JP3690569B2 - Ultrapure water specific resistance adjustment device and adjustment method - Google Patents

Ultrapure water specific resistance adjustment device and adjustment method Download PDF

Info

Publication number
JP3690569B2
JP3690569B2 JP33094498A JP33094498A JP3690569B2 JP 3690569 B2 JP3690569 B2 JP 3690569B2 JP 33094498 A JP33094498 A JP 33094498A JP 33094498 A JP33094498 A JP 33094498A JP 3690569 B2 JP3690569 B2 JP 3690569B2
Authority
JP
Japan
Prior art keywords
ultrapure water
carbon dioxide
gas
ammonia gas
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33094498A
Other languages
Japanese (ja)
Other versions
JP2000159504A (en
Inventor
一成 酒井
和美 大井
均 加藤
利夫 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP33094498A priority Critical patent/JP3690569B2/en
Publication of JP2000159504A publication Critical patent/JP2000159504A/en
Application granted granted Critical
Publication of JP3690569B2 publication Critical patent/JP3690569B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に半導体分野や液晶分野での洗浄用水に用いられる超純水の比抵抗を調整する装置及び方法に関するものである。
【0002】
【従来の技術】
半導体や液晶の製造工程において、超純水(比抵抗≧18MΩ・cm)を使用してフォトマスク基板、シリコンウェハー、ガラス板を洗浄する場合、ダイシングマシンによりウェハーを切断する場合に、超純水の比抵抗が高いために静電気が発生し、そのために絶縁破壊を起こしたり、或いは微粒子の吸着などが生じることで、基板の製品歩留まりに著しく悪影響を及ぼす事が広く知られている。
そこでこのような悪影響を解消するために、超純水流路にマグネシウムのメッシュを装着して超純水の比抵抗を低下させる方法が知られている。
【0003】
又、疎水性の多孔質中空糸膜モジュールを用いて超純水に炭酸ガスを溶解させ、解離平行により発生した炭酸イオンにより比抵抗を低下させる方法としては、超純水の比抵抗調整装置(特公平5−21841号公報)、超純水の比抵抗調整方法及び装置(特開平7−60082号公報)が提案されている。
【0004】
また、シリコンウェハーの洗浄、ダイシング等の工程では、超純水の流量変動が激しく、流量が変動しても比抵抗が変動しないことが要求される。極端な場合には、数秒単位での流量変動が起こる。超純水の流量が変動しても比抵抗を一定に制御する方法として、”超純水の科学”(半導体基盤技術研究会編、株式会社リアライズ社発行)に、炭酸ガス溶解後の比抵抗を測定し、炭酸ガス流量をフィードバック制御を行う方法(392ページ)、超純水流量を測定し炭酸ガス流量をマスフローコントローラーによりフィードフォワード制御する方法(401ページ)が記されている。
【0005】
【発明が解決しようとする課題】
しかしながら特公平5−21841号公報に記載の炭酸ガスの流量を制御する方法、”超純水の科学”に記載の方法の炭酸ガスの流量をフィードバック制御する方法では、短時間の流量変動には到底追従できない。また、”超純水の科学”に記載の方法の超純水流量の測定値から炭酸ガスの流量をフィードフォワード制御する方法では、高価なマイコン回路、高価なマスフローコントローラーを必要とし、その制御性も満足できるものではない。特開平7−60082号公報には超純水流量が変動した際に比抵抗値を一定値に制御するという考えが含まれていない。また、炭酸ガス圧力を設定しただけでは超純水流量が変化した場合の比抵抗値の変動は避けられない。
【0006】
本発明の目的は、これらの問題点を全て解決し、制御機構の不要な簡便且つ、コンパクトな超純水の比抵抗値を調整する装置及び方法を提供するところにある。
【0007】
【課題を解決するための手段】
本発明の要旨は以下である。
【0008】
(1) ハウジング内に気体透過膜が配設され、それを境界として超純水通過部と炭酸ガスまたはアンモニアガス通過部が形成されたハウジングを有する膜モジュールを備え、
前記超純水通過部と連絡する超純水原水入口と、それらを連絡する中間部に設けられた分配部を備え、
前記超純水通過部と連絡する比抵抗調整超純水出口と、それらを連絡する中間部に設けられた合流部を備え、
前記分配部と前記合流部とを連絡するバイパス流路を備え、
前記分配部が前記超純水原水入口から入れられる超純水原水を前記超純水通過部とバイパス流路とに定率流量比で分配し、
前記気体透過膜が、前記超純水通過部を通過する超純水原水に炭酸ガスまたはアンモニアガスを、そのガス圧と水温によって定まる平衡濃度の90%以上のほぼ一定の濃度まで溶解させる能力を有するものである、超純水の比抵抗調整装置。
【0009】
(2) 超純水の比抵抗を調整するために、超純水に気体透過膜を介して炭酸ガスまたはアンモニアガスを接触させ、超純水に炭酸ガスまたはアンモニアガスを供給して所望の比抵抗値とする、所定比抵抗値を有する超純水を製造するための装置であって、
気体透過膜を備えた膜モジュールとして、予め想定される変動流量の超純水に炭酸ガスまたはアンモニアガスを、そのガス圧と水温によって定まる平衡濃度の90%以上のほぼ一定の濃度まで溶解させる能力を有する膜モジュールを備え、それによって、供給される超純水の流量が変動してもほぼ一定の比抵抗値となる如く、炭酸ガスまたはアンモニアガスが溶解された超純水を生成させる手段を備え、
超純水原水(炭酸ガスまたはアンモニアガス未溶解超純水)側に分配部とバイパス流路を備え、超純水原水を膜モジュールとバイパス流路とへ定率流量比で分配させ、
生成した炭酸ガスまたはアンモニアガス溶解超純水とバイパス流路からの超純水原水とを合流させ均一混合させる手段を備え、
混合後の超純水が最終目標の比抵抗値となる様に希釈する、超純水の比抵抗調整装置。
【0010】
(3) 気体透過膜として中空糸膜を備え、相対的に小流量の炭酸ガスまたはアンモニアガス溶解超純水を生成させるための中空糸膜モジュールと、相対的に大流量の超純水原水を通過させるバイパス管路と、該膜モジュールとバイパス管路に超純水原水を定率流量比で分配する分配装置と、生成した炭酸ガスまたはアンモニアガス溶解超純水とバイパス管路を経た超純水原水とを合流させ均一に混合させる合流混合装置と、膜モジュールに供給される炭酸ガスまたはアンモニアガスの圧力を一定に保持するための調圧弁とからなる前記(2)記載の装置。
【0011】
(4) バイパス管路が中空糸膜モジュール内に設けられた前記(3)記載の装置。
【0012】
(5) 中空糸膜モジュールが、中空糸膜外側とハウジングの間の空間部に炭酸ガスまたはアンモニアガスを給気し、中空糸膜の内側に超純水を流す内部灌流型であって、組み込まれた中空糸膜が複数本収束された状態でハウジング内に配設されたものである前記(3)又は(4)記載の装置。
(6) 中空糸膜モジュールが、中空糸膜の内側に炭酸ガスまたはアンモニアガスを給気し、中空糸膜外側とハウジングの間の空間部に超純水を流す外部灌流型であって、組み込まれた中空糸膜が複数本収束された状態でハウジング内に配設されたものである前記(3)又は(4)記載の装置。
(7) バイパス管路が中空糸膜モジュール内に設けられ、当該バイパス管路が、管壁から炭酸ガスまたはアンモニアガスを透過させない円筒管からなり、複数本の中空糸膜と共に収束されハウジング内に配設された、前記(5)記載の装置。
(8) 中空糸膜モジュールが、炭酸ガス透過速度が100×10−6[cm3/cm2・sec・cmHg]以上またはアンモニアガス透過速度100×10−6[cm3/cm2・sec・cmHg]以上である疎水性の気体透過膜をハウジング内に組み込んだものである前記(3)〜(7)のいずれか1に記載の装置。
(9) 中空糸膜がポリー4メチルペンテンー1を素材とし、その内径が20〜350μm、外径が50〜1000μmである前記(8)記載の装置。
(10)炭酸ガスまたはアンモニアガス溶解超純水と超純水原水とを合流させる手段と、その下流側に均一混合手段としてスタティックミキサーを配設させたものである前記(2)又は(3)記載の装置。
(11)生成した比抵抗値調整済み超純水の比抵抗値を見張るための比抵抗センサーを設け、それと応動する比抵抗計、比抵抗センサーからの信号で炭酸ガスまたはアンモニアガスの供給を遮断する電磁弁を備える、装置に異常が発生した場合のガス遮断装置が溶解された前記(3)記載の装置。
(12)超純水原水を2つの流れに定率流量比で分配する工程と、
超純水の一方の流れに気体透過膜を介して、供給する炭酸ガス圧またはアンモニアガス圧と水温によって定まる平衡濃度の90%以上のほぼ一定の炭酸ガス濃度またはアンモニアガス濃度まで炭酸ガスまたはアンモニアガスを溶解して、比抵抗調整超純水を生成する工程と、
前記炭酸ガスまたはアンモニアガス溶解超純水と他方の超純水原水の流れとを合流する工程
とを備えた、超純水の比抵抗調整方法。
(13)変動する消費量に応じた量の比抵抗値調整済み超純水を製造するための、超純水の比抵抗調整方法において、
消費量に応じて供給される超純水原水を、分配装置によって流量に相対的に大小のある2流に定率流量比で分流し、
膜を隔てて超純水と炭酸ガスまたはアンモニアガスを流すための中空糸膜モジュールに一方の流れを供給して小流量の炭酸ガスまたはアンモニアガス溶解超純水を、予め想定された変動流量の範囲内で生成させ、
且つ該炭酸ガスまたはアンモニアガス溶解超純水をその際の炭酸ガス圧またはアンモニアガス圧と水温によって定まる平衡濃度の90%以上のほぼ一定の炭酸ガス濃度またはアンモニアガス濃度とさせ、
その炭酸ガスまたはアンモニアガス溶解超純水を大流量に分けられた超純水原水と合流させて均一に混合し、所定の比抵抗値に調整した超純水とする、超純水の比抵抗調整方法。
【0013】
(14)大流量流に分けられた超純水原水を、中空糸膜モジュール内に設けられたバイパス管路を通じて流す前記(13)記載の超純水の比抵抗調整方法。
(15)小流量流の炭酸ガスまたはアンモニアガス溶解超純水の大流量流の超純水に対する流量の比率が1/50より小である前記(13)又は(14)記載の方法。
【0014】
(16)炭酸ガスまたはアンモニアガス溶解超純水の炭酸ガス濃度またはアンモニアガス濃度を維持するため、調圧弁により中空糸膜に接する炭酸ガス圧またはアンモニアガス圧を一定に保持させ、中空糸膜モジュールに分流して流入する超純水原水の流量の変動に応じて炭酸ガスまたはアンモニアガスの供給量を相対的に変化させる前記(13)記載の方法。
【0015】
【発明の実施の形態】
本発明の実施の形態の典型的なもの及び最良の状態は後記の実施例に具体的に示されるが、その概要を示すと以下の通りである。
【0016】
図1は本発明に適する装置の一例である。
【0017】
本発明は複雑な制御機構を持たない、簡便且つコンパクトな超純水の比抵抗調整装置及び調整方法を提案するものであり、具体的な方法としては比抵抗を調整するべき超純水原水を2流に分け、その一方の流れにガスを付加して小流量の炭酸ガスまたはアンモニアガスが溶解された超純水を生成させ、それと大流量の超純水原水とを合流させ、均一混合、希釈する事により比抵抗調整を行う装置及び方法である。
【0018】
この炭酸ガスまたはアンモニアガス溶解効率を高めるために当該装置の中に膜モジュールを配設させ、この膜を介して炭酸ガスまたはアンモニアガスを超純水中へ供給溶解させる事を更なる提案としている。
【0019】
本発明に使用する気体透過膜は、炭酸ガスまたはアンモニアガス透過速度の大きなものであれば素材及び構造及び形態等特に制限は無いが、膜素材は疎水性の高い素材が好ましい。例えばポリエチレン系樹脂、ポリプロピレン系樹脂、ポリテトラフルオロエチレン、パーフルオロアルコキシフッ素樹脂、ポリヘキサフルオロプロピレン等の各種フッ素樹脂、ポリブテン系樹脂、シリコーン系樹脂、ポリ(4−メチルペンテン−1)系樹脂等の素材が好適に挙げられる。また膜構造も、微多孔膜、均質膜、不均質膜、複合膜、ポリプロピレン微多孔膜等層でウレタン等の薄膜をサンドイッチ膜いわゆるサンドイッチ膜等いずれも使用できる。膜の形態としては平膜、中空糸膜が挙げられるが、ガスの溶解効率の面では中空糸膜が好ましい。中空糸膜の炭酸ガス透過速度またはアンモニアガス透過速度は、1×10−6[cm3/cm2・sec・cmHg]以上10[cm3/cm2・sec・cmHg]以下であることが好ましい。1×10−6[cm3/cm2・sec・cmHg]未満であると中空糸膜を透過する炭酸ガスまたはアンモニアガスの透過速度が遅く、目標とする比抵抗値に到達しなかったり、超純水流量が変動した際に比抵抗値が変動する。また、10[cm3/cm2・sec・cmHg]を越えるとゲージ圧で0.1kg/cm2以上で炭酸ガスまたはアンモニアガスを供給すると炭酸ガスまたはアンモニアガスが気泡となって超純水に混入したり、逆に超純水が炭酸ガスまたはアンモニアガス側に透過するという問題点がある。炭酸ガスまたはアンモニアガスが気泡となると比抵抗値を一定に調整することが困難となる。
【0020】
特にポリ(4−メチルペンテン−1)系樹脂を素材とする中空糸不均質膜は炭酸ガスまたはアンモニアガスの透過性に優れ且つ水蒸気バリヤー性が高く最も好ましい。本不均質膜については、例えば特公平2−38250号公報、特公平2−54377号公報、特公平4−15014号公報、及び特公平4−50053号公報等に詳しく述べてある。
【0021】
ポリエチレン系樹脂、ポリプロピレン系樹脂及びポリフッ化ビニリデン系樹脂等のごとく素材のガス透過性が低く、従って炭酸ガスまたはアンモニアガスの溶解用途に適用するためには微多孔構造を取り、その多孔部分により炭酸ガスまたはアンモニアガスを透過させざる得ないこれら膜と比較し、ポリ(4−メチルペンテン−1)系樹脂を素材とする本不均質膜は、素材自体気体透過性が十分高く、また緻密層部の膜厚が十分に薄く、膜表面全体が炭酸ガスまたはアンモニアガス透過に寄与する事ができ、結果として実質的な膜面積が大きくなり極めて好ましい。
【0022】
また、このポリ(4−メチルペンテン−1)系樹脂からなる不均質膜は、高い気体透過性能を有しつつ膜壁を貫く連通細孔の孔径及びその開孔面積が極めて小さく、従ってPPやPEの微多孔膜に比べ水蒸気のバリヤー性に極めて優れた性能を有する。
【0023】
中空糸膜を配設するハウジングについては、上述の超純水への不純物の溶出の無いものであれば、何ら材質は一切問わない。
【0024】
具体的に例示すれば、ポリエチレン、ポリプロピレン、ポリ4−メチルペンテン1などのポリオレフィン系、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルスルフォン、ポリサルフォンなどのエンジニアリングプラスチック、或いは低溶出の為超純水の配管素材として使用されている、クリーン塩化ビニル系などが挙げられる。
【0025】
中空糸膜モジュール構造としては、中空糸膜を複数本収束しハウジング内に配設し、中空糸膜外側とハウジングの間の空間部に炭酸ガスまたはアンモニアガスを給気し中空糸膜の内側に超純水を流す内部灌流型のみならず、それ以外にも特公平5−21841号公報にある中空糸の外側に超純水を流し、内側に炭酸ガスまたはアンモニアガスを流す外部灌流型も考えられる。
【0026】
外部灌流型の場合には、ハウジング内への中空糸の充填むらなどの原因による水の偏流(チャンネリング)が生じるのを防ぐために、中空糸を、中空糸同士又は他の糸条とによってシート状、例えば簾状に組織されたシート状物とし、それから得られる重畳体、捲回体、収束体の状態でハウジング内に組み込むことが効果的である。また中空糸を筒状芯に綾巻きするなどした三次元組織を組み込む等適宜の形状を採ることもできる。
【0027】
内灌流、外灌流どちらの型を採るかは、超純水に炭酸ガスまたはアンモニアガスを溶解する事により比抵抗値を下げるという目的からすればどちらの構造でも構わないが、製造する炭酸ガスまたはアンモニアガス溶解水の流量の大幅な変動に追随させねばならない場合に、設定比抵抗値への高速応答性・精度や再現性・安定性などを考慮して超純水へ効率的に均等且つ均一に炭酸ガスまたはアンモニアガスを溶解させる必要があり、こういった点から内部灌流型の中空糸膜モジュールの方が好ましい。
【0028】
超純水原水を中空糸膜モジュールとバイパス管路に分配する分配装置としては、分流される2流の合計流量が変動しても2流の流量比率が常に一定性を保った状態で2流に分流できるものであれば何ら規定するべきものはなく、簡便的に配管用ティーズや分岐バルブなどが使用できる。しかし、更にそれらの分配比率を精密バルブ付き流量計や、規定水量しか流せないようなオリフィスによって制御する様にしたものでも良い。
【0029】
但しその材質面では、超純水への不純物溶出を考慮する必要があり、フッ素系ポリマーやクリーン塩化ビニル、超純水対応のオーステナイト系ステンレス、無機ガラスなどを使用しなくてはならない。
【0030】
生成した炭酸ガスまたはアンモニアガス溶解超純水とバイパス管路を経た原水を合流させる合流装置としては2流を合流させる流入口があれば何ら規定するべきものはなく、簡便的には配管用ティーズで良い。
【0031】
合流装置の下流側には、合流した2流を均一に混合させる目的で、スタティックミキサーを配設させればより一層好ましいが、適当な長さの屈曲管路を設ける事によって、均一混合され希釈された超純水が得られる。合流装置及びスタティックミキサーの材質も超純水への不純物溶出には十分考慮し、フッ素系ポリマーやクリーン塩化ビニル、超純水対応のオーステナイト系ステンレス、無機ガラスなどを使用しなくてはならない。
【0032】
従来技術では、炭酸ガスの流量または圧力について精密な自動制御を行っていたが、本発明では炭酸ガス濃度またはアンモニアガス濃度がある程度の一定値に保たれれば良いので、バルブの高度な自動制御を必要としない。必要とされる炭酸ガス濃度またはアンモニアガス濃度は、炭酸ガスまたはアンモニアガスが溶解される超純水の水温と、ヘンリーの法則によって供給炭酸ガスまたはアンモニアガスの圧力に比例して定まる平衡濃度の90%以上の値で、ほぼ一定した値である。本発明において適当な炭酸ガスまたはアンモニアガスの圧力は0.15〜1.5kgf/cm2・Gである。
【0033】
炭酸ガスまたはアンモニアガスは調圧弁によって定圧的に供給する事により、膜モジュール内の超純水の流量変動に応じた供給量が保持され、炭酸ガスまたはアンモニアガスの定濃度性がが保たれる。
【0034】
炭酸ガスまたはアンモニアガス圧力調圧弁については、供給元側(一時側)のガス中コンタミネーションが中空糸膜に付着しない様、事前にフィルタレーションを行ってさえおけば、何ら構造,材質,型式を規定する必要はなく、半導体や液晶分野で一般的に使用されているもので差し支えない。
【0035】
例示すれば、プレッシャーレギュレーティングバルブ、ベローズプレッシャーバルブ、プレッシャーレギュレータ、バックプレッシャーバルブ等の圧力制御バルブ(レギュレータ)が挙げられる。
【0036】
バイパス管路は、超純水を流す管であってその管壁が炭酸ガスまたはアンモニアガスを透過させない管であれば良く、2分流された超純水が所定比率で一定に保たれておればその形状は問題とはならない。
【0037】
又、必ずしもバイパス管路数は1本に限定されるものではない。
【0038】
バイパス管路内を超純水が通ることから、その管の材質は、前期同様の観点から、プラスチック製、樹脂製よりも超純水対応のオーステナイト系ステンレスや無機ガラスが好ましい。
【0039】
本発明を更に説明する。
【0040】
これ迄に各種文献などで炭酸ガスまたはアンモニアガスの超純水への溶解メカニズム、超純水へ炭酸ガスまたはアンモニアガスを直接溶解させる場合の炭酸ガス濃度またはアンモニアガス濃度と比抵抗値の関係は公知となっている。
【0041】
従って超純水の比抵抗を調整する目的で、中空糸膜を介して超純水に所定量の炭酸ガスを溶解する事は特公平5−21841、”超純水の科学”に記載のフィードフォワード法、フィードバック法などでも提案されてきた。しかしながら超純水量が瞬時に変動する場合、それに応答させ所定の比抵抗値に追従、制御させる事は実際には難しい。
然るに本発明者らは超純水原水を2流に分け、比抵抗所定値を与える炭酸ガス濃度またはアンモニアガス濃度より高い濃度で炭酸ガスまたはアンモニアガスを溶解した超純水を、超純水原水で希釈し、その一定比率を保持させ均一に混合させる方法により比抵抗調整できる事を見いだした。
【0042】
即ち本発明の重点は、消費量に応じて供給される超純水原水を、分配装置によって流量に大小のある2流に一定比率で分流し、膜を隔てて超純水と炭酸ガスまたはアンモニアガスを流すための中空糸膜モジュールに一方の流れを供給して小流量の炭酸ガスまたはアンモニアガス溶解水を高い炭酸ガス濃度またはアンモニアガス濃度で生成させ、その炭酸ガスまたはアンモニアガス溶解水を大流量に分けられた原水へ合流させて均一に混合させる方法により、容易に比抵抗調整超純水を得る事にあるが、更には分流を当該装置内の配管系で実施するか、バイパス管路を中空糸膜モジュール内に設けて実施するか、いくつかの方法で考えられる。
尚炭酸ガスまたはアンモニアガス溶解は常温水温下の前記好ましい炭酸ガス圧力またはアンモニアガス圧下で行えば、その条件における平衡濃度の炭酸ガスまたはアンモニアガスが溶解してほぼ一定値となり、比抵抗調整は行いやすくなる。
【0043】
炭酸ガスまたはアンモニアガス溶解超純水を生成させる為の超純水原水とバイパス管路に流す超純水原水の分流比率は、所望とする比抵抗値により大きく変わり、又比抵抗値をどの程度の範囲内にコントロールすればよいのかは、超純水使用対象の半導体或いは液晶分野でのデバイスの種類や使用する洗浄工程によって大きく変わる。
【0044】
従って比抵抗調整超純水の使用目的によって、前記流量比の大小関係は適宜変更して対応することが極めて効果的である。
【0045】
近年の半導体や液晶分野でのウエハ洗浄工程では、比抵抗値0.1[MΩ・cm]以上が特に望まれており、この場合小流量側の炭酸ガスまたはアンモニアガス溶解水の大流量側の超純水に対する比率が1/50より小さければ良い。
【0046】
【実施例】
以下に本発明を実施例及び比較例によって更に具体的に説明をする。 ただし、本発明はこれに限定され制約されるものではない。
【0047】
これらの例において超純水の比抵抗は、市販の比抵抗測定器(THORNTON社製200CR及び、COS社製CE−480R)を用いて測定した。
【0048】
原水としては25[℃]にて18.2[MΩ・cm]の比抵抗を持つ超純水を用い、超純水の流量は2〜8[リットル/min.]の間で変動させた。その流量維持時間は30秒で段階的に変動させた。その供給水圧は2[kgf/cm2・G] とした。
【0049】
炭酸ガス及びアンモニアガス源には7[m3] の炭酸ガスボンベ及びアンモニアガスボンベを用意し、二段式圧力調整器及びプレッシャーレギュレーティングバルブにて、膜モジュールへ給気すべき炭酸ガスまたはアンモニアガスの圧力を1[kgf/cm2・G]とした。
【0050】
実施例1
中空糸膜モジュールとしてはポリー4−メチルペンテンー1を素材とし、内径200[μm],外径250[μm]の糸を収束させ、クリーン塩化ビニル樹脂製のハウジング内に糸の両端を樹脂で固めることにより、0.5[m2]の膜面積を持つ内部灌流型の気体給気用中空糸モジュール1(大日本インキ化学工業(株)製SEPAREL PF−001)を得た。中空糸膜の炭酸ガス透過速度は3.5×10−5[cm3/cm2・sec・cmHg]であった。これは以下の実施例及び比較例において共通する。
【0051】
図1は当該中空糸膜モジュール1を組み込んだ実施例1の装置の模式図である。
【0052】
実施例1の装置は、中空糸膜モジュール1が炭酸ガス溶解流路2の途中に設けられている。中空糸膜モジュール1の上流側では、バイパス管路3の一端が分配装置5を介して炭酸ガス溶解流路2に接続している。バイパス管路3の他端は、中空糸膜モジュール1の下流側で合流装置6を介して炭酸ガス溶解回路2に接続している。分配装置5の上流側には超純水原水入口7が設けられている。合流装置6の下流側には比抵抗調整処理を行った超純水の出口8が設けられている。中空糸膜モジュール1と分配装置5との間の炭酸ガス溶解流路2およびバイパス管路3にはそれぞれ流量計FI1、FI2が設けられている。中空糸膜モジュール1の中央部には炭酸ガス給気口9が設けられ、ここに炭酸ガス流路4が接続される。炭酸ガス流路4の途中には調圧弁10が設けられている。炭酸ガス給気口9と調圧弁14との間の炭酸ガス流路4には炭酸ガス圧力計PIが設けられている。
【0053】
実施例1の装置は次のように作動する。超純水原水は超純水原水入口7から装置内に入れられる。超純水原水は、分配装置5で比較的小流量の流れと比較的大流量の流れとに分配される。比較的小流量の流れは炭酸ガス溶解流路2に導かれ、さらに中空糸膜モジュール1内の中空糸膜の内部に導かれる。比較的大流量の流れはバイパス管路3に導かれる。炭酸ガスは炭酸ガス流路4に導入される。この炭酸ガスは調圧弁14で一定圧力に調整された後に、炭酸ガス給気口9から中空糸膜モジュール内に導かれ、中空糸膜を透過し、中空糸内の超純水原水に溶解される。ここで中空糸膜内の超純水原水は炭酸ガス付加超純水となる。この炭酸ガス溶解超純水は、中空糸膜モジュール1の出口側の流路に導かれ、合流装置6でバイパス管路3からの比較的大流量の流れと合流し、目的とする比抵抗調整超純水が得られる。
【0054】
図1の装置を用いて、超純水全体の流量を変動させて比抵抗調整超純水の比抵抗値を測定した。表1に本装置による比抵抗値変化の結果を示す。流量変動に対する追従のずれはほとんど認められなかった。
実施例2
本実施例では、バイパス管路を付加した内部潅流中空糸膜モジュール11(大日本インキ化学工業(株)製SEPAREL PF−001R5)を用いた。図2にこの中空糸膜モジュール11の断面図を示す。
【0055】
この中空糸膜モジュール11は、バイパス管路19となる円筒部分と中空糸膜部分20とをクリーン塩化ビニル樹脂製のハウジング内に組み込んだ、内部潅流型のモジュールである。中空糸膜部分20は、ポリ−4−メチルペンテン−1を素材とし、内径200[μm]、外径250[μm]の中空糸膜を収束させて構成され、0.5[m2]の膜面積を有する。この中空糸膜部分20の両端は樹脂で固められ、中空糸膜とハウジングとを接着封止する接着封止部23を形成している。バイパス管路19は、超純水対応のSUS316製円筒である。実施例2の装置において、中空糸膜部分20に対するバイパス管路19への超純水原水の供給比率は50倍である。中空糸膜モジュール11のハウジング中央部には炭酸ガス給気口22が設けられている。
【0056】
この中空糸膜モジュール11は、ハウジングの両端で中空糸膜部分20の膜端開口部とバイパス管路19の開口とが並んで配置されている。ハウジングの両端はそれぞれエンドキャップ21で覆われている。これによって、それぞれのエンドキャップ21の内部に超純水の分配部15及び合流部16が形成される。合流部16を形成するエンドキャップ21には比抵抗調整処理を行った超純水の出口18が形成されている。従って、本実施例の中空糸膜モジュール11は、分配装置、中空糸膜モジュール、バイパス管路及び合流装置等の全体が一体化されたものとされている。超純水原水の中空膜部分20及びバイパス管路への前記供給比率は、分配部15側の中空糸膜部分20の開口の総面積と、バイパス管路19の開口面積との比率に反映される。
【0057】
実施例2の装置は次のように動作する。超純水原水は超純水原水入口17から装置内の分配部15に入れられる。超純水原水は、1:50の割合で中空糸膜部分20の中空糸膜内とバイパス管路内とにそれぞれ導入される。炭酸ガスは、炭酸ガス給気口22から中空糸膜モジュール1内に導かれ、中空糸膜の外表面に接する。炭酸ガスはさらに中空糸膜を透過し、中空糸膜内の超純水原水に溶解される。ここで超純水原水は炭酸ガス溶解水となる。この炭酸ガス溶解水は、合流部16に導かれ、ここでバイパス管路19からの超純水原水と合流する。こうして得られた目的とする比抵抗調整超純水は、出口18から取り出される。
【0058】
図2の装置を用いて、超純水全体の流量を変動させて比抵抗値調整超純水の比抵抗値を測定した。表1に本装置による比抵抗値変化の結果を示す。流量変動に対する追従のずれはほとんど認められなかった。
実施例3
実施例3の中空糸膜モジュールは、中空糸膜部分に対するバイパス管路への超純水原水の供給比率を150倍とした以外は、実施例2の中空糸膜モジュールと同様の構成を有する内部潅流型モジュール(大日本インキ化学工業(株)製SEPAREL PF−001R15)とした。
【0059】
この装置を用いて、超純水全体の流量を変動させて比抵抗調整超純水の比抵抗値を測定した。表1に本装置による比抵抗値変化を示す。流量変動に対する追従のずれはほとんど認められなかった。
実施例4
実施例1の装置と同じ中空糸膜モジュールを用いて、この中空糸膜モジュールへの炭酸ガスと超純水の流れる側を実施例1とは反対にし、中空糸膜の中に炭酸ガスを又中空糸膜の外側に超純水を流すようにして実施例4の装置とした。この実施例4の装置を用いて、超純水全体の流量を変動させて比抵抗調整超純水の比抵抗値を測定した。その結果を表1に示す。流量変動に対する追従のずれはほとんど認められなかった。
実施例5
炭酸ガスの代わりにアンモニアガスを用いること以外は実施例1と同一にして実施例5の装置とした。実施例5の装置を用いて、超純水全体の流量を変動させて比抵抗調整超純水の比抵抗値を測定した。その結果を表1に示す。流量変動に対する追従のずれはほとんど認められなかった。
比較例
比較例として、実施例1の装置からバイパス管路を取り外したものを装置として用いた。超純水原水が2[リットル/min]の時、設定比抵抗値が0.1[MΩ・cm]となるように炭酸ガス圧力を調整しようとしたが、炭酸ガス圧力を0.01[kgf/cm2・G]にしても比抵抗値が0.03[MΩ・cm]となってしまい、比抵抗値の調整が不可能であった。そこで、炭酸ガスの供給流路にニードルバルブを設け、ニードルバルブの開度を変化させる事により比抵抗値を0.1[MΩ・cm]に調整した。次いでニードルバルブの開度をそのままに維持し、超純水流量を2〜8[リットル/min]の間で変化させて比抵抗調整超純水の比抵抗値を測定した。その時の比抵抗値変化を表1に示す。
【0060】
次に、超純水原水が2[リットル/min]の時、設定比抵抗値が0.2[MΩ・cm]となるようにニードルバルブの開度を調整し、超純水原水流量を2〜8[リットル/min]の間で変動させて比抵抗調整超純水の比抵抗値を測定した。この結果も表1に示す。
【0061】
本比較例では、いずれの設定比抵抗値においても、流量変動に対する追従のずれが顕著に認められた。
【0062】
【表1】

Figure 0003690569
【0063】
【発明の効果】
本発明では、消費量に応じて供給される超純水原水を、分配装置によって流量に大小のある2流に一定比率で分流し、中空糸モジュールに一方の流れを供給して小流量の炭酸ガスまたはアンモニアガス溶解水を生成させ、その炭酸ガスまたはアンモニアガス溶解水を大流量に分けられていた原水へ合流させて均一に混合させる事により、容易に比抵抗調整が可能となる。
【0064】
当該装置の下流側のウエットプロセス洗浄機で使用の際には、超純水使用量が瞬時に変動しても、何ら制御機器を用いる事なく容易且つ安定して、所望の比抵抗値を有する超純水を得ることができる。
【図面の簡単な説明】
【図1】 本発明による、バイパス管路19を中空糸膜20と共に収束、配設させた内部灌流型中空糸膜モジュールの縦断面図である。
【図2】 本発明による、比抵抗調整を目的とした超純水の比抵抗調整装置の一例を示す模式図である。
【符号の説明】
PI 炭酸ガスまたはアンモニアガス圧力計
FI1 超純水小流量側の、炭酸ガスまたはアンモニアガス溶解水流量計
FI2 超純水大流量側のバイパス流量計
1 炭酸ガスまたはアンモニアガス給気用の中空糸膜モジュール
2 炭酸ガスまたはアンモニアガス溶解流路
3 バイパス管路
4 炭酸ガスまたはアンモニアガス流路
5 分配装置
6 合流装置
7 超純水原水入口
8 比抵抗調整超純水出口
9 炭酸ガスまたはアンモニアガス給気口
10 調圧弁
11 中空糸膜モジュール
12 炭酸ガスまたはアンモニアガス給気口
13 中空糸膜とモジュールハウジングの接着封止部
14 調圧弁
15 分配部
16 合流部
17 超純水原水入口
18 比抵抗調整超純水出口
19 バイパス管路
20 中空糸膜部分
21 エンドキャップ
22 炭酸ガスまたはアンモニアガス給気部
23 接着封止部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and method for adjusting the specific resistance of ultrapure water used for cleaning water, particularly in the field of semiconductors and liquid crystals.
[0002]
[Prior art]
When cleaning photomask substrates, silicon wafers, and glass plates using ultrapure water (specific resistance ≧ 18 MΩ · cm) in the manufacturing process of semiconductors and liquid crystals, and when cutting wafers with a dicing machine, ultrapure water It is widely known that static electricity is generated due to the high specific resistance of the substrate, causing dielectric breakdown or adsorption of fine particles, thereby significantly adversely affecting the product yield of the substrate.
In order to eliminate such adverse effects, a method of reducing the specific resistance of ultrapure water by attaching a magnesium mesh to the ultrapure water flow path is known.
[0003]
In addition, as a method for dissolving carbon dioxide gas in ultrapure water using a hydrophobic porous hollow fiber membrane module and reducing the specific resistance by carbonate ions generated by dissociation parallelism, a specific resistance adjusting device for ultrapure water ( Japanese Patent Publication No. 5-21841), a method and an apparatus for adjusting the specific resistance of ultrapure water (Japanese Patent Laid-Open No. 7-60082) have been proposed.
[0004]
Further, in processes such as silicon wafer cleaning and dicing, the flow rate of ultrapure water is drastically changed, and it is required that the specific resistance does not change even if the flow rate changes. In extreme cases, flow rate fluctuations occur in units of seconds. As a method of controlling the specific resistance even when the flow of ultrapure water fluctuates, the specific resistance after dissolving carbon dioxide in "Science of Ultrapure Water" (Semiconductor Fundamental Technology Research Group, published by Realize Co., Ltd.) And a method of performing feedback control on the carbon dioxide flow rate (page 392) and a method of measuring the ultrapure water flow rate and feedforwardly controlling the carbon dioxide gas flow rate with a mass flow controller (page 401).
[0005]
[Problems to be solved by the invention]
However, in the method for controlling the flow rate of carbon dioxide gas described in Japanese Patent Publication No. 5-21841, and the method for feedback control of the flow rate of carbon dioxide gas in the method described in “Science of Ultrapure Water”, there is no I can't follow it. The method of feedforward control of the flow rate of carbon dioxide from the measured value of ultrapure water flow in the method described in “Science of ultrapure water” requires an expensive microcomputer circuit and an expensive mass flow controller. Is not satisfactory. Japanese Patent Laid-Open No. 7-60082 does not include the idea of controlling the specific resistance value to a constant value when the flow rate of ultrapure water fluctuates. In addition, the specific resistance value cannot be avoided when the flow of ultrapure water is changed simply by setting the carbon dioxide pressure.
[0006]
An object of the present invention is to solve all these problems and provide a simple and compact device and method for adjusting the specific resistance value of ultrapure water that does not require a control mechanism.
[0007]
[Means for Solving the Problems]
The gist of the present invention is as follows.
[0008]
(1) A membrane module having a housing in which a gas permeable membrane is disposed in a housing and an ultrapure water passage portion and a carbon dioxide gas or ammonia gas passage portion are formed at the boundary,
The ultrapure water raw water inlet that communicates with the ultrapure water passage part, and a distributor provided in the intermediate part that communicates them,
A specific resistance adjustment ultrapure water outlet that communicates with the ultrapure water passage part, and a merging part provided in an intermediate part that communicates them,
A bypass flow path connecting the distribution part and the merging part;
The distribution unit distributes the ultrapure water raw water introduced from the ultrapure water raw water inlet to the ultrapure water passage and the bypass channel at a constant flow rate ratio,
The gas permeable membrane has the ability to dissolve carbon dioxide gas or ammonia gas in the ultrapure water raw water passing through the ultrapure water passage part to a substantially constant concentration of 90% or more of the equilibrium concentration determined by the gas pressure and water temperature. A device for adjusting the specific resistance of ultrapure water.
[0009]
(2) To adjust the specific resistance of ultrapure water, carbon dioxide gas or ammonia gas is brought into contact with ultrapure water through a gas permeable membrane, and carbon dioxide gas or ammonia gas is supplied to ultrapure water to obtain a desired ratio. An apparatus for producing ultrapure water having a predetermined specific resistance value as a resistance value,
Ability to dissolve carbon dioxide gas or ammonia gas in ultrapure water with a fluctuating flow rate assumed in advance to an almost constant concentration of 90% or more of the equilibrium concentration determined by the gas pressure and water temperature as a membrane module equipped with a gas permeable membrane. Means for generating ultrapure water in which carbon dioxide gas or ammonia gas is dissolved so that the specific resistance value is substantially constant even if the flow rate of the supplied ultrapure water varies. Prepared,
The ultrapure water raw water (carbon dioxide or ammonia gas undissolved ultrapure water) is provided with a distribution part and a bypass channel, and the ultrapure water raw water is distributed to the membrane module and the bypass channel at a constant flow rate ratio.
A means for combining and uniformly mixing the produced carbon dioxide or ammonia gas-dissolved ultrapure water and the ultrapure water raw water from the bypass channel,
A device for adjusting the specific resistance of ultrapure water that dilutes so that the ultrapure water after mixing reaches the final target specific resistance value.
[0010]
(3) A hollow fiber membrane is provided as a gas permeable membrane, a hollow fiber membrane module for generating a relatively small flow rate of carbon dioxide or ammonia gas-dissolved ultrapure water, and a relatively large flow rate of ultrapure water raw water. A bypass pipe to be passed through, a distributor for distributing the ultrapure water raw water to the membrane module and the bypass pipe at a constant rate flow ratio, and ultrapure water that has passed through the generated carbon dioxide or ammonia gas-dissolved ultrapure water and the bypass pipe The apparatus according to (2) above, comprising a merging and mixing device for merging and uniformly mixing raw water, and a pressure regulating valve for maintaining a constant pressure of carbon dioxide gas or ammonia gas supplied to the membrane module.
[0011]
(4) The apparatus according to (3), wherein the bypass conduit is provided in the hollow fiber membrane module.
[0012]
(5) The hollow fiber membrane module is an internal perfusion type in which carbon dioxide gas or ammonia gas is supplied to the space between the outside of the hollow fiber membrane and the housing, and ultrapure water is allowed to flow inside the hollow fiber membrane. The device according to (3) or (4), wherein a plurality of hollow fiber membranes are arranged in a housing in a converged state.
(6) The hollow fiber membrane module is an external perfusion type in which carbon dioxide gas or ammonia gas is supplied to the inside of the hollow fiber membrane, and ultrapure water is allowed to flow into the space between the outside of the hollow fiber membrane and the housing. The device according to (3) or (4), wherein a plurality of hollow fiber membranes are arranged in a housing in a converged state.
(7) A bypass conduit is provided in the hollow fiber membrane module, and the bypass conduit is a cylindrical tube that does not allow carbon dioxide gas or ammonia gas to permeate from the tube wall, and is converged with a plurality of hollow fiber membranes in the housing. The device according to (5), which is disposed.
(8) The hollow fiber membrane module has a carbon dioxide gas transmission rate of 100 × 10 −6 [cm 3 / cm 2 · sec · cm Hg] or higher or an ammonia gas transmission rate of 100 × 10 −6 [cm 3 / cm 2 · sec · cm Hg] or higher. The apparatus according to any one of (3) to (7), wherein a certain hydrophobic gas-permeable membrane is incorporated in a housing.
(9) The apparatus according to (8), wherein the hollow fiber membrane is made of poly-4 methylpentene 1 and has an inner diameter of 20 to 350 μm and an outer diameter of 50 to 1000 μm.
(10) The above (2) or (3), wherein carbon dioxide or ammonia gas-dissolved ultrapure water and ultrapure water raw water are joined together, and a static mixer is disposed as a uniform mixing means downstream thereof. The device described.
(11) A specific resistance sensor is provided to monitor the specific resistance value of the generated ultra-pure water with adjusted specific resistance value, and the supply of carbon dioxide gas or ammonia gas is cut off by a signal from the specific resistance meter and the specific resistance sensor. The device according to (3), wherein the gas shut-off device is dissolved when an abnormality occurs in the device, the electromagnetic valve being provided.
(12) distributing the ultrapure water raw water into two streams at a constant flow rate ratio;
Carbon dioxide or ammonia up to an almost constant carbon dioxide concentration or ammonia gas concentration of 90% or more of the equilibrium concentration determined by the carbon dioxide pressure or ammonia gas pressure to be supplied to one flow of ultra pure water through a gas permeable membrane and the water temperature A step of dissolving the gas to produce specific resistance-adjusted ultrapure water
The step of joining the flow of carbon dioxide or ammonia gas-dissolved ultrapure water and the other ultrapure water raw water
A method for adjusting the specific resistance of ultrapure water.
(13) In the method for adjusting the specific resistance of ultrapure water for producing ultrapure water whose specific resistance value has been adjusted according to the amount of consumption that varies,
The ultrapure water supplied according to the consumption is split into two streams with a relative flow rate by a distributor at a constant rate flow ratio.
One flow is supplied to a hollow fiber membrane module for flowing ultrapure water and carbon dioxide gas or ammonia gas across the membrane, and a small flow rate of carbon dioxide gas or ammonia gas-dissolved ultrapure water is supplied with a variable flow rate assumed in advance. Generated within the range,
And the carbon dioxide gas or ammonia gas-dissolved ultrapure water is made to have a substantially constant carbon dioxide concentration or ammonia gas concentration of 90% or more of the equilibrium concentration determined by the carbon dioxide pressure or ammonia gas pressure and the water temperature at that time,
The specific resistance of ultrapure water is made by mixing the carbon dioxide or ammonia gas-dissolved ultrapure water with the ultrapure water raw water divided into a large flow rate and mixing it uniformly to obtain ultrapure water adjusted to the specified specific resistance value. Adjustment method.
[0013]
(14) The method for adjusting the specific resistance of ultrapure water according to (13), wherein the ultrapure water raw water divided into a large flow rate is passed through a bypass pipe provided in the hollow fiber membrane module.
(15) The method according to (13) or (14) above, wherein the ratio of the flow rate of the high flow rate carbon dioxide gas or ammonia gas-dissolved ultrapure water to the ultrapure water is less than 1/50.
[0014]
(16) Carbon fiber gas or ammonia gas-dissolved ultrapure water In order to maintain the carbon dioxide gas concentration or ammonia gas concentration, the pressure regulating valve keeps the carbon dioxide pressure or ammonia gas pressure in contact with the hollow fiber membrane constant, and the hollow fiber membrane module (13) The method according to (13), wherein the supply amount of carbon dioxide gas or ammonia gas is relatively changed in accordance with fluctuations in the flow rate of the ultrapure water raw water that flows into the water.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The typical and best modes of the embodiment of the present invention are specifically shown in the following examples, and the outline thereof is as follows.
[0016]
FIG. 1 is an example of an apparatus suitable for the present invention.
[0017]
The present invention proposes a simple and compact ultrapure water specific resistance adjustment device and adjustment method that does not have a complicated control mechanism. As a specific method, ultrapure water raw water whose specific resistance is to be adjusted is proposed. Dividing into two streams, adding gas to one of the streams to produce ultrapure water in which a small amount of carbon dioxide gas or ammonia gas is dissolved, and then joining it with a large flow of ultrapure water raw water, uniformly mixing, An apparatus and method for adjusting specific resistance by diluting.
[0018]
In order to increase the efficiency of dissolving carbon dioxide or ammonia gas, a further proposal is to arrange a membrane module in the apparatus and supply and dissolve carbon dioxide or ammonia gas into ultrapure water through the membrane. .
[0019]
The gas permeable membrane used in the present invention is not particularly limited as long as it has a high carbon dioxide or ammonia gas permeation rate, but the membrane material is preferably a highly hydrophobic material. For example, various fluorine resins such as polyethylene resin, polypropylene resin, polytetrafluoroethylene, perfluoroalkoxy fluorine resin, polyhexafluoropropylene, polybutene resin, silicone resin, poly (4-methylpentene-1) resin, etc. The material is preferably mentioned. As the membrane structure, a microporous membrane, a homogeneous membrane, a heterogeneous membrane, a composite membrane, a polypropylene microporous membrane, etc., and a thin film such as urethane can be used as a sandwich membrane or a so-called sandwich membrane. Examples of the form of the membrane include a flat membrane and a hollow fiber membrane, but a hollow fiber membrane is preferable in terms of gas dissolution efficiency. The carbon dioxide gas permeation rate or ammonia gas permeation rate of the hollow fiber membrane is preferably 1 × 10 −6 [cm 3 / cm 2 · sec · cm Hg] or more and 10 [cm 3 / cm 2 · sec · cm Hg] or less. If it is less than 1 × 10 −6 [cm 3 / cm 2 · sec · cm Hg], the permeation rate of carbon dioxide gas or ammonia gas that permeates through the hollow fiber membrane is slow, the target specific resistance value is not reached, or ultrapure water is used. The specific resistance value changes when the flow rate changes. In addition, when carbon dioxide or ammonia gas is supplied at a gauge pressure of 0.1 kg / cm2 or more when carbon dioxide or ammonia gas exceeds 10 [cm3 / cm2 · sec · cmHg], carbon dioxide gas or ammonia gas becomes bubbles and is mixed into ultrapure water. On the contrary, there is a problem that ultrapure water permeates to the carbon dioxide gas or ammonia gas side. When carbon dioxide gas or ammonia gas becomes bubbles, it is difficult to adjust the specific resistance value to be constant.
[0020]
In particular, a hollow fiber heterogeneous membrane made of a poly (4-methylpentene-1) -based resin is most preferable because of its excellent carbon dioxide or ammonia gas permeability and high water vapor barrier properties. The inhomogeneous film is described in detail in, for example, Japanese Patent Publication No. 2-38250, Japanese Patent Publication No. 2-54377, Japanese Patent Publication No. 4-15014, and Japanese Patent Publication No. 4-50053.
[0021]
Materials such as polyethylene resin, polypropylene resin, and polyvinylidene fluoride resin have low gas permeability. Therefore, they have a microporous structure to be used for dissolving carbon dioxide or ammonia gas. Compared with these membranes, which must permeate gas or ammonia gas, this heterogeneous membrane made of poly (4-methylpentene-1) resin is sufficiently high in gas permeability and has a dense layer portion. The film thickness is sufficiently thin, and the entire film surface can contribute to carbon dioxide gas or ammonia gas permeation. As a result, the substantial film area is increased, which is extremely preferable.
[0022]
In addition, this heterogeneous membrane made of a poly (4-methylpentene-1) resin has a very small pore diameter and open area of the communicating pores penetrating the membrane wall while having high gas permeation performance. Compared to the microporous membrane of PE, it has extremely excellent water vapor barrier properties.
[0023]
As for the housing in which the hollow fiber membrane is disposed, any material can be used as long as it does not elute impurities into the above-described ultrapure water.
[0024]
Specific examples include polyolefins such as polyethylene, polypropylene and poly-4-methylpentene 1, fluorines such as polyvinylidene fluoride and polytetrafluoroethylene, polyether ether ketone, polyether ketone, polyether sulfone and polysulfone. Engineering plastics, or clean vinyl chloride, which is used as a piping material for ultrapure water because of its low elution.
[0025]
As the hollow fiber membrane module structure, a plurality of hollow fiber membranes are converged and arranged in the housing, and carbon dioxide gas or ammonia gas is supplied into the space between the outer side of the hollow fiber membrane and the housing, inside the hollow fiber membrane. In addition to the internal perfusion type in which ultrapure water is allowed to flow, other external perfusion types in which ultrapure water is allowed to flow outside of the hollow fiber and carbon dioxide or ammonia gas is allowed to flow inside are disclosed in Japanese Patent Publication No. 5-21841. It is done.
[0026]
In the case of the external perfusion type, in order to prevent the occurrence of water flow (channeling) due to uneven filling of the hollow fiber in the housing, the hollow fiber is made of sheets by hollow fibers or other yarns. It is effective to form a sheet-like material that is shaped like a hook, for example, and incorporate it into the housing in the state of a superposed body, a wound body, and a convergent body obtained therefrom. Further, it is possible to adopt an appropriate shape such as incorporating a three-dimensional structure in which a hollow fiber is wound around a cylindrical core.
[0027]
Either internal perfusion or external perfusion can be used for the structure of carbon dioxide gas or ammonia gas to be produced, although any structure can be used for the purpose of lowering the specific resistance value by dissolving carbon dioxide gas or ammonia gas in ultrapure water. When it is necessary to follow a large fluctuation in the flow rate of ammonia gas dissolved water, it is efficiently and evenly distributed to ultrapure water in consideration of high-speed response, accuracy, reproducibility, and stability to the set specific resistance value. It is necessary to dissolve carbon dioxide gas or ammonia gas in this, and the internal perfusion type hollow fiber membrane module is preferred from these points.
[0028]
As a distribution device that distributes ultrapure water raw water to the hollow fiber membrane module and bypass pipe, even if the total flow rate of the two split flows fluctuates, the flow rate of the two flows always keeps constant. As long as the flow can be divided into two, there is nothing to be specified, and piping tees and branch valves can be used simply. However, the distribution ratio may be controlled by a flow meter with a precision valve or an orifice that allows only a specified amount of water to flow.
[0029]
However, in terms of the material, it is necessary to consider the elution of impurities into ultrapure water, and fluoropolymers, clean vinyl chloride, austenitic stainless steel compatible with ultrapure water, inorganic glass, etc. must be used.
[0030]
As a merging device for merging the produced carbon dioxide or ammonia gas-dissolved ultrapure water and the raw water that has passed through the bypass pipe, there is nothing to be specified as long as there is an inlet for merging the two streams, and it is simply a tee for piping. Good.
[0031]
It is more preferable to install a static mixer on the downstream side of the merging device for the purpose of uniformly mixing the two merging flows. Ultrapure water is obtained. The material of the merging device and static mixer should also be taken into account for the elution of impurities into ultrapure water, and fluorine-based polymers, clean vinyl chloride, austenitic stainless steel compatible with ultrapure water, inorganic glass, etc. must be used.
[0032]
In the prior art, precise automatic control was performed on the flow rate or pressure of carbon dioxide. However, in the present invention, it is only necessary to maintain the carbon dioxide concentration or ammonia gas concentration at a certain constant value. Do not need. The required carbon dioxide gas concentration or ammonia gas concentration is an equilibrium concentration of 90 determined in proportion to the temperature of ultrapure water in which carbon dioxide gas or ammonia gas is dissolved and the pressure of supplied carbon dioxide gas or ammonia gas according to Henry's law. % Is a substantially constant value. In the present invention, a suitable pressure of carbon dioxide gas or ammonia gas is 0.15 to 1.5 kgf / cm 2 · G.
[0033]
By supplying carbon dioxide gas or ammonia gas at a constant pressure by the pressure regulating valve, the supply amount corresponding to the flow rate fluctuation of the ultrapure water in the membrane module is maintained, and the constant concentration property of carbon dioxide gas or ammonia gas is maintained. .
[0034]
For the carbon dioxide or ammonia gas pressure regulating valve, any structure, material, and model can be used as long as it is filtered in advance so that contamination in the gas on the supply side (temporary side) does not adhere to the hollow fiber membrane. It is not necessary to specify, and may be one generally used in the semiconductor and liquid crystal fields.
[0035]
For example, pressure control valves (regulators) such as a pressure regulating valve, a bellows pressure valve, a pressure regulator, and a back pressure valve may be mentioned.
[0036]
The bypass pipe is a pipe through which ultrapure water flows, and the pipe wall may be a pipe that does not allow carbon dioxide gas or ammonia gas to permeate. If the ultrapure water that has been flown for two minutes is kept constant at a predetermined ratio, Its shape is not a problem.
[0037]
Further, the number of bypass pipes is not necessarily limited to one.
[0038]
Since ultrapure water passes through the bypass pipe, the material of the pipe is preferably austenitic stainless steel or inorganic glass compatible with ultrapure water, rather than plastic or resin, from the same viewpoint as the previous period.
[0039]
The present invention will be further described.
[0040]
So far, in various literatures, etc., the dissolution mechanism of carbon dioxide gas or ammonia gas in ultrapure water, the relationship between carbon dioxide gas concentration or ammonia gas concentration and specific resistance value when carbon dioxide gas or ammonia gas is dissolved directly in ultrapure water It is publicly known.
[0041]
Therefore, for the purpose of adjusting the specific resistance of ultrapure water, dissolving a predetermined amount of carbon dioxide gas in ultrapure water through a hollow fiber membrane is a feed described in Japanese Patent Publication No. 5-21841, “Science of Ultrapure Water”. The forward method and feedback method have also been proposed. However, when the amount of ultrapure water fluctuates instantaneously, it is actually difficult to respond to that and follow and control a predetermined specific resistance value.
However, the present inventors divide the ultrapure water raw water into two streams and use ultrapure water in which carbon dioxide gas or ammonia gas is dissolved at a concentration higher than the carbon dioxide concentration or ammonia gas concentration to give a predetermined specific resistance value. It was found that the specific resistance can be adjusted by a method of diluting with, maintaining a constant ratio and mixing uniformly.
[0042]
That is, the emphasis of the present invention is that the ultrapure water supplied according to consumption is split into two flows having a large and small flow rate by a distribution device at a constant ratio, and the ultrapure water and carbon dioxide or ammonia are separated across the membrane. One flow is supplied to the hollow fiber membrane module for flowing gas to generate a small flow of carbon dioxide or ammonia gas dissolved water at a high carbon dioxide concentration or ammonia gas concentration, and the carbon dioxide or ammonia gas dissolved water is increased. The specific resistance-adjusted ultrapure water can be easily obtained by merging with the raw water divided into the flow rate and mixing uniformly, but further, the diversion is carried out in the piping system in the device or the bypass pipe Can be implemented in a hollow fiber membrane module or in several ways.
If carbon dioxide gas or ammonia gas is dissolved under the above preferred carbon dioxide pressure or ammonia gas pressure at room temperature water temperature, the equilibrium concentration of carbon dioxide gas or ammonia gas under that condition dissolves and becomes a substantially constant value, and the resistivity is adjusted. It becomes easy.
[0043]
The split ratio of ultrapure water to generate carbon dioxide or ammonia gas dissolved ultrapure water and ultrapure water that flows through the bypass pipe varies greatly depending on the desired specific resistance value, and how much the specific resistance value Whether it should be controlled within the above range greatly varies depending on the type of semiconductor used in ultrapure water or the device in the liquid crystal field and the cleaning process used.
[0044]
Therefore, depending on the purpose of use of the resistivity-adjusted ultrapure water, it is extremely effective to change the flow rate ratio as appropriate.
[0045]
In a recent wafer cleaning process in the semiconductor and liquid crystal fields, a specific resistance value of 0.1 [MΩ · cm] or more is particularly desired. In this case, a small flow rate of carbon dioxide gas or ammonia gas dissolved water on the large flow rate side is desired. The ratio with respect to ultrapure water should just be smaller than 1/50.
[0046]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to this and is not limited.
[0047]
In these examples, the specific resistance of ultrapure water was measured using commercially available specific resistance measuring instruments (200CR manufactured by THORTON, and CE-480R manufactured by COS).
[0048]
As raw water, ultrapure water having a specific resistance of 18.2 [MΩ · cm] at 25 [° C.] was used, and the flow rate of ultrapure water was 2 to 8 [liter / min. ]. The flow rate maintenance time was changed stepwise in 30 seconds. The supply water pressure was 2 [kgf / cm 2 · G].
[0049]
Prepare a carbon dioxide and ammonia gas cylinder of 7 [m3] for the carbon dioxide and ammonia gas sources, and the pressure of the carbon dioxide or ammonia gas to be supplied to the membrane module with a two-stage pressure regulator and pressure regulating valve. Was 1 [kgf / cm 2 · G].
[0050]
Example 1
As a hollow fiber membrane module, poly-4-methylpentene 1 is used as a raw material, and a thread having an inner diameter of 200 [μm] and an outer diameter of 250 [μm] is converged. By solidifying, an internal perfusion type gas supply hollow fiber module 1 (SEPAREL PF-001 manufactured by Dainippon Ink & Chemicals, Inc.) having a membrane area of 0.5 [m2] was obtained. The carbon dioxide gas permeation rate of the hollow fiber membrane was 3.5 × 10 −5 [cm 3 / cm 2 · sec · cm Hg]. This is common in the following examples and comparative examples.
[0051]
FIG. 1 is a schematic view of an apparatus of Example 1 in which the hollow fiber membrane module 1 is incorporated.
[0052]
In the apparatus of Example 1, the hollow fiber membrane module 1 is provided in the middle of the carbon dioxide gas dissolving channel 2. On the upstream side of the hollow fiber membrane module 1, one end of the bypass pipe 3 is connected to the carbon dioxide dissolving flow path 2 via the distributor 5. The other end of the bypass conduit 3 is connected to the carbon dioxide gas dissolving circuit 2 via the junction device 6 on the downstream side of the hollow fiber membrane module 1. An ultrapure water inlet 7 is provided on the upstream side of the distributor 5. An outlet 8 of ultrapure water subjected to specific resistance adjustment processing is provided on the downstream side of the merge device 6. Flow meters FI1 and FI2 are provided in the carbon dioxide gas dissolving channel 2 and the bypass conduit 3 between the hollow fiber membrane module 1 and the distributor 5, respectively. A carbon dioxide gas inlet 9 is provided at the center of the hollow fiber membrane module 1, and a carbon dioxide channel 4 is connected thereto. A pressure regulating valve 10 is provided in the middle of the carbon dioxide channel 4. A carbon dioxide gas pressure gauge PI is provided in the carbon dioxide gas passage 4 between the carbon dioxide gas inlet 9 and the pressure regulating valve 14.
[0053]
The apparatus of Example 1 operates as follows. Ultrapure water source water is introduced into the apparatus from the ultrapure water source water inlet 7. The ultrapure raw water is distributed by the distributor 5 into a relatively small flow and a relatively large flow. A relatively small flow rate is guided to the carbon dioxide gas dissolving channel 2 and further guided to the inside of the hollow fiber membrane in the hollow fiber membrane module 1. A relatively large flow is led to the bypass line 3. Carbon dioxide gas is introduced into the carbon dioxide channel 4. This carbon dioxide gas is adjusted to a constant pressure by the pressure regulating valve 14, and then introduced into the hollow fiber membrane module from the carbon dioxide gas inlet 9, passes through the hollow fiber membrane, and is dissolved in the ultrapure water source water in the hollow fiber. The Here, the ultrapure water raw water in the hollow fiber membrane is carbon dioxide added ultrapure water. This carbon dioxide-dissolved ultrapure water is guided to the flow path on the outlet side of the hollow fiber membrane module 1 and merged with a relatively large flow rate from the bypass pipe 3 by the merge device 6 to adjust the specific resistivity. Ultra pure water is obtained.
[0054]
Using the apparatus of FIG. 1, the specific resistance value of the ultrapure water with specific resistance adjustment was measured by varying the flow rate of the entire ultrapure water. Table 1 shows the result of the change in specific resistance value by this apparatus. There was almost no deviation in the follow-up to the flow rate fluctuation.
Example 2
In this example, an internally perfused hollow fiber membrane module 11 (SEPAREL PF-001R5 manufactured by Dainippon Ink & Chemicals, Inc.) to which a bypass line was added was used. FIG. 2 shows a cross-sectional view of the hollow fiber membrane module 11.
[0055]
This hollow fiber membrane module 11 is an internal perfusion type module in which a cylindrical portion serving as a bypass conduit 19 and a hollow fiber membrane portion 20 are incorporated in a clean vinyl chloride resin housing. The hollow fiber membrane portion 20 is made of poly-4-methylpentene-1 and is formed by converging hollow fiber membranes having an inner diameter of 200 [μm] and an outer diameter of 250 [μm], and a membrane of 0.5 [m2]. Has an area. Both ends of the hollow fiber membrane portion 20 are hardened with a resin to form an adhesive sealing portion 23 for adhesively sealing the hollow fiber membrane and the housing. The bypass line 19 is a SUS316 cylinder compatible with ultrapure water. In the apparatus of Example 2, the supply ratio of the ultrapure water raw water to the bypass line 19 with respect to the hollow fiber membrane portion 20 is 50 times. A carbon dioxide gas supply port 22 is provided at the center of the housing of the hollow fiber membrane module 11.
[0056]
In the hollow fiber membrane module 11, the membrane end opening of the hollow fiber membrane portion 20 and the opening of the bypass conduit 19 are arranged side by side at both ends of the housing. Both ends of the housing are covered with end caps 21 respectively. As a result, the ultrapure water distribution section 15 and the merge section 16 are formed inside each end cap 21. The end cap 21 that forms the junction 16 is formed with an outlet 18 of ultrapure water that has undergone a specific resistance adjustment process. Therefore, the hollow fiber membrane module 11 of the present embodiment is configured such that the distribution device, the hollow fiber membrane module, the bypass conduit, the merging device, and the like are integrated. The supply ratio of the ultrapure water raw water to the hollow membrane portion 20 and the bypass pipeline is reflected in the ratio of the total area of the openings of the hollow fiber membrane portion 20 on the distribution unit 15 side to the opening area of the bypass pipeline 19. The
[0057]
The apparatus of the second embodiment operates as follows. The ultrapure water source water is fed from the ultrapure water source water inlet 17 into the distribution unit 15 in the apparatus. The ultrapure water raw water is introduced into the hollow fiber membrane of the hollow fiber membrane portion 20 and the bypass conduit at a ratio of 1:50, respectively. Carbon dioxide gas is guided into the hollow fiber membrane module 1 from the carbon dioxide gas inlet 22 and contacts the outer surface of the hollow fiber membrane. The carbon dioxide gas further permeates through the hollow fiber membrane and is dissolved in the ultrapure water raw water in the hollow fiber membrane. Here, the ultrapure raw water is carbon dioxide-dissolved water. This carbon dioxide-dissolved water is guided to the merging portion 16 where it merges with the ultrapure water raw water from the bypass pipe line 19. The target specific resistance-adjusted ultrapure water thus obtained is taken out from the outlet 18.
[0058]
Using the apparatus of FIG. 2, the specific resistance value of ultrapure water was measured by varying the flow rate of the entire ultrapure water. Table 1 shows the result of the change in specific resistance value by this apparatus. There was almost no deviation in the follow-up to the flow rate fluctuation.
Example 3
The hollow fiber membrane module of Example 3 has the same configuration as that of the hollow fiber membrane module of Example 2 except that the supply ratio of the ultrapure water raw water to the bypass conduit with respect to the hollow fiber membrane part is 150 times. A perfusion type module (SEPAREL PF-001R15 manufactured by Dainippon Ink & Chemicals, Inc.) was used.
[0059]
Using this device, the specific resistance value of the ultrapure water with specific resistance adjustment was measured by varying the flow rate of the entire ultrapure water. Table 1 shows changes in specific resistance values according to the present apparatus. There was almost no deviation in the follow-up to the flow rate fluctuation.
Example 4
Using the same hollow fiber membrane module as that of the apparatus of Example 1, the side where carbon dioxide gas and ultrapure water flow to this hollow fiber membrane module is opposite to that of Example 1, and carbon dioxide gas is also introduced into the hollow fiber membrane. The apparatus of Example 4 was made by flowing ultrapure water outside the hollow fiber membrane. Using the apparatus of Example 4, the specific resistance value of specific resistance-adjusted ultrapure water was measured by changing the flow rate of the entire ultrapure water. The results are shown in Table 1. There was almost no deviation in the follow-up to the flow rate fluctuation.
Example 5
The apparatus of Example 5 was the same as Example 1 except that ammonia gas was used instead of carbon dioxide gas. Using the apparatus of Example 5, the specific resistance value of the specific resistance-adjusted ultrapure water was measured by changing the flow rate of the entire ultrapure water. The results are shown in Table 1. There was almost no deviation in the follow-up to the flow rate fluctuation.
Comparative example
As a comparative example, an apparatus obtained by removing the bypass pipe from the apparatus of Example 1 was used. When the ultrapure water was 2 [liter / min], the carbon dioxide pressure was adjusted so that the set specific resistance value was 0.1 [MΩ · cm]. / Cm 2 · G], the specific resistance value was 0.03 [MΩ · cm], and it was impossible to adjust the specific resistance value. Therefore, a needle valve was provided in the carbon dioxide gas supply channel, and the specific resistance value was adjusted to 0.1 [MΩ · cm] by changing the opening of the needle valve. Next, the opening degree of the needle valve was maintained as it was, and the specific resistance value of the ultrapure water with specific resistance adjustment was measured by changing the ultrapure water flow rate between 2 and 8 [liter / min]. Table 1 shows changes in the specific resistance value at that time.
[0060]
Next, when the ultrapure water raw water is 2 [liter / min], the opening degree of the needle valve is adjusted so that the set specific resistance value is 0.2 [MΩ · cm], and the ultrapure water raw water flow rate is 2 The specific resistance value of the ultrapure water with specific resistance adjustment was measured while varying between ˜8 [liter / min]. The results are also shown in Table 1.
[0061]
In this comparative example, in any set specific resistance value, there was a noticeable shift in the follow-up with respect to the flow rate fluctuation.
[0062]
[Table 1]
Figure 0003690569
[0063]
【The invention's effect】
In the present invention, the ultrapure water supplied in accordance with the amount of consumption is split by a distributor into two flows having a large and small flow rate at a constant ratio, and one flow is supplied to the hollow fiber module to produce a small flow of carbonic acid. By generating gas or ammonia gas-dissolved water, the carbon dioxide gas or ammonia gas-dissolved water is merged with the raw water that has been divided into a large flow rate, and mixed uniformly, whereby the specific resistance can be easily adjusted.
[0064]
When used in a wet process washing machine downstream of the apparatus, even if the amount of ultrapure water used changes instantaneously, it has a desired specific resistance value easily and stably without using any control equipment. Ultra pure water can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an internal perfusion type hollow fiber membrane module in which a bypass line 19 is converged and arranged together with a hollow fiber membrane 20 according to the present invention.
FIG. 2 is a schematic diagram illustrating an example of a specific resistance adjusting apparatus for ultrapure water for the purpose of adjusting specific resistance according to the present invention.
[Explanation of symbols]
PI Carbon dioxide or ammonia gas pressure gauge
FI1 Carbon dioxide or ammonia gas dissolved water flow meter on the ultrapure water small flow side
FI2 Bypass flow meter on the ultrapure water high flow rate side
1 Hollow fiber membrane module for carbon dioxide or ammonia gas supply
2 Carbon dioxide or ammonia gas dissolution channel
3 Bypass pipeline
4 Carbon dioxide or ammonia gas flow path
5 Dispensing device
6 Junction device
7 Ultrapure water source
8 Resistivity adjustment ultrapure water outlet
9 Carbon dioxide or ammonia gas inlet
10 Pressure regulating valve
11 Hollow fiber membrane module
12 Carbon dioxide or ammonia gas inlet
13 Bonding seal between hollow fiber membrane and module housing
14 Pressure regulating valve
15 Distributor
16 Junction
17 Ultrapure water source
18 Resistivity adjustment ultrapure water outlet
19 Bypass pipeline
20 Hollow fiber membrane part
21 End cap
22 Carbon dioxide or ammonia gas supply section
23 Adhesive seal

Claims (16)

ハウジング内に気体透過膜が配設され、それを境界として超純水通過部と炭酸ガスまたはアンモニアガス通過部が形成されたハウジングを有する膜モジュールを備え、
前記超純水通過部と連絡する超純水原水入口と、それらを連絡する中間部に設けられた分配部を備え、
前記超純水通過部と連絡する比抵抗調整超純水出口と、それらを連絡する中間部に設けられた合流部を備え、
前記分配部と前記合流部とを連絡するバイパス流路を備え、
前記分配部が前記超純水原水入口から入れられる超純水原水を前記超純水通過部とバイパス流路とに定率流量比で分配し、
前記気体透過膜が、前記超純水通過部を通過する超純水原水に炭酸ガスまたはアンモニアガスを、そのガス圧と水温によって定まる平衡濃度の90%以上のほぼ一定の濃度まで溶解させる能力を有するものである、超純水の比抵抗調整装置。
A gas permeable membrane is disposed in the housing, and includes a membrane module having a housing in which an ultrapure water passage part and a carbon dioxide gas or ammonia gas passage part are formed at the boundary.
The ultrapure water raw water inlet that communicates with the ultrapure water passage part, and a distributor provided in the intermediate part that communicates them,
A specific resistance adjustment ultrapure water outlet that communicates with the ultrapure water passage part, and a merging part provided in an intermediate part that communicates them,
A bypass flow path connecting the distribution part and the merging part;
The distribution unit distributes the ultrapure water raw water introduced from the ultrapure water raw water inlet to the ultrapure water passage and the bypass channel at a constant flow rate ratio,
The gas permeable membrane has the ability to dissolve carbon dioxide gas or ammonia gas in the ultrapure water raw water passing through the ultrapure water passage part to a substantially constant concentration of 90% or more of the equilibrium concentration determined by the gas pressure and water temperature. A device for adjusting the specific resistance of ultrapure water.
超純水の比抵抗を調整するために、超純水に気体透過膜を介して炭酸ガスまたはアンモニアガスを接触させ、超純水に炭酸ガスまたはアンモニアガスを供給して所望の比抵抗値とする、所定比抵抗値を有する超純水を製造するための装置であって、
気体透過膜を備えた膜モジュールとして、予め想定される変動流量の超純水に炭酸ガスまたはアンモニアガスを、そのガス圧と水温によって定まる平衡濃度の90%以上のほぼ一定の濃度まで溶解させる能力を有する膜モジュールを備え、それによって、供給される超純水の流量が変動してもほぼ一定の比抵抗値となる如く、炭酸ガスまたはアンモニアガスが溶解された超純水を生成させる手段を備え、
超純水原水(炭酸ガスまたはアンモニアガス未溶解超純水)側に分配部とバイパス流路を備え、超純水原水を膜モジュールとバイパス流路とへ定率流量比で分配させ、
生成した炭酸ガスまたはアンモニアガス溶解超純水とバイパス流路からの超純水原水とを合流させ均一混合させる手段を備え、
混合後の超純水が最終目標の比抵抗値となる様に希釈する、超純水の比抵抗調整装置。
In order to adjust the specific resistance of ultrapure water, carbon dioxide gas or ammonia gas is contacted with ultrapure water through a gas permeable membrane, and carbon dioxide gas or ammonia gas is supplied to ultrapure water to obtain a desired specific resistance value. An apparatus for producing ultrapure water having a predetermined specific resistance value,
Ability to dissolve carbon dioxide gas or ammonia gas in ultrapure water with a fluctuating flow rate assumed in advance to an almost constant concentration of 90% or more of the equilibrium concentration determined by the gas pressure and water temperature as a membrane module equipped with a gas permeable membrane. Means for generating ultrapure water in which carbon dioxide gas or ammonia gas is dissolved so that the specific resistance value is substantially constant even if the flow rate of the supplied ultrapure water varies. Prepared,
The ultrapure water raw water (carbon dioxide or ammonia gas undissolved ultrapure water) is provided with a distribution part and a bypass channel, and the ultrapure water raw water is distributed to the membrane module and the bypass channel at a constant flow rate ratio.
A means for combining and uniformly mixing the produced carbon dioxide or ammonia gas-dissolved ultrapure water and the ultrapure water raw water from the bypass channel,
A device for adjusting the specific resistance of ultrapure water that dilutes so that the ultrapure water after mixing reaches the final target specific resistance value.
気体透過膜として中空糸膜を備え、相対的に小流量の炭酸ガスまたはアンモニアガス溶解超純水を生成させるための中空糸膜モジュールと、相対的に大流量の超純水原水を通過させるバイパス管路と、該膜モジュールとバイパス管路に超純水原水を定率流量比で分配する分配装置と、生成した炭酸ガスまたはアンモニアガス溶解超純水とバイパス管路を経た超純水原水とを合流させ均一に混合させる合流混合装置と、膜モジュールに供給される炭酸ガスまたはアンモニアガスの圧力を一定に保持するための調圧弁とからなる請求項2記載の装置。A hollow fiber membrane as a gas permeable membrane, a hollow fiber membrane module for generating a relatively small flow rate of carbon dioxide or ammonia gas-dissolved ultrapure water, and a bypass for allowing a relatively large flow rate of ultrapure water raw water to pass through A pipe, a distribution device that distributes the ultrapure water raw water to the membrane module and the bypass pipe at a constant rate flow ratio, the generated carbon dioxide or ammonia gas-dissolved ultrapure water, and the ultrapure water raw water passed through the bypass pipe. The apparatus according to claim 2, comprising a merging and mixing apparatus for merging and mixing uniformly, and a pressure regulating valve for maintaining a constant pressure of carbon dioxide gas or ammonia gas supplied to the membrane module. バイパス管路が中空糸膜モジュール内に設けられた請求項3記載の装置。The apparatus according to claim 3, wherein the bypass line is provided in the hollow fiber membrane module. 中空糸膜モジュールが、中空糸膜外側とハウジングの間の空間部に炭酸ガスまたはアンモニアガスを給気し、中空糸膜の内側に超純水を流す内部灌流型であって、組み込まれた中空糸膜が複数本収束された状態でハウジング内に配設されたものである請求項3又は4記載の装置。The hollow fiber membrane module is an internal perfusion type in which carbon dioxide gas or ammonia gas is supplied to the space between the outer side of the hollow fiber membrane and the housing, and ultrapure water is allowed to flow inside the hollow fiber membrane. The apparatus according to claim 3 or 4, wherein a plurality of yarn membranes are arranged in a housing in a converged state. 中空糸膜モジュールが、中空糸膜の内側に炭酸ガスまたはアンモニアガスを給気し、中空糸膜外側とハウジングの間の空間部に超純水を流す外部灌流型であって、組み込まれた中空糸膜が複数本収束された状態でハウジング内に配設されたものである請求項3又は4記載の装置。The hollow fiber membrane module is an external perfusion type in which carbon dioxide gas or ammonia gas is supplied to the inside of the hollow fiber membrane, and ultrapure water is allowed to flow in the space between the outside of the hollow fiber membrane and the housing. The apparatus according to claim 3 or 4, wherein a plurality of yarn membranes are arranged in a housing in a converged state. バイパス管路が中空糸膜モジュール内に設けられ、当該バイパス管路が、管壁から炭酸ガスまたはアンモニアガスを透過させない円筒管からなり、複数本の中空糸膜と共に収束されハウジング内に配設された、請求項5記載の装置。A bypass conduit is provided in the hollow fiber membrane module, and the bypass conduit is a cylindrical tube that does not allow carbon dioxide gas or ammonia gas to permeate from the tube wall, and is converged with a plurality of hollow fiber membranes and disposed in the housing. The apparatus according to claim 5. 中空糸膜モジュールが、炭酸ガス透過速度が1×10−6[cm3/cm2・sec・cmHg]以上10[cm3/cm2・sec・cmHg]以下またはアンモニアガス透過速度が1×10−6[cm3/cm2・sec・cmHg]以上10[cm3/cm2・sec・cmHg]以下である疎水性の気体透過膜をハウジング内に組み込んだものである請求項3〜7のいずれか1に記載の装置。The hollow fiber membrane module has a carbon dioxide gas permeation rate of 1 × 10 −6 [cm 3 / cm 2 · sec · cm Hg] or more and 10 [cm 3 / cm 2 · sec · cm Hg] or less, or an ammonia gas permeation rate of 1 × 10 −6 [cm 3 The device according to any one of claims 3 to 7, wherein a hydrophobic gas-permeable membrane having a density of not less than 10 cm3 / cm2sec seccmHg is incorporated in the housing. 中空糸膜がポリー4メチルペンテンー1を素材とし、その内径が20〜350μm、外径が50〜1000μmである請求項8記載の装置。The apparatus according to claim 8, wherein the hollow fiber membrane is made of poly-4-methylpentene 1 and has an inner diameter of 20 to 350 µm and an outer diameter of 50 to 1000 µm. 炭酸ガスまたはアンモニアガス溶解超純水と超純水原水とを合流させる手段と、その下流側に均一混合手段としてスタティックミキサーを配設させたものである請求項2又は3記載の装置。4. The apparatus according to claim 2, wherein a static mixer is disposed as a uniform mixing means on the downstream side of the means for joining carbon dioxide or ammonia gas-dissolved ultra pure water and ultra pure water raw water. 生成した比抵抗値調整済み超純水の比抵抗値を見張るための比抵抗センサーを設け、それと応動する比抵抗計、比抵抗センサーからの信号で炭酸ガスまたはアンモニアガスの供給を遮断する電磁弁を備える、装置に異常が発生した場合のガス遮断装置が付加された請求項3記載の装置。Providing a specific resistance sensor to monitor the specific resistance value of the generated ultra-pure water with adjusted specific resistance value, a specific resistance meter that responds to it, and a solenoid valve that shuts off the supply of carbon dioxide gas or ammonia gas by a signal from the specific resistance sensor An apparatus according to claim 3, further comprising a gas shut-off device in the event of an abnormality in the apparatus. 超純水原水を2つの流れに定率流量比で分配する工程と、
超純水の一方の流れに気体透過膜を介して、供給する炭酸ガス圧またはアンモニアガス圧と水温によって定まる平衡濃度の90%以上のほぼ一定の炭酸ガス濃度またはアンモニアガス濃度まで炭酸ガスまたはアンモニアガスを溶解して、比抵抗調整超純水を生成する工程と、
前記炭酸ガスまたはアンモニアガス溶解超純水と他方の超純水原水の流れとを合流する工程
とを備えた、超純水の比抵抗調整方法。
Distributing the ultrapure raw water into two streams at a constant flow rate ratio;
Carbon dioxide or ammonia up to an almost constant carbon dioxide concentration or ammonia gas concentration of 90% or more of the equilibrium concentration determined by the carbon dioxide pressure or ammonia gas pressure to be supplied to one flow of ultra pure water through a gas permeable membrane and the water temperature A step of dissolving the gas to produce specific resistance-adjusted ultrapure water
A method for adjusting the specific resistance of ultrapure water, comprising the step of merging the flow of carbon dioxide gas or ammonia gas-dissolved ultrapure water and the other ultrapure water raw water.
変動する消費量に応じた量の比抵抗値調整済み超純水を製造するための、超純水の比抵抗調整方法において、
消費量に応じて供給される超純水原水を、分配装置によって流量に相対的に大小のある2流に定率流量比で分流し、
膜を隔てて超純水と炭酸ガスまたはアンモニアガスを流すための中空糸膜モジュールに一方の流れを供給して小流量の炭酸ガスまたはアンモニアガス溶解超純水を、予め想定された変動流量の範囲内で生成させ、
且つ該炭酸ガスまたはアンモニアガス溶解超純水をその際の炭酸ガス圧またはアンモニアガス圧と水温によって定まる平衡濃度の90%以上のほぼ一定の炭酸ガス濃度またはアンモニアガス濃度とさせ、
その炭酸ガスまたはアンモニアガス溶解超純水を大流量に分けられた超純水原水と合流させて均一に混合し、所定の比抵抗値に調整した超純水とする、超純水の比抵抗調整方法。
In the method of adjusting the specific resistance of ultrapure water to produce ultrapure water whose specific resistance value has been adjusted according to the amount of consumption consumed,
The ultrapure water supplied according to the consumption is split into two streams with a relative flow rate by a distributor at a constant rate flow ratio.
One flow is supplied to a hollow fiber membrane module for flowing ultrapure water and carbon dioxide gas or ammonia gas across the membrane, and a small flow rate of carbon dioxide gas or ammonia gas-dissolved ultrapure water is supplied with a variable flow rate assumed in advance. Generated within the range,
And the carbon dioxide gas or ammonia gas-dissolved ultrapure water is made to have a substantially constant carbon dioxide concentration or ammonia gas concentration of 90% or more of the equilibrium concentration determined by the carbon dioxide pressure or ammonia gas pressure and the water temperature at that time,
The specific resistance of ultrapure water is made by mixing the carbon dioxide or ammonia gas-dissolved ultrapure water with the ultrapure water raw water divided into a large flow rate and mixing it uniformly to obtain ultrapure water adjusted to the specified specific resistance value. Adjustment method.
大流量流に分けられた超純水原水を、中空糸膜モジュール内に設けられたバイパス管路を通じて流す請求項13記載の超純水の比抵抗調整方法。14. The method for adjusting the specific resistance of ultrapure water according to claim 13, wherein the ultrapure raw water divided into a large flow rate is passed through a bypass pipe provided in the hollow fiber membrane module. 小流量流の炭酸ガスまたはアンモニアガス溶解超純水の大流量流の超純水に対する流量の比率が1/50より小である請求項13又は14記載の方法。The method according to claim 13 or 14, wherein the ratio of the flow rate of the large flow rate of carbon dioxide gas or ammonia gas-dissolved ultrapure water to the ultrapure water of the small flow rate is less than 1/50. 炭酸ガスまたはアンモニアガス溶解超純水の炭酸ガス濃度またはアンモニアガス濃度を維持するため、調圧弁により中空糸膜に接する炭酸ガス圧またはアンモニアガス圧を一定に保持させ、中空糸膜モジュールに分流して流入する超純水原水の流量の変動に応じて炭酸ガスまたはアンモニアガスの供給量を相対的に変化させる請求項13記載の方法。In order to maintain the carbon dioxide concentration or ammonia gas concentration of carbon dioxide or ammonia gas-dissolved ultrapure water, the pressure regulating valve keeps the carbon dioxide pressure or ammonia gas pressure in contact with the hollow fiber membrane constant and diverts it to the hollow fiber membrane module. The method according to claim 13, wherein the supply amount of carbon dioxide gas or ammonia gas is relatively changed in accordance with fluctuations in the flow rate of the ultrapure water raw water flowing in.
JP33094498A 1998-11-20 1998-11-20 Ultrapure water specific resistance adjustment device and adjustment method Expired - Lifetime JP3690569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33094498A JP3690569B2 (en) 1998-11-20 1998-11-20 Ultrapure water specific resistance adjustment device and adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33094498A JP3690569B2 (en) 1998-11-20 1998-11-20 Ultrapure water specific resistance adjustment device and adjustment method

Publications (2)

Publication Number Publication Date
JP2000159504A JP2000159504A (en) 2000-06-13
JP3690569B2 true JP3690569B2 (en) 2005-08-31

Family

ID=18238173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33094498A Expired - Lifetime JP3690569B2 (en) 1998-11-20 1998-11-20 Ultrapure water specific resistance adjustment device and adjustment method

Country Status (1)

Country Link
JP (1) JP3690569B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11524267B2 (en) 2016-12-20 2022-12-13 Dic Corporation Resistivity value regulating device and resistivity value regulating method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884359B2 (en) 2000-09-27 2005-04-26 Dainippon Ink And Chemicals, Inc. Apparatus and method for controlling resistivity of ultra pure water
JP4654526B2 (en) * 2001-03-30 2011-03-23 栗田工業株式会社 Specific resistance adjustment water production equipment
JP2003010660A (en) * 2001-06-28 2003-01-14 Dainippon Ink & Chem Inc Apparatus and method for controlling resistivity of ultra-pure water
DE60233415D1 (en) * 2001-08-28 2009-10-01 Mitsubishi Rayon Co DEVICE AND METHOD FOR PRODUCING CARBONATED SOUR WATER AND CARBONATED WATER
KR101422964B1 (en) * 2004-06-09 2014-07-24 가부시키가이샤 니콘 Exposure system and device production method
EP1849040A2 (en) * 2005-02-10 2007-10-31 ASML Netherlands B.V. Immersion liquid, exposure apparatus, and exposure process
JP2008211096A (en) * 2007-02-27 2008-09-11 Ngk Insulators Ltd Resistivity controller
JP5380870B2 (en) * 2008-03-14 2014-01-08 栗田工業株式会社 Method and apparatus for producing gas-dissolved water
JP5645516B2 (en) * 2009-09-11 2014-12-24 東京エレクトロン株式会社 Substrate liquid processing apparatus, processing liquid generation method, and computer-readable recording medium storing processing liquid generation program
JP5862043B2 (en) * 2011-04-21 2016-02-16 Dic株式会社 Gas-dissolved liquid manufacturing apparatus and gas-dissolved liquid manufacturing method
CN115768553A (en) * 2020-06-10 2023-03-07 Dic株式会社 Resistivity value adjusting device and resistivity value adjusting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11524267B2 (en) 2016-12-20 2022-12-13 Dic Corporation Resistivity value regulating device and resistivity value regulating method

Also Published As

Publication number Publication date
JP2000159504A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
JPH10324502A (en) Device and method for adding carbon dioxide to ultrapure water
JP5862043B2 (en) Gas-dissolved liquid manufacturing apparatus and gas-dissolved liquid manufacturing method
JP3690569B2 (en) Ultrapure water specific resistance adjustment device and adjustment method
US5670094A (en) Method of and apparatus for producing ozonized water
US6921063B2 (en) Gas dissolved water producing apparatus and method thereof and ultrasonic cleaning equipment and method thereof
US6884359B2 (en) Apparatus and method for controlling resistivity of ultra pure water
US9126853B2 (en) Fresh water generator
JPH11128704A (en) Regulator and regulating method for regulating dissolved gas concentration in solution
JP2003010660A (en) Apparatus and method for controlling resistivity of ultra-pure water
JP6500998B2 (en) Resistivity value adjustment device and resistivity value adjustment method
KR100519391B1 (en) Apparatus and method for adding carbon dioxide gas to ultrapure water
JP3786232B2 (en) Apparatus and method for adjusting resistivity of ultrapure water
KR100972889B1 (en) Resistivity-controlling system
JP2002172318A (en) Apparatus and method for adjusting resistivity of ultrapure water
JPH11139804A (en) Resistivity regulating device for ultrapure water and regulating method
JP3866274B2 (en) Liquid supply method and apparatus
JPS6244964B2 (en)
JPS59173184A (en) Device for controlling specific resistance of ultrapure water
CN100518915C (en) System for controlling resistance value
WO2023276837A1 (en) Specific resistance value adjustment device and specific resistance value adjustment method
JP2003311140A (en) Apparatus for addition control of ultra small amount of liquid and gas-dissolved water production apparatus and gas-dissolved water production method using the same
JP6900834B2 (en) Specific resistance value adjusting device
JP7409500B2 (en) Specific resistance value adjustment device and specific resistance value adjustment method
US20230192513A1 (en) Membrane distillation system with gas bubble source and method of use
JPH10277121A (en) Manufacture of carbonated spring

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050608

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term