WO2005089919A1 - Apparatus for producing water containing nitrogen dissolved therein - Google Patents

Apparatus for producing water containing nitrogen dissolved therein Download PDF

Info

Publication number
WO2005089919A1
WO2005089919A1 PCT/JP2005/005468 JP2005005468W WO2005089919A1 WO 2005089919 A1 WO2005089919 A1 WO 2005089919A1 JP 2005005468 W JP2005005468 W JP 2005005468W WO 2005089919 A1 WO2005089919 A1 WO 2005089919A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
gas
water
chamber
pressure
Prior art date
Application number
PCT/JP2005/005468
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Kurobe
Hiroshi Morita
Original Assignee
Kurita Water Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd. filed Critical Kurita Water Industries Ltd.
Publication of WO2005089919A1 publication Critical patent/WO2005089919A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/20Dissolving using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/30Workflow diagrams or layout of plants, e.g. flow charts; Details of workflow diagrams or layout of plants, e.g. controlling means
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure

Definitions

  • the present invention relates to difficulties in producing nitrogen-dissolved water. More specifically, the present invention relates to an apparatus for producing nitrogen-dissolved water that can easily and accurately produce water whose nitrogen concentration is controlled.
  • FIG. 3 is a process flow diagram of an example of a conventional apparatus for producing nitrogen-dissolved water.
  • the Slfck sent from the ultrapure water tank 25 by the pump 26 is subjected to the removal of the free gas by the gasifier 27 and the nitrogen gas S is dissolved by a predetermined amount in the membrane gas dissolver 28. Degree of nitrogen dissolved hydraulic power S manufactured.
  • the super-R used in the dispute over electronic materials is degassed for the purpose of degassing and decarbonation, and after the free gas is removed, the upper space is kept in a nitrogen atmosphere. There are many ⁇ . In such a case, since the nitrogen power of the other is dissolved, the complete removal of free nitrogen by degassing and then supplying and dissolving the required amount of nitrogen requires many steps and waste. Many ,. For this reason, there has been a demand for a means capable of easily and accurately producing water having a controlled nitrogen concentration.
  • An object of the present invention is to provide a method for producing nitrogen-dissolved water, which is capable of producing water in which the concentration of free nitrogen is controlled with ease and accuracy. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above-mentioned problem.
  • the original ice was supplied to the water chamber of the membrane-type gas dissolution apparatus, and the pressure of the gas chamber was measured to obtain a nitrogen conversion of 7_K.
  • the nitrogen concentration is constant It has been found that the nitrogen-dissolved water can be produced stably, and based on this finding, the present invention has been accomplished.
  • gas A membrane gas dissolving apparatus having a water chamber and an air chamber partitioned by gas, ( ⁇ ) a deoxygenated water supply pipe for supplying deoxygenated water to the water chamber, (C) a gas-dissolved water discharge pipe for discharging gas-dissolved water from the water chamber; (D) a nitrogen supply pipe for supplying nitrogen to the gas chamber; and (E) a nitrogen supply to the gas chamber. And (F) a pressure gauge for measuring the pressure of the air chamber, wherein the nitrogen supply amount is adjusted by the nitrogen supply amount adjusting means based on the measured value of the pressure gauge. Difficulty in producing nitrogen-dissolved water, wherein the pressure of the air chamber is adjusted to a set value; and (2) The separation and separation of the dissolved water according to (1), wherein
  • FIG. 1 is a process flow diagram of one embodiment of the apparatus for producing nitrogen-dissolved water of the present invention
  • FIG. 2 is another explanatory diagram of the apparatus for producing a nitrogen melt angle Zk of the present invention
  • FIG. ig. 3 is an example of a conventional method for producing nitrogen-dissolved water.
  • reference numeral 1 denotes a ® zk tank
  • 2 denotes a pump
  • 3 denotes a desalination zk supply pipe
  • 4 denotes an S test gas dissolving apparatus
  • 5 denotes a nitrogen supply pipe
  • 6 denotes a pressure gauge
  • 7 denotes a gas dissolved water discharge pipe
  • 8 denotes a gas dissolving pipe.
  • Controller 9 is a valve, 10 is a gas discharge pipe, 11 is a valve, 12 is a pump, 13 is a hollow fiber gas dissolving device, 14 is a hollow fiber membrane, 15 is a gas supply chamber, 16 is a gas discharge chamber, 17 is a partition plate, 18 is a tt0 plate, 19 is a nitrogen source, 20 is a flow valve, 21 is a nitrogen supply, 22 is a gas outlet pipe, 23 is a pressure gauge, 24 is a controller, and 25 is a super 3 ⁇ 4R A tank, 26 is a pump, 271 ⁇ 2M ⁇ , and 28 is a membrane gas dissolving device. Best mode for carrying out the invention
  • the separation and production of nitrogen-dissolved water includes: (A) a membrane-type gas dissolution apparatus including a water chamber and an air chamber partitioned by a gas control unit; and (B) a deoxygenated water in the water chamber. (C) a gas-dissolved water discharge pipe for discharging gas-dissolved water from the water chamber; (D) a nitrogen supply pipe for supplying nitrogen to the gas chamber; And (F) a pressure gauge for measuring the pressure in the air chamber, wherein the nitrogen supply adjusting means based on the measured value of the soda meter. The nitrogen supply is further adjusted to maintain the pressure in the air chamber at the set value.
  • FIG. 1 is a diagram of one example of the separation and production of nitrogen-dissolved water of the present invention.
  • the super MzK tank 1 is super depowered. By deoxidizing the superfiber fck, it is possible to prevent oxidation of the surface of the subject to be oxidized and also to prevent live bacteria in the zR.
  • silicon dioxide which ionizes in water and increases electrical conductivity, is also removed.
  • the space above the ultra-tank tank that ff? ⁇ Deoxygenates the air is filled with nitrogen. Therefore, the amount of nitrogen that is present in the super 3 ⁇ 4 * is dissolved by the amount of @s, but the nitrogen power over the concentration of ⁇ is hardly dissolved.
  • the nitrogen concentration of ⁇ fek in the tank varies depending on the location in the tank, and ⁇ also depends on the time in the tank at an ultra-high temperature of 3 ⁇ 4K. Most ⁇ are not controlled.
  • the S fek in the ultrapure water tank is sent by a pump 2 through a deoxygenated water supply pipe 3 to a membrane gas dissolving apparatus 4 having a water chamber and an air chamber partitioned by a gaseous membrane.
  • the gas supply apparatus is provided with a nitrogen supply pipe 5 for supplying nitrogen to the gas chamber and a pressure gauge 6 for measuring the pressure of the gas chamber.
  • the gas is dissolved in nitrogen gas with a power of 3 seconds, and the nitrogen-dissolved water is discharged from the gas-dissolved water discharge pipe 7.
  • the measured value of the pressure gauge is sent to the controller 8 as a signal, the difference from the set value is automatically calculated during leisure, a signal is sent to the valve 9, and the nitrogen supply amount is determined by the opening of the norp.
  • the pressure force of S is maintained at the set value. That is, the controller 8 and the valve 9 serve as nitrogen supply adjusting means.
  • the gas chamber of the membrane gas dissolver is filled with nitrogen and the pressure is 0 kPa (gage pressure), which is the standard size, the concentration of free nitrogen in the nitrogen-dissolved water becomes saturated.
  • the concentration of free nitrogen in the nitrogen-dissolved water becomes saturated.
  • the temperature is 20 ° C. and the temperature is large E10 1.3 kPa, nitrogen-dissolved water in which nitrogen HOmgZL is dissolved is obtained.
  • the air chamber is completely evacuated to a pressure of 101.3 kPa (gauge pressure), the nitrogen concentration of water discharged from the water chamber will be 0 mg / L.
  • the pressure in the gas chamber of the gas dissolving unit is X times the gauge pressure of 110 1 ⁇ 3 kPa (0 ⁇ x ⁇ 1) and the time, dissolved nitrogen concentration of nitrogen dissolved water discharged from the gas dissolved water discharge pipe becomes a t (l _ x) mg / L.
  • the nitrogen concentration of the supplied deoxygenated water by reducing the pressure of the gas chamber of the H test gas dissolving apparatus filled with nitrogen to a set value, the nitrogen concentration of the supplied deoxygenated water; However, it is possible to stably produce nitrogen-dissolved water having a predetermined free nitrogen concentration.
  • the necessary amount of nitrogen is dissolved after the nitrogen that has been dissolved in the raw water is easily removed.
  • the deoxygenated superfluous gas only nitrogen is dissolved as a free gas, so by using this gas without removing it, it is possible to reduce the difficulty of producing nitrogen-dissolved water and save nitrogen. Can be used.
  • a gas discharge pipe for discharging gas from the air chamber can be provided.
  • a gas discharge pipe 10 power S is provided in the gas chamber of the gas dissolving apparatus, and a knurl 11 and a pump 12 power S are provided in the gas discharge pipe.
  • the gas discharge pipe feeds nitrogen into the air chamber to release the internal air.
  • air can be used to exhaust the mixed gas.
  • the nitrogen concentration of the produced nitrogen dissolved water is lower than the nitrogen concentration of nitrogen supplied from the m tank. Can be used.
  • the pressure of the gas chamber of the membrane gas dissolving apparatus is lower than that of nitrogen, which is supplied from the ultra-fck tank. As you manufacture, it rises.
  • the measured value of the pressure gauge 6 is sent to the controller 8 as a signal, the difference from the set value is automatically calculated in the controller, and the signal is sent to the valve 11 to open the valve, thereby reducing the nitrogen emission. Is adjusted to maintain the pressure s set in the air chamber.
  • the downstream side of the valve 11 is kept at a large ffi or less by the pump 12.
  • the pressure measured by the pressure gauge immediately corresponds to the dissolved nitrogen concentration of the nitrogen-dissolved water, and the nitrogen concentration of the nitrogen-dissolved water can be accurately controlled.
  • the nitrogen supplied to the gas chamber of the membrane type gas dissolver is usually In other words, the measured pressure value corresponds to the concentration of nitrogen.In other words, using 100 kN of deoxygenated raw water, 100% of fiber is used as the nitrogen to be supplied. By measuring the pressure in the air chamber to use the water, it is possible to produce nitrogen-dissolved water with a predetermined ⁇ nitrogen concentration.
  • the ⁇ concentration of the desorbed ⁇ fok used as raw water is 10
  • the force S is preferably 0 ⁇ g / L or less. If the concentration of nitrogen is less than 100 ⁇ g ZL, the oxygen concentration has substantially no effect on measuring the pressure corresponding to the dissolved nitrogen concentration. As long as the concentration of free syrup supplied from the ultra-fek manufacturing process is 100 ⁇ g / L or less, it can be used as it is as the original ice of nitrogen-dissolved water. When the oxygen concentration is high and the age is high, degassing can be performed to remove mm.
  • the nitrogen is dried up.
  • k is supplied to the gas dissolving device, but in the device of the present invention, the previously dissolved nitrogen is Well, it is used as nitrogen, and the shortage of nitrogen is replenished.
  • the material of the gas used in the apparatus of the present invention includes xanthop block copolymers, polyurenophenols, polydimethylsiloxanes, polysulfone block copolymers, polytetraphenylol ethylene, and polyimides.
  • the apparatus of the present invention dissolves nitrogen, which is not corrosive, etc., so that a polyolefin-based gas such as polypropylene or poly (4-methylpentene-1) can be suitably used.
  • the type of gas used in the apparatus of the present invention is not particularly limited, and examples thereof include a flat membrane, a tube type, a snail, a hollow fiber, a monolith type, a tank immersion type, and a rotating circular type.
  • the supply of deoxygenated water and nitrogen to the membrane type gas conversion apparatus is preferably performed in the countercurrent flow ⁇ :. That is, is supplied to one end of the water chamber of the membrane type gas dissolving apparatus in the length direction of the membrane, and nitrogen-dissolved water is discharged from the other end, whereas nitrogen is supplied from the nitrogen-dissolved water discharge side of the gas chamber. And it is preferable to discharge from the supply side of more than 2 ⁇ ⁇ . By counterflowing the super ifeK and nitrogen, good gas dissolution efficiency can be obtained.
  • FIG. 2 is an explanatory view of another key of the storage of the nitrogen-dissolved water of Honkiaki.
  • a hollow fiber membrane gas dissolving apparatus 13 force S was used as a membrane gas dissolving apparatus, and nitrogen was co-supplied inside the hollow fiber membrane 14, and ultra-fek was applied outside the hollow fiber membrane.
  • Power S supplied.
  • a gas supply chamber 15 is provided at one end of the membrane-type gas dissolving apparatus, and a gas outlet chamber 16 is provided at the other end via partition plates 17 and 18.Hollow fibers are supplied through the partition plate to supply gas. Open to the discharge chamber.
  • a nitrogen supply pipe 21 is connected to the gas supply chamber via a nitrogen source 19 through a flow control valve 20. Further, a gas discharge pipe 22 is connected to the gas discharge chamber.
  • the pressure in the gas discharge chamber is measured by the pressure gauge 23, and the measured value of the pressure gauge is sent to the control unit 24 as a signal, and the difference from the set value is automatically calculated by the controller.
  • the nitrogen discharge is adjusted by the opening of the valve, and the pressure inside the hollow fiber membrane is maintained at the set value.
  • a pressure gauge installed in the air chamber of the membrane gas dissolving apparatus.
  • a pressure gauge for liquids such as a U-tube type, a single-tube type, a mounting type, and a Pourdon tube Type, bellows type
  • ⁇ X is force balance
  • pressure gauge, single bell type, Nelt type etc. 3 ⁇ 4 ⁇
  • the means for adjusting the amount of nitrogen supply is not particularly limited.
  • the nitrogen supply can be adjusted so that the measured value of the pressure becomes a set value corresponding to the predetermined free nitrogen concentration.
  • the measured value of the pressure is input to the calculating device, the calculated value is compared with the set value of the pressure, and a signal corresponding to the difference is sent to the male means for supplying the nitrogen. 4 can be adjusted.
  • the means for analyzing the amount of nitrogen supply include a flow-resistant valve provided in a nitrogen supply pipe or a nitrogen discharge pipe. By manual, the opening of the valve can be manually adjusted.
  • the gas dissolving device is a membrane module with a polypropylene hollow fiber and an outer dimension of 12 Omm in diameter and 835 mm in length.
  • Example 2 The same operation as in Example 1 was carried out except that the nitrogen supply was controlled by the pressure gauge 6 and the panoleb 9 so that the pressure in the gas chamber of the membrane gas dissolving apparatus became 121 kPa (gauge pressure). I went.
  • the supply of nitrogen was 118 mL (standard condition) of Z minutes, and the nitrogen concentration of the nitrogen-dissolved water flowing out of the membrane-type gas dissolution apparatus was 15. OmgZL.
  • Difficult Example 1 and Difficult Example 2 set the temperature of the membrane melting device at 20 ° C.
  • the pressure of the air chamber By controlling the pressure of the air chamber to be 0.37 times or 0.21 times the pressure of 110.13 kPa (gauge pressure), and supplying nitrogen to the air chamber, The nitrogen concentration is 10.9 O mg / L, 0.63 times or 0.79 times of O mg / L.
  • Nitrogen dissolving hydraulic power S is obtained. even if the ⁇ iodine concentration force s noodles, nitrogen by a Kyoito ⁇ Rukoto the air chamber of the control to membrane-type gas dissolving apparatus to be pressure mosquito ⁇ value of membrane type gas dissolving apparatus, predetermined ⁇ nitrogen Nitrogen-condensed water with elemental concentration can be produced.
  • the nitrogen force is dissolved and the superfiber fek is used as raw water to dissolve the insufficient nitrogen for a predetermined concentration of nitrogen, and to reduce the nitrogen concentration.
  • the process it is possible to easily and accurately produce nitrogen-dissolved water whose nitrogen concentration is controlled.

Abstract

An apparatus for producing the water containing nitrogen dissolved therein, characterized in that it comprises (A) a membrane type gas dissolution device having a water chamber and a gas chamber being partitioned by a gas-permeable membrane, (B) a deoxygenated water supply pipe for supplying deoxygenated water to said water chamber, (C) a gas dissolving water discharge pipe for discharging a gas dissolving water from said water chamber, (D) a nitrogen supply pipe for supplying nitrogen to said gas chamber, (E) a nitrogen feed adjusting means for adjusting a nitrogen feed to said gas chamber and (F) a pressure gage for measuring the pressure of said gas chamber, wherein the nitrogen feed is adjusted by the nitrogen feed adjusting means, based on the values measured by said pressure gage, and the pressure of said gas chamber is maintained at a predetermined value. The above apparatus allows the production of the water having a concentration of dissolved nitrogen which is controlled with good accuracy by a simple and easy manner.

Description

明細書  Specification
技術分野 Technical field
本発明は、 窒素溶解水の製難置に関する。 さらに詳しくは、 本発明は、 簡便かつ精度 よく 窒素濃度が管理された水を製造することができる窒素溶解水の製¾¾置に関する  The present invention relates to difficulties in producing nitrogen-dissolved water. More specifically, the present invention relates to an apparatus for producing nitrogen-dissolved water that can easily and accurately produce water whose nitrogen concentration is controlled.
背景嫌 Disgusting background
体用シリコン 、 液晶用ガラス ¾¾、 フォトマスク用 ¾¾¾などの電子材料の 表面から、微粒子などの異物を除去することは、 製品の品質、 歩留まりを確保する上で極 めて重要である。 電子お—料などを超音波 争する 、 ガスを溶解した »zkを用いると 、 良好な 果が得られることが分かってきた。 一般に、 游ガス濃度が高いほど望ま しいが、 i 包和になると ii な気泡が発生し、 それが超音波伝播の妨げになったり、被洗 浄物の表面に付着して、 洗浄ムラの原因になったりする。 ¾1板を内蔵したノズルを使う には、 ノズルの内部にガスだまりができ、 超音波が水に伝わらないだけでなく、 超音 波発歸 !5の損傷の原因ともなる。 このために、 ガス濃度力 s過飽和にならない範囲での 高濃度ガス?容解水が求められるようになってきた。  It is extremely important to remove foreign matter such as fine particles from the surface of electronic materials such as silicon for body, glass for liquid crystal, and photomask for securing the quality and yield of products. It has been found that good results can be obtained by using »zk, which dissolves gas, which disputes electronic materials and ultrasonic waves. In general, the higher the concentration of the free gas, the better, but the i inclusion will generate ii air bubbles, which will hinder the propagation of ultrasonic waves and adhere to the surface of the object to be cleaned, causing uneven cleaning. Or become. ¾Using a nozzle with a built-in plate creates a gas pool inside the nozzle, which not only prevents ultrasonic waves from reaching the water, but also causes damage to the ultrasonic wave generator! 5. For this reason, it has become necessary to obtain high-concentration gas and dissolved water within a range that does not result in gas concentration s supersaturation.
敷立子の除去には、 水素を溶解した 水を用!/、る超音波 »が最も効果的であるが、 ガスの取り扱いの容易さから、 窒素を溶解した窒素溶解水力 S使われることも多くなった。 超糸 fcKへの窒素の溶解手段としては、 水槽中での窒素パプリングが挙げられる。 この手段 は非常に簡便であるが、游窒素濃度を高レ 直で精度よく維持することは困難である。 さ らに、 ガス扁' 141莫モジュールを用いた単純なガス溶解擁もある。 ガス顯'困莫モジュ ールを用いると、 比較的容易に^ 窒素濃度の高い窒素溶解水を得ることが可能であるが 、 游窒素濃度が一定し、 力 過飽和でなレ、窒素溶解水を安定して製造することは困難で めった。  Use water with dissolved hydrogen to remove the mattress! Ultrasonics are the most effective, but because of the ease of gas handling, nitrogen-dissolved hydropower, which dissolves nitrogen, has been increasingly used. Means for dissolving nitrogen in the super yarn fcK include nitrogen coupling in a water tank. Although this method is very simple, it is difficult to maintain the concentration of free nitrogen with high accuracy. In addition, there is a simple gas dissolution method using a gas module of 141 mm. Using the gas module, it is relatively easy to obtain nitrogen-dissolved water with a high nitrogen concentration, but the nitrogen concentration is not constant and the nitrogen-dissolved water is not supersaturated. It was difficult to produce it stably.
これらに対して、 ガス溶解装置に超術 と窒素とを供給し、 得られた窒素溶解水の游 窒素濃度を窒素濃度計で測定し、 目標窒素濃度と対比して、 供給窒素量を制御する方法が 知られている。 しかし、 従来の窒素濃度計による測定では、 言"^のパージガスの供給、 斗水の流量調整などの操作条件の設定が面倒であり、 また、 fl はサンプリング ¾管を 分岐して i¾gすることから面倒で手間力 sかかり、試料水を常日 水しなければならなレ、の で嘸駄である。 In response to this, super-surgery and nitrogen are supplied to the gas dissolving device, and the free nitrogen concentration of the resulting nitrogen-dissolved water is measured with a nitrogen concentration meter, and the supplied nitrogen amount is controlled in comparison with the target nitrogen concentration. The method is known. However, in the measurement using a conventional nitrogen concentration meter, it is troublesome to set the operating conditions such as the supply of purge gas and the adjustment of the flow rate of the pot water, and the fl It is troublesome and troublesome to work s because of branching and i¾g.
原 中の ガスを脱気 «により完全に除去したのち、 ガス 莫モジュールを用 レ、、 特定のガスを必要量だけ供給して溶解させることにより、 原冰に所定濃度のガスを溶 解した水を、 気泡を発生させることなく製造することができる。 F i g . 3は、 従来の窒 素溶解水の製造装置の一例の工程系統図である。 超純水タンク 2 5からポンプ 2 6により 送り出された Slfckが、 麵気装置 2 7において游ガスが に除去され、 膜式ガス溶 解装置 2 8において所定量の窒素力 S溶解され、 所 «度の窒素溶解水力 S製造される。  After completely removing the gas in the raw material by degassing, a gas module is used to supply the required amount of specific gas and dissolve it, thereby dissolving the gas at a predetermined concentration in the raw ice. Can be produced without generating bubbles. FIG. 3 is a process flow diagram of an example of a conventional apparatus for producing nitrogen-dissolved water. The Slfck sent from the ultrapure water tank 25 by the pump 26 is subjected to the removal of the free gas by the gasifier 27 and the nitrogen gas S is dissolved by a predetermined amount in the membrane gas dissolver 28. Degree of nitrogen dissolved hydraulic power S manufactured.
電子材料などの微争に用レ、られる超 ¾Rは、 脱 m»及び脱二酸化炭素を目的として脱気 処理され、 游ガスが除去されたのち、 上部空間が窒素雰囲気に保たれた赚に貝¾され る ^が多い。 このような には、 «にある の窒素力溶解しているので、 脱気 処理により游窒素を完全に除去したのち、 必要量の窒素を供給して溶解させることは、 工程が多くなり無駄が多レ、。 このために、 簡便力つ精度よく ^^窒素濃度が管理された水 を製造することができる手段が求められてレヽた。  The super-R used in the dispute over electronic materials is degassed for the purpose of degassing and decarbonation, and after the free gas is removed, the upper space is kept in a nitrogen atmosphere. There are many ^. In such a case, since the nitrogen power of the other is dissolved, the complete removal of free nitrogen by degassing and then supplying and dissolving the required amount of nitrogen requires many steps and waste. Many ,. For this reason, there has been a demand for a means capable of easily and accurately producing water having a controlled nitrogen concentration.
本発明は、 簡便力 精度よく游窒素濃度が管理された水を製造することができる窒素 溶解水の製f¾置を# ^することを目的としてなされたものである。 発明の開示  An object of the present invention is to provide a method for producing nitrogen-dissolved water, which is capable of producing water in which the concentration of free nitrogen is controlled with ease and accuracy. Disclosure of the invention
本発明者らは、 上記の廳を解決すべく鋭意研究を重ねた結果、 原冰を膜式ガス溶解装 置の水室に供給し、 気室の圧力を測定して窒素翻军 7_Kの所 農度に対応する設定値との差 を自動計算し、気室の圧力力 s設定値に維持されるように、 気室への窒素の供給量を制御す ることにより、 ·窒素濃度が一定した窒素溶解水を安定して製造し得ることを見いだし 、 この知見に基づレ、て本発明を^^するに至つた。  The present inventors have conducted intensive studies to solve the above-mentioned problem. As a result, the original ice was supplied to the water chamber of the membrane-type gas dissolution apparatus, and the pressure of the gas chamber was measured to obtain a nitrogen conversion of 7_K. By automatically calculating the difference from the set value corresponding to the agricultural level and controlling the amount of nitrogen supplied to the air chamber so as to maintain the air chamber pressure force s set value, the nitrogen concentration is constant It has been found that the nitrogen-dissolved water can be produced stably, and based on this finding, the present invention has been accomplished.
すなわち、 本発明は、  That is, the present invention
( 1 ) (Α)ガス 莫によって区画された水室と気室とを備えた膜式ガス溶解装置、 ( Β )脱酸素された水を該水室に供 mi "る脱酸素水供給管、 ( C)該水室からガス溶解水を排 出するガス溶解水排出管、 (D)該気室に窒素を供 る窒素供給管、 (E)該気室への窒素 供^ *を H¾する窒素供糸 *l ^手段、 及び、 (F)該気室の圧力を測定する圧力計を有し 、 該圧力計の測定値にもとづいて窒素供給量調整手段により窒素供^ *を薩し、 該気室 の圧力を設定値に糸辦することを擀敫とする窒素溶解水の製難置、 及び、 (2) 水が、 超¾7である(1)記載の 溶解水の製離置、 (1) (Α) gas A membrane gas dissolving apparatus having a water chamber and an air chamber partitioned by gas, (Β) a deoxygenated water supply pipe for supplying deoxygenated water to the water chamber, (C) a gas-dissolved water discharge pipe for discharging gas-dissolved water from the water chamber; (D) a nitrogen supply pipe for supplying nitrogen to the gas chamber; and (E) a nitrogen supply to the gas chamber. And (F) a pressure gauge for measuring the pressure of the air chamber, wherein the nitrogen supply amount is adjusted by the nitrogen supply amount adjusting means based on the measured value of the pressure gauge. Difficulty in producing nitrogen-dissolved water, wherein the pressure of the air chamber is adjusted to a set value; and (2) The separation and separation of the dissolved water according to (1), wherein
を ^するものである。 図面の簡単な説明 To Brief Description of Drawings
F i g. 1は本発明の窒素溶解水の製造装置の一態様の工程系統図、 F i g.. 2は本発明 の窒素溶角 Zkの製 置の他の H«の説明図、 F i g. 3は従来の窒素溶解水の製 ^置 の一例のェ縣統図である。 図中符号 1は ® zkタンク、 2はポンプ、 3は脱赚 zk供給 管、 4は S試ガス溶解装置、 5は窒素供給管、 6は圧力計、 7はガス溶解水排出管、 8は 制御器、 9はバルブ、 10はガス排出管、 11はバルブ、 12はポンプ、 13は中空糸月莫 式ガス溶解装置、 14は中空糸膜、 15はガス供給室、 16はガス排出室、 17は仕切板 、 18は tt¾0板、 19は窒素源、 20は流 «周節弁、 21は窒素供^、 22はガスお出 管、 23は圧力計、 24は制御器、 25は超 ¾Rタンク、 26はポンプ、 27½M^ 置、 28は膜式ガス溶解装置を表す。 発明を実施するための最良の开$態 FIG. 1 is a process flow diagram of one embodiment of the apparatus for producing nitrogen-dissolved water of the present invention, FIG. 2 is another explanatory diagram of the apparatus for producing a nitrogen melt angle Zk of the present invention, FIG. ig. 3 is an example of a conventional method for producing nitrogen-dissolved water. In the figure, reference numeral 1 denotes a ® zk tank, 2 denotes a pump, 3 denotes a desalination zk supply pipe, 4 denotes an S test gas dissolving apparatus, 5 denotes a nitrogen supply pipe, 6 denotes a pressure gauge, 7 denotes a gas dissolved water discharge pipe, and 8 denotes a gas dissolving pipe. Controller, 9 is a valve, 10 is a gas discharge pipe, 11 is a valve, 12 is a pump, 13 is a hollow fiber gas dissolving device, 14 is a hollow fiber membrane, 15 is a gas supply chamber, 16 is a gas discharge chamber, 17 is a partition plate, 18 is a tt0 plate, 19 is a nitrogen source, 20 is a flow valve, 21 is a nitrogen supply, 22 is a gas outlet pipe, 23 is a pressure gauge, 24 is a controller, and 25 is a super ¾R A tank, 26 is a pump, 27½M ^, and 28 is a membrane gas dissolving device. Best mode for carrying out the invention
本発明の窒素溶解水の製離置は、 (A)ガス顧倒莫によって区画された水室と気室と を備えた膜式ガス溶解装置、 (B)脱酸素された水を該水室に供糸 る脱酸素水供給管、 ( C)該水室からガス溶解水を排出するガス溶解水排出管、 (D)該気室に窒素を供給する窒 素供給管、 (E)該気室への窒素供 を言膽する窒素供給量調整手段、 及び、 (F)該気室 の圧力を測定する圧力計を有し、 曹赃カ計の測定値にもとづいて窒素供糸 調整手段によ り窒素供給量を調整し、 該気室の圧力を設定値に維持する。  The separation and production of nitrogen-dissolved water according to the present invention includes: (A) a membrane-type gas dissolution apparatus including a water chamber and an air chamber partitioned by a gas control unit; and (B) a deoxygenated water in the water chamber. (C) a gas-dissolved water discharge pipe for discharging gas-dissolved water from the water chamber; (D) a nitrogen supply pipe for supplying nitrogen to the gas chamber; And (F) a pressure gauge for measuring the pressure in the air chamber, wherein the nitrogen supply adjusting means based on the measured value of the soda meter. The nitrogen supply is further adjusted to maintain the pressure in the air chamber at the set value.
F i g. 1は、 本発明の窒素溶解水の製離置の一 H¾のェ «統図である。 本!^の 装置においては、 超 MzKタンク 1に脱醜された超 «力 されている。 超糸 fckを脱酸 素することにより、 される被 の表面の酸化を防ぐとともに、 zR中の生菌の■ をも防ぐことができる。 脱酸素処理の際には、 水中でイオン化し、 電気伝導率を高める原 因となる二酸ィ 素も同時に除去される。 脱酸素された超 を ff?^する超 Ϊ タンクの 上部の空間は、 窒素で満たされている。 したがって、 超¾*中にはある @sの量の窒素が 溶解してレ、るが、 辦ロ濃度以上の窒素力 s溶解することはほとんどなレ、。 タンク内の ^fek の?雜窒素濃度は、 タンク内の場所により差があり、 超 ¾Kのタンク内での 時間によ つても βし、 ほとんどの^は管理されていない。 超純水タンク内の S fekは、 ポンプ 2により脱酸素水供給管 3を経由して、 ガス 性 膜によって区画された水室と気室とを備えた膜式ガス溶解装置 4に送られる。 獻ガス溶 角军装置には、 気室に窒素を供^ Tる窒素供給管 5と、 気室の圧力を測定する圧力計 6が設 けられている。 月莫式ガス?容角军装置において、 ガス 莫を 3¾して窒素力 s超 »に溶解 し、 窒素溶解水がガス溶解水排出管 7から排出される。 圧力計の測定値は信号として制御 器 8に送られ、 制 暇において設定値との差が自動計算され、 信号がバルブ 9に送られて ノルプの開度により窒素供給量が瞧され、 気室内の圧力力 S設定値に維持される。 すなわ ち、 制御器 8とバルブ 9が窒素供 調整手段としてはたらく。 FIG. 1 is a diagram of one example of the separation and production of nitrogen-dissolved water of the present invention. In the device of the book! ^, The super MzK tank 1 is super depowered. By deoxidizing the superfiber fck, it is possible to prevent oxidation of the surface of the subject to be oxidized and also to prevent live bacteria in the zR. During the deoxygenation treatment, silicon dioxide, which ionizes in water and increases electrical conductivity, is also removed. The space above the ultra-tank tank that ff? ^ Deoxygenates the air is filled with nitrogen. Therefore, the amount of nitrogen that is present in the super ¾ * is dissolved by the amount of @s, but the nitrogen power over the concentration of 辦 is hardly dissolved. The nitrogen concentration of ^ fek in the tank varies depending on the location in the tank, and β also depends on the time in the tank at an ultra-high temperature of ¾K. Most ^ are not controlled. The S fek in the ultrapure water tank is sent by a pump 2 through a deoxygenated water supply pipe 3 to a membrane gas dissolving apparatus 4 having a water chamber and an air chamber partitioned by a gaseous membrane. The gas supply apparatus is provided with a nitrogen supply pipe 5 for supplying nitrogen to the gas chamber and a pressure gauge 6 for measuring the pressure of the gas chamber. In the gas-capacity system, the gas is dissolved in nitrogen gas with a power of 3 seconds, and the nitrogen-dissolved water is discharged from the gas-dissolved water discharge pipe 7. The measured value of the pressure gauge is sent to the controller 8 as a signal, the difference from the set value is automatically calculated during leisure, a signal is sent to the valve 9, and the nitrogen supply amount is determined by the opening of the norp. The pressure force of S is maintained at the set value. That is, the controller 8 and the valve 9 serve as nitrogen supply adjusting means.
膜式ガス溶解装置の気室が窒素で満たされ、 その圧力が標準大躯である 0 k P a (ゲ ージ圧)であると、 窒素溶解水の游窒素濃度は飽和濃度となる。 例えば、 2 0°C、 大^ E 1 0 1. 3 k P aのときは、 窒素 H O m gZLを溶解した窒素溶解水が得られる 。 気室を完全に真空にして、 圧力一 1 0 1. 3 k P a (ゲージ圧)とすると、 水室から排出 される水の? 窒素濃度は 0 m g / Lとなる。 t °Cにおける水に る窒素の飽和溶 解度をひ tm gZLとすると、 獻ガス溶解装置の気室の圧力を一 1 0 1 · 3 k P a (ゲー ジ圧)の X倍( 0≤ X≤ 1 )としたとき、 ガス溶解水排出管から排出される窒素溶解水の溶 存窒素濃度は、 at ( l _ x) m g/Lとなる。 この関係を利用して、 気室の圧力が設定値 になるように窒素を供糸^ることにより、 所定の^^窒素濃度の窒素溶角 ¾kを製造するこ. とができる。 膜式ガス溶解装置の気室の圧力は、 窒素を供糸 る取り合い点より最も遠レ、 位置で測定すること力 S好ましレ、。 If the gas chamber of the membrane gas dissolver is filled with nitrogen and the pressure is 0 kPa (gage pressure), which is the standard size, the concentration of free nitrogen in the nitrogen-dissolved water becomes saturated. For example, when the temperature is 20 ° C. and the temperature is large E10 1.3 kPa, nitrogen-dissolved water in which nitrogen HOmgZL is dissolved is obtained. If the air chamber is completely evacuated to a pressure of 101.3 kPa (gauge pressure), the nitrogen concentration of water discharged from the water chamber will be 0 mg / L. Assuming that the saturation solubility of nitrogen in water at t ° C is t mg gL, the pressure in the gas chamber of the gas dissolving unit is X times the gauge pressure of 110 1 · 3 kPa (0 ≤ x ≤ 1) and the time, dissolved nitrogen concentration of nitrogen dissolved water discharged from the gas dissolved water discharge pipe becomes a t (l _ x) mg / L. By utilizing this relationship, by supplying nitrogen so that the pressure of the air chamber becomes a set value, it is possible to produce a nitrogen melt angle ¾k having a predetermined nitrogen concentration. The pressure in the air chamber of the membrane gas dissolving device is measured at the farthest position from the connection point where nitrogen is supplied.
本発明装置によれば、 窒素で満たされた H試ガス溶解装置の気室の圧力を繊して設定 値に膽することにより、 供給される脱酸素水の游窒素濃度;^変動しても、 常に所定の 游窒素濃度の窒素溶解水を安定して製造することができる。 従来鎌である窒素溶解ェ 程の前に脱気処理を行う雄では、 原水中に成りゆきィ で溶解している窒素を 、つたん 除去したのち、 必要量の窒素を溶解させていた。 脱酸素された超 は、 游ガスとして 窒素のみが成りゆき で溶解しているので、 これを除去することなく活用することによ り、 窒素溶解水の製難置を簡 匕し、 窒素を無駄なく利用することができる。  According to the apparatus of the present invention, by reducing the pressure of the gas chamber of the H test gas dissolving apparatus filled with nitrogen to a set value, the nitrogen concentration of the supplied deoxygenated water; However, it is possible to stably produce nitrogen-dissolved water having a predetermined free nitrogen concentration. In the case of a male who performs degassing before the nitrogen dissolution process, which is a conventional sickle, the necessary amount of nitrogen is dissolved after the nitrogen that has been dissolved in the raw water is easily removed. In the deoxygenated superfluous gas, only nitrogen is dissolved as a free gas, so by using this gas without removing it, it is possible to reduce the difficulty of producing nitrogen-dissolved water and save nitrogen. Can be used.
本発明の窒素溶解水の製^置においては、 (G)気室からガスを排出するガス排出管を 設けることができる。 F i g . 1に示す態様にぉレ、ては、 獻ガス溶解装置の気室にガス 排出管 1 0力 S設けられ、 ガス排出管には、 ノ レブ 1 1とポンプ 1 2力 S設けられている。 ガ ス排出管は、 本発明装置の運転を開始するに際し、 気室に窒素を送り込んで内部の空気を 窒素で置換するとき、 空気が混合したガスの排出に使用することができる。 また、 m タンクより供給される愚ネ ΐζΚの游窒素濃度よりも、 製造する窒素溶解水の?雜窒素濃度 力 s低レ、 は、 ガス ¾© 莫を経由して抜き取つた窒素の排出に使用することができる。 本発明装置において、 超fckタンクより供給される の?雜窒素 よりも、製造 する窒素溶解水の游窒素濃度力 S低い齢は、 膜式ガス溶解装置の気室の圧力は、 窒素溶 解水を製造すると上昇する。 このとき、圧力計 6の測定値が信号として制御器 8に送られ 、 制 隴において設定値との差が自動計算され、 信号がバルブ 1 1に送られてバルブを開 くことより窒素排出量が調整され、 気室内の圧力力 s設定値に維持される。 バルブ 1 1より 下流側は、 ポンプ 1 2により大 ffi以下に保たれる。 In the production of the nitrogen-dissolved water of the present invention, (G) a gas discharge pipe for discharging gas from the air chamber can be provided. In the embodiment shown in Fig. 1, a gas discharge pipe 10 power S is provided in the gas chamber of the gas dissolving apparatus, and a knurl 11 and a pump 12 power S are provided in the gas discharge pipe. ing. When starting operation of the device of the present invention, the gas discharge pipe feeds nitrogen into the air chamber to release the internal air. When replacing with nitrogen, air can be used to exhaust the mixed gas. In addition, the nitrogen concentration of the produced nitrogen dissolved water is lower than the nitrogen concentration of nitrogen supplied from the m tank. Can be used. In the apparatus of the present invention, the pressure of the gas chamber of the membrane gas dissolving apparatus is lower than that of nitrogen, which is supplied from the ultra-fck tank. As you manufacture, it rises. At this time, the measured value of the pressure gauge 6 is sent to the controller 8 as a signal, the difference from the set value is automatically calculated in the controller, and the signal is sent to the valve 11 to open the valve, thereby reducing the nitrogen emission. Is adjusted to maintain the pressure s set in the air chamber. The downstream side of the valve 11 is kept at a large ffi or less by the pump 12.
本発明装置により游窒素濃度が一定した窒素溶解水を製造するためには、 膜式ガス溶 解装置の気室の圧力を測定する圧力計を気室に ¾gするだけでよく、 また、 圧力計を気室 に^ 1 "るので^ を用いる測定の必要がなく、 試半斗水を採取するための分岐管が不要 であり、 窒素溶解水の S¾t¾置として簡!^匕することができる。 さらに、圧力を測定する のみであるので、 濃度計のような煩雑な操作を必要と 、 排水を発生することもなレ、。 本発明装置において、 脱酸素された超¾*を原 とすると、 窒素以外のガスは溶解して おらず、 圧力計で測定される圧力は、 直ちに窒素溶解水の溶存窒素濃度に対応し、 窒素溶 解水の雜窒素濃度を正確に制御することができる。 また、 膜式ガス溶解装置の気室に供 給される窒素は、 通常は 0 0#¾%のガスであるために、圧力の測定値は^ 窒素 濃度に対応することになる。 換討れば、 原水に脱酸素された ¾ kを用い、 供糸 る窒 素として纖 1 0 0髓%のガスを用レ、るために、 気室の圧力を測定することにより、 所 定の^^窒素濃度の窒素溶解水を製造することができる。  In order to produce nitrogen-dissolved water having a constant free nitrogen concentration by the apparatus of the present invention, it is only necessary to add a pressure gauge for measuring the pressure of the air chamber of the membrane gas dissolution apparatus to the air chamber. Since it is ^ 1 "in the air chamber, there is no need for measurement using ^, and there is no need for a branch pipe for sampling the test water, and it can be simply placed as a nitrogen-dissolved water S¾t¾. Furthermore, since only pressure is measured, complicated operations such as a densitometer are required, and wastewater is not generated.In the present invention, based on the deoxygenated super ¾ *, Gases other than nitrogen are not dissolved, and the pressure measured by the pressure gauge immediately corresponds to the dissolved nitrogen concentration of the nitrogen-dissolved water, and the nitrogen concentration of the nitrogen-dissolved water can be accurately controlled. The nitrogen supplied to the gas chamber of the membrane type gas dissolver is usually In other words, the measured pressure value corresponds to the concentration of nitrogen.In other words, using 100 kN of deoxygenated raw water, 100% of fiber is used as the nitrogen to be supplied. By measuring the pressure in the air chamber to use the water, it is possible to produce nitrogen-dissolved water with a predetermined ^^ nitrogen concentration.
本発明装置において、 原水として使用する脱赚された ^fokの^ 濃度は、 1 0 In the apparatus of the present invention, the ^ concentration of the desorbed ^ fok used as raw water is 10
0 μ g/L以下であること力 S好ましい。 ^素濃度が 1 0 0 μ gZL以下であると、 溶 存窒素濃度に対応する圧力を測定する上で、 酸素濃度は実質的に影響を与えない。 超 fek製造工程から供給される 術の游赫濃度が 1 0 0 μ g/L以下であれば、 その まま窒素溶解水の原冰として翻することができる。 游酸素濃度が高レ、齢には、 脱気 して mmを除去することができる。 The force S is preferably 0 μg / L or less. If the concentration of nitrogen is less than 100 μg ZL, the oxygen concentration has substantially no effect on measuring the pressure corresponding to the dissolved nitrogen concentration. As long as the concentration of free syrup supplied from the ultra-fek manufacturing process is 100 μg / L or less, it can be used as it is as the original ice of nitrogen-dissolved water. When the oxygen concentration is high and the age is high, degassing can be performed to remove mm.
本発明装置において、 B ガス溶解装置に供給される a ifeKが、 fck製造ェ axは供 給の途中の超糸 fcKタンクで窒素でパージされてレ、ると、 窒素が ί容角旱した ¾ kが^:ガス 溶解装置に供給されるが、 本発明装置では、 このあらかじめ溶解している窒素も、 そのま ま^ 窒素として使用され、 不足分の窒素力補充される。 In the apparatus of the present invention, when the ifeK supplied to the B gas dissolving apparatus and the fck production ax are purged with nitrogen in the super-fiber fcK tank in the course of the supply, the nitrogen is dried up. k is supplied to the gas dissolving device, but in the device of the present invention, the previously dissolved nitrogen is Well, it is used as nitrogen, and the shortage of nitrogen is replenished.
本発明装置に用いるガス †继の材質に特に制限はな 例えば、 ポリプロピレン、 ポリ(4ーメチノレペンテン一 1 )、 ポリ(2, 6—ジメチノレフエ二レンォキシド)、 ポリジメ チルシ口キサン、 ポリカーボネートーポリジメチルシ口キサンプロック共重合体、 ポリど ユルフェノーノレ一ポリジメチルシロキサン一ポリスルホンブロック共重合体、 ポリテトラ フノレオ口エチレン、 ポリイミドなどを挙げることができる。 本発明装置にぉレヽては、腐食 性などのなレ、窒素を溶解させるので、 ポリプロピレン、 ポリ( 4ーメチルペンテンー 1 )な どのポリオレフィン系のガス を好適に用レ、ることができる。 本発明装置にぉレヽて 、 ガス 莫の形式に特に制限はなく、 例えば、 平面膜、 管型、 スノィラル、 中空糸、 モノリス型、槽浸漬型、 回転円觀莫などを挙げることができる。  There is no particular limitation on the material of the gas used in the apparatus of the present invention. Examples thereof include xanthop block copolymers, polyurenophenols, polydimethylsiloxanes, polysulfone block copolymers, polytetraphenylol ethylene, and polyimides. The apparatus of the present invention dissolves nitrogen, which is not corrosive, etc., so that a polyolefin-based gas such as polypropylene or poly (4-methylpentene-1) can be suitably used. The type of gas used in the apparatus of the present invention is not particularly limited, and examples thereof include a flat membrane, a tube type, a snail, a hollow fiber, a monolith type, a tank immersion type, and a rotating circular type.
本発明装置において、 膜式ガス翻装置への脱酸素水と窒素の供給は、 向流^:で行う こと力 s好ましい。 すなわち、 膜式ガス溶解装置の水室の膜の長さ方向の一端側に を 供給し、 他端側から窒素溶解水を排出するのに対し、 窒素は気室の窒素溶解水排出側から 供給し、 超2 ¾κの供給側から排出すること力 s好ましい。 超 ifeKと窒素を向流翻 ること により、 良好なガス溶解効率を得ることができる。 In the apparatus of the present invention, the supply of deoxygenated water and nitrogen to the membrane type gas conversion apparatus is preferably performed in the countercurrent flow ^ :. That is, is supplied to one end of the water chamber of the membrane type gas dissolving apparatus in the length direction of the membrane, and nitrogen-dissolved water is discharged from the other end, whereas nitrogen is supplied from the nitrogen-dissolved water discharge side of the gas chamber. And it is preferable to discharge from the supply side of more than 2超 κ. By counterflowing the super ifeK and nitrogen, good gas dissolution efficiency can be obtained.
F i g . 2は、 本癸明の窒素溶解水の製難置の他の鍵の説明図である。 本 I ^にお いては、 膜式ガス溶解装置として中空糸膜式ガス溶解装置 1 3力 S用いられ、 中空糸膜 1 4 の内側に窒素力 共給され、 中空糸膜の外側に超 fek力 S供給される。 膜式ガス溶解装置の一 端にガス供給室 1 5、 他端にガス 出室 1 6が仕切板 1 7、 1 8を介して設けられ、 仕切 板を貫通して中空糸がガス供給 びガス排出室に開口している。 窒素源 1 9カゝら流量調 節弁 2 0を経由して、 窒素供給管 2 1がガス供給室に接镜されている。 また、 ガス排出管 2 2がガス排出室に接続されている。 圧力計 2 3によりガス排出室の圧力が測定され、 圧 力計の測定値が信号として制彿隴 2 4に送られ、 制御器において設定値との差が自動計算 され、 信号が流量調節弁に送られて弁の開度により窒素排出量が調整され、 中空糸膜の内 側の圧力が設定値に維持される。  FIG. 2 is an explanatory view of another key of the storage of the nitrogen-dissolved water of Honkiaki. In the present I ^, a hollow fiber membrane gas dissolving apparatus 13 force S was used as a membrane gas dissolving apparatus, and nitrogen was co-supplied inside the hollow fiber membrane 14, and ultra-fek was applied outside the hollow fiber membrane. Power S supplied. A gas supply chamber 15 is provided at one end of the membrane-type gas dissolving apparatus, and a gas outlet chamber 16 is provided at the other end via partition plates 17 and 18.Hollow fibers are supplied through the partition plate to supply gas. Open to the discharge chamber. A nitrogen supply pipe 21 is connected to the gas supply chamber via a nitrogen source 19 through a flow control valve 20. Further, a gas discharge pipe 22 is connected to the gas discharge chamber. The pressure in the gas discharge chamber is measured by the pressure gauge 23, and the measured value of the pressure gauge is sent to the control unit 24 as a signal, and the difference from the set value is automatically calculated by the controller. The nitrogen discharge is adjusted by the opening of the valve, and the pressure inside the hollow fiber membrane is maintained at the set value.
本発明装置において、 膜式ガス溶解装置の気室に設置する圧力計に特に制限はなく、 例 えば、 U字管型、 単管型、 載法型などの液¾ ^の圧力計、 プルドン管型、 ベローズ型 In the apparatus of the present invention, there is no particular limitation on the pressure gauge installed in the air chamber of the membrane gas dissolving apparatus. For example, a pressure gauge for liquids such as a U-tube type, a single-tube type, a mounting type, and a Pourdon tube Type, bellows type
、 ダイヤフラム型などの弾性体:^ Xは力平衡;^:の圧力計、 単鐘式、 ネ l t式などの ¾ϋ, Such as diaphragm type elastic body: ^ X is force balance; ^: pressure gauge, single bell type, Nelt type etc. ¾ϋ
^:の圧力計などを拳げることができる。 ^: You can fist the pressure gauge.
本発明装置において、 窒素供給量調整手段に特に制限はなく、 例えば、 手動又は自動に より、圧力の測定値が所定の游窒素濃度に対応する設定値となるように、 窒素供糸 を 調整することができる。 自動により窒素供糸 を調整する齢は、圧力の測定値を演算装 置に入力し、 圧力の設定値と比較演算し、 その差に相当する信号を窒素供糸 雄手段に 送り、 窒素供^ 4を調整することができる。 窒素供給量の言膽手段としては、 例えば、 窒 素供給管又は窒素排出管に設けた流量難弁などを挙げることができる。 手動による は、 弁の開度を人手によつて言磨することができる。 実施例 In the apparatus of the present invention, the means for adjusting the amount of nitrogen supply is not particularly limited. Thus, the nitrogen supply can be adjusted so that the measured value of the pressure becomes a set value corresponding to the predetermined free nitrogen concentration. When adjusting the nitrogen supply automatically, the measured value of the pressure is input to the calculating device, the calculated value is compared with the set value of the pressure, and a signal corresponding to the difference is sent to the male means for supplying the nitrogen. 4 can be adjusted. Examples of the means for analyzing the amount of nitrogen supply include a flow-resistant valve provided in a nitrogen supply pipe or a nitrogen discharge pipe. By manual, the opening of the valve can be manually adjusted. Example
以下に、 ¾例を挙げて本発明をさらに詳細に説明するが、 本発明はこれらの実施例に よりなんら限定されるものではなレ、。  Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to these examples.
実施例 1 Example 1
F i g . 1に示す装置を用いて、 2 0。Cにおいて、 窒素濃度 1 2 m gZLの窒素溶 解水を製造した。 ガス溶解装置は、 ポリプロピレン中空糸を備えた、 外形寸法が直径 1 2 O mm、 長さ 8 3 5 mmの膜モジュールである。  20 using the apparatus shown in FIG. In C, a nitrogen-dissolved water having a nitrogen concentration of 12 mg ZL was produced. The gas dissolving device is a membrane module with a polypropylene hollow fiber and an outer dimension of 12 Omm in diameter and 835 mm in length.
超 fekタンク 1から、 窒素濃度 7. 6 m g,Lの超 を、 ポンプ 2により膜式ガ ス溶解装置 4の水室に 2 0 り込み、 ガス溶解装置の気室の圧力が一 3 7 k P a (ゲージ圧)になるように圧力計 6とノ レブ 9により窒素の供糸 を制御した。 窒素の供 給量は 7 OmL (標準状態 )Z分となり、 膜^ス溶解装置から流出する窒素溶解水の窒素 濃度は 1 2. O m g/Lであった。 膜式ガス溶解装置に供給された窒素 7 0 mL (標 «態 ) Z分は、 超糸脉 2 0 LZ分の^ 窒素濃度の増加分 4. 4m gZLと一致し、 膜式ガス溶 解装置に供給された窒素が超 の?雜窒素濃度の増加に費消されたことが脑された。 実施例 2  From the super-fek tank 1, super-nitrogen concentration of 7.6 mg, L is pumped into the water chamber of the membrane gas dissolver 4 by the pump 2, and the pressure in the gas chamber of the gas dissolver is reduced to 37 k. The supply of nitrogen was controlled by a pressure gauge 6 and a knurl 9 so that the pressure became Pa (gauge pressure). The supply amount of nitrogen was 7 OmL (standard condition), and the nitrogen concentration of the nitrogen-dissolved water flowing out of the membrane dissolving apparatus was 12.2 mg / L. The 70 mL of nitrogen supplied to the membrane gas dissolver (standard state) Z content was equal to the increase in the nitrogen concentration of 20 LZ for the super-vein, 4.4 mgZL. It was found that the nitrogen supplied to the country was consumed to increase the superficial nitrogen concentration. Example 2
実施例 1と同様にして、 窒素濃度 1 5 m g,Lの窒素溶解水を製造した。  In the same manner as in Example 1, nitrogen-dissolved water having a nitrogen concentration of 15 mg, L was produced.
膜式ガス溶解装置の気室の圧力が一 2 1 k P a (ゲージ圧)になるように圧力計 6とパノレ ブ 9により窒素の供糸缘を制御した以外は、 例 1と同じ操作を行つた。 窒素の供糸 は 1 1 8 mL (標準状態) Z分となり、 膜式ガス溶解装置から流出する窒素溶解水の窒素濃 度は 1 5. O m gZLであった。 膜式ガス溶解装置に供給された窒素 1 1 8 mL (標準状態 )Z分は、超 2 0 L/分の游窒素濃度の増加分 7. 4m gZLと一致し、 膜式ガス溶 解装置に供給された窒素が超 ffokの? »窒素濃度の増加に費消されたことが β、された。 難例 1及び難例 2の結果から分かるように、 2 0 °Cにおレ、て、 膜 ス溶解装置の 気室の圧力が一 1 0 1 . 3 k P a (ゲージ圧)の 0. 3 7倍又は 0. 2 1倍となるように制御 して、 気室に窒素を供^ 1 "ることにより、 窒素濃度が飽和 1 9. O m g/Lの 0. 6 3倍又は 0. 7 9倍である窒素溶解水力 S得られる。 したがって、 膜式ガス溶解装置の水 室に供給される超糸 fckの赫窒素濃度力 s麵しても、 膜式ガス溶解装置の圧力カ镦定値に なるように制御して膜式ガス溶解装置の気室に窒素を供糸^ることにより、 所定の^ 窒 素濃度の窒素容角军水を製造することができる。 産業上の利用可能性 The same operation as in Example 1 was carried out except that the nitrogen supply was controlled by the pressure gauge 6 and the panoleb 9 so that the pressure in the gas chamber of the membrane gas dissolving apparatus became 121 kPa (gauge pressure). I went. The supply of nitrogen was 118 mL (standard condition) of Z minutes, and the nitrogen concentration of the nitrogen-dissolved water flowing out of the membrane-type gas dissolution apparatus was 15. OmgZL. The 118 mL of nitrogen supplied to the membrane gas dissolver (standard condition), the Z content, was equal to the increase of free nitrogen concentration of super 20 L / min, 7.4 mg ZL. It has been found that the nitrogen supplied is ultra-ffok? »Spent on increasing the nitrogen concentration. As can be seen from the results of Difficult Example 1 and Difficult Example 2, set the temperature of the membrane melting device at 20 ° C. By controlling the pressure of the air chamber to be 0.37 times or 0.21 times the pressure of 110.13 kPa (gauge pressure), and supplying nitrogen to the air chamber, The nitrogen concentration is 10.9 O mg / L, 0.63 times or 0.79 times of O mg / L. Nitrogen dissolving hydraulic power S is obtained. even if the赫窒iodine concentration force s noodles, nitrogen by a Kyoito ^ Rukoto the air chamber of the control to membrane-type gas dissolving apparatus to be pressure mosquito镦定value of membrane type gas dissolving apparatus, predetermined ^ nitrogen Nitrogen-condensed water with elemental concentration can be produced.
本発明の窒素溶解水の製 it¾置を用レ、ることにより、 窒素力 s溶解してレ、る超糸 fekを原水 として、 所定の^ 窒素濃度に対して不足する窒素を溶解し、 短い工程で、 簡便かつ精度 よく 窒素濃度が管理された窒素溶解水を製造することができる。  By using the nitrogen-dissolved water production apparatus of the present invention, the nitrogen force is dissolved and the superfiber fek is used as raw water to dissolve the insufficient nitrogen for a predetermined concentration of nitrogen, and to reduce the nitrogen concentration. In the process, it is possible to easily and accurately produce nitrogen-dissolved water whose nitrogen concentration is controlled.

Claims

- '請求の範囲 - 'The scope of the claims
1 . (A)ガス羅'幽莫によって区画された水室と気室とを備えた膜式ガス溶解装置、 (B) 脱酸素された水を言詠室に供^ Tる脱酸素水供給管、 (C)該水室からガス溶解水を排出す るガス溶解水排出管、 (D)該気室に窒素を供 る窒素供給管、 (E)該気室への窒素供給 量を慮する窒素供給量調整手段、 及び、 (F)該気室の圧力を測定する圧力計を有し、 該 圧力計の測定値にもとづ!ヽて窒素供 調整手段により窒素供縫を調整し、 該気室の圧 力を設定値に糸辦するこ
Figure imgf000011_0001
1. (A) Membrane gas dissolving device with water chamber and air chamber partitioned by Gas Luo Yumo, (B) Deoxygenated water supply to supply deoxygenated water to the wording room A pipe, (C) a gas-dissolved water discharge pipe for discharging gas-dissolved water from the water chamber, (D) a nitrogen supply pipe for supplying nitrogen to the gas chamber, and (E) a nitrogen supply amount to the gas chamber. And (F) a pressure gauge for measuring the pressure in the air chamber, based on the measured value of the pressure gauge! The nitrogen supply is adjusted by the nitrogen supply adjusting means, and the pressure of the air chamber is adjusted to a set value.
Figure imgf000011_0001
2. 水が、 超糸 である請求の範囲 1記載の窒素溶解水の製雜齓  2. The method according to claim 1, wherein the water is a super yarn.
PCT/JP2005/005468 2004-03-24 2005-03-17 Apparatus for producing water containing nitrogen dissolved therein WO2005089919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-087489 2004-03-24
JP2004087489A JP4470101B2 (en) 2004-03-24 2004-03-24 Nitrogen-dissolved ultrapure water production method

Publications (1)

Publication Number Publication Date
WO2005089919A1 true WO2005089919A1 (en) 2005-09-29

Family

ID=34993486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005468 WO2005089919A1 (en) 2004-03-24 2005-03-17 Apparatus for producing water containing nitrogen dissolved therein

Country Status (3)

Country Link
JP (1) JP4470101B2 (en)
TW (1) TW200536600A (en)
WO (1) WO2005089919A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210384049A1 (en) * 2020-06-04 2021-12-09 Tokyo Electron Limited System and Method for Wet Chemical Etching in Semiconductor Processing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320665B2 (en) * 2006-09-29 2013-10-23 栗田工業株式会社 Ultrapure water production apparatus and method
WO2009143056A1 (en) * 2008-05-19 2009-11-26 Entegris, Inc. Gasification systems and methods for making bubble free solutions of gas in liquid
JP2010234298A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Device for supplying water containing dissolved gas and method for producing water containing dissolved gas
JP5663410B2 (en) * 2011-06-10 2015-02-04 オルガノ株式会社 Ultrapure water production method and apparatus
KR101136544B1 (en) 2011-12-12 2012-04-17 (주) 선바이오투 Oxygen water manufacturing device for water purifier and its manufacturing method
JP5999222B2 (en) * 2015-05-29 2016-09-28 栗田工業株式会社 Gas dissolved water supply apparatus and gas dissolved water manufacturing method
JP6024060B1 (en) * 2016-07-14 2016-11-09 株式会社昭和冷凍プラント Nitrogen water production system and production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309566A (en) * 1997-05-08 1998-11-24 Kurita Water Ind Ltd Ultrapure water production device
JP2001068447A (en) * 1999-08-26 2001-03-16 Sony Corp Wet washing device
JP2001079376A (en) * 1999-09-10 2001-03-27 Kurita Water Ind Ltd Preparation of gas-dissolved water
JP2002307080A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Apparatus for producing ultrapure water
US20040000234A1 (en) * 2002-06-28 2004-01-01 Axel Preusse System and method for reducing the chemical reactivity of water and other chemicals used in the fabrication of integrated circuits
JP2004079990A (en) * 2002-06-20 2004-03-11 Dainippon Screen Mfg Co Ltd Wafer processing apparatus and method for controlling inert gas concentration

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523553A (en) * 1990-07-09 1993-02-02 Dainippon Ink & Chem Inc Diaphragm for gas-liquid contact, gas-liquid contact apparatus, and gas-dissolving liquid manufacturing method
JPH10324502A (en) * 1997-05-21 1998-12-08 Dainippon Ink & Chem Inc Device and method for adding carbon dioxide to ultrapure water
JP3786232B2 (en) * 1997-08-28 2006-06-14 大日本インキ化学工業株式会社 Apparatus and method for adjusting resistivity of ultrapure water
JP3951385B2 (en) * 1997-11-04 2007-08-01 大日本インキ化学工業株式会社 Apparatus and method for adjusting dissolved gas concentration in liquid
JPH11139804A (en) * 1997-11-11 1999-05-25 Dainippon Ink & Chem Inc Resistivity regulating device for ultrapure water and regulating method
JP2001025715A (en) * 1999-07-16 2001-01-30 Japan Organo Co Ltd Production of functional water and device therefor
JP2001310118A (en) * 2000-05-02 2001-11-06 Kurita Water Ind Ltd Gas-dissolved water supply device
JP2002172318A (en) * 2000-09-27 2002-06-18 Dainippon Ink & Chem Inc Apparatus and method for adjusting resistivity of ultrapure water
JP2003010660A (en) * 2001-06-28 2003-01-14 Dainippon Ink & Chem Inc Apparatus and method for controlling resistivity of ultra-pure water
JP2003334433A (en) * 2002-05-16 2003-11-25 Kurita Water Ind Ltd Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water
JP2005262031A (en) * 2004-03-17 2005-09-29 Kurita Water Ind Ltd Circulation type gas-dissolved water feed device and operation method for the device
JP2005270720A (en) * 2004-03-23 2005-10-06 Shanon:Kk Functional water manufacturing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309566A (en) * 1997-05-08 1998-11-24 Kurita Water Ind Ltd Ultrapure water production device
JP2001068447A (en) * 1999-08-26 2001-03-16 Sony Corp Wet washing device
JP2001079376A (en) * 1999-09-10 2001-03-27 Kurita Water Ind Ltd Preparation of gas-dissolved water
JP2002307080A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Apparatus for producing ultrapure water
JP2004079990A (en) * 2002-06-20 2004-03-11 Dainippon Screen Mfg Co Ltd Wafer processing apparatus and method for controlling inert gas concentration
US20040000234A1 (en) * 2002-06-28 2004-01-01 Axel Preusse System and method for reducing the chemical reactivity of water and other chemicals used in the fabrication of integrated circuits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210384049A1 (en) * 2020-06-04 2021-12-09 Tokyo Electron Limited System and Method for Wet Chemical Etching in Semiconductor Processing

Also Published As

Publication number Publication date
TW200536600A (en) 2005-11-16
JP2005270793A (en) 2005-10-06
JP4470101B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
WO2005089919A1 (en) Apparatus for producing water containing nitrogen dissolved therein
JP4756327B2 (en) Nitrogen gas dissolved water production method
TWI277443B (en) Continuous dissolution apparatus, process for continuous dissolution and apparatus for supplying water in which gas is dissolved
JP5251184B2 (en) Gas dissolved water supply system
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
TWI601695B (en) Method for producing ozone gas dissolved water and washing method of electronic material
JP2006071340A (en) Method of measuring concentration of dissolved gas in liquid, measuring device, and manufacture device of nitrogen gas-dissolved water
JP5822264B2 (en) Operation method of membrane separation activated sludge treatment equipment
JPH1171600A (en) Production of cleaning solution and apparatus therefor
JP2007167856A (en) Air diffusion device
TW202000285A (en) Crystallizer and crystallization method
JP2009219997A (en) Method and apparatus for manufacturing gas-dissolved water
JP6479507B2 (en) Organic wastewater treatment equipment
JP2010199124A (en) Apparatus for supplying ozone water
JPH1177021A (en) Supplier for hydrogen-containing high-purity water
TWI791454B (en) Manufacturing device and method of alkaline water for cleaning electronic components
JP3167531B2 (en) Septic tank
JP5663410B2 (en) Ultrapure water production method and apparatus
JP4438077B2 (en) Method for preparing gas-dissolved water for cleaning electronic materials
JPH0952026A (en) Chemical fluid cleaning process for membrane cartridge
JP4221551B2 (en) Ozone water supply device
JP2009014382A (en) Trihalomethane measuring instrument
JPH11138182A (en) Ozonized ultrapure water feeder
JP5358910B2 (en) Carbonated water manufacturing apparatus and manufacturing method
JP4065683B2 (en) Gas blowing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase