JPH11139804A - Resistivity regulating device for ultrapure water and regulating method - Google Patents

Resistivity regulating device for ultrapure water and regulating method

Info

Publication number
JPH11139804A
JPH11139804A JP30846697A JP30846697A JPH11139804A JP H11139804 A JPH11139804 A JP H11139804A JP 30846697 A JP30846697 A JP 30846697A JP 30846697 A JP30846697 A JP 30846697A JP H11139804 A JPH11139804 A JP H11139804A
Authority
JP
Japan
Prior art keywords
hollow fiber
ultrapure water
carbon dioxide
fiber membrane
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30846697A
Other languages
Japanese (ja)
Inventor
Kazunari Sakai
一成 酒井
Hitoshi Kato
均 加藤
Toshio Kanbe
利夫 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP30846697A priority Critical patent/JPH11139804A/en
Publication of JPH11139804A publication Critical patent/JPH11139804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a convenient and compact device unnecessitating a controlling mechanism and for regulating the resistivity of ultrapure water and to provide a method therefor. SOLUTION: In an outside pouring type module in which ultrapure water is made to flow to a space part between the outside of a hollow fiber membrane and a housing and carbon dioxide is supplied to the inside of the hollow fiber membrane, a hollow fiber membrane module 1 provided in the housing in the state that the plural hollow fiber membranes are converged so that an overall permeation rate of the carbon dioxide from the inside of the hollow fiber membrane into the ultrapure water at the outside of the hollow fiber membrane becomes >=1×10<-7> and >=1×10<-4> (cm<2> (STP)/cm<2> .sec.cmHg) and a pressure controlling valve 2 for keeping a pressure of the carbon dioxide supplied to the membrane module constant are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に半導体分野や
液晶分野での洗浄用水に用いられる超純水の比抵抗を調
整する装置及び方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for adjusting the specific resistance of ultrapure water used for cleaning water, particularly in the field of semiconductors and liquid crystals.

【0002】[0002]

【従来の技術】半導体や液晶の製造工程において、超純
水(比抵抗≧18MΩ・cm)を使用してフォトマスク
基板、シリコンウェハーを洗浄する場合、ダイシングマ
シンにてウェハーを切断する場合に、超純水の比抵抗が
高いために静電気が発生し、そのために絶縁破壊を起こ
したり、或いは微粒子の吸着などが生じることで、基板
の製品歩留まりに著しく悪影響を及ぼす事が広く知られ
ている。そこでこのような悪影響を解消するために、一
般的には超純水流路にマグネシウムのメッシュを装着し
て超純水の比抵抗を低下させる方法が知られている。
2. Description of the Related Art In a semiconductor or liquid crystal manufacturing process, when cleaning a photomask substrate and a silicon wafer using ultrapure water (specific resistance ≧ 18 MΩ · cm), when cutting a wafer with a dicing machine, It is widely known that static electricity is generated due to the high specific resistance of ultrapure water, which causes dielectric breakdown or adsorption of fine particles, thereby significantly affecting the product yield of substrates. Therefore, in order to eliminate such an adverse effect, a method of mounting a magnesium mesh in the ultrapure water flow path to reduce the specific resistance of the ultrapure water is generally known.

【0003】又、疎水性の多孔質中空糸膜モジュールを
用いて超純水に炭酸ガスを溶解させ、解離平行により発
生した炭酸イオンにより比抵抗を低下させる方法として
は、超純水の比抵抗調整装置(特公平5−21841号
公報)、超純水の比抵抗調整方法及び装置(特開平7−
60082号公報)が提案されている。
A method of dissolving carbon dioxide gas in ultrapure water using a hydrophobic porous hollow fiber membrane module and lowering the specific resistance by carbonate ions generated by dissociation parallelism is known as a specific resistance of ultrapure water. Adjusting device (Japanese Patent Publication No. 5-21841), a method and an apparatus for adjusting the specific resistance of ultrapure water (Japanese Unexamined Patent Publication No.
No. 60082) has been proposed.

【0004】また、シリコンウェハーの洗浄、ダイシン
グ等の工程では、超純水の流量変動が激しく、流量が変
動しても比抵抗が変動しないことが要求される。極端な
場合には、数秒単位での流量変動が起こる。超純水の流
量が変動しても比抵抗を一定に制御する方法として、”
超純水の科学”(半導体基盤技術研究会編、株式会社リ
アライズ社発行)に、炭酸ガス溶解後の比抵抗を測定
し、炭酸ガス流量をフィードバック制御を行う方法(3
92ページ)、超純水流量を測定し炭酸ガス流量をマス
フローコントローラーによりフィードフォワード制御す
る方法(401ページ)が記されている。
[0004] In the steps of cleaning and dicing silicon wafers, the flow rate of ultrapure water fluctuates greatly, and it is required that the resistivity does not fluctuate even if the flow rate fluctuates. In extreme cases, flow fluctuations in seconds may occur. As a method to control the specific resistance even when the flow rate of ultrapure water fluctuates,
A method of measuring the specific resistance after dissolving carbon dioxide gas and performing feedback control of the flow rate of carbon dioxide gas (3)
(Page 92) and a method of measuring the ultrapure water flow rate and performing feedforward control of the carbon dioxide gas flow rate by a mass flow controller (page 401).

【0005】[0005]

【発明が解決しようとする課題】しかしながら特公平5
−21841号公報に記載の炭酸ガスの流量を制御する
方法、”超純水の科学”に記載の方法の炭酸ガスの流量
をフィードバック制御する方法では、短時間の流量変動
には到底追従できない。また、”超純水の科学”に記載
の方法の超純水流量の測定値から炭酸ガスの流量をフィ
ードフォワード制御する方法では、高価なマイコン回
路、高価なマスフローコントローラーを必要とし、その
制御性も満足できるものではない。特開平7−6008
2号公報には超純水流量が変動した際に比抵抗値を一定
値に制御するという考えが含まれていない。また、炭酸
ガス圧力を設定しただけでは超純水流量が変化した場合
の比抵抗値の変動は避けられない。
[Problems to be solved by the invention]
In the method of controlling the flow rate of carbon dioxide gas described in JP-A-21841 and the method of performing feedback control of the flow rate of carbon dioxide gas according to the method described in "Science of Ultrapure Water", it is impossible to follow a short-term flow rate fluctuation. In addition, the method of feedforward controlling the flow rate of carbon dioxide gas from the measured value of the flow rate of ultrapure water according to the method described in “Science of ultrapure water” requires an expensive microcomputer circuit and an expensive mass flow controller, and the controllability of the method is high. Is also not satisfactory. JP-A-7-6008
Japanese Patent Publication No. 2 does not include the idea of controlling the specific resistance to a constant value when the flow rate of ultrapure water fluctuates. Further, the fluctuation of the specific resistance value when the flow rate of the ultrapure water changes is inevitable only by setting the carbon dioxide gas pressure.

【0006】本発明の目的は、これらの問題点を全て解
決し、制御機構の不要な簡便且つ、コンパクトな超純水
の比抵抗値を調整する装置及び方法を提供するところに
ある。
An object of the present invention is to solve all of these problems and to provide a simple and compact apparatus and method for adjusting the specific resistance of ultrapure water which does not require a control mechanism.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は以下の通
りである。 (1)超純水の比抵抗を調整するために、中空糸膜モジ
ュールを用いて超純水に炭酸ガスを供給し、所望の比抵
抗値の超純水を製造する装置において、中空糸膜外側と
ハウジングの間の空間部に超純水を流し、中空糸膜の内
側に炭酸ガスを給気する外部潅流型であり、中空糸膜の
内側から中空糸膜外側の超純水中への炭酸ガスの総括透
過速度が1×10-7以上1×10-4以下[cm3(ST
P)/cm2・sec・cmHg]となるように、中空
糸膜が複数本収束された状態でハウジング内に配設され
た中空糸膜モジュールと、膜モジュールに供給される炭
酸ガスの圧力を一定に保持するための調圧弁とからなる
超純水の比抵抗調整装置装置。 (2)変動する消費量に応じた量の比抵抗値調整済み超
純水を製造する比抵抗調整方法において、中空糸膜モジ
ュールを用いて超純水に炭酸ガスを供給し、中空糸膜モ
ジュールとして、中空糸膜外側とハウジングの間の空間
部に超純水を流し、中空糸膜の内側に炭酸ガスを給気す
る外部潅流型であり、中空糸膜の内側から中空糸膜外側
の超純水中への炭酸ガスの総括透過速度が1×10-7
上1×10 -4以下[cm3(STP)/cm2・sec・
cmHg]となるように、中空糸膜が複数本収束された
状態でハウジング内に配設された中空糸膜モジュールを
用い、中空糸膜モジュールに供給する炭酸ガスの圧力を
一定に保持することからなる超純水の比抵抗調整方法。
The gist of the present invention is as follows.
It is. (1) In order to adjust the specific resistance of ultrapure water, a hollow fiber membrane module
The carbon dioxide gas is supplied to the ultrapure water using a
In an apparatus for producing ultrapure water with a resistance value, the outside of the hollow fiber membrane is
Flow ultrapure water into the space between the housings,
It is an external perfusion type that supplies carbon dioxide gas to the
Overall permeability of carbon dioxide from inside to ultrapure water outside the hollow fiber membrane
Overspeed is 1 × 10-7More than 1 × 10-FourBelow [cmThree(ST
P) / cmTwo・ Sec ・ cmHg]
A plurality of thread membranes are disposed in the housing in a converged state.
Hollow fiber membrane module and charcoal supplied to the membrane module
Consists of a pressure regulating valve to keep the pressure of acid gas constant
Ultrapure water resistivity adjustment device. (2) Specific resistance value adjusted according to fluctuating consumption
In the specific resistance adjusting method for producing pure water, a hollow fiber membrane module is used.
A carbon dioxide gas is supplied to ultrapure water using a
The space between the outside of the hollow fiber membrane and the housing as joules
Flow ultrapure water into the section and supply carbon dioxide gas inside the hollow fiber membrane
External perfusion type, from the inside of the hollow fiber membrane to the outside of the hollow fiber membrane
The overall permeation rate of carbon dioxide into ultrapure water is 1 × 10-7Less than
Top 1 × 10 -FourBelow [cmThree(STP) / cmTwo・ Sec ・
cmHg], a plurality of hollow fiber membranes were converged.
The hollow fiber membrane module installed in the housing in the state
Pressure of the carbon dioxide gas supplied to the hollow fiber membrane module
A method for adjusting the specific resistance of ultrapure water by keeping it constant.

【0008】[0008]

【発明の実施の形態】本発明の実施の形態及び最良の状
態は、後記の実施例に具体的に示されるが、その典型例
を示すと以下の通りである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments and the best state of the present invention are specifically shown in the following examples, and typical examples thereof are as follows.

【0009】中空糸膜モジュールとしてはポリー4−メ
チルペンテンー1を素材とした、炭酸ガス透過速度が1
0×10-5[cm3(STP)/cm2・sec・cmH
g]、内径200[μm],外径250[μm]の不均
質中空糸膜を多数収束させ、クリーン塩化ビニル樹脂製
の内容積200〜700ccのハウジング内に糸の両端
を樹脂で固めることにより、中空糸膜外表面の表面積が
0.5[m2]の図2に示される構造の外部潅流型のモ
ジュールを用い、図1に示す装置に該モジュールを組み
込む。
The hollow fiber membrane module is made of poly-4-methylpentene-1 and has a carbon dioxide gas permeation rate of 1%.
0 × 10 -5 [cm 3 (STP) / cm 2 · sec · cmH
g], a number of heterogeneous hollow fiber membranes having an inner diameter of 200 [μm] and an outer diameter of 250 [μm] are converged, and both ends of the yarn are solidified with a resin in a 200 to 700 cc inner volume housing made of clean vinyl chloride resin. An external perfusion type module having a hollow fiber membrane outer surface having a surface area of 0.5 [m 2 ] and having a structure shown in FIG. 2 is incorporated in the apparatus shown in FIG.

【0010】原水として25[℃]にて18.2[MΩ
・cm]の比抵抗を持つ超純水を流量8[リットル/m
in.]で流す場合、得られる超純水の比抵抗値が0.
1[MΩ・cm]となるように炭酸ガス供給量を調整す
ると、炭酸ガスを圧力0.5[kg/cm2・G]、流
量280[cm3(STP)/min]で供給するのが
適当である。このときの炭酸ガスの総括透過速度は2.
4×10-5[cm3(STP)/cm2・sec・cmH
g]と成る。超純水流量を2〜8[リットル/mi
n.]で変動させると、炭酸ガスの流量もそれに応じて
変化し、その際得られる超純水の比抵抗値の変動幅は、
±0.02[MΩ・cm]以内に留まる。
As raw water, 18.2 [MΩ] at 25 ° C.
・ Cm] ultrapure water with a specific resistance of 8 [liter / m]
in. ], The resulting ultrapure water has a specific resistance of 0.1.
When the supply amount of carbon dioxide is adjusted so as to be 1 [MΩ · cm], carbon dioxide is supplied at a pressure of 0.5 [kg / cm 2 · G] and a flow rate of 280 [cm 3 (STP) / min]. Appropriate. At this time, the overall transmission speed of carbon dioxide is 2.
4 × 10 -5 [cm 3 (STP) / cm 2 · sec · cmH
g]. Ultrapure water flow rate of 2-8 [liter / mi]
n. ], The flow rate of the carbon dioxide gas also changes accordingly, and the fluctuation range of the specific resistance value of the ultrapure water obtained at that time is as follows:
It stays within ± 0.02 [MΩ · cm].

【0011】所望の比抵抗値の超純水を所望の流量で任
意に得るためには、原水供給流量を変え、炭酸ガスの圧
力を調整して炭酸ガス流量を変更したり、更には膜の総
表面積を変更したり、膜モジュール構造を変えて内部の
流水状態を調整すること等の種々の調整を、本発明で特
定される炭酸ガスの総括透過速度の所定範囲内で行うこ
とによって達成することができる。
In order to arbitrarily obtain ultrapure water having a desired specific resistance at a desired flow rate, the flow rate of raw water is changed, the pressure of carbon dioxide gas is adjusted to change the flow rate of carbon dioxide gas, Various adjustments such as changing the total surface area or adjusting the internal water flow state by changing the membrane module structure are achieved by performing within the predetermined range of the overall transmission rate of carbon dioxide gas specified in the present invention. be able to.

【0012】以下に本発明を更に詳細に述べる。図1は
本発明に係わる装置の一例を示す。本発明は複雑な制御
機構を持たない、簡便且つコンパクトな超純水への炭酸
ガス付加装置及び付加方法を提案するものである。この
炭酸ガス付加効率を高めるために当該装置の中に中空糸
膜モジュールを配設させ、この膜を介して炭酸ガスを超
純水中へ供給付加させる事を更なる提案としている。
Hereinafter, the present invention will be described in more detail. FIG. 1 shows an example of an apparatus according to the present invention. The present invention proposes a simple and compact apparatus and method for adding carbon dioxide to ultrapure water without a complicated control mechanism. In order to enhance the carbon dioxide gas addition efficiency, a further proposal is to arrange a hollow fiber membrane module in the apparatus and supply and add carbon dioxide gas to ultrapure water via the membrane.

【0013】本発明に使用する中空糸は、炭酸ガス透過
速度の大きなものであれば素材及び構造及び形態等特に
制限は無いが、膜素材は疎水性の高い素材が好ましい。
例えばポリエチレン系樹脂、ポリプロピレン系樹脂、ポ
リテトラフルオロエチレン、パーフルオロアルコキシフ
ッ素樹脂、ポリヘキサフルオロプロピレン等の各種フッ
素樹脂、ポリブテン系樹脂、シリコーン系樹脂、ポリ
(4−メチルペンテン−1)系樹脂等の素材が好適に挙
げられる。また膜構造も、微多孔膜、均質膜、不均質
膜、複合膜、ポリプロピレン微多孔膜等の層でウレタン
等の薄膜をサンドイッチしたいわゆるサンドイッチ膜等
いずれも使用できる。
The hollow fiber used in the present invention is not particularly limited in terms of material, structure and form as long as it has a high carbon dioxide gas permeation rate. The material of the membrane is preferably a material having high hydrophobicity.
For example, polyethylene resins, polypropylene resins, various fluororesins such as polytetrafluoroethylene, perfluoroalkoxy fluororesin, polyhexafluoropropylene, polybutene resins, silicone resins, poly (4-methylpentene-1) resins, etc. Materials are preferred. As the membrane structure, any of a so-called sandwich film in which a thin film of urethane or the like is sandwiched between layers such as a microporous film, a homogeneous film, a heterogeneous film, a composite film, and a polypropylene microporous film can be used.

【0014】中空糸膜の炭酸ガス透過速度は、1×10
-6(cm3(STP)/cm2・sec・cmHg)以上
であることが好ましい。1×10-6(cm3(STP)
/cm2・sec・cmHg) 未満であると中空糸膜を
透過する炭酸ガスの透過速度が遅く、目標とする比抵抗
値に到達しなかったり、超純水流量が変動した際に比抵
抗値が変動する。また、炭酸ガス透過速度は大きい方が
好ましいが、少なくともゲージ圧で0.1kg/cm2
以上で炭酸ガスを供給しても炭酸ガスが気泡とならない
程度にとどめることが好ましい。炭酸ガスが気泡となる
と比抵抗値を一定に調整することが困難となる。
The carbon dioxide gas permeation rate of the hollow fiber membrane is 1 × 10
-6 (cm 3 (STP) / cm 2 · sec · cmHg) or more. 1 × 10 -6 (cm 3 (STP)
/ Cm 2 · sec · cmHg), the permeation rate of the carbon dioxide gas permeating through the hollow fiber membrane is low, and the specific resistance value does not reach the target specific resistance value or when the ultrapure water flow rate fluctuates. Fluctuates. Further, it is preferable that the carbon dioxide gas permeation rate is high, but at least 0.1 kg / cm 2 at a gauge pressure.
As described above, it is preferable to keep the carbon dioxide gas to a level that does not cause bubbles even when the carbon dioxide gas is supplied. When carbon dioxide gas becomes bubbles, it becomes difficult to adjust the specific resistance value to a constant value.

【0015】特にポリ(4−メチルペンテン−1)系樹
脂を素材とする中空糸不均質膜は炭酸ガスの透過性に優
れ且つ水蒸気バリヤー性が高く最も好ましい。本不均質
膜については、例えば特公平2−38250号公報、特
公平2−54377号公報、特公平4−15014号公
報、特公平4−50053号公報及び特開平6−210
146号公報等に詳しく述べてある。
In particular, a heterogeneous hollow fiber membrane made of a poly (4-methylpentene-1) -based resin is most preferable because of its excellent carbon dioxide gas permeability and high water vapor barrier property. The heterogeneous film is described in, for example, Japanese Patent Publication No. 2-38250, Japanese Patent Publication No. 2-54377, Japanese Patent Publication No. 4-15014, Japanese Patent Publication No. 4-50053, and Japanese Patent Application Laid-Open No. Hei 6-210.
No. 146, and the like.

【0016】ポリエチレン系樹脂、ポリプロピレン系樹
脂及びポリフッ化ビニリデン系樹脂等のごとく素材のガ
ス透過性が低く、従って炭酸ガスの溶解用途に適用する
ためには微多孔構造を取り、その多孔部分により炭酸ガ
スを透過させざる得ないこれら膜と比較し、ポリ(4−
メチルペンテン−1)系樹脂を素材とする本不均質膜
は、素材自体気体透過性が十分高く、また緻密層部の膜
厚が十分に薄く、膜表面全体が炭酸ガス透過に寄与する
事ができ、結果として実質的な膜面積が大きくなり極め
て好ましい。
Materials such as polyethylene resin, polypropylene resin and polyvinylidene fluoride resin have low gas permeability, and therefore have a microporous structure to be used for dissolving carbon dioxide gas. Compared to these membranes which have to pass gas, poly (4-
This heterogeneous membrane made of a methylpentene-1) -based resin has a sufficiently high gas permeability in itself and a sufficiently thin dense layer, and the entire membrane surface can contribute to carbon dioxide gas permeation. It is possible, and as a result, a substantial film area is increased, which is extremely preferable.

【0017】また、このポリ(4−メチルペンテン−
1)系樹脂からなる不均質膜は、高い気体透過性能を有
しつつ膜壁を貫く連通細孔の孔径及びその開孔面積が極
めて小さく、従ってPPやPEの微多孔膜に比べ水蒸気
のバリヤー性に極めて優れた性能を有する。
The poly (4-methylpentene)
1) An inhomogeneous membrane made of a system resin has a very small gas diameter and open area of communicating pores penetrating the membrane wall while having a high gas permeation performance. Therefore, the water vapor barrier is smaller than that of a microporous membrane of PP or PE. It has extremely excellent performance.

【0018】中空糸膜を配設するハウジングについて
は、上述の超純水への溶出無き事さえ考慮すれば、何ら
材質は一切問わない。具体的に例示すれば、ポリエチレ
ン、ポリプロピレン、ポリ4−メチルペンテン1などの
ポリオレフィン系、ポリフッ化ビニリデン、ポリテトラ
フルオロエチレンなどのフッ素系、ポリエーテルエーテ
ルケトン、ポリエーテルケトン、ポリエーテルスルフォ
ン、ポリサルフォンなどのエンジニアリングプラスチッ
ク、或いは低溶出の為超純水の配管素材として使用され
ている、クリーン塩化ビニル系などが挙げられる。
Regarding the housing in which the hollow fiber membrane is provided, any material can be used as long as it does not dissolve into the ultrapure water. Specific examples include polyethylene, polypropylene, polyolefins such as poly-4-methylpentene 1, fluorine such as polyvinylidene fluoride and polytetrafluoroethylene, polyetheretherketone, polyetherketone, polyethersulfone, polysulfone, and the like. Engineering plastics, or clean vinyl chloride-based materials used as piping materials for ultrapure water due to low elution.

【0019】中空糸膜モジュール構造としては、中空糸
膜を複数本収束しハウジング内に配設し、中空糸膜外側
とハウジングの間の空間部に超純水を流し、中空糸膜の
内側に炭酸ガスを供給する外部潅流型であり、中空糸膜
の内側から中空糸膜外側の超純水中への炭酸ガスの総括
透過速度が1×10-7以上1×10-4以下[cm3(S
TP)/cm2・sec・cmHg]となるように中空
糸膜が複数本収束された状態でハウジング内に配設され
た構造のものであればいかなる物でも良い。
In the hollow fiber membrane module structure, a plurality of hollow fiber membranes are converged and arranged in a housing, ultrapure water is flown into a space between the outside of the hollow fiber membrane and the housing, and the hollow fiber membrane is formed inside the hollow fiber membrane. It is an external perfusion type that supplies carbon dioxide gas, and the overall transmission rate of carbon dioxide gas from the inside of the hollow fiber membrane to the ultrapure water outside the hollow fiber membrane is 1 × 10 −7 or more and 1 × 10 −4 or less [cm 3 (S
TP) / cm 2 · sec · cmHg], as long as a plurality of hollow fiber membranes are arranged in the housing in a state where they are converged.

【0020】総括透過速度は、中空糸膜外側とハウジン
グの間の空間部に超純水を流し、所定の値の比抵抗値に
なるように中空糸の内側から外側に炭酸ガスを透過させ
る際の炭酸ガス流量をモジュール内の中空糸の膜面積、
炭酸ガスの分圧で割ることにより求められる。即ち、中
空糸膜モジュールにおける炭酸ガスの超純水への溶解の
効率を現すものであり、炭酸ガスの中空糸膜の透過速
度、中空糸外表面での炭酸ガスの超純水への溶解速度、
超純水に溶解した炭酸ガスのモジュール内での拡散速度
など総合したものである。
The overall permeation speed is determined by flowing ultrapure water into the space between the outside of the hollow fiber membrane and the housing and permeating carbon dioxide gas from the inside to the outside of the hollow fiber so as to have a specific resistance value of a predetermined value. The carbon dioxide gas flow rate to the membrane area of the hollow fiber in the module,
It is determined by dividing by the partial pressure of carbon dioxide. That is, it indicates the efficiency of dissolving carbon dioxide gas in ultrapure water in the hollow fiber membrane module, and shows the permeation rate of carbon dioxide gas through the hollow fiber membrane and the dissolution rate of carbon dioxide gas in ultrapure water on the outer surface of the hollow fiber. ,
It is the total of the diffusion rate of carbon dioxide dissolved in ultrapure water in the module.

【0021】例えば膜面積5000[cm2]のモジュ
ールに比抵抗値18[MΩ・cm]の超純水を流し、炭
酸ガスを圧力76[cmHg]で5[cm3/sec]
供給することにより、比抵抗値が0.1[MΩ・cm]
となる場合は、総括透過係数は、5/(5000×7
6)=1.31×10-5となる。
For example, ultrapure water having a specific resistance of 18 [MΩ · cm] is passed through a module having a membrane area of 5000 [cm 2 ], and carbon dioxide gas is supplied at a pressure of 76 [cmHg] and 5 [cm 3 / sec].
By supplying, the specific resistance value is 0.1 [MΩ · cm]
, The overall transmission coefficient is 5 / (5000 × 7
6) = 1.31 × 10 −5 .

【0022】図2、図3に代表的なモジュール構造を示
す。超純水がモジュールに入り、出口から出て行くまで
に、中空糸に有効に接触するようなモジュール構造では
総括透過速度は大きくなり、中空糸に有効に接触するこ
との無い超純水の比率が多いモジュール構造では総括透
過速度が小さくなる。一般に図2の構造の方が図3の構
造よりも総括透過速度が大きくなる。また、モジュール
構造が同じでもモジュールの内容積に占める中空糸膜の
容積が大きいほど総括透過速度が大きく、中空糸膜の容
積が小さいほど総括透過速度が小さくなる傾向にある。
FIGS. 2 and 3 show a typical module structure. In the module structure where the ultrapure water enters the module and exits from the outlet, the overall permeation speed increases in the module structure that effectively contacts the hollow fiber, and the ratio of ultrapure water that does not effectively contact the hollow fiber In a module structure with many components, the overall transmission speed is low. In general, the structure of FIG. 2 has a higher overall transmission speed than the structure of FIG. Even if the module structure is the same, the overall transmission speed tends to increase as the volume of the hollow fiber membrane occupying the internal volume of the module increases, and the overall transmission speed decreases as the volume of the hollow fiber membrane decreases.

【0023】総括透過速度が1×10-4[cm3(ST
P)/cm2・sec・cmHg]以上であると、超純
水流量が変動した際に、炭酸ガス圧力を一定にしても比
抵抗値が変動する。また、炭酸ガス透過速度の大きな中
空糸膜を用いた場合には、ゲージ圧0kg/cm2以下
で供給しなければ適切な比抵抗値を得られない。その為
には、炭酸ガスを他のガスで希釈した混合ガスを供給す
るか、真空排気しながら炭酸ガスを供給するというよう
な複雑な操作が必要となり好ましくない。総括透過速度
が1×10-7[cm3(STP)/cm2・sec・cm
Hg] 以下であると炭酸ガスの透過量が不充分となり
比抵抗値が目標値に到達しない。
The overall transmission speed is 1 × 10 −4 [cm 3 (ST
P) / cm 2 · sec · cmHg] or more, when the flow rate of ultrapure water fluctuates, the specific resistance value fluctuates even if the carbon dioxide gas pressure is kept constant. Further, when a hollow fiber membrane having a high carbon dioxide gas permeation rate is used, an appropriate specific resistance cannot be obtained unless it is supplied at a gauge pressure of 0 kg / cm 2 or less. For that purpose, a complicated operation such as supplying a mixed gas obtained by diluting carbon dioxide gas with another gas or supplying carbon dioxide gas while evacuating is required, which is not preferable. The overall transmission speed is 1 × 10 -7 [cm 3 (STP) / cm 2 · sec · cm
Hg] or less, the permeation amount of carbon dioxide gas is insufficient, and the specific resistance value does not reach the target value.

【0024】炭酸ガス圧力調圧弁については、供給元側
(一時側)のガス中コンタミネーションが中空糸膜に付
着しない様、事前にフィルタレーションを行ってさえお
けば、何ら構造,材質,型式を規定する必要はなく、半
導体や液晶分野で一般的に使用されているもので差し支
えない。
Regarding the carbon dioxide gas pressure regulating valve, any structure, material, and model can be used as long as it is filtered in advance so that contamination in the gas on the supply side (temporary side) does not adhere to the hollow fiber membrane. There is no need to specify it, and any material generally used in the semiconductor and liquid crystal fields may be used.

【0025】例示すれば、プレッシャーレギュレーティ
ングバルブ、ベローズプレッシャーバルブ、プレッシャ
ーレギュレータ、バックプレッシャーバルブ等の圧力制
御バルブ(レギュレータ)が挙げられる。
For example, there are pressure control valves (regulators) such as a pressure regulating valve, a bellows pressure valve, a pressure regulator, and a back pressure valve.

【0026】炭酸ガス圧力は、比抵抗値が設定値になる
ように圧力調整弁により調整する。
The pressure of the carbon dioxide gas is adjusted by a pressure adjusting valve so that the specific resistance value becomes a set value.

【0027】これ迄に各種文献などで炭酸ガスの超純水
への溶解メカニズム、超純水へ炭酸ガスを直接溶解させ
る場合の炭酸ガス濃度と比抵抗値の関係は公知となって
いる。
The mechanism of dissolving carbon dioxide gas in ultrapure water and the relationship between carbon dioxide concentration and specific resistance when carbon dioxide gas is directly dissolved in ultrapure water have been known in various documents.

【0028】従って超純水の比抵抗を調整する目的で、
中空糸膜を介して超純水に所定量の炭酸ガスを付加する
事は特公平5−21841、”超純水の科学”に記載の
フィードフォワード法、フィードバック法などでも提案
されてきた。しかしながら超純水量が瞬時に変動する場
合、それに応答させ所定の比抵抗値に追従、制御させる
事は実際には難しい。
Therefore, for the purpose of adjusting the specific resistance of ultrapure water,
Addition of a predetermined amount of carbon dioxide to ultrapure water via a hollow fiber membrane has also been proposed in a feedforward method, a feedback method, and the like described in Japanese Patent Publication No. 5-21841, "Science of Ultrapure Water". However, when the amount of ultrapure water fluctuates instantaneously, it is actually difficult to respond to it and follow and control a predetermined specific resistance value.

【0029】即ち本発明の重点は、中空糸膜外側とハウ
ジングの間の空間部に超純水を流し、中空糸膜の内側に
炭酸ガスを給気する外部潅流型とすることであり、これ
によって中空糸膜の内側から中空糸膜外側の超純水中へ
炭酸ガスを透過させ、その際の炭酸ガスの総括透過速度
が1×10-7以上1×10-4以下[cm3(STP)/
cm2・sec・cmHg]となるように、中空糸膜が
複数本収束された状態でハウジング内に配設された中空
糸膜モジュールと、膜モジュールに供給される炭酸ガス
の圧力を一定に保持することにある。
That is, the emphasis of the present invention is to provide an external perfusion type in which ultrapure water flows into the space between the outside of the hollow fiber membrane and the housing and carbon dioxide gas is supplied inside the hollow fiber membrane. The carbon dioxide gas permeates from the inside of the hollow fiber membrane into the ultrapure water outside the hollow fiber membrane, and the overall permeation rate of the carbon dioxide gas is 1 × 10 −7 or more and 1 × 10 −4 or less [cm 3 (STP ) /
cm 2 · sec · cmHg] and the hollow fiber membrane module disposed in the housing with a plurality of hollow fiber membranes converged, and the pressure of carbon dioxide gas supplied to the membrane module is kept constant. Is to do.

【0030】炭酸ガスの圧力を一定に保持することのみ
で、超純水の流量が変動しても比抵抗値が一定となる理
由は明確ではないが以下の様に推測している。即ち、中
空糸膜の内側から中空糸膜外側の超純水中への炭酸ガス
の総括透過速度が1×10-4[cm3(STP)/cm2
・sec・cmHg]以下であることから、ハウジング
内を流れる超純水の大半は中空糸外表面に有効に接触し
ない。炭酸ガスは、中空糸外表面に接触する超純水に高
濃度で溶解する。その濃度は炭酸ガスの圧力との平衡濃
度となり、超純水流量が変動しても変化しない。従っ
て、一定の炭酸ガス濃度とされた一部の超純水がモジュ
ール内もしくはモジュールの下流において中空糸膜面に
有効に接触しなかった超純水により一定比率で希釈され
ることとなり、中空糸膜モジュールに供給される超純水
の総流量が変動しても、比抵抗値は変動しないと考えら
れる。
Although it is not clear why the specific resistance value is kept constant even when the flow rate of the ultrapure water fluctuates only by keeping the pressure of the carbon dioxide gas constant, the following is presumed. That is, the overall transmission rate of carbon dioxide gas from the inside of the hollow fiber membrane to the ultrapure water outside the hollow fiber membrane is 1 × 10 −4 [cm 3 (STP) / cm 2].
[Sec · cmHg] or less, most of the ultrapure water flowing in the housing does not effectively contact the outer surface of the hollow fiber. Carbon dioxide is dissolved at a high concentration in ultrapure water in contact with the outer surface of the hollow fiber. The concentration becomes an equilibrium concentration with the pressure of the carbon dioxide gas, and does not change even if the flow rate of the ultrapure water changes. Therefore, a part of the ultrapure water having a constant carbon dioxide gas concentration is diluted at a constant ratio by the ultrapure water that has not effectively contacted the hollow fiber membrane surface in the module or downstream of the module. It is considered that even if the total flow rate of the ultrapure water supplied to the membrane module changes, the specific resistance does not change.

【0031】比抵抗値をどの程度にコントロールすれば
よいのかは、半導体或いは液晶分野でのデバイスの種類
や使用する洗浄工程によって大きく変わる。近年の半導
体や液晶分野でのウエハ洗浄工程、ダイシング工程では
比抵抗値0.1[MΩ・cm]〜1[MΩ・cm]が特
に望まれている。設定したい比抵抗値の範囲によりハウ
ジング内容積に占める中空糸膜の容積の割合、中空糸膜
の膜面積、モジュールの容積、炭酸ガス圧力として適切
なものを選択すれば良い。
The degree to which the specific resistance should be controlled largely depends on the type of device in the semiconductor or liquid crystal field and the cleaning process used. In recent years, a specific resistance value of 0.1 [MΩ · cm] to 1 [MΩ · cm] is particularly desired in a wafer cleaning process and a dicing process in the field of semiconductors and liquid crystals. Appropriate values may be selected as the ratio of the volume of the hollow fiber membrane to the internal volume of the housing, the membrane area of the hollow fiber membrane, the volume of the module, and the carbon dioxide pressure according to the range of the specific resistance value to be set.

【0032】[0032]

【実施例】以下に本発明の実施例を具体的に説明をす
る。 ただし、本発明はこれに限定され制約されるもの
ではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below. However, the present invention is not limited thereto.

【0033】超純水の比抵抗は市販の比抵抗測定器(T
HORNTON社製200CR及び、COS社製CE−
480R)を用いて測定した。原水としては25[℃]
にて18.2[MΩ・cm]の比抵抗を持つ超純水を用
い、超純水の流量は2〜8[リットル/min.]の間
で変動させた。
The specific resistance of ultrapure water is measured using a commercially available specific resistance meter (T
HONTON 200CR and COS CE-
480R). 25 [℃] as raw water
And ultrapure water having a specific resistance of 18.2 [MΩ · cm] at a flow rate of 2 to 8 [liter / min. ].

【0034】炭酸ガス元には7[m3]の炭酸ガスボン
ベを用意し、二段式圧力調整器及びプレッシャーレギュ
レーティングバルブにて、膜モジュールへ給気すべき炭
酸ガスの圧力を調整した。
A carbon dioxide gas source of 7 [m 3 ] was prepared as a carbon dioxide gas source, and the pressure of the carbon dioxide gas to be supplied to the membrane module was adjusted by a two-stage pressure regulator and a pressure regulating valve.

【0035】(実施例1)中空糸膜モジュールとしては
ポリー4−メチルペンテンー1を素材とし、炭酸ガス透
過速度が10×10-5[cm3(STP)/cm2・se
c・cmHg]、内径200[μm],外径250[μ
m]の不均質膜中空糸を、外表面の表面積が0.5[m
2]となるように収束させ、クリーン塩化ビニル樹脂製
の内容積640ccのハウジング内に糸の両端を樹脂で
固めることにより、図2の構造の外部潅流型のモジュー
ル1を得た。
Example 1 A hollow fiber membrane module was made of poly-4-methylpentene-1 and had a carbon dioxide gas transmission rate of 10 × 10 −5 [cm 3 (STP) / cm 2 · se].
c · cmHg], inner diameter 200 [μm], outer diameter 250 [μm]
m] of the heterogeneous membrane hollow fiber having an outer surface area of 0.5 [m
2 ], and both ends of the yarn were solidified with a resin in a 640 cc internal volume housing made of clean vinyl chloride resin to obtain an external perfusion type module 1 having the structure shown in FIG.

【0036】図1に当該中空糸膜モジュールを組み込ん
だ装置のフローを示す。超純水流量8[リットル/mi
n.]において炭酸ガスを圧力0.5[kg/cm2
G]で供給することにより比抵抗値が1[MΩ・cm]
となった。その際の炭酸ガス流量は4[cm3(ST
P)/min]であった。炭酸ガスの総括透過速度は、
3.0×10-7[cm3(STP)/cm2・sec・c
mHg]となる。超純水流量を変動させた時のモジュー
ル1による比抵抗値変化の結果を表1示す。また、炭酸
ガス圧力を1.0[kg/cm2・G]とした場合の結
果も表1に示す。
FIG. 1 shows the flow of an apparatus incorporating the hollow fiber membrane module. Ultrapure water flow 8 [liter / mi]
n. ] At a pressure of 0.5 [kg / cm 2 ·
G], the specific resistance value is 1 [MΩ · cm].
It became. At that time, the flow rate of carbon dioxide gas was 4 [cm 3 (ST
P) / min]. The overall transmission rate of carbon dioxide is
3.0 × 10 -7 [cm 3 (STP) / cm 2 · sec · c
mHg]. Table 1 shows the results of the change in the specific resistance value by the module 1 when the flow rate of the ultrapure water was changed. Table 1 also shows the results when the carbon dioxide gas pressure was 1.0 [kg / cm 2 · G].

【0037】(実施例2)中空糸膜モジュールとしては
ポリプロピレンを素材とし、炭酸ガス透過速度が500
×10-5[cm3(STP)/cm2・sec・cmH
g]、内径300[μm],外径380[μm]の糸
を、中空糸膜外表面の表面積が0.5[m2]となるよ
うに収束させ、ポリプロピレン樹脂製の内容積320c
cのハウジング内に糸の両端を樹脂で固めることによ
り、図2の構造を持つ外部潅流型のモジュール2を得
た。超純水流量8[リットル/min.]において炭酸
ガスを圧力0.5[kg/cm2・G]で供給すること
により比抵抗値が0.1[MΩ・cm]となった。その
際の炭酸ガス流量は280[cm3(STP)/mi
n]であった。炭酸ガスの総括透過速度は、2.4×1
-5[cm3(STP)/cm2・sec・cmHg]と
なる。超純水流量を変動させた時のモジュール2による
比抵抗値変化の結果を表1示す。
Example 2 The hollow fiber membrane module was made of polypropylene and had a carbon dioxide gas permeation rate of 500.
× 10 -5 [cm 3 (STP) / cm 2 · sec · cmH
g], an inner diameter of 300 [μm] and an outer diameter of 380 [μm] are converged such that the surface area of the outer surface of the hollow fiber membrane becomes 0.5 [m 2 ], and an inner volume 320c made of polypropylene resin is formed.
The outer perfusion module 2 having the structure shown in FIG. 2 was obtained by solidifying both ends of the yarn with the resin in the housing c. Ultrapure water flow rate 8 [liter / min. ], The specific resistance was 0.1 [MΩ · cm] by supplying carbon dioxide at a pressure of 0.5 [kg / cm 2 · G]. At this time, the flow rate of carbon dioxide gas is 280 [cm 3 (STP) / mi].
n]. The overall transmission rate of carbon dioxide is 2.4 × 1
0 -5 [cm 3 (STP) / cm 2 · sec · cmHg]. Table 1 shows the results of the change in the specific resistance value by the module 2 when the flow rate of the ultrapure water was changed.

【0038】(実施例3)中空糸膜としては実施例1と
同一のものを用いポリスルホン樹脂製の内容積260c
cのハウジング内に糸の両端を樹脂で固めることによ
り、中空糸膜外表面の表面積が1.0[m2]の図2の
構造の外部潅流型のモジュール3を得た。超純水流量8
[リットル/min.]において炭酸ガスを圧力1[k
g/cm2・G]で供給することにより比抵抗値が0.
1[MΩ・cm]となった。その際の炭酸ガス流量は2
80[cm3(STP)/min]であった。炭酸ガス
の総括透過速度は、6.1×10-6[cm3(STP)
/cm2・sec・cmHg]となる。表1に超純水流
量を変動させた時のモジュール3による比抵抗値変化の
結果を示す。
(Example 3) The same hollow fiber membrane as in Example 1 was used, and the hollow fiber membrane was made of polysulfone resin.
The outer perfusion type module 3 having the structure shown in FIG. 2 and having a surface area of the outer surface of the hollow fiber membrane of 1.0 [m 2 ] was obtained by solidifying both ends of the fiber with a resin in the housing of FIG. Ultrapure water flow 8
[Liter / min. ] At a pressure of 1 [k
g / cm 2 · G] so that the specific resistance value is 0.
It was 1 [MΩ · cm]. The carbon dioxide gas flow rate at that time is 2
It was 80 [cm 3 (STP) / min]. The overall transmission rate of carbon dioxide is 6.1 × 10 -6 [cm 3 (STP)
/ Cm 2 · sec · cmHg]. Table 1 shows the results of the change in the specific resistance value by the module 3 when the flow rate of the ultrapure water was changed.

【0039】(実施例4)中空糸膜としては実施例1と
同一のものを用い、外表面の表面積が1.0[m2]と
なるように収束させ、クリーン塩化ビニル樹脂製の内容
積200ccのハウジング内に糸の片端を樹脂で固める
ことにより、図3の構造の外部潅流型のモジュール4を
得た。超純水流量8[リットル/min.]において炭
酸ガスを圧力0.5[kg/cm2・G]で供給するこ
とにより比抵抗値が1[MΩ・cm]となった。その際
の炭酸ガス流量は4[cm3(STP)/min]であ
った。炭酸ガスの総括透過速度は、1.75×10
-7[cm3(STP)/cm2・sec・cmHg]とな
る。超純水流量を変動させた時のモジュール4による比
抵抗値変化の結果を表1示す。
(Example 4) The same hollow fiber membrane as in Example 1 was used, and the hollow fiber membrane was converged so that the outer surface area became 1.0 [m2]. An external perfusion module 4 having the structure shown in FIG. 3 was obtained by solidifying one end of the yarn with a resin in the housing. Ultrapure water flow rate 8 [liter / min. ], The specific resistance was 1 [MΩ · cm] by supplying carbon dioxide gas at a pressure of 0.5 [kg / cm 2 · G]. At that time, the flow rate of the carbon dioxide gas was 4 [cm 3 (STP) / min]. The overall transmission rate of carbon dioxide gas is 1.75 × 10
-7 [cm 3 (STP) / cm 2 · sec · cmHg]. Table 1 shows the results of the change in the specific resistance value by the module 4 when the flow rate of the ultrapure water was changed.

【0040】(比較例1)中空糸膜モジュールとしては
ポリー4−メチルペンテンー1を素材とし、炭酸ガス透
過速度が10×10-5[cm3(STP)/cm2・se
c・cmHg]、内径200[μm],外径250[μ
m]の不均質膜中空糸を、中空糸膜外表面の表面積が
0.5[m2]となるように収束させ、クリーン塩化ビ
ニル樹脂製の内容積110ccのハウジング内に糸の両
端を樹脂で固めることにより、図2の構造の外部潅流型
のモジュール5を得た。超純水流量8[リットル/mi
n.]において炭酸ガスを圧力0.05[kg/cm2
・G]で供給することにより比抵抗値が0.1[MΩ・
cm]となった。その際の炭酸ガス流量は280[cm
3(STP)/min]であった。炭酸ガスの総括透過
速度は、2.5×10-4[cm3(STP)/cm2・s
ec・cmHg]となる。超純水流量を変動させた時の
モジュール5による比抵抗値変化の結果を表1示す。
(Comparative Example 1) As a hollow fiber membrane module,
Made of poly-4-methylpentene-1
Overspeed is 10 × 10-Five[CmThree(STP) / cmTwo・ Se
c · cmHg], inner diameter 200 [μm], outer diameter 250 [μm]
m], the surface area of the outer surface of the hollow fiber membrane
0.5 [mTwo] And clean chlorinated chloride.
Both yarns are housed in a 110 cc resin
The outer perfusion type of the structure of FIG. 2 is obtained by solidifying the ends with resin.
Module 5 was obtained. Ultrapure water flow 8 [liter / mi]
n. ] At a pressure of 0.05 kg / cmTwo
· G] to provide a specific resistance of 0.1 [MΩ
cm]. At this time, the flow rate of carbon dioxide gas is 280 [cm]
Three(STP) / min]. Overall transmission of carbon dioxide
Speed is 2.5 × 10-Four[CmThree(STP) / cmTwo・ S
ec · cmHg]. When the ultrapure water flow rate is changed
Table 1 shows the results of the specific resistance change by the module 5.

【0041】(比較例2)中空糸膜モジュールとしては
ポリー4−メチルペンテンー1を素材とし、炭酸ガス透
過速度が10×10-5[cm3(STP)/cm2・se
c・cmHg]、内径200[μm],外径250[μ
m]の不均質膜中空糸を、中空糸膜外表面の表面積が
0.1[m2]となるように収束させ、クリーン塩化ビ
ニル樹脂製の内容積3200ccのハウジング内に糸の
両端を樹脂で固めることにより、図2の構造の外部潅流
型のモジュール6を得た。超純水流量8[リットル/m
in.]において比抵抗値を0.5[MΩ・cm]とな
るように炭酸ガス圧力を調整しようとしたが、炭酸ガス
圧力を1.5[kg/cm2・G]にしても比抵抗値が
2[MΩ・cm]に到達するのみで、中空糸膜表面から
超純水中に気泡の混入が認められた。炭酸ガスの総括透
過速度は、1×10-8[cm3(STP)/cm2・se
c・cmHg]以下となる。
Comparative Example 2 The hollow fiber membrane module was made of poly-4-methylpentene-1 and had a carbon dioxide gas transmission rate of 10 × 10 −5 [cm 3 (STP) / cm 2 · se].
c · cmHg], inner diameter 200 [μm], outer diameter 250 [μm]
m] of the heterogeneous membrane hollow fiber is converged so that the surface area of the outer surface of the hollow fiber membrane becomes 0.1 [m 2 ], and both ends of the fiber are resinized in a 3200 cc inner volume housing made of clean vinyl chloride resin. Thus, an external perfusion module 6 having the structure shown in FIG. 2 was obtained. Ultrapure water flow 8 [liter / m]
in. ], An attempt was made to adjust the carbon dioxide gas pressure so that the specific resistance value became 0.5 [MΩ · cm]. However, even when the carbon dioxide gas pressure was set to 1.5 [kg / cm 2 · G], the specific resistance value was increased. Even when the density reached 2 [MΩ · cm], air bubbles were mixed in ultrapure water from the surface of the hollow fiber membrane. The overall transmission rate of carbon dioxide gas is 1 × 10 −8 [cm 3 (STP) / cm 2 · se]
c · cmHg] or less.

【0042】(比較例3)中空糸膜モジュールとしては
ポリー4−メチルペンテンー1を素材とし、炭酸ガス透
過速度が10×10-5[cm3(STP)/cm2・se
c・cmHg]、内径200[μm],外径250[μ
m]の不均質膜中空糸を、中空糸膜内表面の表面積が
0.1[m2]となるように収束させ、クリーン塩化ビ
ニル樹脂製のハウジング内に糸の両端を樹脂で固めるこ
とにより、内部潅流型のモジュール7を得た。超純水流
量8[リットル/min.]において比抵抗値が0.1
[MΩ・cm]となるように炭酸ガス圧力を調整しよう
としたが炭酸ガス圧力を0.05[kgf/cm2
G]にしても比抵抗値が0.03[MΩ・cm]となっ
てしまった。
Comparative Example 3 The hollow fiber membrane module was made of poly-4-methylpentene-1 and had a carbon dioxide gas transmission rate of 10 × 10 −5 [cm 3 (STP) / cm 2 · se].
c · cmHg], inner diameter 200 [μm], outer diameter 250 [μm]
m] of the heterogeneous membrane hollow fiber is converged so that the surface area of the inner surface of the hollow fiber membrane becomes 0.1 [m 2 ], and both ends of the fiber are solidified with a resin in a clean vinyl chloride resin housing. The module 7 of the internal perfusion type was obtained. Ultrapure water flow rate 8 [liter / min. ], The specific resistance is 0.1
The carbon dioxide gas pressure was adjusted to be [MΩ · cm], but the carbon dioxide gas pressure was adjusted to 0.05 [kgf / cm 2 · cm].
G], the specific resistance value was 0.03 [MΩ · cm].

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】本発明は以上の様なものであるから、比
抵抗の高い超純水に気液接触用の中空糸膜を利用して炭
酸ガスを付加溶解し、低められた比抵抗値に調整された
超純水を製造するに際し、比抵抗調整済み超純水の消費
側での消費量の急激な変動があっても、それに応じて一
定範囲の比抵抗値を備えた超純水を安定供給しうる方法
及び装置が、膜モジュールを外部潅流型とし、或る特定
の数値範囲の炭酸ガスの総括透過速度を指標として簡単
に算出できる、そのハウジング内で占める膜の総表面積
と、炭酸ガス圧を設定し、それを調圧弁で単に一定に保
つという単純な手段と、これに伴う極めて簡素化された
部材の構成によって達成される。これによって高価な特
別の制御機構を不要とし、取り扱いやすく信頼性の高
い、コンパクトで低コストな装置を得ることができる。
According to the present invention as described above, carbon dioxide gas is added and dissolved in ultrapure water having high specific resistance using a hollow fiber membrane for gas-liquid contact, and the specific resistance value is lowered. In the production of ultrapure water adjusted to a specific level, even if there is a sudden change in the consumption on the consumption side of the ultrapure water with adjusted resistivity, the ultrapure water with a specific range of specific resistance The method and the apparatus capable of stably supplying the membrane module have an external perfusion type, and the total permeation rate of the membrane in the housing, which can be easily calculated by using the overall permeation rate of carbon dioxide in a specific numerical range as an index, This is achieved by the simple means of setting the carbon dioxide pressure and keeping it constant with the pressure regulating valve, and the accompanying very simplified construction of the components. This eliminates the need for an expensive special control mechanism, and makes it possible to obtain a compact, low-cost device that is easy to handle and has high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による、比抵抗調整を目的とした超純水
の比抵抗調整装置の一例を示す模式図である。
FIG. 1 is a schematic diagram showing an example of a specific resistance adjusting device for ultrapure water for specific resistance adjustment according to the present invention.

【図2】本発明による第1のタイプの中空糸膜モジュー
ルの模式図である。
FIG. 2 is a schematic view of a first type of hollow fiber membrane module according to the present invention.

【図3】本発明による第2のタイプの中空糸膜モジュー
ルの模式図である。
FIG. 3 is a schematic view of a second type of hollow fiber membrane module according to the present invention.

【符号の説明】[Explanation of symbols]

1 中空糸膜モジュール 2 炭酸ガス調圧弁 3 圧力計 4 ハウジング 5 中空糸 6 接着シール樹脂 DESCRIPTION OF SYMBOLS 1 Hollow fiber membrane module 2 Carbon dioxide gas pressure control valve 3 Pressure gauge 4 Housing 5 Hollow fiber 6 Adhesive seal resin

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/304 648 H01L 21/304 648G ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/304 648 H01L 21/304 648G

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超純水の比抵抗を調整するために、中空
糸膜モジュールを用いて超純水に炭酸ガスを供給し、所
望の比抵抗値の超純水を製造する装置において、中空糸
膜外側とハウジングの間の空間部に超純水を流し、中空
糸膜の内側に炭酸ガスを給気する外部潅流型であり、中
空糸膜の内側から中空糸膜外側の超純水中への炭酸ガス
の総括透過速度が1×10-7以上1×10-4以下[cm
3(STP)/cm2・sec・cmHg]となるように
中空糸膜が複数本収束された状態でハウジング内に配設
された中空糸膜モジュールと、膜モジュールに供給され
る炭酸ガスの圧力を一定に保持するための調圧弁とから
なる超純水の比抵抗調整装置。
In order to adjust the specific resistance of ultrapure water, a hollow fiber membrane module is used to supply carbon dioxide gas to ultrapure water to produce ultrapure water having a desired specific resistance. Ultrapure water flows into the space between the outside of the fiber membrane and the housing, and carbon dioxide gas is supplied to the inside of the hollow fiber membrane. The overall permeation rate of carbon dioxide gas to 1 × 10 −7 or more and 1 × 10 −4 or less [cm
3 (STP) / cm 2 · sec · cmHg] and a hollow fiber membrane module disposed in the housing in a state where a plurality of hollow fiber membranes are converged, and a pressure of carbon dioxide gas supplied to the membrane module. Resistance adjusting device for ultrapure water, comprising a pressure regulating valve for keeping the pressure constant.
【請求項2】 変動する消費量に応じた量の比抵抗値調
整済み超純水を製造する比抵抗調整方法において、中空
糸膜モジュールを用いて超純水に炭酸ガスを供給し、中
空糸膜モジュールとして、中空糸膜外側とハウジングの
間の空間部に超純水を流し、中空糸膜の内側に炭酸ガス
を給気する外部潅流型であり、中空糸膜の内側から中空
糸膜外側の超純水中への炭酸ガスの総括透過速度が1×
10-7以上1×10-4以下[cm3(STP)/cm2
sec・cmHg]となるように中空糸膜が複数本収束
された状態でハウジング内に配設された中空糸膜モジュ
ールを用い、中空糸膜モジュールに供給する炭酸ガスの
圧力を一定に保持することからなる超純水の比抵抗調整
方法。
2. A specific resistance adjusting method for producing ultrapure water having a specific resistance value adjusted according to a fluctuating consumption amount, wherein carbon dioxide gas is supplied to ultrapure water using a hollow fiber membrane module, As a membrane module, it is an external perfusion type in which ultrapure water flows in the space between the outside of the hollow fiber membrane and the housing, and carbon dioxide gas is supplied to the inside of the hollow fiber membrane. The overall permeation rate of carbon dioxide into ultrapure water is 1 ×
10 -7 or more and 1 × 10 -4 or less [cm 3 (STP) / cm 2.
using a hollow fiber membrane module disposed in a housing in a state where a plurality of hollow fiber membranes are converged so that the pressure of carbon dioxide gas supplied to the hollow fiber membrane module is kept constant. A method for adjusting the specific resistance of ultrapure water.
JP30846697A 1997-11-11 1997-11-11 Resistivity regulating device for ultrapure water and regulating method Pending JPH11139804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30846697A JPH11139804A (en) 1997-11-11 1997-11-11 Resistivity regulating device for ultrapure water and regulating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30846697A JPH11139804A (en) 1997-11-11 1997-11-11 Resistivity regulating device for ultrapure water and regulating method

Publications (1)

Publication Number Publication Date
JPH11139804A true JPH11139804A (en) 1999-05-25

Family

ID=17981370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30846697A Pending JPH11139804A (en) 1997-11-11 1997-11-11 Resistivity regulating device for ultrapure water and regulating method

Country Status (1)

Country Link
JP (1) JPH11139804A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1195189A1 (en) * 2000-09-27 2002-04-10 Dainippon Ink And Chemicals, Inc. Apparatus and method for controlling resistivity of ultra pure water
EP1421988A1 (en) * 2001-08-28 2004-05-26 Mitsubishi Rayon Co., Ltd. Device and method for manufacturing carbonated spring and carbonic water, control method for gas density applied thereto, and membrane module
WO2005038895A1 (en) * 2003-10-21 2005-04-28 Dainippon Ink And Chemicals, Inc. Method of liquid feeding and apparatus therefor
JP2005270793A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Apparatus for production of nitrogen-dissolved water
JP2011210764A (en) * 2010-03-29 2011-10-20 Dainippon Screen Mfg Co Ltd Substrate cleaning processing apparatus
JP2014024039A (en) * 2012-07-28 2014-02-06 Daiken Iki Kk Liquid supply device and living organism cleaning device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884359B2 (en) 2000-09-27 2005-04-26 Dainippon Ink And Chemicals, Inc. Apparatus and method for controlling resistivity of ultra pure water
EP1195189A1 (en) * 2000-09-27 2002-04-10 Dainippon Ink And Chemicals, Inc. Apparatus and method for controlling resistivity of ultra pure water
KR100783857B1 (en) * 2000-09-27 2007-12-10 다이닛뽄 잉크 앤드 케미칼즈, 인코포레이티드 Apparatus and method for adjusting specific resistance of ultrapure water
US7334780B2 (en) 2001-08-28 2008-02-26 Mitsubishi Rayon Company, Limited Device and method for manufacturing carbonated spring and carbonic water, control method for gas density applied thereto and membrane module
EP1421988A1 (en) * 2001-08-28 2004-05-26 Mitsubishi Rayon Co., Ltd. Device and method for manufacturing carbonated spring and carbonic water, control method for gas density applied thereto, and membrane module
US8096532B2 (en) 2001-08-28 2012-01-17 Mitsubishi Rayon Co., Ltd. Device and method for manufacturing carbonated spring and carbonic water, control method for gas density applied thereto and membrane module
EP1421988A4 (en) * 2001-08-28 2006-10-04 Mitsubishi Rayon Co Device and method for manufacturing carbonated spring and carbonic water, control method for gas density applied thereto, and membrane module
US7407154B2 (en) 2001-08-28 2008-08-05 Mitsubishi Rayon Co., Ltd. Device and method for manufacturing carbonated spring and carbonic water, control method for gas density applied thereto and membrane module
US7237767B2 (en) 2001-08-28 2007-07-03 Mitsubishi Rayon Co., Ltd. Device and method for manufacturing carbonated spring and carbonic water, control method for gas density applied thereto and membrane module
EP1837068A1 (en) * 2001-08-28 2007-09-26 Mitsubishi Rayon Co., Ltd. Device and method for manufacturing carbonated spring and carbonic water, control method for gas density applied thereto, and membrane module
KR101061142B1 (en) 2003-10-21 2011-08-31 디아이씨 가부시끼가이샤 Liquid supply method and device
JPWO2005038895A1 (en) * 2003-10-21 2007-02-01 大日本インキ化学工業株式会社 Liquid supply method and apparatus
WO2005038895A1 (en) * 2003-10-21 2005-04-28 Dainippon Ink And Chemicals, Inc. Method of liquid feeding and apparatus therefor
US8171956B2 (en) 2003-10-21 2012-05-08 Dainippon Ink And Chemicals, Inc. Liquid supply method and apparatus
JP2005270793A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Apparatus for production of nitrogen-dissolved water
JP2011210764A (en) * 2010-03-29 2011-10-20 Dainippon Screen Mfg Co Ltd Substrate cleaning processing apparatus
JP2014024039A (en) * 2012-07-28 2014-02-06 Daiken Iki Kk Liquid supply device and living organism cleaning device

Similar Documents

Publication Publication Date Title
US6158721A (en) Apparatus and method for adding carbon dioxide gas to ultra pure water
US5670094A (en) Method of and apparatus for producing ozonized water
JP2002316027A (en) Device and method for manufacturing gas-dissolved water, device and method for ultrasonic cleaning
US10363497B2 (en) Devices, systems, and methods for controlled delivery of process gases
US6884359B2 (en) Apparatus and method for controlling resistivity of ultra pure water
JP5862043B2 (en) Gas-dissolved liquid manufacturing apparatus and gas-dissolved liquid manufacturing method
JPWO2008053826A1 (en) Ultra-pure water purification method and apparatus
JP3690569B2 (en) Ultrapure water specific resistance adjustment device and adjustment method
JP3098600B2 (en) Spiral type separation membrane module
JPH11139804A (en) Resistivity regulating device for ultrapure water and regulating method
JPH1177023A (en) Preparation of hydrogen-containing ultrapure water
JP3786232B2 (en) Apparatus and method for adjusting resistivity of ultrapure water
JP3951385B2 (en) Apparatus and method for adjusting dissolved gas concentration in liquid
JP2003010660A (en) Apparatus and method for controlling resistivity of ultra-pure water
JP2002172318A (en) Apparatus and method for adjusting resistivity of ultrapure water
KR100519391B1 (en) Apparatus and method for adding carbon dioxide gas to ultrapure water
JP6777534B2 (en) Diluting solution manufacturing equipment and diluent manufacturing method
KR102275626B1 (en) Diluent manufacturing apparatus and diluent manufacturing method
JPH08144078A (en) Gas-liquid separation device of water electrolyzer
JP2018103146A (en) Diluent liquid manufacturing apparatus and diluent liquid manufacturing method
JPS59173184A (en) Device for controlling specific resistance of ultrapure water
JPH10277121A (en) Manufacture of carbonated spring
JPH04322716A (en) Gas dehymidifing method
JPH07112112A (en) Separation of specified component in natural gas and device therefor
KR102228747B1 (en) Separartion membrane leaf, spiral wound module comprising same, and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041109

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A977 Report on retrieval

Effective date: 20070226

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071225

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080422

Free format text: JAPANESE INTERMEDIATE CODE: A02