JP5862043B2 - Gas-dissolved liquid manufacturing apparatus and gas-dissolved liquid manufacturing method - Google Patents
Gas-dissolved liquid manufacturing apparatus and gas-dissolved liquid manufacturing method Download PDFInfo
- Publication number
- JP5862043B2 JP5862043B2 JP2011094966A JP2011094966A JP5862043B2 JP 5862043 B2 JP5862043 B2 JP 5862043B2 JP 2011094966 A JP2011094966 A JP 2011094966A JP 2011094966 A JP2011094966 A JP 2011094966A JP 5862043 B2 JP5862043 B2 JP 5862043B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- gas
- hollow fiber
- bypass
- fiber membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims description 185
- 238000004519 manufacturing process Methods 0.000 title claims description 33
- 239000012510 hollow fiber Substances 0.000 claims description 110
- 239000012528 membrane Substances 0.000 claims description 100
- 239000002994 raw material Substances 0.000 claims description 46
- 238000004140 cleaning Methods 0.000 claims description 13
- 238000009826 distribution Methods 0.000 claims description 7
- 238000005304 joining Methods 0.000 claims description 3
- 239000012466 permeate Substances 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 2
- 239000000047 product Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 111
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 56
- 229910021642 ultra pure water Inorganic materials 0.000 description 36
- 239000012498 ultrapure water Substances 0.000 description 36
- 229910002092 carbon dioxide Inorganic materials 0.000 description 28
- 239000001569 carbon dioxide Substances 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 230000010412 perfusion Effects 0.000 description 12
- 230000001105 regulatory effect Effects 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 11
- -1 polypropylene Polymers 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229920000306 polymethylpentene Polymers 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 235000019000 fluorine Nutrition 0.000 description 3
- 239000012982 microporous membrane Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001721 carbon Chemical class 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Accessories For Mixers (AREA)
Description
本発明は、特に半導体及び液晶分野での洗浄用水に用いられる超純水の比抵抗を調整などに適する、原料液体にガスを溶解させるための装置及びその方法に関する。 The present invention relates to an apparatus and a method for dissolving a gas in a raw material liquid, particularly suitable for adjusting the specific resistance of ultrapure water used for cleaning water in the field of semiconductors and liquid crystals.
半導体ウエハ、液晶パネル、液晶ディスプレー等の製造工程では超純水を用いた洗浄が施される。この際、洗浄に使用する超純水は、そのままでは比抵抗が高いために洗浄時に静電気が発生し、絶縁破壊や微粒子が再付着することによって製品歩留まりに著しく悪影響を及ぼすことが知られている。その為、半導体ウエハ等の洗浄水として、超純水に炭酸ガスもしくはアンモニアガスを溶解させ、解離平衡により発生したイオンにより比抵抗を低下させる方法が通常用いられており、その炭酸ガス又はアンモニアガスを超純水に溶解させる手段として、疎水性の中空糸膜モジュールを用い、該モジュールを構成する中空糸内に超純水を流通させ、該中空糸外部に炭酸ガス又はアンモニアガスを流通させる手段が知られている。然し乍ら、半導体ウエハ基板の洗浄、ダイシング等の工程では、洗浄水の流量変動が激しく、この際、流動変動に伴い炭酸ガス又はアンモニアガスの付加量が変化するため、洗浄水の比抵抗値が一定しない、という問題が生じていた。そこで、流量の変動によって流量が変動しても比抵抗が変動しない洗浄水の調整手段として、消費量に応じて供給される超純水を、分配装置によって流量に大小のある2流に一定比率で分流し、膜を隔てて液体とガスを流すための中空糸膜モジュールに一方の流れを供給して小流量のガス高濃度付加液体を生成させ、そのガス高濃度付加液体を大流量に分けられた原料液体と合流させて均一に混合し、所定の溶存ガス濃度に調整した液体とする方法が知られている(下記特許文献1参照)。
In the manufacturing process of semiconductor wafers, liquid crystal panels, liquid crystal displays, etc., cleaning using ultrapure water is performed. At this time, it is known that ultrapure water used for cleaning has a high specific resistance as it is, so that static electricity is generated at the time of cleaning, and dielectric breakdown and reattachment of fine particles remarkably adversely affect the product yield. . Therefore, a method of dissolving carbon dioxide or ammonia gas in ultrapure water and reducing specific resistance by ions generated by dissociation equilibrium is generally used as cleaning water for semiconductor wafers, etc., and the carbon dioxide gas or ammonia gas is used. As a means for dissolving water in ultrapure water, a hydrophobic hollow fiber membrane module is used, ultrapure water is circulated in the hollow fiber constituting the module, and carbon dioxide gas or ammonia gas is circulated outside the hollow fiber. It has been known. However, in the process of cleaning the semiconductor wafer substrate, dicing, etc., the flow rate of the cleaning water is drastically changed. At this time, the additional amount of carbon dioxide gas or ammonia gas changes with the flow fluctuation, so the specific resistance value of the cleaning water is constant. There was a problem of not. Therefore, as a means for adjusting the washing water whose specific resistance does not change even if the flow rate changes due to the flow rate change, the ultrapure water supplied according to the consumption amount is fixed to two flows having a large and small flow rate by the distributor. The flow is divided into two, and one flow is supplied to the hollow fiber membrane module for flowing the liquid and gas across the membrane to generate a low flow rate gas high concentration addition liquid, and the gas high concentration addition liquid is divided into high flow rates. There is known a method in which the obtained raw material liquid is combined and uniformly mixed to obtain a liquid adjusted to a predetermined dissolved gas concentration (see
しかしながら、この分配装置によって超純水を2流に一定比率で分流し、一方を中空糸膜モジュールにてガスを溶解させ、次いで合流させる方法では、超純水の流量が低流量になると、バイパス側に殆ど超純水が流れてしまい、炭酸ガスもしくはアンモニアガスを溶解させる中空糸膜モジュールに超純水が殆ど流れなくなってしまい、比抵抗が上昇してしまうものであった。 However, in this method in which ultrapure water is split into two streams at a constant ratio and gas is dissolved in a hollow fiber membrane module and then merged, if the flow of ultrapure water becomes low, The ultrapure water almost flowed to the side, and the ultrapure water almost did not flow to the hollow fiber membrane module that dissolves the carbon dioxide gas or the ammonia gas, and the specific resistance increased.
従って、本発明が解決しようとする課題は、原料液体の流量変動による溶解ガス量の変動が小さく、かつ、低流量になった際にも溶解ガス量が著しく低下することのない、ガス溶存液の製造に適した装置、及びこれを用いたガス溶解液体の製造方法を提供することにある。 Therefore, the problem to be solved by the present invention is that the dissolved gas amount is small in the amount of dissolved gas due to the flow rate variation of the raw material liquid, and the dissolved gas amount does not significantly decrease even when the flow rate becomes low. It is another object of the present invention to provide an apparatus suitable for manufacturing the gas and a method for manufacturing a gas-dissolved liquid using the apparatus.
本発明者らは、上記課題を解決するため鋭意検討した結果、中空糸膜モジュールを用いて原料液体にガスを溶解させる方法であって、原料液体を多段の分配装置によって複数のバイパスラインを配設すると共に、該バイパスラインを通過しない一つの流路を中空糸膜モジュールに導入、ガスの溶解化を図ると共に、ガス付加液体を、前記パイパスラインを通過した原料液体と合流させる装置を用い、該装置に導入される原料液体の流量が少なくなるに連れて、順次前記バイパスラインを段階的に閉塞して、バイパスライン中の圧力損失と中空糸膜モジュール中の圧力損失とのバランスを図ることによって、原料液体の流量が少なくなった際の溶解ガス濃度の著しい低下を効果的に抑制できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention have disclosed a method of dissolving a gas in a raw material liquid using a hollow fiber membrane module, in which a plurality of bypass lines are distributed by a multistage distributor. And using a device that introduces one flow path that does not pass through the bypass line into the hollow fiber membrane module, dissolves the gas, and joins the gas addition liquid with the raw material liquid that has passed through the bypass line, As the flow rate of the raw material liquid introduced into the apparatus decreases, the bypass line is sequentially closed in stages to balance the pressure loss in the bypass line and the pressure loss in the hollow fiber membrane module. Thus, it has been found that a significant decrease in dissolved gas concentration when the flow rate of the raw material liquid is reduced can be effectively suppressed, and the present invention has been completed.
即ち、本発明は、ガス供給口、液体供給口、液体排出口を有するハウジング部と、該ハウジング部内に、前記ガス供給口から供給されるガスを前記液体供給口から供給される液体に溶解させることができる様に配設された中空糸膜を有する中空糸膜モジュール[A]と、
前記液体供給口に接合され、かつ、分岐部位(b)を有する液体導入管[B]と、
前記液体排出口に接合され、かつ、分岐部位(c)を有する液体排出管[C]と、
液体導入管[B]内を流通する液体が前記中空糸膜モジュール[A]を経由することなく直接前記液体排出管[C]に流入するように前記分岐部位(b)と前記分岐部位(c)とを結節するバイパス部位[D]とを有しており、かつ、該バイパス部位[D]が、並列に複数の流路を形成するように配設された複数のバイパス管(d)により構成されており、かつ、この複数のバイパス管(d)の少なくとも1つが開閉可能な機能を有することを特徴とするガス溶解液体製造装置に関する。
That is, the present invention dissolves the gas supplied from the gas supply port into the liquid supplied from the liquid supply port in the housing portion having a gas supply port, a liquid supply port, and a liquid discharge port. A hollow fiber membrane module [A] having a hollow fiber membrane disposed so as to be capable of
A liquid introduction pipe [B] joined to the liquid supply port and having a branch part (b);
A liquid discharge pipe [C] joined to the liquid discharge port and having a branch part (c);
The branch part (b) and the branch part (c) so that the liquid flowing through the liquid introduction pipe [B] flows directly into the liquid discharge pipe [C] without passing through the hollow fiber membrane module [A]. And a bypass portion [D] connecting the two of the bypass pipes (d) arranged to form a plurality of flow paths in parallel. The present invention relates to an apparatus for producing a gas-dissolved liquid, characterized in that it has a function capable of opening and closing at least one of the plurality of bypass pipes (d).
本発明は、更に、前記ガス溶解液体製造装置を用い、該装置の液体導入管[B]から原料液体を導入し、質量基準でその1/5000乃至1/2の量を液体供給口から中空糸膜モジュール[A]内に流通させ、残余の液体をバイパス流路[D]に流通させ、かつ、前記中空糸膜モジュール[A]中のガス供給口からガスを供給すると共に、該装置に導入される原料液体の流量が初期の1/2以下となった時点でバイパス管(d)の一つを閉塞させることを特徴とするガス溶解液体の製造方法に関する。 The present invention further uses the gas-dissolved liquid production apparatus, introduces the raw material liquid from the liquid introduction pipe [B] of the apparatus, and hollows the amount of 1/5000 to 1/2 from the liquid supply port on a mass basis. The liquid is circulated in the thread membrane module [A], the remaining liquid is circulated in the bypass channel [D], and gas is supplied from the gas supply port in the hollow fiber membrane module [A]. The present invention relates to a method for producing a gas-dissolved liquid, characterized in that one of bypass pipes (d) is closed when the flow rate of the introduced raw material liquid becomes ½ or less of the initial value.
本発明によれば、原料液体の流量変動による溶解ガス量の変動が小さく、かつ、低流量になった際にも溶解ガス量が著しく低下することのない、ガス溶解液体の製造に適した装置、及びこれを用いたガス溶解液体の製造方法を提供できる。 According to the present invention, the apparatus suitable for producing a gas-dissolved liquid, in which the amount of dissolved gas due to the flow rate fluctuation of the raw material liquid is small and the amount of dissolved gas does not significantly decrease even when the flow rate becomes low. , And a method for producing a gas-dissolved liquid using the same.
以下、本発明を詳細に説明する。
本発明のガス溶解液体製造装置は、前記した通り、ガス供給口、液体供給口、液体排出口を有するハウジング部と、該ハウジング部内に、前記ガス供給口から供給されるガスを前記液体供給口から供給される液体に溶解させることができる様に配設された中空糸膜を有する中空糸膜モジュール[A]と、
前記液体供給口に接合され、かつ、分岐部位(b)を有する液体導入管[B]と、
前記液体排出口に接合され、かつ、分岐部位(c)を有する液体排出管[C]と、
液体導入管[B]内を流通する液体が前記中空糸膜モジュール[A]を経由することなく直接前記液体排出管[C]に流入するように前記分岐部位(b)と前記分岐部位(c)とを結節するバイパス部位[D]とを有しており、かつ、該バイパス部位[D]が、並列に複数の流路を形成するように配設された複数のバイパス管(d)により構成されており、かつ、この複数のバイパス管(d)の少なくとも1つが開閉可能な機能を有することを特徴とするものである。
Hereinafter, the present invention will be described in detail.
As described above, the gas-dissolved liquid production apparatus of the present invention includes a housing part having a gas supply port, a liquid supply port, and a liquid discharge port, and the gas supplied from the gas supply port into the housing part. A hollow fiber membrane module [A] having a hollow fiber membrane disposed so as to be dissolved in a liquid supplied from
A liquid introduction pipe [B] joined to the liquid supply port and having a branch part (b);
A liquid discharge pipe [C] joined to the liquid discharge port and having a branch part (c);
The branch part (b) and the branch part (c) so that the liquid flowing through the liquid introduction pipe [B] flows directly into the liquid discharge pipe [C] without passing through the hollow fiber membrane module [A]. And a bypass portion [D] connecting the two of the bypass pipes (d) arranged to form a plurality of flow paths in parallel. It is configured, and at least one of the plurality of bypass pipes (d) has a function capable of opening and closing.
ここで、本発明のガス溶解液体製造装置を図1に示した模式図に基づき説明すれば、該ガス溶解液体製造装置は、中空糸膜モジュール[A]の液体供給口1に分岐部位(b)を有する液体導入管[B]が接合され、該配管は該分岐部位(b)から、分岐してバイパス部位[D]に供給液の一部が流入するようにバイパス流路[D]が形成されている。また、バイパス部位[D]は、更に並列的に流路を分割するように複数のバイパス管(d)が配設され、たとえば、図1では3本のバイパス管(d1)〜(d3)から形成されている。一方、中空糸膜モジュール[A]の液体排出口2には、分岐部位(c)を有する液体排出管[C]が接合され、また、前記分岐部位(c)には、前記複数のバイパス管(d)の他端が収束され接合されている。また、前記した複数のバイパス管(d)の少なくとも1つは開閉可能な機能、例えば開閉バルブを有している。
Here, if the gas-dissolved liquid production apparatus of the present invention is described based on the schematic view shown in FIG. 1, the gas-dissolved liquid production apparatus is connected to the
また、中空糸膜モジュール[A]は、液体供給口1、液体排出口2の他、ガス供給口3、更に必要によりガス排出口4を有するハウジング部と、該ハウジング部内に、前記ガス供給口3から供給されるガスを前記液体供給口1から供給される液体に溶解させることができる様に配設された中空糸膜を有するものである。
The hollow fiber membrane module [A] includes a
ここで、前記分岐部位(b)には、前記液体導入管[B]内を流通し、前記中空糸膜モジュール[A]内に流入する流量(1)(単位:L/分)と、前記液体導入管[B]中の分岐部位(b)から分岐して前記バイパス流路[D]内に流入する流量(2)(単位:L/分)との分配比率[(1)/(2)]が、1/5000〜1/2の範囲となるように調整可能な調整機構を有するものであることが、原料液体体中への溶解ガス量が安定する点から好ましく、特に1/2000〜1/100の範囲であることが好ましい。
また、前記バイパス管(d)は、その少なくとも1つが、その内部を流通する液体の断面積(s)と、前記バイパス管(d)の長手方向の一接合点から他接合点までの長さ(l)との比率[(l)/(s)]が5〜100となるように構成されていることがバイパス流路[D]内の圧力損失を適正範囲に調整することが容易なものとなり、好ましい。
Here, the branch portion (b) flows through the liquid introduction pipe [B] and flows into the hollow fiber membrane module [A] (1) (unit: L / min), and Distribution ratio [(1) / (2) with the flow rate (2) (unit: L / min) branched from the branch site (b) in the liquid introduction pipe [B] and flowing into the bypass channel [D] )] Is preferably one having an adjustment mechanism that can be adjusted so as to be in the range of 1/5000 to 1/2, from the viewpoint that the amount of dissolved gas in the raw material liquid is stable, particularly 1/2000. It is preferable to be in the range of ˜1 / 100.
In addition, at least one of the bypass pipe (d) has a cross-sectional area (s) of the liquid flowing through the inside thereof, and a length from one junction point in the longitudinal direction of the bypass pipe (d) to another junction point. It is easy to adjust the pressure loss in the bypass channel [D] to an appropriate range because the ratio [(l) / (s)] to (l) is 5 to 100 It is preferable.
更に、前記バイパス部位[D]は、3〜5本のバイパス管(d)が並列に配設された構造を有し、そのうちの少なくとも1つが前記比率[(l)/(s)]が5〜100となる範囲にあり、その他のバイパス管(d)にはが開閉バルブを有するものであることが、原料液体中へのガス溶存量の調節が容易となる点から好ましい。また、ガス供給口3に接合するガス供給管[E]にはガス圧力調圧弁M3が設けられ、かつ、ガス供給口3とガス圧力調圧弁M3との間に炭酸ガス圧力計PIが設けられていることが好ましい。
Further, the bypass portion [D] has a structure in which 3 to 5 bypass pipes (d) are arranged in parallel, and at least one of them has the ratio [(l) / (s)] of 5 It is preferable that the other bypass pipe (d) has an open / close valve in view of easy adjustment of the amount of dissolved gas in the raw material liquid. The gas supply pipe [E] joined to the
ここで用いるガス圧力調圧弁M3は、供給元側のガス中コンタミネーションが中空糸膜に付着しない様、事前にフィルタレーション可能なものであればよく、例えば、プレッシャーレギュレーティングバルブ、ベローズプレッシャーバルブ、プレッシャーレギュレータ、バックプレッシャーバルブ等の圧力制御バルブ(レギュレータ)が挙げられる。 The gas pressure regulating valve M3 used here may be any filter that can be filtered in advance so that contamination in the gas on the supply side does not adhere to the hollow fiber membrane. For example, a pressure regulating valve, a bellows pressure valve, Examples include pressure control valves (regulators) such as pressure regulators and back pressure valves.
中空糸膜モジュール[A]とバイパス流路[D]に分配する分岐部位(b)には、分配装置が設置されていることが好ましく、例えば、かかる分配装置は、簡便的に配管用ティーズや分岐バルブなどで液体を分配し、それらの分配比率を精密バルブ付き流量計や、規定液量しか流せないようなオリフィスによって制御する様にしたものが好ましい。一方、生成したガス溶解液体とバイパス管路を経た原料液体との合流点となる、液体排出管[C]中の分岐部位(c)には、簡便的には配管用ティーズが設置されていればよく、特に、合流した2流を均一に混合させる目的で、スタティックミキサーを配設させればより一層好ましい。 It is preferable that a distribution device is installed in the branch part (b) distributed to the hollow fiber membrane module [A] and the bypass flow path [D]. It is preferable to distribute the liquid with a branch valve or the like, and to control the distribution ratio by a flow meter with a precision valve or an orifice that allows only a specified amount of liquid to flow. On the other hand, pipe tees are simply installed at the branch site (c) in the liquid discharge pipe [C], which becomes the confluence of the generated gas-dissolved liquid and the raw material liquid via the bypass pipe. In particular, it is more preferable to dispose a static mixer for the purpose of uniformly mixing the two combined streams.
次に、ガス溶解液体製造装置内に組み込まれている中空糸膜モジュール[A]は、例えば、中空糸を複数本収束しハウジング内に配設し、中空糸外側とハウジングの間の空間部にガスを給気し中空糸膜の内側に液体を流す内部潅流型のモジュールや、特公平5−21841号公報に記載された中空糸の外側に液体を流し、内側にガスを流す外部潅流型のモジュールが挙げられる。 Next, the hollow fiber membrane module [A] incorporated in the gas-dissolved liquid manufacturing apparatus, for example, converges a plurality of hollow fibers and arranges them in the housing, and in the space between the outside of the hollow fibers and the housing. An internal perfusion type module for supplying gas and flowing liquid inside the hollow fiber membrane, and an external perfusion type module for flowing liquid to the outside of the hollow fiber described in Japanese Patent Publication No. 5-21841 and flowing gas to the inside Module.
外部潅流型の場合には、ハウジング内への中空糸の充填むらなどの原因による液体の偏流(チャンネリング)が生じるのを防ぐために、中空糸を、中空糸同士又は他の糸条とによってシート状、例えば簾状に組織されたシート状物とし、それから得られる重畳体、捲回体、収束体の状態でハウジング内に組み込まれたものが原料液体へのガスの取り込みが効率的となる点から好ましい。 In the case of the external perfusion type, in order to prevent the occurrence of liquid flow (channeling) due to uneven filling of the hollow fiber in the housing, the hollow fiber is made up of sheets by hollow fibers or other yarns. Incorporated into a housing in the form of a sheet, for example, a sheet-like material structured in a bowl shape, and a superposed body, a wound body, and a convergent body obtained therefrom, the gas can be efficiently taken into the raw material liquid To preferred.
他方、内部潅流型の場合も同様に、中空糸を中空糸同士又は他の糸条とによってシート状、例えば簾状に組織されたシート状物とし、それから得られる重畳体、捲回体、収束体の状態でハウジング内に組み込まれたものが、原料液体へのガスの取り込みが効率的となる点から好ましい。 On the other hand, in the case of the internal perfusion type as well, the hollow fiber is formed into a sheet-like material, for example, a sheet-like structure formed by hollow fibers or other yarns, and a superposed body, a wound body, and a convergence obtained therefrom. What is incorporated in the housing in a body state is preferable from the viewpoint of efficient gas incorporation into the raw material liquid.
本発明では、内部潅流型モジュール、外部潅流型モジュールのいずれであってもよいが、製造するガス溶解液体の流量の大幅な変動に追随させねばならない場合に、設定ガス濃度への高速応答性・精度や再現性・安定性などを考慮して液体へ効率的に均等且つ均一にガスを付加させる必要があり、ここういった点から内部潅流型の中空糸膜モジュールの方が好ましい。 In the present invention, either an internal perfusion type module or an external perfusion type module may be used, but when it is necessary to follow a large fluctuation in the flow rate of the gas dissolving liquid to be produced, high-speed response to a set gas concentration In consideration of accuracy, reproducibility, stability, etc., it is necessary to add gas uniformly and uniformly to the liquid. From these points, the internal perfusion type hollow fiber membrane module is preferable.
図2は、内部潅流型モジュールの一例の断面図であり、中空糸7がその両端で封止部9にて固定化され、該中空糸7の内部空間は空間部6と連通している。原料液体は液体供給口1から流入し、中空糸内部に導入される。一方、該モジュールのハウジング部は、ガス供給口3からガスが中空糸と該ハウジングとの外部空間5へ導入されるように構成されている。また、該ハウジングは必要により、ガス排出口を有していてもよい。
FIG. 2 is a cross-sectional view of an example of the internal perfusion type module. The hollow fiber 7 is fixed at both ends thereof by the sealing portions 9, and the internal space of the hollow fiber 7 communicates with the space portion 6. The raw material liquid flows from the
本発明で用いる中空糸は、ガス透過性を有する膜として機能するものである。よって、本発明において中空糸膜とは、かかる機能を有する中空糸自体をいう。かかる中空糸膜は、具体的には、ガス透過速度の大きなものであれば素材及び構造及び形態等、特に制限は無い。例えばポリエチレン系樹脂、ポリプロピレン系樹脂、ポリテトラフルオロエチレン、パーフルオロアルコキシフッ素樹脂、ポリヘキサフルオロプロピレン等の各種フッ素樹脂、ポリブテン系樹脂、シリコーン系樹脂、ポリ(4−メチルペンテン−1)系樹脂等の素材が好適に挙げられる。ここで、中空糸の膜構造は、微多孔膜、均質膜、不均質膜、複合膜、ポリプロピレン微多孔膜層でウレタン等の薄膜をサンドイッチしたいわゆるサンドイッチ膜等いずれも使用できる。中空糸膜のガス透過速度は、付加しようとするガスに対し0.1×10−5(cm3(STP)/cm2・sec・cmHg)以上であることが好ましい。0.1×10−5(cm3(STP)/cm2・sec・cmHg)未満の場合、中空糸膜を透過するガスの透過速度が遅く、目標とするガス濃度に到達しなかったり、液体流量が変動した際にガス濃度が変動する。また、ガス透過速度は大きい方が好ましいが、少なくともゲージ圧で0.1kg/cm2以上でガスを供給してもガスが気泡とならない程度にとどめることが好ましい。ガスが気泡となるとガス濃度を一定に調整することが困難となる。 The hollow fiber used in the present invention functions as a gas permeable membrane. Therefore, in the present invention, the hollow fiber membrane refers to a hollow fiber itself having such a function. Specifically, the hollow fiber membrane is not particularly limited as long as it has a high gas permeation rate, such as a material, a structure, and a form. For example, various fluorine resins such as polyethylene resin, polypropylene resin, polytetrafluoroethylene, perfluoroalkoxy fluorine resin, polyhexafluoropropylene, polybutene resin, silicone resin, poly (4-methylpentene-1) resin, etc. The material is preferably mentioned. Here, as the membrane structure of the hollow fiber, any of a microporous membrane, a homogeneous membrane, a heterogeneous membrane, a composite membrane, a so-called sandwich membrane in which a thin film of urethane or the like is sandwiched with a polypropylene microporous membrane layer can be used. The gas permeation rate of the hollow fiber membrane is preferably 0.1 × 10 −5 (cm 3 (STP) / cm 2 · sec · cmHg) or more with respect to the gas to be added. In the case of less than 0.1 × 10 −5 (cm 3 (STP) / cm 2 · sec · cmHg), the permeation speed of the gas that permeates through the hollow fiber membrane is slow, and the target gas concentration is not reached or liquid The gas concentration fluctuates when the flow rate fluctuates. Moreover, although it is preferable that the gas permeation rate is large, it is preferable that the gas is kept at a level that does not become bubbles even when the gas is supplied at a gauge pressure of 0.1 kg / cm 2 or more. When the gas becomes bubbles, it is difficult to adjust the gas concentration to be constant.
特にポリ(4−メチルペンテン−1)系樹脂を素材とする中空糸不均質膜はガスの透過性に優れ且つ液体蒸気バリヤー性が高く最も好ましい。 In particular, a hollow fiber heterogeneous membrane made of a poly (4-methylpentene-1) resin is most preferable because of its excellent gas permeability and high liquid vapor barrier properties.
ポリエチレン系樹脂、ポリプロピレン系樹脂及びポリフッ化ビニリデン系樹脂等のごとく素材のガス透過性が低く、従ってガスの溶解用途に適用するためには微多孔構造を取り、その多孔部分によりガスを透過させざる得ないこれら膜と比較し、ポリ(4−メチルペンテン−1)系樹脂を素材とする本不均質膜は、素材自体気体透過性が十分高く、また緻密層部の膜厚が十分に薄く、膜表面全体がガス透過に寄与する事ができ、結果として実質的な膜面積が大きくなり極めて好ましい。
また、このポリ(4−メチルペンテン−1)系樹脂からなる不均質膜は、高い気体透過性能を有しつつ膜壁を貫く連通細孔の孔径及びその開孔面積が極めて小さく、従ってポリプロピレンやポリエチレンの微多孔膜に比べ液体蒸気のバリヤー性に極めて優れた性能を有する。
Materials such as polyethylene resin, polypropylene resin, and polyvinylidene fluoride resin have low gas permeability. Therefore, in order to apply them to gas dissolution applications, they take a microporous structure and do not allow gas to permeate through the porous portion. Compared with these unobtainable films, this heterogeneous film made of poly (4-methylpentene-1) resin is sufficiently high in gas permeability and the thickness of the dense layer portion is sufficiently thin. The entire membrane surface can contribute to gas permeation, resulting in a substantial increase in membrane area, which is extremely preferable.
In addition, the heterogeneous membrane made of this poly (4-methylpentene-1) resin has a very small pore diameter and open area of the communicating pores penetrating the membrane wall while having high gas permeation performance. Compared to polyethylene microporous membrane, it has extremely excellent performance of liquid vapor barrier.
内部潅流型の中空糸膜モジュールを用いる場合、使用する中空糸は、その内径が50〜500μmの範囲であることが、中空糸内部を流通する液体の流通抵抗を低く抑えることができる点から好ましく、他方、外径が130〜580μmの範囲であることがガス溶存の効率も優れる点から好ましい。
また、中空糸膜モジュール[A]の中空糸の充填率は、中空糸膜モジュール[A]の両末端に位置する封止部9における、ハウジングの内径から算出される断面積に対する中空糸部分の面積(中空糸内部空間部分を含む)割合で30〜50面積%の範囲であることが好ましい。即ち、30面積%以上とすることにより、中空糸内部を流通する液体の流通抵抗が低くなる一方、50面積%以下とすることにより、中空糸同士の接着性が高まり封止部における接着性が良好となり、液漏れ等を効果的に防ぐことができる。
When using an internal perfusion type hollow fiber membrane module, it is preferable that the hollow fiber to be used has an inner diameter in the range of 50 to 500 μm from the viewpoint that the flow resistance of the liquid flowing through the hollow fiber can be kept low. On the other hand, the outer diameter is preferably in the range of 130 to 580 μm from the viewpoint of excellent gas dissolution efficiency.
Moreover, the hollow fiber membrane module [A] has a hollow fiber filling rate of the hollow fiber portion relative to the cross-sectional area calculated from the inner diameter of the housing in the sealing portions 9 located at both ends of the hollow fiber membrane module [A]. It is preferable that it is the range of 30-50 area% in an area (a hollow fiber internal space part is included) ratio. That is, by setting it to 30 area% or more, the flow resistance of the liquid flowing inside the hollow fiber is reduced, while by setting it to 50 area% or less, the adhesiveness between the hollow fibers is increased and the adhesiveness at the sealing portion is increased. It becomes favorable and can prevent a liquid leak etc. effectively.
また、中空糸膜モジュール[A]を構成するハウジングは、液体への不純物の溶出の無い材質であればよく、使用目的に応じて適宜選択し得るが、例えば、ポリエチレン、ポリプロピレン、ポリ(4−メチルペンテン−1)などのポリオレフィン系、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルスルフォン、ポリサルフォンなどのエンジニアリングプラスチック、或いは低溶出の為超純水の配管素材として使用されている、クリーン塩化ビニル系などが挙げられる。 Moreover, the housing which comprises hollow fiber membrane module [A] should just be a material without the elution of the impurity to a liquid, Although it can select suitably according to a use purpose, For example, polyethylene, a polypropylene, poly (4- Polyolefins such as methylpentene-1), fluorines such as polyvinylidene fluoride and polytetrafluoroethylene, engineering plastics such as polyetheretherketone, polyetherketone, polyethersulfone and polysulfone, or ultrapure water due to low elution Clean vinyl chloride, which is used as a piping material for
本発明のガス溶解液体の製造方法は、前記したガス付加液体製造装置を用い、該装置の液体導入管[B]から原料液体を導入し、質量基準でその1/1000乃至1/10の量を液体供給口から中空糸膜モジュール[A]内に流通させ、残余の液体をバイパス流路[D]に流通させ、かつ、前記中空糸膜モジュール[A]中のガス供給口からガスを供給すると共に、該装置に導入される原料液体の流量が初期の1/2以下となった時点でバイパス管(d)の一つを閉塞させる方法が挙げられる。 The method for producing a gas-dissolved liquid according to the present invention uses the gas addition liquid production apparatus described above, introduces the raw material liquid from the liquid introduction pipe [B] of the apparatus, and is an amount of 1/1000 to 1/10 of the mass standard. Is circulated into the hollow fiber membrane module [A] from the liquid supply port, the remaining liquid is circulated to the bypass channel [D], and gas is supplied from the gas supply port in the hollow fiber membrane module [A]. In addition, there is a method of closing one of the bypass pipes (d) when the flow rate of the raw material liquid introduced into the apparatus becomes 1/2 or less of the initial value.
本発明に使用する原料液体は、具体的には、水、アルコール類、石油系有機溶剤類、油脂類、鉱油、水ガラス等の無機液体等が挙げられ、これに溶解させるガスは、アルゴン、ヘリウム等の希ガス類、酸素、窒素、オゾン、炭酸ガス、水素、アンモニア、塩素、塩化水素、窒素酸化物、及びこれらの混合物等が挙げられる。これらのなかでも本発明の製造方法は、前記した通り、半導体ウエハ、液晶パネル、液晶ディスプレー等の洗浄液であるガス付加超純水の製造に特に適しており、該液体として超純水であることが好ましく、また、ガスとしては炭酸ガス又はアンモニアガスであることが好ましい。ガス溶解液体を洗浄液として使用する場合、その比抵抗値が0.03〜2MΩ・cmの範囲であることが好ましい。 Specific examples of the raw material liquid used in the present invention include water, alcohols, petroleum-based organic solvents, fats and oils, mineral oil, water glass, and other inorganic liquids. Examples include noble gases such as helium, oxygen, nitrogen, ozone, carbon dioxide, hydrogen, ammonia, chlorine, hydrogen chloride, nitrogen oxides, and mixtures thereof. Among these, as described above, the production method of the present invention is particularly suitable for the production of gas-added ultrapure water that is a cleaning liquid for semiconductor wafers, liquid crystal panels, liquid crystal displays, etc., and the liquid is ultrapure water. In addition, the gas is preferably carbon dioxide gas or ammonia gas. When the gas-dissolved liquid is used as the cleaning liquid, the specific resistance value is preferably in the range of 0.03 to 2 MΩ · cm.
また、前記バイパス流路[D]が、3〜5本の並行するバイパス管(d)から構成されている場合、該装置に導入される原料液体の流量が初期の1/2以下となった時点でバイパス管(d)の一つを閉塞させ、次いで、最終的に得られる洗浄液の比抵抗値を追跡しながら、他の開閉バルブを閉塞させ、更に、必要により更に同様にして順次バイパス管の閉塞を行う方法が好ましい。 In addition, when the bypass flow path [D] is composed of 3 to 5 parallel bypass pipes (d), the flow rate of the raw material liquid introduced into the apparatus is ½ or less of the initial value. At this time, one of the bypass pipes (d) is closed, and then the other open / close valves are closed while tracking the specific resistance value of the finally obtained cleaning liquid. The method of performing occlusion is preferable.
本発明では、このように消費量に応じて供給される原料液体を、分配装置によって流量に大小のある2流に一定比率で分流し、膜を隔てて液体とガスを流すための中空糸膜モジュールに一方の流れを供給して小流量のガス付加液体を高いガス濃度で生成させると共に、大流量に分けられた原料液体は、複数のバイパス管(d)が設けられたバイパス流路[D]に送られる。他方、中空糸膜モジュール内で生成したガス付加液体は、バイパス流路[D]を経由した原料液体へ合流させて均一に混合させることにより、所定濃度のガス付加液体を得ることができるものである。この際、原料液体の流量が初期の1/2以下となった時点でバイパス管(d)の一つを閉塞し、更に、原料液体流量が低減するに連れ、順次、他のバイパス管(d)を閉塞することにより、原料液体流量が極端に少なくなっても溶解ガス濃度の急激な低下を防ぐことができる。例えば、図1に示すようにd1、d2、d3の3つのバイパス管路(d)を有しており、初期の原料液体の流量が最大30L/minである場合、流量が8L/min以下となった場合に、バイパス管d1を閉塞し、次いで、流量が4L/min以下となった場合に、バイパス管d2を閉塞する方法が挙げられる。 In the present invention, the hollow fiber membrane for dividing the raw material liquid supplied according to the consumption amount in this way into two flows having a large and small flow rate by a distribution device at a constant ratio and flowing the liquid and the gas across the membrane One flow is supplied to the module to generate a small flow rate of the gas addition liquid at a high gas concentration, and the raw material liquid divided into a large flow rate is a bypass channel [D provided with a plurality of bypass pipes (d) [D ] Sent to. On the other hand, the gas addition liquid produced in the hollow fiber membrane module can be obtained by joining the raw material liquid via the bypass channel [D] and mixing it uniformly to obtain a gas addition liquid having a predetermined concentration. is there. At this time, one of the bypass pipes (d) is closed at the time when the flow rate of the raw material liquid becomes equal to or less than the initial half, and further, the other bypass pipes (d ) Can be prevented even if the raw material liquid flow rate is extremely reduced, a rapid decrease in dissolved gas concentration can be prevented. For example, as shown in FIG. 1, when three bypass pipes (d) d1, d2, and d3 are provided and the initial flow rate of the raw material liquid is 30 L / min at the maximum, the flow rate is 8 L / min or less. In such a case, the bypass pipe d1 is closed, and then the bypass pipe d2 is closed when the flow rate is 4 L / min or less.
また、中空糸膜モジュール[A]中で生成されるガス溶解液体は、好ましくは所定液温でそれ以上ガスが溶解せず又、それ以上の圧力を加えると気泡を生ずる限界圧力の、いわゆるガス飽和液体状態にすることが、一層流量変動など外乱に対するロバスト性は高まり、ガス濃度調整は行いやすくなる点から好ましい。 The gas-dissolved liquid produced in the hollow fiber membrane module [A] is preferably a so-called gas having a limit pressure that does not dissolve any more gas at a predetermined liquid temperature and generates bubbles when a higher pressure is applied. The saturated liquid state is preferable because the robustness against disturbance such as flow rate fluctuation is further enhanced and the gas concentration can be easily adjusted.
以下に本発明を実施例及び比較例によって更に具体的に説明をする。ただし、本発明はこれに限定され制約されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to this and is not limited.
これらの例において超純水の比抵抗は、市販の比抵抗測定器(堀場アドバンストテクノ社製「HE−480R」)を用いて測定した。原料液体としては25[℃]にて18.2[MΩ・cm]の比抵抗を持つ超純水を用い、超純水の流量は1〜30[リットル/min]の間で変動させた。その流量維持時間は30秒で段階的に変動させた。その供給水圧は0.2[MPa]とした。 In these examples, the specific resistance of ultrapure water was measured using a commercially available specific resistance measuring instrument (“HE-480R” manufactured by Horiba Advanced Techno Co., Ltd.). As the raw material liquid, ultrapure water having a specific resistance of 18.2 [MΩ · cm] at 25 [° C.] was used, and the flow rate of ultrapure water was varied between 1 to 30 [liter / min]. The flow rate maintenance time was changed stepwise in 30 seconds. The supply water pressure was 0.2 [MPa].
炭酸ガス及びアンモニアガス源には7[m3]の炭酸ガスボンベ及びアンモニアガスボンベを用意し、二段式圧力調整器及びプレッシャーレギュレーティングバルブにて、膜モジュールへ給気すべき炭酸ガスまたはアンモニアガスの圧力を0.1[MPa]とした。 Prepare 7 [m 3 ] carbon dioxide and ammonia gas cylinders for the carbon dioxide and ammonia gas sources, and use the two-stage pressure regulator and pressure regulating valve to supply carbon dioxide or ammonia gas to be supplied to the membrane module. The pressure was set to 0.1 [MPa].
実施例1
中空糸膜モジュールとしてはポリ−4−メチルペンテン−1を素材とし、内径200[μm]、外径250[μm]の糸を収束させ、ポリプロピレン製のハウジング内に糸の両端を樹脂で固めることにより、0.5[m2]の膜面積を持つ内部灌流型の気体給気用中空糸膜モジュール[A](DIC(株)製「SEPAREL PF−001L」)を用いた。中空糸膜の炭酸ガス透過速度は3.5×10−5[cm3/cm2・sec・cmHg]であった。
Example 1
As a hollow fiber membrane module, poly-4-methylpentene-1 is used as a raw material, a thread having an inner diameter of 200 [μm] and an outer diameter of 250 [μm] is converged, and both ends of the thread are hardened with resin in a polypropylene housing. Therefore, an internal perfusion type hollow fiber membrane module for gas supply [A] (“SEPAREL PF-001L” manufactured by DIC Corporation) having a membrane area of 0.5 [m 2 ] was used. The carbon dioxide gas permeation rate of the hollow fiber membrane was 3.5 × 10 −5 [cm 3 / cm 2 · sec · cmHg].
当該中空糸膜モジュール[A]を使用し、図1の模式図に示した装置を用いた。具体的には、中空糸膜モジュール[A]が原料液体導入管[B]と液体排出管[C]との間に設けられている。中空糸膜モジュール[A]の上流側では、バイパス管路d1、d2、d3の一端が分配装置(分岐点b)を介して原料液体導入管[B]に接続している。バイパス管路d1、d2、d3の他端は、中空糸膜モジュール[A]の下流側で合流装置(分岐部位c)を介して液体排出管[C]に接続している。ここで、バイパス管路d1、d2、d3は、その内部を流通する液体の断面積(s)と、該バイパス管の長手方向の一接合点から他接合点までの長さ(l)との比率[(l)/(s)]は10であった。
分配装置(分岐部位b)の上流側に流量計FI5が設けられ、中空糸膜モジュール[A]と分配装置(分岐部位b)との間の原料液体導入管[B]およびバイパス管路d1、d2、d3にはそれぞれ流量計FI1,FI2,FI3,FI4が設けられている。バイパス管路d1、d2にはそれぞれ自動弁M1、M2が設けられている。中空糸膜モジュール[A]の中央部にはガス供給口3が設けられ、ここに炭酸ガス供給管[E]が接続される。炭酸ガス供給管[E]の途中にはガス圧力調圧弁M3が設けられている。ガス給気口3とガス圧力調圧弁M3との間の液体排出管[C]には炭酸ガス圧力計PIが設けられている。
The hollow fiber membrane module [A] was used, and the apparatus shown in the schematic diagram of FIG. 1 was used. Specifically, the hollow fiber membrane module [A] is provided between the raw material liquid introduction pipe [B] and the liquid discharge pipe [C]. On the upstream side of the hollow fiber membrane module [A], one ends of the bypass pipes d1, d2, and d3 are connected to the raw material liquid introduction pipe [B] via a distributor (branch point b). The other ends of the bypass pipes d1, d2, and d3 are connected to the liquid discharge pipe [C] via a merging device (branch site c) on the downstream side of the hollow fiber membrane module [A]. Here, each of the bypass pipes d1, d2, and d3 has a cross-sectional area (s) of the liquid flowing through the inside and a length (l) from one junction point to the other junction point in the longitudinal direction of the bypass pipe. The ratio [(l) / (s)] was 10.
A flow meter FI5 is provided on the upstream side of the distributor (branch part b), and the raw material liquid introduction pipe [B] and the bypass pipe d1 between the hollow fiber membrane module [A] and the distributor (branch part b), Flow meters FI1, FI2, FI3, and FI4 are provided at d2 and d3, respectively. Automatic valves M1 and M2 are provided in the bypass lines d1 and d2, respectively. A
実施例1の装置は次のように作動する。超純水原水は原料液体導入管[B]の上流から分配装置(分岐部位b)に向かって流入する。超純水原水は、分配装置(分岐部位b)で、比較的小流量の流れと比較的大流量の流れとに分配され、比較的小流量の流れはそのまま原料液体導入管[B]を通じて中空糸膜モジュール[A]内の中空糸膜の内部に導かれ、比較的大流量の流れはバイパス管路d1、d2、d3に導かれる。ここで、分岐部位bにおいて中空糸膜モジュール[A]内の中空糸膜の内部に導入される超純水の流量(w1)(単位:L/分)と、バイパス管路d1、d2、d3に導かれる超純水の流量(w2)(単位:L/分)との比率[(w1)/(w2)]は、1/500であった。炭酸ガスは炭酸ガス供給管[E]に導入される。この炭酸ガスはガス圧力調圧弁M3で一定圧力に調整された後に、ガス供給口3から中空糸膜モジュール[A]内に導かれ、中空糸膜を透過し、中空糸内の超純水原水に溶解される。ここで中空糸膜内の超純水原水は炭酸ガス付加超純水となる。この炭酸ガス溶解超純水は、中空糸膜モジュール[A]の出口側の流路に導かれ、合流装置(分岐部位c)でバイパス管路d1、d2、d3からの比較的大流量の流れと合流し、目的とする比抵抗調整超純水が得られる。この時、比抵抗値が0.7MΩ・cmになるよう分配装置(分岐部位b)と中空糸膜モジュール[A]の液体供給口1との間に設置された手動バルブを調節した。バイパス管路3,4に設けられた自動弁M1,M2は、超純水流量計FI5が8L/min以下になったらM1が閉になり、4L/min以下になったらM2が閉になるように設定した。
The apparatus of Example 1 operates as follows. The ultrapure raw water flows from the upstream of the raw material liquid introduction pipe [B] toward the distribution device (branch site b). The ultrapure water is distributed by the distributor (branch part b) into a relatively small flow and a relatively large flow, and the relatively small flow is hollow as it is through the raw material liquid introduction pipe [B]. A relatively large flow rate is guided to the inside of the hollow fiber membrane in the yarn membrane module [A], and is guided to the bypass conduits d1, d2, and d3. Here, the flow rate (w1) (unit: L / min) of ultrapure water introduced into the hollow fiber membrane in the hollow fiber membrane module [A] at the branch site b, and the bypass conduits d1, d2, d3 The ratio [(w1) / (w2)] to the flow rate (w2) (unit: L / min) of ultrapure water led to 1/500 was 1/500. Carbon dioxide is introduced into the carbon dioxide supply pipe [E]. This carbon dioxide gas is adjusted to a constant pressure by the gas pressure regulating valve M3, and then introduced into the hollow fiber membrane module [A] from the
図1の装置を用いて、超純水全体の流量を変動させて比抵抗調整超純水の比抵抗値を測定した。図5に本装置による比抵抗値変化の結果を示す。流量変動に対する追従のずれはほとんど認められなかった。 Using the apparatus of FIG. 1, the specific resistance value of the ultrapure water with specific resistance adjustment was measured by varying the flow rate of the entire ultrapure water. FIG. 5 shows the result of the specific resistance value change by this apparatus. There was almost no deviation in the follow-up to the flow rate fluctuation.
比較例1
中空糸膜モジュールとしてはポリ−4−メチルペンテン−1を素材とし、内径200[μm]、外径250[μm]の糸を収束させ、ポリプロピレン製のハウジング内に糸の両端を樹脂で固めることにより、0.5[m2]の膜面積を持つ内部灌流型の気体給気用中空糸膜モジュール[A](DIC(株)製「SEPAREL PF−001L」)を得た。中空糸膜の炭酸ガス透過速度は3.5×10−5[cm3/cm2・sec・cmHg]であった。
図4は当該中空糸膜モジュール[A]を組み込んだ比較例1の装置の模式図である。
比較例1の装置は、中空糸膜モジュール[A]が原料液体導入管[B]と液体排出管[C]との間に設けられている。
中空糸膜モジュール[A]の上流側では、バイパス管路[D]の一端が分配装置(分岐点b)を介して原料液体導入管[B]に接続している。バイパス管路[D]の他端は、中空糸膜モジュール[A]の下流側で合流装置(分岐点c)を介して液体排出管[C]に接続している。分配装置(分岐部位b)の上流側に流量計FI5が設けられ、中空糸膜モジュール[A]と分配装置(分岐点b)との間の原料液体導入管[B]およびバイパス管路[D]にはそれぞれ流量計FI1、FI2が設けられている。中空糸膜モジュール[A]の中央部にはガス供給口3が設けられ、ここに炭酸ガス導入管[E]が接続される。炭酸ガス導入管[E]の途中には調圧弁M3が設けられている。ガス給気口3と調圧弁M3との間の炭酸ガス流路には炭酸ガス圧力計PIが設けられている。
Comparative Example 1
As a hollow fiber membrane module, poly-4-methylpentene-1 is used as a raw material, a thread having an inner diameter of 200 [μm] and an outer diameter of 250 [μm] is converged, and both ends of the thread are hardened with resin in a polypropylene housing. As a result, an internal perfusion type hollow fiber membrane module for gas supply [A] (“SEPAREL PF-001L” manufactured by DIC Corporation) having a membrane area of 0.5 [m 2 ] was obtained. The carbon dioxide gas permeation rate of the hollow fiber membrane was 3.5 × 10 −5 [cm 3 / cm 2 · sec · cmHg].
FIG. 4 is a schematic view of an apparatus of Comparative Example 1 in which the hollow fiber membrane module [A] is incorporated.
In the apparatus of Comparative Example 1, the hollow fiber membrane module [A] is provided between the raw material liquid introduction pipe [B] and the liquid discharge pipe [C].
On the upstream side of the hollow fiber membrane module [A], one end of the bypass pipe [D] is connected to the raw material liquid inlet pipe [B] via a distributor (branch point b). The other end of the bypass pipe [D] is connected to the liquid discharge pipe [C] via a junction device (branch point c) on the downstream side of the hollow fiber membrane module [A]. A flow meter FI5 is provided upstream of the distributor (branch part b), and the raw material liquid introduction pipe [B] and the bypass pipe [D] between the hollow fiber membrane module [A] and the distributor (branch point b). ] Are provided with flow meters FI1 and FI2, respectively. A
比較例1の装置は次のように作動する。超純水原水は原料液体導入管[B]の上流から分配装置(分岐部位b)に向かって流入する。超純水原水は、分配装置(分岐点b)で比較的小流量の流れと比較的大流量の流れとに分配される。比較的小流量の流れは原料液体導入管[B]を通じて中空糸膜モジュール[A]内の中空糸膜の内部に導かれる。比較的大流量の流れはバイパス管路[D]に導かれる。炭酸ガスは炭酸ガス供給管[E]に導入される。この炭酸ガスは調圧弁M3で一定圧力に調整された後に、ガス供給口3から中空糸膜モジュール[A]内に導かれ、中空糸膜を透過し、中空糸内の超純水原水に溶解される。ここで中空糸膜内の超純水原水は炭酸ガス付加超純水となる。この炭酸ガス溶解超純水は、中空糸膜モジュール[A]の出口側の流路に導かれ、合流装置(分岐点c)でバイパス管路[D]からの比較的大流量の流れと合流し、目的とする比抵抗調整超純水が得られる。この時、比抵抗値が0.7MΩ・cmになるよう、分配装置(分岐部位b)と中空糸膜モジュール[A]の液体供給口1との間に設置された手動バルブを調節した。
図4の装置を用いて、超純水全体の流量を変動させて比抵抗調整超純水の比抵抗値を測定した。図5に本装置による比抵抗値変化の結果を示す。超純水流量が5L/min以下に変動すると、比抵抗値が急激に上昇する傾向が確認された。
The apparatus of Comparative Example 1 operates as follows. The ultrapure raw water flows from the upstream of the raw material liquid introduction pipe [B] toward the distribution device (branch site b). The ultrapure raw water is distributed into a relatively small flow and a relatively large flow by the distributor (branch point b). A relatively small flow rate is introduced into the hollow fiber membrane in the hollow fiber membrane module [A] through the raw material liquid introduction pipe [B]. A relatively large flow is led to the bypass line [D]. Carbon dioxide is introduced into the carbon dioxide supply pipe [E]. This carbon dioxide gas is adjusted to a constant pressure by the pressure regulating valve M3, and then introduced into the hollow fiber membrane module [A] from the
Using the apparatus of FIG. 4, the specific resistance value of the ultrapure water with specific resistance adjustment was measured by changing the flow rate of the entire ultrapure water. FIG. 5 shows the result of the specific resistance value change by this apparatus. When the ultrapure water flow rate fluctuated to 5 L / min or less, the specific resistance value tended to increase rapidly.
[A]:中空糸膜モジュール
[B]:原料液体導入管
(b):分岐部位
[C]:液体排出管
(c):分岐部位
[D]:バイパス流路
(d):バイパス管
[E]:ガス供給管
1:液体供給口
2:液体排出口
3:ガス供給口
4:ガス排出口
5:空間部
6:空間部
7:中空糸
8:ハウジング
9:封止部
M1:自動弁
M2:自動弁
M3:ガス圧力調圧弁
PI:ガス圧力計
FI1:流量計
FI2:流量計
FI3:流量計
FI4:流量計
FI5:流量計
[A]: Hollow fiber membrane module [B]: Raw material liquid introduction pipe (b): Branch part [C]: Liquid discharge pipe (c): Branch part [D]: Bypass channel (d): Bypass pipe [E ]: Gas supply pipe 1: Liquid supply port 2: Liquid discharge port 3: Gas supply port 4: Gas discharge port 5: Space part 6: Space part 7: Hollow fiber 8: Housing 9: Sealing part M1: Automatic valve M2 : Automatic valve M3: Gas pressure regulating valve PI: Gas pressure gauge FI1: Flow meter FI2: Flow meter FI3: Flow meter FI4: Flow meter FI5: Flow meter
Claims (9)
前記液体供給口に接合され、かつ、分岐部位(b)を有する液体導入管[B]と、
前記液体排出口に接合され、かつ、分岐部位(c)を有する液体排出管[C]と、
液体導入管[B]内を流通する液体が前記中空糸膜モジュール[A]を経由することなく直接前記液体排出管[C]に流入するように前記分岐部位(b)と前記分岐部位(c)とを結節するバイパス部位[D]とを有しており、かつ、該バイパス部位[D]が、並列に複数の流路を形成するように配設された複数のバイパス管(d)により構成されており、かつ、この複数のバイパス管(d)の少なくとも1つが開閉可能な機能を有することを特徴とするガス溶解液体製造装置。 A housing portion having a gas supply port, a liquid supply port, and a liquid discharge port, and a gas supplied from the gas supply port permeate through the housing portion to dissolve the gas in the liquid supplied from the liquid supply port. A hollow fiber membrane module [A] having a hollow fiber membrane disposed so as to be capable of
A liquid introduction pipe [B] joined to the liquid supply port and having a branch part (b);
A liquid discharge pipe [C] joined to the liquid discharge port and having a branch part (c);
The branch part (b) and the branch part (c) so that the liquid flowing through the liquid introduction pipe [B] flows directly into the liquid discharge pipe [C] without passing through the hollow fiber membrane module [A]. And a bypass portion [D] connecting the two of the bypass pipes (d) arranged to form a plurality of flow paths in parallel. An apparatus for producing a gas-dissolved liquid, wherein the gas-dissolved liquid manufacturing apparatus is configured and has a function of opening and closing at least one of the plurality of bypass pipes (d).
前記ガスを、一定圧力で前記ガス供給口から前記中空糸膜モジュール内に導き、前記中空糸膜を透過させ、前記中空糸膜内の前記液体に溶解させるガス溶解液体の製造方法。 A method for producing a gas-dissolved liquid, wherein the gas is introduced into the hollow fiber membrane module from the gas supply port at a constant pressure, permeated through the hollow fiber membrane, and dissolved in the liquid in the hollow fiber membrane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011094966A JP5862043B2 (en) | 2011-04-21 | 2011-04-21 | Gas-dissolved liquid manufacturing apparatus and gas-dissolved liquid manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011094966A JP5862043B2 (en) | 2011-04-21 | 2011-04-21 | Gas-dissolved liquid manufacturing apparatus and gas-dissolved liquid manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012223725A JP2012223725A (en) | 2012-11-15 |
JP5862043B2 true JP5862043B2 (en) | 2016-02-16 |
Family
ID=47274522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011094966A Active JP5862043B2 (en) | 2011-04-21 | 2011-04-21 | Gas-dissolved liquid manufacturing apparatus and gas-dissolved liquid manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5862043B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107427786B (en) * | 2015-04-13 | 2021-10-12 | Dic株式会社 | Resistivity value adjusting device and resistivity value adjusting method |
EP3498366B1 (en) * | 2016-08-12 | 2024-03-20 | DIC Corporation | Resistivity adjustment device and resistivity adjustment method |
JP6900834B2 (en) * | 2016-08-22 | 2021-07-07 | Dic株式会社 | Specific resistance value adjusting device |
WO2018116987A1 (en) | 2016-12-20 | 2018-06-28 | Dic株式会社 | Resistivity value regulating device and resistivity value regulating method |
TWI842869B (en) * | 2019-04-08 | 2024-05-21 | 美商Mks儀器公司 | System for supplying a rinsing liquid comprising ultrapure water and an ammonia gas and method for supplying a rinsing liquid comprising ultrapure water with a desired concentration of an ammonia gas dissolved therein |
JP7409500B2 (en) * | 2020-06-10 | 2024-01-09 | Dic株式会社 | Specific resistance value adjustment device and specific resistance value adjustment method |
KR102502963B1 (en) * | 2020-11-26 | 2023-02-24 | (주)에어레인 | Anti-static hollow fiber membrane module and system for semiconductor manufacturing process |
TW202302215A (en) | 2021-07-01 | 2023-01-16 | 日商Dic股份有限公司 | Specific resistance value adjustment device and specific resistance value adjustment method |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1478164A (en) * | 1974-11-22 | 1977-06-29 | Kent Ltd G | Apparatus for providing a controlled concentration of a gas in a flow of liquid |
JPS60153990A (en) * | 1984-01-25 | 1985-08-13 | Kurita Water Ind Ltd | Apparatus for controlling specific resistance of ultra- pure water |
JP2590122Y2 (en) * | 1991-10-15 | 1999-02-10 | 九州日立マクセル株式会社 | Water purifier |
JPH10324502A (en) * | 1997-05-21 | 1998-12-08 | Dainippon Ink & Chem Inc | Device and method for adding carbon dioxide to ultrapure water |
JPH1129302A (en) * | 1997-07-10 | 1999-02-02 | Dainippon Screen Mfg Co Ltd | Regulating device or specific resistance and substrate-treating device |
JP3786232B2 (en) * | 1997-08-28 | 2006-06-14 | 大日本インキ化学工業株式会社 | Apparatus and method for adjusting resistivity of ultrapure water |
JP3951385B2 (en) * | 1997-11-04 | 2007-08-01 | 大日本インキ化学工業株式会社 | Apparatus and method for adjusting dissolved gas concentration in liquid |
JP3690569B2 (en) * | 1998-11-20 | 2005-08-31 | 大日本インキ化学工業株式会社 | Ultrapure water specific resistance adjustment device and adjustment method |
JP2002316027A (en) * | 2001-04-19 | 2002-10-29 | Ebara Corp | Device and method for manufacturing gas-dissolved water, device and method for ultrasonic cleaning |
JP2003010660A (en) * | 2001-06-28 | 2003-01-14 | Dainippon Ink & Chem Inc | Apparatus and method for controlling resistivity of ultra-pure water |
JP4221551B2 (en) * | 2002-01-25 | 2009-02-12 | 株式会社ササクラ | Ozone water supply device |
WO2008049001A2 (en) * | 2006-10-17 | 2008-04-24 | Mks Intruments, Inc. | Devices, systems, and methods for carbonation of deionized water |
JP2010115639A (en) * | 2008-10-18 | 2010-05-27 | Viita Kk | Method and apparatus for adjusting ph |
JP5645516B2 (en) * | 2009-09-11 | 2014-12-24 | 東京エレクトロン株式会社 | Substrate liquid processing apparatus, processing liquid generation method, and computer-readable recording medium storing processing liquid generation program |
-
2011
- 2011-04-21 JP JP2011094966A patent/JP5862043B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012223725A (en) | 2012-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5862043B2 (en) | Gas-dissolved liquid manufacturing apparatus and gas-dissolved liquid manufacturing method | |
JPH10324502A (en) | Device and method for adding carbon dioxide to ultrapure water | |
JP3690569B2 (en) | Ultrapure water specific resistance adjustment device and adjustment method | |
KR100783857B1 (en) | Apparatus and method for adjusting specific resistance of ultrapure water | |
JP3951385B2 (en) | Apparatus and method for adjusting dissolved gas concentration in liquid | |
CN107427786B (en) | Resistivity value adjusting device and resistivity value adjusting method | |
JP6500998B2 (en) | Resistivity value adjustment device and resistivity value adjustment method | |
JP2003010660A (en) | Apparatus and method for controlling resistivity of ultra-pure water | |
KR102192464B1 (en) | Functional water producing apparatus and functional water producing method | |
KR100972889B1 (en) | Resistivity-controlling system | |
KR100519391B1 (en) | Apparatus and method for adding carbon dioxide gas to ultrapure water | |
JP3786232B2 (en) | Apparatus and method for adjusting resistivity of ultrapure water | |
JP2002172318A (en) | Apparatus and method for adjusting resistivity of ultrapure water | |
WO2023276837A1 (en) | Specific resistance value adjustment device and specific resistance value adjustment method | |
JP2008211096A (en) | Resistivity controller | |
JP6900834B2 (en) | Specific resistance value adjusting device | |
JP2003311140A (en) | Apparatus for addition control of ultra small amount of liquid and gas-dissolved water production apparatus and gas-dissolved water production method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140311 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150421 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20150421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150908 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151214 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5862043 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |