence analysis reagent and sodium hydroxide are temporarily stored in the mixing tank by the air pump, and the fluorescence analysis reagent and water having extremely different viscosities are obtained by blowing air from the air blowing pipe. Sodium oxide can be thoroughly stirred and mixed in-line. Therefore, even if the concentration of trihalomethane in the sample water is low, the reaction efficiency between the trihalomethane and the fluorescence analysis reagent in the reaction section is improved, so that variation in the sensor output of the fluorescence intensity in the detection section can be reduced.

また、送液ポンプの流量を下げてキャリア液の流速を下げることで、トリハロメタンガスとキャリア液との接触時間、反応時間が長くなることから、検出部における蛍光強度のセンサ出力の感度を向上させることができる。その際、キャリア液の流速低下により、キャリア液が分離溶解部から検出部まで移動する時間は長くなる。しかしながら、混合撹拌および流速低下により反応効率が向上することから、反応が飽和するまでの時間は短くなる。これにより、流速低下分の時間増加が相殺され、測定時間が長くなるのを回避することができる。   Also, by lowering the flow rate of the liquid delivery pump and lowering the flow rate of the carrier liquid, the contact time and reaction time between the trihalomethane gas and the carrier liquid become longer, so the sensitivity of the fluorescence intensity sensor output at the detection unit is improved. be able to. At that time, due to the decrease in the flow rate of the carrier liquid, the time for the carrier liquid to move from the separation and dissolution part to the detection part becomes longer. However, since the reaction efficiency is improved by mixing and stirring and the flow rate is lowered, the time until the reaction is saturated is shortened. As a result, the increase in time due to the decrease in the flow velocity is offset, and it is possible to avoid an increase in measurement time.

前記キャリア液送液部は、前記混合タンク内の圧力を測定する圧力計と、前記圧力計で測定した圧力値に基づいて、前記エアポンプの運転を制御する制御手段とを更に備えることが好ましい。このように、圧力計で測定する値に基づいて、エアポンプの運転を制御することで、混合タンク内の圧力を、蛍光分析試薬および水酸化ナトリウムを短時間で混合タンク内に汲み上げることができる所定の負圧の範囲内にすることができる。   The carrier liquid feeding section preferably further comprises a pressure gauge for measuring the pressure in the mixing tank, and a control means for controlling the operation of the air pump based on the pressure value measured by the pressure gauge. Thus, by controlling the operation of the air pump based on the value measured by the pressure gauge, the pressure in the mixing tank can be pumped up into the mixing tank in a short time with the fluorescence analysis reagent and sodium hydroxide. Can be within the negative pressure range.

このように本発明によれば、トリハロメタン用蛍光分析試薬と水酸化ナトリウムとを十分に混合することができ、且つ測定時間を長くすることなく、検出部のセンサ出力のばらつき及び感度を向上することができるトリハロメタン測定装置を提供できる。   As described above, according to the present invention, the fluorescence analysis reagent for trihalomethane and sodium hydroxide can be sufficiently mixed, and the sensor output variation and sensitivity of the detection unit can be improved without lengthening the measurement time. It is possible to provide a trihalomethane measuring apparatus capable of

以下、添付図面を参照して、本発明に係るトリハロメタン測定装置の一実施の形態について説明する。図1は、本発明に係るトリハロメタン測定装置の一実施の形態を示す模式図である。   Hereinafter, an embodiment of a trihalomethane measuring apparatus according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic view showing an embodiment of a trihalomethane measuring apparatus according to the present invention.

図1に示すように、本実施の形態のトリハロメタン測定装置は、トリハロメタンを含む試料水と酸性還元剤溶液とを混合した試料溶液を送り出す試料送液部10と、トリハロメタン用蛍光分析試薬と水酸化ナトリウムとを混合したキャリア液を送り出すキャリア液送液部20と、試料溶液中のトリハロメタンをキャリア液中に溶解移行させる分離溶解部30と、このトリハロメタンが溶解移行したキャリア液中のトリハロメタンと蛍光分析試薬とから蛍光物質を生成する反応部40と、この蛍光物質を含むキャリア液の蛍光強度を測定することで、トリハロメタンを定量する検出部50とから主に構成されている。   As shown in FIG. 1, the trihalomethane measuring apparatus according to the present embodiment includes a sample feeding unit 10 that sends out a sample solution in which sample water containing trihalomethane and an acidic reducing agent solution are mixed, a fluorescence analysis reagent for trihalomethane, and hydroxylation. Carrier liquid feeding section 20 for feeding out a carrier liquid mixed with sodium, separation / dissolution section 30 for dissolving and transferring trihalomethane in the sample solution into the carrier liquid, and trihalomethane and fluorescence analysis in the carrier liquid in which this trihalomethane is dissolved and transferred The reaction unit 40 mainly generates a fluorescent substance from a reagent, and a detection unit 50 that quantifies trihalomethane by measuring the fluorescence intensity of a carrier liquid containing the fluorescent substance.

試料送液部10には、分離溶解部30の試料溶液流路33に接続する試料溶液用の主管14と、この主管に接続する2本の支管、すなわちトリハロメタンを含む試料水用の支管11と、酸性還元剤溶液用の支管12とが配設されている。2本の支管11、12には、液体を主管側に送り出すための送液ポンプ13が設置されている。また、2本の支管11、12には、それぞれ開閉用電磁弁が設置されている。   The sample solution supply unit 10 includes a sample solution main pipe 14 connected to the sample solution flow path 33 of the separation and dissolution unit 30 and two branch pipes connected to the main pipe, that is, a branch pipe 11 for sample water containing trihalomethane. A branch pipe 12 for an acidic reducing agent solution is disposed. The two branch pipes 11 and 12 are provided with a liquid feed pump 13 for sending liquid to the main pipe side. Further, the two branch pipes 11 and 12 are provided with opening and closing solenoid valves, respectively.

キャリア液送液部20には、トリハロメタン用蛍光分析試薬用の支管21と、水酸化ナトリウム用の支管22と、これら支管が接続された密閉型の混合タンク23が設けられている。この混合タンク23には、混合タンク23内を負圧にするためのエアポンプ25と、混合タンク23内の圧力を測定するための圧力計16とが設置された配管24が配設されている。また、混合タンク23の側面下部と分離溶解部30のキャリア液流路34との間には、これらを結ぶキャリア液用の主管26が配設されている。この主管26には、液体を分離溶解部側に送り出すための送液ポンプ29が設置されている。   The carrier liquid feeding section 20 is provided with a branch pipe 21 for a fluorescent analysis reagent for trihalomethane, a branch pipe 22 for sodium hydroxide, and a sealed mixing tank 23 to which these branch pipes are connected. The mixing tank 23 is provided with a pipe 24 in which an air pump 25 for making the inside of the mixing tank 23 negative and a pressure gauge 16 for measuring the pressure in the mixing tank 23 are installed. Further, a carrier liquid main pipe 26 is disposed between the lower portion of the side surface of the mixing tank 23 and the carrier liquid flow path 34 of the separation and dissolution section 30. The main pipe 26 is provided with a liquid feed pump 29 for sending the liquid to the separation and dissolution unit side.

さらに、混合タンク23には、混合タンク23内を大気開放するための配管27と、混合タンク23内の底部から空気を吹き出すように構成された空気吹込み用の配管28とが配設されている。これら配管27、28並びに上記の支管21、22には、それぞれ開閉用電磁弁が設置されている。   Further, the mixing tank 23 is provided with a pipe 27 for opening the inside of the mixing tank 23 to the atmosphere, and an air blowing pipe 28 configured to blow out air from the bottom of the mixing tank 23. Yes. These pipes 27 and 28 and the above branch pipes 21 and 22 are respectively provided with opening and closing solenoid valves.

分離溶解部30は円筒形状を有しており、その内部には、その軸方向と平行なガス透過性チューブ32が設けられている。また、分離溶解部30の軸方向内壁とガス透過性チューブ32との間には、これらと平行にガス透過性平膜31が設けられている。分離溶解部30内壁とガス透過性平膜31とで閉空間を構成しており、この空間が試料溶液流路33となる。また、ガス透過性チューブ32の内側空間がキャリア液流路34となる。残りの空間、すなわち、ガス透過性チューブ32と、ガス透過性平膜31および分離溶解部30内壁との間の空間は、気相空間である。   The separation / dissolution part 30 has a cylindrical shape, and a gas permeable tube 32 parallel to the axial direction is provided inside the separation / dissolution part 30. A gas permeable flat membrane 31 is provided between the inner wall in the axial direction of the separation / dissolution part 30 and the gas permeable tube 32 in parallel with them. The inner wall of the separation and dissolution part 30 and the gas permeable flat membrane 31 constitute a closed space, and this space becomes the sample solution flow path 33. Further, the inner space of the gas permeable tube 32 becomes the carrier liquid flow path 34. The remaining space, that is, the space between the gas permeable tube 32 and the gas permeable flat membrane 31 and the inner wall of the separation / dissolution part 30 is a gas phase space.

分離溶解部30には、試料溶液流路33を流れる試料溶液中のトリハロメタンが揮発する温度に加熱するためのヒータ35が設けられている。また、分離溶解部30の気相空間には、気相空間内に洗浄用空気を供給するための洗浄用空気配管36と、洗浄後の空気を排出するための排気用配管38とが設けられている。この洗浄用空気配管36には、空気を送り込むためのエアポンプ37と、開閉用電磁弁とが設置されている。分離溶解部30の試料溶液流路33には、トリハロメタンが分離除去された試料溶液を排出するための排液用配管39が設けられている。   The separation and dissolution unit 30 is provided with a heater 35 for heating to a temperature at which trihalomethane in the sample solution flowing through the sample solution flow path 33 volatilizes. The gas phase space of the separation and dissolution unit 30 is provided with a cleaning air pipe 36 for supplying cleaning air into the gas phase space, and an exhaust pipe 38 for discharging the cleaned air. ing. The cleaning air pipe 36 is provided with an air pump 37 for sending air and an electromagnetic valve for opening and closing. The sample solution flow path 33 of the separation and dissolution unit 30 is provided with a drainage pipe 39 for discharging the sample solution from which trihalomethane has been separated and removed.

分離溶解部30のキャリア液流路34と反応部40との間は、これらを結ぶキャリア液用の配管41が配設されている。反応部40には、キャリア液中のトリハロメタンと蛍光分析試薬が反応して蛍光物質を生成する温度に加熱する手段(図示省略)が設けられている。例えば、沸騰水でキャリア液用の配管を加熱する。   Between the carrier liquid flow path 34 and the reaction part 40 of the separation / dissolution part 30, a pipe 41 for carrier liquid that connects them is disposed. The reaction unit 40 is provided with means (not shown) for heating to a temperature at which trihalomethane in the carrier liquid reacts with the fluorescence analysis reagent to produce a fluorescent substance. For example, piping for carrier liquid is heated with boiling water.

反応部40と検出部50との間は、これらを結ぶキャリア液用の配管51が配設されている。検出部50には、キャリア液中の蛍光物質の蛍光強度を測定し、その測定値と予め設定してある検量線とから、試料水中のトリハロメタンの濃度を演算する手段(図示省略)が設けられている。検出部50には、測定後のキャリア液を排出する配管52が設けられており、この配管52は、分離溶解部30の排液用配管39と合流した後、廃液処理設備(図示省略)へとつながっている。   Between the reaction part 40 and the detection part 50, the piping 51 for carrier liquid which connects these is arrange | positioned. The detector 50 is provided with means (not shown) for measuring the fluorescence intensity of the fluorescent substance in the carrier liquid and calculating the concentration of trihalomethane in the sample water from the measured value and a preset calibration curve. ing. The detection unit 50 is provided with a pipe 52 for discharging the carrier liquid after measurement. This pipe 52 joins the drainage pipe 39 of the separation and dissolution unit 30 and then goes to a waste liquid treatment facility (not shown). It is connected with.

以上の構成によれば、先ず、蛍光分析用試薬用の支管21、水酸化ナトリウム用の支管22、大気開放用の配管27、空気吹込み用の配管28の各電磁弁を閉じた状態で、且つ送液ポンプ29が停止した状態で、エアポンプ25の運転を開始する。これにより混合タンク23内の圧力が低下する。圧力は圧力計16で測定する。混合タンク23内の圧力が所定の負圧に達したら、蛍光分析用試薬用の支管21および水酸化ナトリウム用の支管22の両電磁弁を開く。これにより支管21、22から蛍光分析用試薬および水酸化ナトリウムが混合タンク23内へと汲み上げられる。   According to the above configuration, first, the electromagnetic valves of the branch pipe 21 for the reagent for fluorescence analysis, the branch pipe 22 for sodium hydroxide, the pipe 27 for opening to the atmosphere, and the pipe 28 for blowing air are closed. In addition, the operation of the air pump 25 is started with the liquid feed pump 29 stopped. Thereby, the pressure in the mixing tank 23 falls. The pressure is measured with a pressure gauge 16. When the pressure in the mixing tank 23 reaches a predetermined negative pressure, both the solenoid valves for the fluorescent analysis reagent branch pipe 21 and the sodium hydroxide branch pipe 22 are opened. As a result, the fluorescence analysis reagent and sodium hydroxide are pumped from the branch pipes 21 and 22 into the mixing tank 23.

なお、蛍光分析用試薬としては、ニコチン酸アミド溶液を用いることが好ましく、その濃度は30〜40%が好ましい。水酸化ナトリウムとしては、水酸化ナトリウム溶液を用いることが好ましく、その濃度は0.2〜0.4Mが好ましい。これら2液の混合比は、例えば50:50とすることが好ましい。   In addition, as a reagent for fluorescence analysis, it is preferable to use a nicotinamide solution, and the concentration is preferably 30 to 40%. As sodium hydroxide, a sodium hydroxide solution is preferably used, and its concentration is preferably 0.2 to 0.4M. The mixing ratio of these two liquids is preferably 50:50, for example.

混合タンク23内に所定の量の蛍光分析用試薬および水酸化ナトリウムを汲み上げたら、支管21、22の電磁弁を閉じ、エアポンプ25を停止する。混合タンク23内に汲み上げる蛍光分析用試薬および水酸化ナトリウムの量は、一回の測定で使用する量であり、合計で例えば40mlにすることが好ましい。また、混合タンク23内の圧力は、汲み上げに要する時間が1分以内、例えば10秒程度と短時間になるような範囲が好ましく、例えば、5〜10kPaの範囲にすることが好ましい。なお、混合タンク23内の圧力が所定の範囲内になるように、圧力計16で測定した値に基づいて、シーケンサ等の制御手段(図示省略)によりエアポンプ25の運転および停止を行うことができる。   When a predetermined amount of the fluorescence analysis reagent and sodium hydroxide are pumped into the mixing tank 23, the solenoid valves of the branch pipes 21 and 22 are closed, and the air pump 25 is stopped. The amount of the fluorescence analysis reagent and sodium hydroxide to be pumped into the mixing tank 23 is an amount used in one measurement, and is preferably set to 40 ml in total, for example. The pressure in the mixing tank 23 is preferably in a range where the time required for pumping is within 1 minute, for example, about 10 seconds, and is preferably in the range of 5 to 10 kPa, for example. The air pump 25 can be operated and stopped by a control means (not shown) such as a sequencer based on the value measured by the pressure gauge 16 so that the pressure in the mixing tank 23 falls within a predetermined range. .

混合タンク23内への蛍光分析用試薬および水酸化ナトリウムの汲み上げが終了したら、空気吹込み用配管28の電磁弁を開き、蛍光分析用試薬および水酸化ナトリウム中に空気を吹き込む。これにより蛍光分析用試薬と水酸化ナトリウムは、十分に撹拌混合されて、キャリア液となる。   When pumping of the fluorescence analysis reagent and sodium hydroxide into the mixing tank 23 is completed, the solenoid valve of the air blowing pipe 28 is opened, and air is blown into the fluorescence analysis reagent and sodium hydroxide. Thereby, the reagent for fluorescence analysis and sodium hydroxide are sufficiently stirred and mixed to form a carrier liquid.

次に、空気吹込み用配管28の電磁弁を閉じ、大気開放用の配管27を開き、送液ポンプ29の運転を開始することで、混合タンク23内のキャリア液の全量を、キャリア液用の主管26を介して分離溶解部30のキャリア液流路34に送液する。キャリア液の送液が終了し、混合タンク23内が空になったら、大気開放用の配管27の電磁弁を閉じ、送液ポンプ29を停止する。そして、次の測定に備えて、再びエアポンプ25の運転開始から始まる上述した一連の操作を行い、混合タンク23内に十分に混合されたキャリア液を一時的に貯留しておく。なお、支管21、22の電磁弁、空気吹込み用配管28の電磁弁、大気開放用の配管27の電磁弁の各開閉についても、前記制御手段によって制御することができる。   Next, the solenoid valve of the air blowing pipe 28 is closed, the pipe 27 for opening to the atmosphere is opened, and the operation of the liquid feeding pump 29 is started, so that the entire amount of the carrier liquid in the mixing tank 23 is used for the carrier liquid. The liquid is fed to the carrier liquid flow path 34 of the separation and dissolution unit 30 through the main pipe 26. When the feeding of the carrier liquid is finished and the inside of the mixing tank 23 is emptied, the electromagnetic valve of the pipe 27 for opening to the atmosphere is closed, and the liquid feeding pump 29 is stopped. In preparation for the next measurement, the above-described series of operations starting from the start of the operation of the air pump 25 is performed again, and the sufficiently mixed carrier liquid is temporarily stored in the mixing tank 23. The opening and closing of the solenoid valves of the branch pipes 21 and 22, the solenoid valve of the air blowing pipe 28, and the solenoid valve of the pipe 27 for opening to the atmosphere can also be controlled by the control means.

送液ポンプ29の運転開始とともに、試料水および酸性還元剤溶液用の支管11、12の電磁弁を開き、送液ポンプ13の運転を開始する。これにより、支管11、12から供給される試料水と酸性還元剤溶液を主管14で混合して試料溶液とし、分離溶解部30の試料溶液流路33に供給する。なお、酸性還元剤溶液としては、硫酸ヒドラジン溶液が好ましく、その濃度は例えば1%程度でよい。また、試料水の流量を例えば4ml/分とし、酸性還元剤溶液の流量を例えば0.5ml/分とすることで、試料水と酸性還元剤溶液の混合比を89:11の容量比にすることができる。   When the operation of the liquid feeding pump 29 is started, the solenoid valves of the branch pipes 11 and 12 for the sample water and the acidic reducing agent solution are opened, and the operation of the liquid feeding pump 13 is started. As a result, the sample water and the acidic reducing agent solution supplied from the branch pipes 11 and 12 are mixed in the main pipe 14 to obtain a sample solution, which is supplied to the sample solution flow path 33 of the separation and dissolution unit 30. As the acidic reducing agent solution, a hydrazine sulfate solution is preferable, and the concentration thereof may be about 1%, for example. Further, the mixing ratio of the sample water and the acidic reducing agent solution is set to a volume ratio of 89:11 by setting the flow rate of the sample water to 4 ml / min and the flow rate of the acidic reducing agent solution to 0.5 ml / min, for example. be able to.

そして、分離溶解部30の試料溶液流路33に供給した試料溶液をヒータ35で例えば70℃に加熱することで、試料溶液中のトリハロメタンはガス状となり、ガス分離用微孔性平膜31の孔を通過して、試料溶液流路33の試料溶液から分離する。このトリハロメタンガスは、さらにガス分離用微孔性チューブ32の孔を通過して、キャリア液流路34を流れるキャリア液に溶解する。   Then, by heating the sample solution supplied to the sample solution flow path 33 of the separation and dissolution unit 30 to, for example, 70 ° C. with the heater 35, the trihalomethane in the sample solution becomes gaseous, and the holes of the microporous flat membrane 31 for gas separation are formed. Pass through and separate from the sample solution in the sample solution channel 33. The trihalomethane gas further passes through the holes of the gas separation microporous tube 32 and dissolves in the carrier liquid flowing through the carrier liquid flow path 34.

このトリハロメタンが溶解したキャリア液を反応部40に導入し、約90℃まで加温することで、キャリア液中のトリハロメタンと蛍光分析試薬が反応して蛍光物質が生成する(蛍光分析試薬がニコチン酸アミドの場合、藤原反応が起こる)。この蛍光物質を含むキャリア液を検出部50に導入し、キャリア液中の蛍光物質の蛍光強度を測定し、この測定値とあらかじめ標準液から求めておいた検量線から、試料水中のトリハロメタンの濃度を求めることができる。   The carrier liquid in which the trihalomethane is dissolved is introduced into the reaction unit 40 and heated to about 90 ° C., whereby the trihalomethane in the carrier liquid reacts with the fluorescence analysis reagent to produce a fluorescent substance (the fluorescence analysis reagent is nicotinic acid). In the case of amides, the Fujiwara reaction occurs). The carrier liquid containing the fluorescent substance is introduced into the detection unit 50, the fluorescence intensity of the fluorescent substance in the carrier liquid is measured, and the concentration of trihalomethane in the sample water is determined from the measured value and the calibration curve obtained from the standard solution in advance. Can be requested.

検出部50で蛍光強度を測定した後のキャリア液は、排液用配管52から排出する。分離溶解部30の試料溶液流路33でトリハロメタンを分離除去した試料溶液は、排液用配管39から排出する。また、測定終了にあたり、洗浄用空気配管36の電磁弁を開き、エアポンプ37を運転することで、分離溶解部30の気相空間内に空気を導入し、排気用配管38から排出することで、残留するトリハロメタンガスをパージし、分離溶解部30の気相空間内を洗浄することができる。   The carrier liquid after the fluorescence intensity is measured by the detection unit 50 is discharged from the drainage pipe 52. The sample solution from which trihalomethane has been separated and removed by the sample solution flow path 33 of the separation and dissolution unit 30 is discharged from the drainage pipe 39. At the end of the measurement, the electromagnetic valve of the cleaning air pipe 36 is opened and the air pump 37 is operated to introduce air into the gas phase space of the separation and dissolution unit 30 and discharge it from the exhaust pipe 38. The remaining trihalomethane gas can be purged to clean the gas phase space of the separation and dissolution unit 30.

このように、蛍光分析用試薬と水酸化ナトリウムを混合タンク32内に一時的に貯留し、空気の吹込みによりインラインで撹拌混合することで、粘度が極端に異なっても十分に混ざり合うことから、試料水中のトリハロメタンが低濃度であっても、反応部40におけるトリハロメタンと蛍光分析用試薬との反応効率が向上し、したがって、検出部50における蛍光強度のセンサ出力のばらつきが低減するとともに、信号対雑音比(S/N)が向上する。   In this way, the reagent for fluorescence analysis and sodium hydroxide are temporarily stored in the mixing tank 32, and mixed in-line by in-line by blowing air, so that they can be sufficiently mixed even if the viscosity is extremely different. Even if the concentration of trihalomethane in the sample water is low, the reaction efficiency between the trihalomethane and the fluorescence analysis reagent in the reaction unit 40 is improved, and thus the variation in the sensor output of the fluorescence intensity in the detection unit 50 is reduced, and the signal The noise-to-noise ratio (S / N) is improved.

図2に、トリハロメタン濃度が5μg/lの試料水を、図1に示す構成の測定装置で測定した際の検出器50のセンサ出力結果を示す。空気吹込みによる撹拌混合を行わなかった図6と比べ、センサ出力のばらつきが大幅に低減され、S/Nも向上していることがわかる。   FIG. 2 shows a sensor output result of the detector 50 when sample water having a trihalomethane concentration of 5 μg / l is measured by the measuring apparatus having the configuration shown in FIG. It can be seen that the variation in sensor output is greatly reduced and the S / N is improved as compared with FIG. 6 in which the stirring and mixing by air blowing is not performed.

また、送液ポンプ29の流量を大幅に下げて、分離溶解部30、反応部40、検出部50と流れるキャリア液の流速を下げることで、反応部40におけるトリハロメタンと蛍光分析用試薬との反応効率が向上し、したがって、検出部50における蛍光強度のセンサ出力の感度を大幅に向上させることができる。   Further, the flow rate of the liquid pump 29 is greatly reduced, and the flow rate of the carrier liquid flowing through the separation and dissolution unit 30, the reaction unit 40, and the detection unit 50 is decreased, so that the reaction between the trihalomethane and the fluorescence analysis reagent in the reaction unit 40 occurs. The efficiency is improved, and therefore the sensitivity of the sensor output of the fluorescence intensity in the detection unit 50 can be greatly improved.

図3に、キャリア液の流速が現行(1.6cm/秒)で空気による撹拌混合をしなかった場合と、流速がその1/3で空気による撹拌混合をした場合とで、試料水中のトリハロメタン濃度と蛍光強度のセンサ出力との関係を示す。図3に示すように、流速を現行の3分の1にすれば、感度が現行の2倍以上に向上することが期待できる。   FIG. 3 shows the case where the carrier liquid flow rate is current (1.6 cm / sec) and stirring and mixing with air is not performed, and when the flow rate is 1/3 of that and mixing and mixing with air is performed. The relationship between a density | concentration and the sensor output of fluorescence intensity is shown. As shown in FIG. 3, if the flow rate is reduced to one third of the current level, it can be expected that the sensitivity is improved more than twice the current level.

なお、キャリア液の流速を下げると、キャリア液が分離溶解部30から検出部50まで移動する時間は長くなるが、トリハロメタンと蛍光分析用試薬の反応効率が上昇していることから、反応が飽和するまでの時間は短くなる。よって、キャリア液の流速を現行より下げても、測定時間が長くなるのを回避することができる。   When the flow rate of the carrier liquid is lowered, the time for the carrier liquid to move from the separation and dissolution unit 30 to the detection unit 50 becomes longer, but the reaction is saturated because the reaction efficiency of trihalomethane and the reagent for fluorescence analysis is increased. The time to do is shortened. Therefore, even if the flow rate of the carrier liquid is lowered from the current level, it is possible to avoid an increase in measurement time.

図4に、キャリア液の流速を現行(1.6cm/秒)の1/3に下げた場合の測定開始から測定終了までにおける蛍光強度のセンサ出力の変化を示す。なお、比較のため、現行のセンサ出力の変化を破線で示す。図4に示すように、試料溶液とキャリア液の供給を開始するA点から、キャリア液が検出部に到達してセンサ出力が上昇を始めるB点まで、現行の約3分の3倍の時間がかかる。しかしながら、反応効率が向上するため、B点から、反応が飽和してセンサ出力が安定するC点までの時間は、現行の約30分から約20分に短縮できる。なお、C点から、エアポンプによりトリハロメタンガスのパージを開始するD点までの時間は、現行と同様に約15分かかる。また、D点から、パージが完了した際のキャリア液が検出部に到達してセンサ出力が完全に下がるE点まで、現行の約3分の3倍の時間がかかる。よって、測定開始のA点から測定終了のF点までの一回当たりの測定時間は、流速を現行の1/3にしても、現行の流速と同様に、約60分(マージン含む)に維持することができる。   FIG. 4 shows changes in the sensor output of the fluorescence intensity from the start of measurement to the end of measurement when the flow rate of the carrier liquid is lowered to 1/3 of the current (1.6 cm / sec). For comparison, the current sensor output change is indicated by a broken line. As shown in FIG. 4, the current time is about three-thirds from point A at which the supply of the sample solution and carrier liquid starts to point B at which the carrier liquid reaches the detector and the sensor output starts increasing. It takes. However, since the reaction efficiency is improved, the time from point B to point C where the reaction is saturated and the sensor output is stabilized can be shortened from about 30 minutes to about 20 minutes. The time from point C to point D at which the purging of the trihalomethane gas is started by the air pump takes about 15 minutes as in the current case. Further, it takes about three-thirds of the current time from the point D to the point E where the carrier liquid when the purge is completed reaches the detector and the sensor output is completely lowered. Therefore, the measurement time per measurement from the point A at the start of measurement to the point F at the end of measurement is maintained at about 60 minutes (including the margin) as with the current flow rate even if the flow rate is 1/3 of the current flow rate. can do.

本発明に係るトリハロメタン測定装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the trihalomethane measuring apparatus which concerns on this invention. 図1に示す構成での検出部のセンサ出力の結果を示すグラフである。It is a graph which shows the result of the sensor output of the detection part in the structure shown in FIG. キャリア液の流速が現行の場合と1/3に下げた場合のトリハロメタン濃度とセンサ出力との関係を示すグラフである。It is a graph which shows the relationship between the trihalomethane density | concentration and sensor output when the flow velocity of carrier liquid is lowered to 1/3. キャリア液の流速を現行の1/3に下げた場合の測定時間に対するセンサ出力の変化を示すグラフである。It is a graph which shows the change of the sensor output with respect to the measurement time at the time of reducing the flow velocity of carrier liquid to 1/3 of the present. 従来のトリハロメタン測定装置の一例を示す模式図である。It is a schematic diagram which shows an example of the conventional trihalomethane measuring apparatus. 図5に示す構成での検出部のセンサ出力の結果を示すグラフである。It is a graph which shows the result of the sensor output of the detection part in the structure shown in FIG.

符号の説明Explanation of symbols

10 試料送液部
11 試料水用の支管
12 酸性還元剤溶液用の支管
13、29 送液ポンプ
16 圧力計
20 キャリア液送液部
21 蛍光分析試薬用の支管
22 水酸化ナトリウム用の支管
23 混合タンク
25、37 エアポンプ
27 大気開放用の配管
28 空気吹込み用の配管
30 分離溶解部
31 ガス透過性平膜
32 ガス透過性チューブ
33 試料溶液流路
34 キャリア液流路
35 ヒータ
36 洗浄用空気配管
38 排気用配管
39、52 排液用配管
40 反応部
50 検出部
DESCRIPTION OF SYMBOLS 10 Sample liquid feeding part 11 Branch pipe for sample water 12 Branch pipe for acidic reducing agent solution 13, 29 Liquid feeding pump 16 Pressure gauge 20 Carrier liquid feeding part 21 Branch pipe for fluorescence analysis reagent 22 Branch pipe for sodium hydroxide 23 Mixing Tank 25, 37 Air pump 27 Air release pipe 28 Air blowing pipe 30 Separation and dissolution part 31 Gas permeable flat membrane 32 Gas permeable tube 33 Sample solution flow path 34 Carrier liquid flow path 35 Heater 36 Cleaning air pipe 38 Exhaust piping 39, 52 Drainage piping 40 Reaction unit 50 Detection unit

Claims (2)

トリハロメタンを含む試料水と酸性還元剤溶液とを混合した試料溶液を送り出す試料送液部と、
トリハロメタン用蛍光分析試薬と水酸化ナトリウムとを混合したキャリア液を送り出すキャリア液送液部と、
前記試料溶液と前記キャリア液が供給され、前記試料溶液中のトリハロメタンを前記キャリア液中に溶解移行させる分離溶解部と、
前記トリハロメタンが溶解移行したキャリア液が供給され、このキャリア液中のトリハロメタンと蛍光分析試薬とから蛍光物質を生成する反応部と、
前記蛍光物質を含むキャリア液が供給され、このキャリア液中の蛍光物質の蛍光強度を測定することで、トリハロメタンを定量する検出部と
を備えたトリハロメタン測定装置であって、
前記キャリア液送液部が、
前記蛍光分析試薬と前記水酸化ナトリウムとが導入される混合タンクと、
前記混合タンク内を負圧にすることで、前記混合タンク内に前記蛍光分析試薬と前記水酸化ナトリウムを導入するエアポンプと、
前記混合タンク内に導入された前記蛍光分析試薬と前記水酸化ナトリウムとに空気を吹き込んで撹拌混合して前記キャリア液とする空気吹込み用配管と、
前記混合タンク内のキャリア液を前記分離溶解部に送り出す送液ポンプと
を備えたものであるトリハロメタン測定装置。
A sample feeding section for feeding a sample solution obtained by mixing a sample water containing trihalomethane and an acidic reducing agent solution;
A carrier liquid feeding part for sending out a carrier liquid in which a fluorescent analysis reagent for trihalomethane and sodium hydroxide are mixed;
The sample solution and the carrier liquid are supplied, and a separation / dissolution part for dissolving and transferring the trihalomethane in the sample solution into the carrier liquid;
A carrier liquid in which the trihalomethane is dissolved and transferred is supplied, and a reaction unit that generates a fluorescent substance from the trihalomethane and the fluorescence analysis reagent in the carrier liquid,
A trihalomethane measurement device comprising: a carrier liquid containing the fluorescent substance; and a detector for quantifying trihalomethane by measuring the fluorescence intensity of the fluorescent substance in the carrier liquid,
The carrier liquid feeding part is
A mixing tank into which the fluorescence analysis reagent and the sodium hydroxide are introduced;
An air pump that introduces the fluorescence analysis reagent and the sodium hydroxide into the mixing tank by setting the inside of the mixing tank to a negative pressure,
An air blowing pipe that blows and mixes air into the fluorescence analysis reagent introduced into the mixing tank and the sodium hydroxide to produce the carrier liquid; and
A trihalomethane measurement apparatus comprising: a liquid feed pump for sending the carrier liquid in the mixing tank to the separation and dissolution unit.
前記キャリア液送液部が、前記混合タンク内の圧力を測定する圧力計と、前記圧力計で測定した圧力値に基づいて、前記エアポンプの運転を制御する制御手段とを更に備えたものである請求項1に記載のトリハロメタン測定装置。   The carrier liquid feeding section further includes a pressure gauge for measuring the pressure in the mixing tank, and a control means for controlling the operation of the air pump based on the pressure value measured by the pressure gauge. The trihalomethane measuring apparatus according to claim 1.
JP2007173955A 2007-07-02 2007-07-02 Trihalomethane measurement system Active JP4850788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007173955A JP4850788B2 (en) 2007-07-02 2007-07-02 Trihalomethane measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007173955A JP4850788B2 (en) 2007-07-02 2007-07-02 Trihalomethane measurement system

Publications (2)

Publication Number Publication Date
JP2009014382A true JP2009014382A (en) 2009-01-22
JP4850788B2 JP4850788B2 (en) 2012-01-11

Family

ID=40355483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007173955A Active JP4850788B2 (en) 2007-07-02 2007-07-02 Trihalomethane measurement system

Country Status (1)

Country Link
JP (1) JP4850788B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011133383A3 (en) * 2010-04-22 2012-02-16 Bolt N.V. Methods and apparatus for determination of halohydrocarbons
JP2012172978A (en) * 2011-02-17 2012-09-10 Metawater Co Ltd Trihalomethane measuring apparatus
JP2020063924A (en) * 2018-10-15 2020-04-23 メタウォーター株式会社 Gas-liquid separation device and low boiling point compound detection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160370A (en) * 1992-11-24 1994-06-07 Fuji Electric Co Ltd Trihalomethane forming power meter
JPH07120362A (en) * 1993-10-26 1995-05-12 Fuji Electric Co Ltd Test water sampling apparatus
JPH10170500A (en) * 1996-12-12 1998-06-26 Tokyo Metropolis Trihalomethane automatic-analyzer
JPH10319020A (en) * 1997-05-20 1998-12-04 Hitachi Ltd Analyzing device
JP2004239858A (en) * 2003-02-07 2004-08-26 Horiba Ltd Total nitrogen measuring method and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160370A (en) * 1992-11-24 1994-06-07 Fuji Electric Co Ltd Trihalomethane forming power meter
JPH07120362A (en) * 1993-10-26 1995-05-12 Fuji Electric Co Ltd Test water sampling apparatus
JPH10170500A (en) * 1996-12-12 1998-06-26 Tokyo Metropolis Trihalomethane automatic-analyzer
JPH10319020A (en) * 1997-05-20 1998-12-04 Hitachi Ltd Analyzing device
JP2004239858A (en) * 2003-02-07 2004-08-26 Horiba Ltd Total nitrogen measuring method and system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011133383A3 (en) * 2010-04-22 2012-02-16 Bolt N.V. Methods and apparatus for determination of halohydrocarbons
US10845313B2 (en) 2010-04-22 2020-11-24 Ams Trace Metals, Inc. Methods and apparatus for determination of halohydrocarbons
US11788969B2 (en) 2010-04-22 2023-10-17 Ams Trace Metals, Inc. Methods and apparatus for determination of halohydrocarbons
JP2012172978A (en) * 2011-02-17 2012-09-10 Metawater Co Ltd Trihalomethane measuring apparatus
JP2020063924A (en) * 2018-10-15 2020-04-23 メタウォーター株式会社 Gas-liquid separation device and low boiling point compound detection device
JP7154097B2 (en) 2018-10-15 2022-10-17 メタウォーター株式会社 Gas-liquid separator and detector for low boiling point compounds

Also Published As

Publication number Publication date
JP4850788B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP5466817B2 (en) Ozone water production equipment
JP5772886B2 (en) Analysis equipment
JP2009219995A (en) Gas-dissolved water supply system
JP4850788B2 (en) Trihalomethane measurement system
KR101528126B1 (en) Device for measuring TOC and TN based on non-catalytic heat-combution oxidization method
KR20110077599A (en) A total organic carbon analyzer and a method thereof
TW200531152A (en) System and method for controlling composition for lithography process in real time using near infrared spectrometer
JP4025978B2 (en) Ozone water supply device
WO2005089919A1 (en) Apparatus for producing water containing nitrogen dissolved therein
KR102156150B1 (en) METHOD AND APPARATUS FOR MEASURING TOTAL ORGANIC CARBON BY COMBUSTION OXIDATION USING PROPORTIONAl CONTROL SAMPLE PRECISION INJECTION METHOD AND DOUBLE COOLING GAS-LIQUID SEPARATION
KR20110128770A (en) A total organic carbon analyzer
JP2003154242A (en) Fluid mixing apparatus
JP2013015387A (en) Water quality analyzer
JP2019095412A (en) Liquid analysis device and sample collection device
JPH1177021A (en) Supplier for hydrogen-containing high-purity water
JP2009098128A (en) Liquid treatment device and treatment liquid supply method
JP5092968B2 (en) Gas dissolved water supply apparatus and gas dissolved water manufacturing method
KR20120080355A (en) System and method for extracting sample of fluidized bed reactor using monosilane
JP5658591B2 (en) Trihalomethane measurement system
CN115753311B (en) Chlorine removal installation and contain its chemical oxygen demand detecting system
JP2017190999A (en) Total organic carbon measurement device and carbon dioxide extraction method
JP2003164852A (en) Apparatus and method of automatically measuring concentration of treating agent in water system and control method
JP5060124B2 (en) Trihalomethane analyzer
JP2007263815A (en) Toc (total organic carbon) meter
WO2021187079A1 (en) Total organic carbon measurement device and total organic carbon measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

R150 Certificate of patent or registration of utility model

Ref document number: 4850788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250