JP2003311140A - Apparatus for addition control of ultra small amount of liquid and gas-dissolved water production apparatus and gas-dissolved water production method using the same - Google Patents

Apparatus for addition control of ultra small amount of liquid and gas-dissolved water production apparatus and gas-dissolved water production method using the same

Info

Publication number
JP2003311140A
JP2003311140A JP2002119085A JP2002119085A JP2003311140A JP 2003311140 A JP2003311140 A JP 2003311140A JP 2002119085 A JP2002119085 A JP 2002119085A JP 2002119085 A JP2002119085 A JP 2002119085A JP 2003311140 A JP2003311140 A JP 2003311140A
Authority
JP
Japan
Prior art keywords
dissolved
ultrapure water
gas
electrolyte
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002119085A
Other languages
Japanese (ja)
Inventor
Toshikazu Suganuma
俊和 菅沼
Yasushi Tomita
康司 富田
Kazunari Sakai
一成 酒井
Naoki Haneda
尚樹 羽田
Katsuhiko Kazama
勝彦 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitz Corp
DIC Corp
Original Assignee
Kitz Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitz Corp, Dainippon Ink and Chemicals Co Ltd filed Critical Kitz Corp
Priority to JP2002119085A priority Critical patent/JP2003311140A/en
Publication of JP2003311140A publication Critical patent/JP2003311140A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus having a simple structure and capable of continuously adding a high concentration solution at an extremely low flow rate; an apparatus comprising the former apparatus for producing ultrapure water in which a gas is dissolved by dissolving the chemical liquid; and a method for producing ultrapure water in which a gas is dissolved by dissolving the chemical liquid. <P>SOLUTION: The ultra small amount addition control apparatus is for continuously supplying an aqueous solution containing an electrolyte to continuously flowing ultrapure water and comprises a thin pipe equipped with a valve and connecting an apparatus for supplying the aqueous solution containing the electrolyte with a water flow pipe of the ultrapure water so as to control the supply amount by opening or closing the valve. The gas-dissolved water production apparatus comprises the ultra small amount addition control apparatus and an apparatus for obtaining ultrapure water containing a reducing or oxidizing gas by dissolving the reducing or oxidizing gas in ultrapure water. The gas-dissolved water production is carried out using the gas-dissolved water production apparatus. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子材料用洗浄水
などで微少流量を制御する装置、及びそれを用いた電解
質が溶解した超純水のガス溶解装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling a minute flow rate with cleaning water for electronic materials and the like, and a gas dissolving apparatus for ultrapure water in which an electrolyte is dissolved using the apparatus.

【0002】[0002]

【従来の技術】近年、超純水に僅かにガス成分や薬品を
添加した水がウェハー表面上の不純物を除去する機能が
あることが判明し、従来のような高濃度の薬品を使用せ
ずに同等の洗浄効果があることから注目されつつある。
この僅かにガス成分や薬品を添加した水を洗浄水として
用いたものとして例えば、特開2000−208471
号公報のような電気伝導率に基づいて酸またはアルカリ
の添加量を制御し、供給量を調整する薬液が後述する供
給装置を有する電子材料洗浄水の調整装置が提案されて
いる。この方法によれば精密な濃度制御に優れるが、実
際の使用において超純水に流量変動が生じた場合に濃度
のハンチングを起こす恐れがある。
2. Description of the Related Art Recently, it has been found that water obtained by slightly adding gas components or chemicals to ultrapure water has a function of removing impurities on the surface of a wafer. Is getting attention because it has the same cleaning effect.
An example of using water containing a slight amount of gas components or chemicals as washing water is disclosed in Japanese Patent Laid-Open No. 2000-208471.
As disclosed in Japanese Patent Laid-Open Publication No. JP-A-2003-264, there has been proposed an adjusting device for electronic material cleaning water, which has a supply device for controlling a supply amount of an acid or an alkali based on electric conductivity and adjusting a supply amount, which will be described later. This method excels in precise concentration control, but may cause concentration hunting when flow rate fluctuations occur in ultrapure water during actual use.

【0003】前記薬液供給装置は原液を一度ある程度ま
で希釈したものを装置タンクに貯蔵しこれを添加すると
いうものであり、半導体製造装置など金属イオンを極度
に嫌う用途では、微小流量制御装置の接液部材料を合成
樹脂にする必要があるために微小流量計や微小流量調節
弁を製作することが出来ないため、高濃度原液をそのま
ま添加することはできない。そのため、調整用希釈した
薬液として、希釈したものを用いる。そのため、濃度調
整に遅れが生じ、濃度のハンチングが起き易くなる。
The above-mentioned chemical liquid supply device is one in which a stock solution is once diluted to a certain extent and stored in a device tank and added to it. In applications such as semiconductor manufacturing equipment where metal ions are extremely disliked, a minute flow controller is connected. Since it is not possible to fabricate a minute flow meter or a minute flow rate control valve because the liquid part material needs to be a synthetic resin, it is not possible to add a high-concentration stock solution as it is. Therefore, the diluted chemical liquid for adjustment is used. Therefore, the density adjustment is delayed, and density hunting is likely to occur.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、構造
が簡便で高濃度溶液から微少流量を連続添加できる装
置、これを組み込んだ薬液が溶解したガス溶解超純水の
製造装置、薬液が溶解したガス溶解超純水の製造を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a device having a simple structure and capable of continuously adding a minute flow rate from a high-concentration solution, an apparatus for producing gas-dissolved ultrapure water in which a chemical solution incorporating the same is dissolved, and It is to provide the production of dissolved gas-dissolved ultrapure water.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記の課題
を解決すべく鋭意研究を重ねた結果、細管を用いて微少
量を容易に添加制御することを見出し、この知見に基づ
いて本発明を完成するに至った。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that it is possible to easily control the addition of a minute amount by using a thin tube, and based on this finding, The invention was completed.

【0006】即ち、本発明は、連続的に流通する超純水
に、電解質を溶解した水溶液を連続的に供給する装置で
あって、電解質が溶解した水溶液の供給装置と超純水の
流通管との間を、弁が設けられた細管を連結し、弁の開
閉で、供給量を制御する微小添加量制御装置を提供す
る。
That is, the present invention is an apparatus for continuously supplying an aqueous solution in which an electrolyte is dissolved to continuously flowing ultrapure water, in which an apparatus for supplying an aqueous solution in which an electrolyte is dissolved and an ultrapure water flow pipe are provided. There is provided a minute addition amount control device in which a thin tube provided with a valve is connected between and, and the supply amount is controlled by opening and closing the valve.

【0007】[0007]

【発明の実施の形態】本発明の微小流量制御装置は、連
続的に超純水が流通する流通管と電解質を溶解した水溶
液供給装置とを弁が設けられた細管を接続し、弁の開閉
で供給量を制御するものである。前記細管はここで、電
解質を溶解した水溶液の供給量の調節は、弁が開けられ
た細管の本数を増減させることで行うことができる。
BEST MODE FOR CARRYING OUT THE INVENTION The minute flow rate control device of the present invention is configured such that a flow pipe through which ultrapure water continuously flows and an aqueous solution supply device in which an electrolyte is dissolved are connected to a thin pipe provided with a valve, and the valve is opened and closed. Is to control the supply amount. Here, the supply amount of the aqueous solution in which the electrolyte is dissolved can be adjusted by increasing or decreasing the number of the valve-opened thin tubes.

【0008】この際、細管に取り付ける弁は設置する細
管のそれぞれに設置してもよいし、或いは、設置する細
管を数本ずつ纏めて一つの弁で流量を制御するようにし
てもよい。
At this time, the valves attached to the thin tubes may be installed in each of the thin tubes to be installed, or several thin tubes to be installed may be collected and the flow rate may be controlled by one valve.

【0009】前記細管を複数本、並列に並べて接続する
方法として、特に制限はないが、例えば細管を1、2、
4、8、・・・、2本毎に弁を設けて並べることができ
る。この場合、弁を設けた細管の束の流量比が1:2:
4:8・・・となり、2n段階で流量を変化させることが出
来る。細管束の数(n)を多くすればそれだけ微妙な添
加制御が可能になる。細管の本数に特に制限はないが、
実用上1〜1000本、より好ましくは1〜100本で
構成される。例えば、図2にその一例を示す。
There is no particular limitation on the method for connecting a plurality of the thin tubes in parallel, but for example, 1, 2,
4,8, ..., it can be arranged to provide a valve for each 2 n present. In this case, the flow rate ratio of the bundle of thin tubes provided with the valve is 1: 2 :.
4: 8 ... and the flow rate can be changed in 2 n steps. If the number (n) of thin tube bundles is increased, the more delicate addition control becomes possible. There is no particular limit to the number of thin tubes,
Practically, it is composed of 1 to 1000, and more preferably 1 to 100. For example, FIG. 2 shows an example thereof.

【0010】また、細管の口径に特に制限はないが、微
少流量制御を行うことからすると、好ましくは内径10
〜1000μm、さらに好ましくは内径50〜500μ
mである。このような細管としては、中空糸構造をもつ
細管が好ましい。中空糸構造としては、微多孔膜、均質
膜、不均質膜、複合膜、ポリプロピレン微多孔膜等層で
ウレタン等の薄膜を挟んだいわゆるサンドイッチ膜等い
ずれも使用できる。
The diameter of the thin tube is not particularly limited, but from the viewpoint of controlling the minute flow rate, the inner diameter is preferably 10
〜1000μm, more preferably 50 ~ 500μ inner diameter
m. As such a thin tube, a thin tube having a hollow fiber structure is preferable. As the hollow fiber structure, any of a so-called sandwich membrane in which a thin film such as urethane is sandwiched between layers such as a microporous membrane, a homogeneous membrane, a heterogeneous membrane, a composite membrane, and a polypropylene microporous membrane can be used.

【0011】細管の素材としては、電子材料用洗浄の場
合、金属以外であれば特に制限はないが、電解質を溶解
した水溶液に耐性があることが好ましい。例えば、ポリ
エチレン系樹脂、ポリプロピレン系樹脂、ポリテトラフ
ルオロエチレン、パーフルオロアルコキシフッ素樹脂、
ポリヘキサフルオロプロピレン等の各種フッ素樹脂、ポ
リブテン系樹脂、シリコーン系樹脂、ポリ(4−メチル
ペンテン−1)系樹脂等の素材が好適に挙げられる。な
かでもポリ(4−メチルペンテン−1)系樹脂が、特に
好ましい。
The material of the thin tube is not particularly limited as long as it is other than metal in the case of cleaning for electronic materials, but it is preferably resistant to an aqueous solution in which an electrolyte is dissolved. For example, polyethylene resin, polypropylene resin, polytetrafluoroethylene, perfluoroalkoxy fluororesin,
Materials such as various fluororesins such as polyhexafluoropropylene, polybutene-based resins, silicone-based resins, poly (4-methylpentene-1) -based resins, and the like are preferable. Among them, poly (4-methylpentene-1) -based resin is particularly preferable.

【0012】また、実際の中空糸の管路は、断面が厳密
な円形でなかったり、或いは管路断面積が一定でもない
場合がある。そのため、下記式(4)から算出した長さ
の中空糸を作成し、実流試験により流量係数を求め、必
要な長さを正確に計算し調整することが好ましい。例え
ば、式(4)では、管路の長さは管路の直径の4乗に比
例するため、管路の直径が10%異なると管路は長さが
46.4%異なる。
The actual hollow fiber conduit may not have a strictly circular cross section, or the conduit cross-sectional area may not be constant. Therefore, it is preferable to prepare a hollow fiber having a length calculated from the following formula (4), obtain a flow coefficient by an actual flow test, and accurately calculate and adjust a necessary length. For example, in the formula (4), since the length of the conduit is proportional to the fourth power of the diameter of the conduit, if the diameter of the conduit differs by 10%, the length of the conduit differs by 46.4%.

【0013】本発明に用いた細管による微小流量制御装
置は、円形管路内の層流の損失水頭に関するHagen-Pois
elle の法則を応用したものである。円形管路を通って
流れる液体の損失水頭Hは、層流の場合には式(1)で
示すことが出来、更に円形管路の長さは式(1)を変形
して式(4)で表わされる。図1に細管を流れる際の模
式図を示す。
The fine flow rate control device using a thin tube used in the present invention relates to Hagen-Pois regarding the head loss of laminar flow in a circular pipe.
It is an application of elle's law. The loss head H of the liquid flowing through the circular conduit can be expressed by the equation (1) in the case of laminar flow, and the length of the circular conduit can be obtained by modifying the equation (1) to the equation (4). It is represented by. FIG. 1 shows a schematic diagram when flowing through a thin tube.

【0014】[0014]

【数1】 [Equation 1]

【0015】なお、上記式(1)〜(4)中の記号の意
味と単位は下記表1記載のものである。
The meanings and units of the symbols in the above formulas (1) to (4) are as shown in Table 1 below.

【0016】[0016]

【表1】 [Table 1]

【0017】流体の流量・粘度、円形管路の直径、円形
管路の両端の差圧が既知数の場合には円形管路の長さL
をこの式から計算することが出来る。
When the flow rate / viscosity of the fluid, the diameter of the circular pipe, and the differential pressure at both ends of the circular pipe are known, the length L of the circular pipe is L.
Can be calculated from this formula.

【0018】上記の式(5)から希望の微少流量を得る
ための細管を設計(最適な細管長さ、内径、本数)がで
きる。
From the above equation (5), it is possible to design a thin tube (optimal thin tube length, inner diameter, number) to obtain a desired minute flow rate.

【0019】電子材料用洗浄装置などで、細管を用いて
微少流量を添加する場合、連続的に流通する超純水に添
加することになる。この際に超純水の変化、例えば流
量、圧力の変化に応じて微少流量添加量を制御し、電解
質濃度を安定して制御しなければならない。このために
は、弁が設けられた細管を用いて変化に応じて弁を開閉
してやればよい。なお、超純水の変化を測定しなくと
も、一定範囲の超純水の変化であれば、本発明の細管を
用いることで、ある程度の濃度範囲内に安定して制御が
可能である。即ち、フィードバックせずとも洗浄能力を
有する実用範囲内の濃度に電解質濃度を制御できる。
When a minute flow rate is added using a thin tube in a cleaning device for electronic materials, etc., it is added to the ultrapure water that continuously flows. At this time, it is necessary to control the minute flow rate addition amount according to the change of the ultrapure water, for example, the change of the flow rate and the pressure to stably control the electrolyte concentration. For this purpose, a thin tube provided with a valve may be used to open and close the valve according to the change. Even if the change in ultrapure water is not measured, if the change in ultrapure water is within a certain range, stable control can be performed within a certain concentration range by using the thin tube of the present invention. That is, the electrolyte concentration can be controlled to a concentration within a practical range having a cleaning ability without feedback.

【0020】さらに超純水の変化を測定し、これによっ
て制御すればさらに厳密に濃度の制御が可能である。こ
の際、超純水の変化を測定するのには種々の方法を用い
ることができるが、例えば、超純水流量を各種流量計で
計測する方法や、超純水の水質を電気化学的定数を用い
て計測する方法によって行うことができる。各種流量計
に特に制限はないが、例えばカルマン渦式流量計、超音
波流量計などがある。電気化学的定数を計測する方法に
特に制限はないが、例えば電気伝導率計、PH計、比抵
抗計、ORP計、イオン電極計などがある。
Further, if the change of ultrapure water is measured and controlled by this, the concentration can be controlled more strictly. At this time, various methods can be used to measure the change in the ultrapure water. For example, a method of measuring the flow rate of the ultrapure water with various flowmeters or the water quality of the ultrapure water is determined by an electrochemical constant. It can be performed by a method of measuring using. There are no particular restrictions on the various flow meters, but there are Karman vortex flow meters, ultrasonic flow meters, and the like. The method for measuring the electrochemical constant is not particularly limited, but examples thereof include an electric conductivity meter, a PH meter, a resistivity meter, an ORP meter, and an ion electrode meter.

【0021】また、電解質を溶解した水溶液の供給量
(X)と、連続的に流通する超純水(Y)の流量との比
が(X)/(Y)=1/1,000,000〜1/1,000であるこ
とが好ましい。さらにガスを溶解することを考えると、
(X)/(Y)=1/100,000〜1/10,000より好まし
い。
Further, the ratio of the supply amount (X) of the aqueous solution in which the electrolyte is dissolved and the flow rate of the ultrapure water (Y) which flows continuously is (X) / (Y) = 1 / 1,000,000 to 1/1000. Is preferred. Considering that it also dissolves gas,
(X) / (Y) = 1 / 100,000 to 1 / 10,000 is more preferable.

【0022】また、電解質を溶解した水溶液を供給した
超純水への電解質濃度は0.00001〜0.1重量%であること
が好ましい。さらにガスを溶解することを考えると、超
純水への電解質濃度は0.0001〜0.01重量%であることが
より好ましい。
The electrolyte concentration in the ultrapure water supplied with the aqueous solution in which the electrolyte is dissolved is preferably 0.00001 to 0.1% by weight. Further, considering that gas is dissolved, the electrolyte concentration in the ultrapure water is more preferably 0.0001 to 0.01% by weight.

【0023】また、電解質を溶解した水溶液の供給量が
0.001〜10cmである場合、この細管を用いた方法が
特に有効である。即ち、半導体製造装置に用いるような
微少な流量を制御して流す流量計、調整弁は存在しない
ため、この細管を用いる方法はこの分野で特に有用であ
る。
Further, the supply amount of the aqueous solution in which the electrolyte is dissolved is
When it is 0.001 to 10 cm 3 , the method using this thin tube is particularly effective. That is, since there is no flow meter or regulating valve for controlling a minute flow rate that is used in a semiconductor manufacturing apparatus, the method using this thin tube is particularly useful in this field.

【0024】本発明に用いる電解質を溶解した水溶液は
特に制限はなく、例えば酸である塩酸、硫酸、フッ化水
素、硝酸、炭酸や、アルカリであるアンモニア、水酸化
カリウム、水酸化ナトリウムなどが挙げられる。
The aqueous solution in which the electrolyte used in the present invention is dissolved is not particularly limited, and examples thereof include acids such as hydrochloric acid, sulfuric acid, hydrogen fluoride, nitric acid and carbonic acid, and alkalis such as ammonia, potassium hydroxide and sodium hydroxide. To be

【0025】次いで、本発明のガス溶解水製造装置は、
超純水に電解質を溶解した水溶液を添加して、電解質が
添加された超純水を得る装置と、超純水に還元性または
酸化性の気体を溶解させて還元性または酸化性の気体が
溶解された超純水を得る装置とが組み合わされた、ガス
溶解水製造装置である。即ち、超純水中のpHを制御
し、酸化性、或いは還元性を有した洗浄効果に優れた水
を簡便な機構で効率よく製造する装置を提供するもので
ある。そのためには、還元性または酸化性の気体が溶解
された超純水を得る装置が、気体透過膜を介して、超純
水に前記気体を溶解させる装置が好ましい。
Next, the apparatus for producing gas-dissolved water according to the present invention,
An apparatus for obtaining an ultrapure water to which an electrolyte is added by adding an aqueous solution in which an electrolyte is dissolved in ultrapure water, and a reducing or oxidizing gas is dissolved in the ultrapure water to reduce a reducing or oxidizing gas. This is a gas-dissolved water production apparatus combined with an apparatus for obtaining dissolved ultrapure water. That is, the present invention provides an apparatus for controlling pH in ultrapure water and efficiently producing water having an oxidizing property or a reducing property and having an excellent cleaning effect with a simple mechanism. For that purpose, an apparatus for obtaining ultrapure water in which a reducing or oxidizing gas is dissolved is preferably an apparatus for dissolving the gas in ultrapure water through a gas permeable membrane.

【0026】前記還元性気体、または酸化性気体として
特に制限はないが、例えば、水素、酸素、オゾンなどが
ある。
The reducing gas or oxidizing gas is not particularly limited, but examples thereof include hydrogen, oxygen and ozone.

【0027】前記還元性気体、または酸化性気体を超純
水に溶解させるのに種々の方法があり、エゼクター、気
体透過膜を用いる方法などが挙げられる。なかでも、気
体透過膜を用いる方法が気体を効率よく溶解させるため
に効果的な方法である。
There are various methods for dissolving the reducing gas or the oxidizing gas in ultrapure water, including a method using an ejector and a gas permeable membrane. Above all, a method using a gas permeable membrane is an effective method for efficiently dissolving gas.

【0028】本発明に使用する気体透過膜は、気体透過
速度の大きなものであれば素材及び構造及び形態等特に
制限は無いが、膜素材は疎水性の高い素材が好ましい。
例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、
ポリテトラフルオロエチレン、パーフルオロアルコキシ
フッ素樹脂、ポリヘキサフルオロプロピレン等の各種フ
ッ素樹脂、ポリブテン系樹脂、シリコーン系樹脂、ポリ
(4−メチルペンテン−1)系樹脂等の素材が好適に挙
げられる。また膜構造も、微多孔膜、均質膜、不均質
膜、複合膜、ポリプロピレン微多孔膜等層でウレタン等
の薄膜を挟んだいわゆるサンドイッチ膜等いずれも使用
できる。膜の形態としては平膜、中空糸膜が挙げられる
が、ガスの溶解効率の面では中空糸膜が好ましい。
The gas permeable membrane used in the present invention is not particularly limited in material, structure and morphology as long as it has a high gas permeation rate, but the membrane material is preferably a highly hydrophobic material.
For example, polyethylene resin, polypropylene resin,
Preferable examples include various fluororesins such as polytetrafluoroethylene, perfluoroalkoxy fluororesins, polyhexafluoropropylene, polybutene-based resins, silicone-based resins, poly (4-methylpentene-1) -based resins, and the like. As the membrane structure, a so-called sandwich membrane in which a thin film such as urethane is sandwiched between layers such as a microporous membrane, a homogeneous membrane, a heterogeneous membrane, a composite membrane, and a polypropylene microporous membrane can be used. Examples of the form of the membrane include a flat membrane and a hollow fiber membrane, and the hollow fiber membrane is preferable in terms of gas dissolution efficiency.

【0029】中空糸膜の気体透過速度は、1×10−6
[cm3/cm2・sec・cmHg](=7.5×10-12[m3/m2
sec・Pa])以上、10-2[cm3/cm2・sec・cmHg]
(=7.5×10-9[m3/m2・sec・Pa])以下である
ことが好ましい。1×10−6[cm3/cm2・sec・cmH
g](=7.5×10-12[m3/m2・sec・Pa])未満
であると中空糸膜を透過する気体透過速度が遅く、目標
とする濃度に到達しなかったり、超純水流量が変動した
際に濃度が変動する。また、10-2[cm3/cm2・sec・
cmHg](=7.5×10-9[m3/m2・sec・Pa])を越
える中空糸膜の場合、超純水がガス側に透過するという
問題点がある。
The gas permeation rate of the hollow fiber membrane is 1 × 10 −6.
[Cm 3 / cm 2 · sec · cmHg] (= 7.5 × 10 -12 [m 3 / m 2 ·
sec ・ Pa]) or more, 10 -2 [cm 3 / cm 2・ sec ・ cmHg]
It is preferably (= 7.5 × 10 −9 [m 3 / m 2 · sec · Pa]) or less. 1 x 10-6 [cm3 / cm2 ・ sec ・ cmH
If it is less than g] (= 7.5 × 10 −12 [m3 / m2 · sec · Pa]), the gas permeation rate through the hollow fiber membrane will be slow, and the target concentration will not be reached or ultrapure water will be obtained. The concentration changes when the flow rate changes. Also, 10 -2 [cm3 / cm2 ・ sec ・
In the case of a hollow fiber membrane exceeding cmHg] (= 7.5 × 10 −9 [m 3 / m 2 · sec · Pa]), there is a problem that ultrapure water permeates to the gas side.

【0030】本発明に用いる、特に、ポリ(4−メチル
ペンテン−1)系樹脂を素材とする中空糸不均質膜は気
体透過性に優れ且つ水蒸気バリヤー性が高く最も好まし
い。本発明に用いる不均質膜については、例えば特公平
2−38250号公報、特公平2−54377号公報、
特公平4−15014号公報、特公平4−50053号
公報等に詳しく述べてある。
The hollow fiber heterogeneous membrane made of poly (4-methylpentene-1) resin used in the present invention is most preferable because it has excellent gas permeability and high water vapor barrier property. Regarding the heterogeneous film used in the present invention, for example, Japanese Patent Publication No. 2-38250, Japanese Patent Publication No. 2-54377,
The details are described in Japanese Patent Publication No. 4-15014, Japanese Patent Publication No. 4-50053, and the like.

【0031】ポリエチレン系樹脂、ポリプロピレン系樹
脂及びポリフッ化ビニリデン系樹脂等のごとく素材のガ
ス透過性が低く、従ってガス溶解用途に適用するために
は微多孔構造を取り、その多孔部分によりガスを透過せ
ざるを得ないこれら膜と比較し、ポリ(4−メチルペン
テン−1)系樹脂を素材とする本不均質膜は、素材自体
気体透過性が十分高く、また緻密層部の膜厚が十分に薄
く、膜表面全体がガス透過に寄与する事ができ、結果と
して実質的な膜面積が大きくなり極めて好ましい。
Materials such as polyethylene resin, polypropylene resin and polyvinylidene fluoride resin have low gas permeability. Therefore, for application to gas dissolution applications, a microporous structure is adopted, and gas is permeable through the porous portion. Compared to these membranes that have to be forced, this heterogeneous membrane made of poly (4-methylpentene-1) resin has sufficiently high gas permeability and the dense layer has a sufficient thickness. Very thin, the entire membrane surface can contribute to gas permeation, and as a result, the substantial membrane area becomes large, which is extremely preferable.

【0032】中空糸膜を配設するハウジングについて
は、上述の超純水への不純物の溶出の無いものであれ
ば、何ら材質は一切問わない。例示すれば、ポリエチレ
ン、ポリプロピレン、ポリ4−メチルペンテン1などの
ポリオレフィン系、ポリフッ化ビニリデン、ポリテトラ
フルオロエチレンなどのフッ素系、ポリエーテルエーテ
ルケトン、ポリエーテルケトン、ポリエーテルスルフォ
ン、ポリサルフォンなどのエンジニアリングプラスチッ
ク、或いは低溶出の為超純水の配管素材として使用され
ている、クリーン塩化ビニル系などが挙げられる。
As for the housing in which the hollow fiber membrane is disposed, any material may be used as long as it does not elute impurities into the ultrapure water. For example, polyolefins such as polyethylene, polypropylene and poly 4-methylpentene 1, fluorine-based materials such as polyvinylidene fluoride and polytetrafluoroethylene, engineering plastics such as polyether ether ketone, polyether ketone, polyether sulfone and polysulfone. Alternatively, a clean vinyl chloride type, which is used as a piping material for ultrapure water because of its low elution, can be used.

【0033】中空糸膜モジュール構造としては、中空糸
膜を複数本収束しハウジング内に配設し、中空糸膜外側
とハウジングの間の空間部にガスを給気し、中空糸膜の
内側に超純水を流す内部灌流型のみならず、それ以外に
も特公平5−21841号公報にある中空糸の外側に超
純水を流し、内側にガスを流す外部灌流型も含まれる。
As a hollow fiber membrane module structure, a plurality of hollow fiber membranes are converged and arranged in a housing, gas is supplied to the space between the outside of the hollow fiber membranes and the housing, and the inside of the hollow fiber membranes is supplied. In addition to the internal perfusion type in which ultrapure water is flown, an external perfusion type in which ultrapure water is flown outside the hollow fiber and gas is flown inside is disclosed in Japanese Patent Publication No. 5-21841.

【0034】外部灌流型の場合には、ハウジング内への
中空糸の充填むらなどの原因による水の偏流(チャンネ
リング)が生じるのを防ぐために、中空糸を、中空糸同
士又は他の糸条とによってシート状、例えば簾状に組織
されたシート状物とし、それから得られる重畳体、捲回
体、収束体の状態でハウジング内に組み込むことが効果
的である。また中空糸を筒状芯に綾巻きするなどした三
次元組織を組み込む等適宜の形状を採ることもできる。
In the case of the external perfusion type, in order to prevent uneven flow (channeling) of water due to uneven filling of the hollow fibers in the housing, the hollow fibers are hollow fibers or other yarns or other yarns. It is effective to form a sheet-like material, for example, a sheet-like material, which is formed into a blind shape by using, and to incorporate it into the housing in the state of a superposed body, a wound body, and a converging body. It is also possible to adopt an appropriate shape such as incorporating a three-dimensional structure in which the hollow fiber is wound around a cylindrical core.

【0035】内灌流、外灌流どちらの型を採るかは、超
純水にガス溶解する目的からどちらの構造でも構わな
い。
Either the internal perfusion or the external perfusion may be adopted for either structure in order to dissolve the gas in ultrapure water.

【0036】このガス溶解水製造装置と電解質を溶解し
た水溶液を添加する装置は個々に独立した装置である
が、この装置の順序はどちらが先に位置していても構わ
ない。
Although the gas-dissolved water producing device and the device for adding the aqueous solution in which the electrolyte is dissolved are independent devices, whichever device may be located first.

【0037】即ち超純水に電解質を溶解した水溶液を添
加した後に気体を溶解させてもよいし、またはその逆に
超純水に気体を溶解した後に電解質を溶解した水溶液を
添加してもよい。ただし、電解質を溶解した水溶液が超
純水中に拡散し、均一な濃度状態になるためには、超純
水に電解質を溶解した水溶液を添加した後に気体を溶解
させた方がより好ましい。この場合、例えば気体溶解に
気体透過膜を使用すれば、この気体透過膜を通過する間
にスタティックミキサーのように水が十分に攪拌される
効果がある。もちろん十分な流路を確保すれば装置の位
置は問題とならないことは言うまでもない。装置の構成
例は、例えば、図3のようになる。
That is, the gas may be dissolved after adding the aqueous solution in which the electrolyte is dissolved in ultrapure water, or conversely, the aqueous solution in which the electrolyte is dissolved may be added after dissolving the gas in ultrapure water. . However, in order that the aqueous solution in which the electrolyte is dissolved diffuses into the ultrapure water and becomes a uniform concentration state, it is more preferable to dissolve the gas after adding the aqueous solution in which the electrolyte is dissolved in the ultrapure water. In this case, for example, if a gas permeable membrane is used for gas dissolution, the water is sufficiently agitated like a static mixer while passing through the gas permeable membrane. Needless to say, the position of the device does not matter if a sufficient flow path is secured. An example of the configuration of the device is as shown in FIG.

【0038】以下に本発明を実施例及び比較例によって
更に具体的に説明をする。ただし、本発明はこれに限定
され制約されるものではない。
The present invention will be described in more detail below with reference to examples and comparative examples. However, the present invention is not limited to this and is not limited.

【0039】原水としては25℃にて18.2MΩ・c
mの比抵抗を持つ超純水を用いた。その流量維持時間は
1分で段階的に変動させた。その供給水圧は0.20M
Pa・G(=2kgf/cm・G) とした。
Raw water is 18.2 MΩ · c at 25 ° C.
Ultrapure water having a specific resistance of m was used. The flow rate maintenance time was changed stepwise at 1 minute. The supply water pressure is 0.20M
Pa · G (= 2 kgf / cm 2 · G).

【0040】実施例1 電解質を溶解した水溶液として29%アンモニア水溶液
を溶解する装置を考える。まず、これに用いる細管長さ
を算出する。超純水に29wt%アンモニア水溶液を添加し
て6mg/リットルのアンモニア水溶液を作るための装置の細管
を設計する。29wt%アンモニア水溶液の物性は次の通り
である。γ(比重)=0.900、μ(粘度)=1.0×10-3
a・s(1.0cP)、超純水流量1リットル/min(10kg/min)に
対してNH3濃度6ppmの場合、29wt%NH3水溶液の流量Q
は、1×103×6×10-6÷0.29= 0.0207g/min= 0.207÷
0.900 = 0.0230 cm3/minである。次いで、細管前後の
差圧ΔP=0.05Mpa、キャピラリー内径D=0.100mmとした
場合の長さLを求める。前記の式(5)より下記式
(6)が導き出される。
Example 1 Consider an apparatus for dissolving a 29% aqueous ammonia solution as an aqueous solution in which an electrolyte is dissolved. First, the length of the thin tube used for this is calculated. Design a thin tube of a device for adding a 29 wt% aqueous ammonia solution to ultrapure water to make a 6 mg / liter aqueous ammonia solution. The physical properties of the 29 wt% aqueous ammonia solution are as follows. γ (specific gravity) = 0.900, μ (viscosity) = 1.0 × 10 -3 P
a ・ s (1.0 cP), flow rate of 29 wt% NH 3 aqueous solution when the NH 3 concentration is 6 ppm with respect to ultrapure water flow rate 1 liter / min (10 kg / min)
Is 1 × 10 3 × 6 × 10 -6 ÷ 0.29 = 0.0207 g / min = 0.207 ÷
0.900 = is 0.0230 cm 3 / min. Next, the length L when the pressure difference ΔP = 0.05 Mpa before and after the thin tube and the capillary inner diameter D = 0.100 mm is obtained. The following equation (6) is derived from the above equation (5).

【0041】[0041]

【数2】 [Equation 2]

【0042】上記式(6)から表2の実用単位が使用で
きるように変形すると、式(7)が導き出される。な
お、式(6)、(7)中の記号、単位は下記の表2記載
のものを用いる。
By transforming the above equation (6) so that the practical unit shown in Table 2 can be used, the equation (7) is derived. The symbols and units in the formulas (6) and (7) are those shown in Table 2 below.

【0043】[0043]

【数3】 [Equation 3]

【0044】[0044]

【表2】 [Table 2]

【0045】ここで、D=0.001、△P=0.0
5、μ=1.0、Q=0.0230を代入すると、L =
1,473,000 × 0.1004× 0.05 ÷ 1.0 ÷ 0.0230= 320
mmとなり、円形管路の長さ(L)を320mmとすればよ
い。
Here, D = 0.001, ΔP = 0.0
Substituting 5, μ = 1.0 and Q = 0.0230, L =
1,473,000 × 0.100 4 × 0.05 ÷ 1.0 ÷ 0.0230 = 320
mm, and the length (L) of the circular conduit may be 320 mm.

【0046】中空糸を流れる流量の計算値と実測値を比
較するために、直径0.1mm、長さ300mmのポリ4−メチル
ペンテン1中空糸4本を並列に並べて、純水を流したと
きの流量を測定した。
In order to compare the calculated value and the measured value of the flow rate through the hollow fiber, four poly 4-methylpentene 1 hollow fibers having a diameter of 0.1 mm and a length of 300 mm were arranged in parallel and pure water was flowed. The flow rate was measured.

【0047】差圧(△P)を0.05〜0.15MPa
まで変えて行った。計算値との流量誤差は17〜27%
であった。この結果から、誤差の原因を全て中空糸の直
径の誤差に起因すると仮定しても、直径の誤差は6%に過
ぎないことが分かる。この結果から判断すると、中空糸
は微小流量制御装置の素子として十分に使用できること
が判明した。
The differential pressure (ΔP) is 0.05 to 0.15 MPa
I changed it. Flow rate error with calculated value is 17-27%
Met. From this result, it can be seen that the error in diameter is only 6% even if it is assumed that the cause of the error is due to the error in the diameter of the hollow fiber. Judging from this result, it was found that the hollow fiber can be sufficiently used as an element of the minute flow rate control device.

【0048】次に直径0.1mm、長さ300mmのポリ4−メチ
ルペンテン1中空糸を用いて、2本の糸束にした微量添
加装置を作成した。これにより超純水に29wt%アンモ
ニア水を添加した。微量添加量によりpH10の超純水
を作成することを試みた。超純水流量は、水圧0.2M
Pa・Gで0.5〜9リットル/分まで階段状に0.5
リットル/分ずつ増減させた。その流量維持時間は1分
で段階的に変動させた。アンモニア添加量は超純水流量
は制御せずに弁を開いた状態で添加した。また、アンモ
ニアを添加する際に0.25MPa・Gで加圧した。
Next, using a poly 4-methylpentene 1 hollow fiber having a diameter of 0.1 mm and a length of 300 mm, a micro-addition device having two yarn bundles was prepared. As a result, 29 wt% ammonia water was added to the ultrapure water. An attempt was made to prepare ultrapure water having a pH of 10 with a small amount of addition. Ultra pure water flow rate is water pressure 0.2M
Pa · G 0.5 to 9 liters / minute in a stepwise manner up to 0.5
Increase / decrease in liters / minute. The flow rate maintenance time was changed stepwise at 1 minute. Ammonia was added with the valve opened without controlling the flow rate of ultrapure water. Moreover, when adding ammonia, it pressurized at 0.25 MPa * G.

【0049】得られたアンモニア添加超純水のアンモニ
ア濃度をpH計で測定した。その結果、以下の表によう
になり、超純水流量によらず安定したpH濃度のアンモ
ニア水溶液が得られる事がわかった。
The ammonia concentration of the obtained ammonia-added ultrapure water was measured with a pH meter. As a result, the following table was obtained, and it was found that an aqueous ammonia solution having a stable pH concentration was obtained regardless of the flow rate of ultrapure water.

【0050】[0050]

【表3】 [Table 3]

【0051】比較例1 実施例1と同じく、電解質を溶解した水溶液として29
%アンモニア水溶液を溶解する装置を考える。配管に汎
用のチューブを用いた場合の必要長を算出する。超純水
に29wt%アンモニア水溶液を添加して、実施例1の添加
量の100倍の濃度である、600mg/リットルのアンモニア水
溶液を作るための装置の細管を設計する。29wt%アンモ
ニア水溶液の物性は次の通りである。 γ(比重)= 0.900、μ(粘度)=1.0×10-3Pa・s
(1.0cP) 超純水流量1リットル/min(=10kg/min)に対してNH3
度600ppmの場合、29wt%NH 3水溶液の流量Q=1×103×60
0×10-6÷0.29= 2.07g/min=2.07÷0.900 =2.30cm3/m
in、細管前後の差圧ΔP=0.01MPa、チューブ内径D=5mm
とした場合の長さLを求める。前述の(1)式より下記
式(8)が導かれる。
Comparative Example 1 As in Example 1, an aqueous solution in which an electrolyte was dissolved was used as 29
Consider a device that dissolves a% ammonia solution. For piping
Calculate the required length when a tube for use is used. Ultrapure water
29 wt% aqueous ammonia solution was added to
600 mg / liter of ammonia water, which is 100 times the concentration
Design the capillaries of the device for making the solution. 29wt% Ammo
The physical properties of the near aqueous solution are as follows. γ (specific gravity) = 0.900, μ (viscosity) = 1.0 x 10-3Pa · s
(1.0cP) NH3 for ultra pure water flow rate of 1 liter / min (= 10kg / min)3Dark
29wt% NH at 600ppm 3Flow rate of aqueous solution Q = 1 × 103× 60
0 x 10-6÷ 0.29 = 2.07g / min = 2.07 ÷ 0.900 = 2.30cm3/ m
in, differential pressure before and after thin tube ΔP = 0.01 MPa, tube inner diameter D = 5 mm
Then, find the length L. From the above formula (1),
Equation (8) is derived.

【0052】[0052]

【数4】 [Equation 4]

【0053】上記式(8)を下表の実用単位が使用でき
るように変形すると、下記(9)が導かれる。
When the above formula (8) is modified so that the practical units shown in the table below can be used, the following formula (9) is derived.

【0054】[0054]

【数5】 [Equation 5]

【0055】次いで、ΔP=0.01MPa、チューブ内径D=5m
m、Q=2.30cm3/min、μ=1.0cPを代入して、配管に汎
用のチューブを用いた場合の必要長(L)を求めると、
L = 1,473,000 × 54× 0.01 ÷ 1.0 ÷ 2.3=4×10
mm=4000mとなり、このような配管長さでアンモニア
を添加する微量添加装置をコンパクトに製作する事は事
実上不可能である。
Next, ΔP = 0.01 MPa, tube inner diameter D = 5 m
Substituting m, Q = 2.30 cm 3 / min, µ = 1.0 cP, and finding the required length (L) when using a general-purpose tube for piping,
L = 1,473,000 x 5 4 x 0.01 ÷ 1.0 ÷ 2.3 = 4 x 10 6
Since mm = 4000 m, it is practically impossible to manufacture a trace amount addition device for adding ammonia in such a pipe length in a compact manner.

【0056】また、実施例1と同じアンモニア濃度を得
ようとするならば、上記と同様に計算するとさらに10
0倍の配管長さ、400kmが必要となり、この場合も実
用上使用できない。
If the same ammonia concentration as in Example 1 is to be obtained, the calculation is performed in the same manner as described above, and it is 10
A pipe length of 0 times and 400 km are required, and even in this case, it cannot be practically used.

【0057】一方、配管前後の差圧を0.01MPaの1/100倍
にすれば長さは40mでよいことになるが、このような
小さな差圧ではアンモニア添加量を制御できなかった。
また、超純水の圧力変動が生じた場合、アンモニア水溶
液中へ超純水が逆流する場合があり、使用できない。
On the other hand, if the differential pressure before and after the piping is 1/100 times 0.01 MPa, the length will be 40 m, but the ammonia addition amount could not be controlled with such a small differential pressure.
Further, when the pressure change of the ultrapure water occurs, the ultrapure water may flow back into the aqueous ammonia solution and cannot be used.

【0058】実施例2 実施例1と同じく中空糸を用いて図2のような微少流量
添加装置を作成した。
Example 2 As in the case of Example 1, a minute flow rate addition device as shown in FIG. 2 was prepared using hollow fibers.

【0059】流量係数(単位cm3/min /MPa)がそれぞれ
0.5、1.0、2.0になるように中空糸を1、2、4本ずつ
3組の中空糸束にした。この束を並列接続して差圧0.05
MPaを加えて、それぞれON-OFF弁で制御すると、流量で
0、0.025、0.05、0.075、0.10、0.125、0.15、0.175 cm
3/minを流すことが出来ることを例として示す。
Flow coefficient (unit cm 3 / min / MPa)
The hollow fibers were bundled in three sets of 1, 2, and 4 hollow fibers so that the hollow fibers were 0.5, 1.0, and 2.0. This bundle is connected in parallel and the differential pressure is 0.05
When adding MPa and controlling each with an ON-OFF valve,
0, 0.025, 0.05, 0.075, 0.10, 0.125, 0.15, 0.175 cm
As an example, it is possible to flow 3 / min.

【0060】[0060]

【表4】 [Table 4]

【0061】これを利用すると、純水流量を測定して純
水流量に応じて弁AV-1、2、3を開閉すると、完全に比例
することは出来ないが、ほぼ流量に比例して29重量%の
アンモニア水を純水に微量添加することが出来る。
When this is used, if the pure water flow rate is measured and the valves AV-1, 2 and 3 are opened / closed according to the pure water flow rate, it is not possible to make a perfect proportion, but it is almost proportional to the flow quantity. A small amount of wt% ammonia water can be added to pure water.

【0062】次いで、直径0.1mm、長さ300mmのポリ4−
メチルペンテン1中空糸を用いて、1、2、4本ずつ3
組の中空糸束にした微量添加装置を作成した。これによ
り超純水に29wt%アンモニア水を超純水の流量を変え
て添加した。微量添加量によりpH10の超純水を作成
することを試みた。超純水流量は、水圧0.2MPa・
Gで0.5〜9リットル/分まで階段状に0.5リット
ル/分ずつ増減させた。その流量維持時間は1分で段階
的に変動させた。アンモニア添加量はアンモニア添加後
の超純水流量を測定し、これによって中空糸の弁を開閉
することで制御した。また、アンモニアを添加する際に
0.25MPa・Gで加圧した。
Next, a poly 4-having a diameter of 0.1 mm and a length of 300 mm is used.
Methyl pentene 1 Hollow fiber, 1, 2, 4 3
A set of hollow fiber bundles was made into a micro addition device. As a result, 29 wt% ammonia water was added to the ultrapure water while changing the flow rate of the ultrapure water. An attempt was made to prepare ultrapure water having a pH of 10 with a small amount of addition. The flow rate of ultrapure water is 0.2 MPa
G was stepwise increased or decreased in 0.5 liters / minute from 0.5 to 9 liters / minute. The flow rate maintenance time was changed stepwise at 1 minute. The amount of ammonia added was controlled by measuring the flow rate of ultrapure water after addition of ammonia and opening / closing the hollow fiber valve accordingly. Moreover, when adding ammonia, it pressurized at 0.25 MPa * G.

【0063】得られたアンモニア添加超純水のアンモニ
ア濃度をPH計で測定した。その結果、下記表5によう
になり、超純水流量によらず安定した濃度のアンモニア
水溶液が得られる事がわかった。
The ammonia concentration of the obtained ultrapure water containing ammonia was measured with a PH meter. As a result, the results are shown in Table 5 below, and it was found that an ammonia aqueous solution having a stable concentration was obtained regardless of the flow rate of ultrapure water.

【0064】[0064]

【表5】 [Table 5]

【0065】実施例3 実施例1の微少添加量装置を用いてアンモニアを添加し
た。その後に図3に示すように気体透過膜を用いてガス
を溶解した。中空糸膜モジュールとしてはポリ−4−メ
チルペンテン−1を素材とし、内径100μm、外径1
80μmの糸を収束させ、ポリプロピレン樹脂製のハウ
ジング内に糸の両端を樹脂で固めることにより、2m2
の膜面積を持つ外部灌流型の気体給気用中空糸モジュー
ル(大日本インキ化学工業(株)製SEPAREL E
F−002A)を得た。中空糸膜の酸素透過速度は1×
10−5[cm/cm・sec・cmHg](=0.7×10
−9[m/m・sec・Pa])であった。
Example 3 Ammonia was added using the minute addition amount apparatus of Example 1. Thereafter, as shown in FIG. 3, the gas was dissolved using a gas permeable membrane. The hollow fiber membrane module is made of poly-4-methylpentene-1 and has an inner diameter of 100 μm and an outer diameter of 1
2m2 by converging the 80μm thread and fixing both ends of the thread with resin in the polypropylene resin housing.
Externally perfused hollow fiber module for gas supply with membrane area (SEPAREL E manufactured by Dainippon Ink and Chemicals, Inc.)
F-002A) was obtained. Oxygen permeation rate of hollow fiber membrane is 1 ×
10 −5 [cm 3 / cm 2 · sec · cmHg] (= 0.7 × 10
-9 [m 3 / m 2 · sec · Pa]).

【0066】これを用いて、水素ガスをアンモニア水溶
液が添加された超純水に溶解した。水素ガスは99.9
%純度のガスを用い、ガス圧力0.02MPa・Gで供
給し、モジュール出口側で流量500cm/分で排気し
た。モジュールを出た後に溶存水素計(東亜ディーケー
ケー(株)製、DH-35A)を用いて溶存水素濃度を測定し
た。その結果、超純水流量0.5〜9リットル/分で、
溶存水素濃度は1.4〜1.6mg/リットルと安定し
た溶存水素濃度の超純水が得られた。
Using this, hydrogen gas was dissolved in ultrapure water to which an aqueous ammonia solution was added. Hydrogen gas is 99.9
% Purity gas was used, the gas pressure was supplied at 0.02 MPa · G, and the gas was exhausted at the flow rate of 500 cm 3 / min at the module outlet side. After leaving the module, the dissolved hydrogen concentration was measured using a dissolved hydrogen meter (DH-35A manufactured by Toa DKK Co., Ltd.). As a result, at a flow rate of ultrapure water of 0.5 to 9 liters / minute,
Ultrapure water having a stable dissolved hydrogen concentration of 1.4 to 1.6 mg / liter was obtained.

【0067】[0067]

【発明の効果】本発明は、連続的に流通する超純水に、
電解質が溶解した水溶液を弁が設けられた細管を連結し
てその弁の開閉で、供給量を制御するような微小添加量
制御装置を提供するものである。これを用いることで、
高濃度原液から一段階で微小量を添加することが可能に
なった。さらにこれとガス溶解装置からなる装置によっ
て、電解質とガスが溶解した超純水を安定して得られ
た。
INDUSTRIAL APPLICABILITY The present invention can be applied to ultrapure water that continuously flows,
It is intended to provide a minute addition amount control device in which an aqueous solution in which an electrolyte is dissolved is connected to a thin tube provided with a valve and the supply amount is controlled by opening and closing the valve. By using this,
It became possible to add a minute amount from a highly concentrated stock solution in one step. Further, ultra pure water in which the electrolyte and the gas were dissolved was stably obtained by a device including this and a gas dissolving device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による、連続的に流通する超純水へ細管
を接続して、電解質を供給する際の模式図である。
FIG. 1 is a schematic diagram when a thin tube is connected to continuously flowing ultrapure water and an electrolyte is supplied according to the present invention.

【図2】本発明による、液体の微小添加量制御装置の一
例を示す模式図である。
FIG. 2 is a schematic diagram showing an example of a device for controlling the minute addition amount of a liquid according to the present invention.

【図3】本発明による、電解質が溶解した超純水のガス
溶解装置の一例を示す。
FIG. 3 shows an example of a gas dissolving device for ultrapure water in which an electrolyte is dissolved according to the present invention.

【0068】[0068]

【符号の説明】[Explanation of symbols]

1 流量調節弁 2 微量添加装置 3 ガス溶解装置 4 圧力調整弁 1 Flow control valve 2 Micro addition device 3 gas dissolution equipment 4 Pressure control valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01F 5/02 B01F 5/02 Z H01L 21/304 648 H01L 21/304 648G 648K (72)発明者 富田 康司 千葉県稲毛区小中台501−2−602 (72)発明者 酒井 一成 千葉県四街道市鷹の台4−19−3 (72)発明者 羽田 尚樹 千葉県佐倉市大崎台3−5−1−2−203 (72)発明者 風間 勝彦 千葉県千葉市美浜区真砂3−17−3−507 Fターム(参考) 4D006 GA35 KA31 KB30 MA01 MA03 MB03 MC22 MC23 MC28 MC30 MC65 PC80 4G035 AB05 AB37 AC01 AC18 AE02 AE13 4G037 AA02 BA01 BA03 BB06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01F 5/02 B01F 5/02 Z H01L 21/304 648 H01L 21/304 648G 648K (72) Inventor Koji Tomita 501-2-602 Konakadai, Inage-ku, Chiba Prefecture (72) Inventor Issei Sakai 4-19-3 Takanodai, Yotsukaido City, Chiba Prefecture (72) Inventor Naoki Haneda 3-5-1-2 Osakidai, Sakura City, Chiba Prefecture −203 (72) Inventor Katsuhiko Kazama 3-17-3-507 F Term 3-17-3-507 Masago, Mihama-ku, Chiba Prefecture (Reference) 4D006 GA35 KA31 KB30 MA01 MA03 MB03 MC22 MC23 MC28 MC30 MC65 PC80 4G035 AB05 AB37 AC01 AC18 AE02 AE13 4G037 AA02 BA01 BA03 BB06

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 連続的に流通する超純水に、電解質を溶
解した水溶液を連続的に供給する装置であって、電解質
が溶解した水溶液の供給装置と超純水の流通管との間
を、弁が設けられた細管を連結し、弁の開閉で、供給量
を制御する微小添加量制御装置。
1. A device for continuously supplying an aqueous solution in which an electrolyte is dissolved to continuously flowing ultrapure water, wherein a device for supplying an aqueous solution in which the electrolyte is dissolved and a flow pipe for ultrapure water are provided. A micro addition amount control device which controls a supply amount by connecting a thin tube provided with a valve and opening and closing the valve.
【請求項2】 前記細管を並列に複数本連結し、弁を開
けた本数で、供給量を制御する請求項1記載の微小添加
量制御装置。
2. The minute addition amount control device according to claim 1, wherein a plurality of the thin tubes are connected in parallel, and the supply amount is controlled by the number of opened valves.
【請求項3】 電解質を溶解した水溶液を供給した超純
水の流量の変化または電気化学的定数の変化に基づい
て、電解質を溶解した水溶液を供給した超純水の濃度を
一定に制御する請求項2記載の微小添加量制御装置。
3. The concentration of ultrapure water supplied with the aqueous solution in which the electrolyte is dissolved is controlled to be constant based on the change in the flow rate of the ultrapure water supplied with the aqueous solution in which the electrolyte is dissolved or the change in the electrochemical constant. Item 2. A minute addition amount control device according to item 2.
【請求項4】 電解質を溶解した水溶液の供給量(X)
と、連続的に流通する超純水(Y)の流量との比が
(X)/(Y)=1/1,000,000〜1/1,000である請求
項1、2または3記載の微小添加量制御装置。
4. A supply amount (X) of an aqueous solution in which an electrolyte is dissolved
4. The minute addition amount control device according to claim 1, 2 or 3, wherein the ratio of the flow rate of the ultrapure water (Y) flowing continuously is (X) / (Y) = 1 / 1,000,000 to 1/1000. .
【請求項5】 電解質を溶解した水溶液を供給した超純
水の、電解質濃度が0.00001〜0.1重量%であ
る請求項1記載の微小添加量制御装置。
5. The minute addition amount control device according to claim 1, wherein the electrolyte concentration of the ultrapure water supplied with the aqueous solution in which the electrolyte is dissolved is 0.00001 to 0.1% by weight.
【請求項6】 電解質を溶解した水溶液の供給量が0.
001〜10cm/分である請求項1記載の微小添加
量制御装置。
6. The supply amount of the aqueous solution in which the electrolyte is dissolved is 0.
The minute addition amount control device according to claim 1, which is 001 to 10 cm 3 / min.
【請求項7】 連続的に流通する超純水に電解質を溶解
した水溶液を添加して、電解質が添加された超純水を連
続的に得る装置(A)と超純水に還元性または酸化性の
気体を溶解させて還元性または酸化性の気体が溶解され
た超純水を得る装置(B)を有し、前記(A)と前記
(B)とを、(A)−(B)または(B)−(A)の順
に接続したガス溶解水製造装置であって、電解質が添加
された超純水を得る装置(A)として、請求項1〜6の
何れか一つに記載の微小流量制御装置を用いることを特
徴とする、ガス溶解水製造装置。
7. A device (A) for continuously obtaining an ultrapure water added with an electrolyte by adding an aqueous solution in which an electrolyte is dissolved to continuously flowing ultrapure water and reducing or oxidizing the ultrapure water. (A)-(B) having an apparatus (B) for obtaining ultrapure water in which a reducing gas or an oxidizing gas is dissolved by dissolving a reactive gas Alternatively, the gas-dissolved water production apparatus connected in the order of (B)-(A), wherein the apparatus (A) for obtaining ultrapure water to which an electrolyte is added is according to any one of claims 1 to 6. An apparatus for producing gas-dissolved water, which uses a minute flow rate controller.
【請求項8】 還元性または酸化性の気体が溶解された
超純水を得る装置(B)が、気体透過膜を介して、超純
水に前記気体を溶解させる装置である請求項7記載のガ
ス溶解水製造装置。
8. The apparatus (B) for obtaining ultrapure water in which a reducing or oxidizing gas is dissolved is an apparatus for dissolving the gas in ultrapure water via a gas permeable membrane. Gas dissolved water production equipment.
【請求項9】 連続的に流通する超純水に電解質を溶解
した水溶液を添加して、電解質が添加された超純水を得
る工程(a)と超純水に還元性または酸化性の気体を溶
解させて還元性または酸化性の気体が溶解された超純水
を得る工程(b)を有し、前記(a)と前記(b)と
を、前記(a)−(b)または(b)−(a)の順に接
続されたガス溶解水製造装置であって、電解質が添加さ
れた超純水を得る工程(a)として、連続的に流通する
超純水に、電解質を溶解した水溶液を供給する工程が、
電解質が溶解した水溶液の供給装置と超純水の流通管と
の間を、弁が設けられた細管を連結し、弁の開閉で、供
給量を制御することを特徴とするガス溶解水の製造方
法。
9. A step (a) of obtaining an ultrapure water to which an electrolyte is added by adding an aqueous solution in which an electrolyte is dissolved to continuously flowing ultrapure water, and a reducing or oxidizing gas for the ultrapure water. And (b) to obtain ultrapure water in which a reducing or oxidizing gas is dissolved by dissolving (a)-(b) or (a). b)-(a), which is a gas-dissolved water production apparatus connected in this order, wherein the electrolyte is dissolved in continuously flowing ultrapure water in the step (a) of obtaining ultrapure water to which the electrolyte is added. The process of supplying the aqueous solution
Production of gas-dissolved water characterized in that a thin tube provided with a valve is connected between a supply device for an aqueous solution in which an electrolyte is dissolved and a flow pipe for ultrapure water, and the supply amount is controlled by opening and closing the valve. Method.
【請求項10】 工程(a)が、連続的に流通する超純
水に、電解質を溶解した水溶液を連続的に供給する装置
であって、電解質が溶解した水溶液の供給装置と超純水
の流通管との間を、弁が設けられた細管を連結し、弁の
開閉で、、供給量を制御する微小添加量制御装置を用い
ることである請求項9記載のガス溶解水の製造方法。
10. The step (a) is an apparatus for continuously supplying an aqueous solution in which an electrolyte is dissolved to ultrapure water which is continuously flowing, the apparatus for supplying an aqueous solution in which the electrolyte is dissolved and the ultrapure water. The method for producing gas-dissolved water according to claim 9, wherein a fine pipe provided with a valve is connected to the flow pipe, and a minute addition amount control device that controls the supply amount by opening and closing the valve is used.
【請求項11】 微小添加量制御装置が、電解質を溶解
した水溶液を供給した超純水の流量の変化または電気化
学的定数の変化に基づいて、電解質を溶解した水溶液を
供給した超純水の濃度を一定に制御するものである請求
項10記載のガス溶解水の製造方法。
11. The micro addition amount control device controls the ultra pure water supplied with the aqueous solution in which the electrolyte is dissolved based on the change in the flow rate of the ultra pure water supplied in the aqueous solution in which the electrolyte is supplied or the change in the electrochemical constant. The method for producing gas-dissolved water according to claim 10, wherein the concentration is controlled to be constant.
【請求項12】 工程(b)が、気体透過膜を介して、
超純水に前記気体を溶解させる装置である請求項11記
載のガス溶解水の製造方法。
12. The step (b) comprises:
The method for producing gas-dissolved water according to claim 11, which is an apparatus for dissolving the gas in ultrapure water.
JP2002119085A 2002-04-22 2002-04-22 Apparatus for addition control of ultra small amount of liquid and gas-dissolved water production apparatus and gas-dissolved water production method using the same Pending JP2003311140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002119085A JP2003311140A (en) 2002-04-22 2002-04-22 Apparatus for addition control of ultra small amount of liquid and gas-dissolved water production apparatus and gas-dissolved water production method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002119085A JP2003311140A (en) 2002-04-22 2002-04-22 Apparatus for addition control of ultra small amount of liquid and gas-dissolved water production apparatus and gas-dissolved water production method using the same

Publications (1)

Publication Number Publication Date
JP2003311140A true JP2003311140A (en) 2003-11-05

Family

ID=29535743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002119085A Pending JP2003311140A (en) 2002-04-22 2002-04-22 Apparatus for addition control of ultra small amount of liquid and gas-dissolved water production apparatus and gas-dissolved water production method using the same

Country Status (1)

Country Link
JP (1) JP2003311140A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016042933A1 (en) * 2014-09-16 2016-03-24 オルガノ株式会社 Diluted liquid production method and diluted liquid production device
JP6408083B1 (en) * 2017-07-13 2018-10-17 環境技術サービス株式会社 Bubble generation device and bubble generation method
WO2022239333A1 (en) * 2021-05-11 2022-11-17 住友電工ファインポリマー株式会社 Air-supply module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016042933A1 (en) * 2014-09-16 2016-03-24 オルガノ株式会社 Diluted liquid production method and diluted liquid production device
JPWO2016042933A1 (en) * 2014-09-16 2017-04-27 オルガノ株式会社 Diluent manufacturing method and diluent manufacturing apparatus
CN106688082A (en) * 2014-09-16 2017-05-17 奥加诺株式会社 Diluted liquid production method and diluted liquid production device
CN106688082B (en) * 2014-09-16 2019-08-30 奥加诺株式会社 Dilution manufacturing method and dilution manufacturing device
US10406493B2 (en) 2014-09-16 2019-09-10 Organo Corporation Diluted solution production method and diluted solution production apparatus
US10857512B2 (en) 2014-09-16 2020-12-08 Organo Corporation Diluted solution production method and diluted solution production apparatus
JP6408083B1 (en) * 2017-07-13 2018-10-17 環境技術サービス株式会社 Bubble generation device and bubble generation method
JP2019018132A (en) * 2017-07-13 2019-02-07 環境技術サービス株式会社 Bubble generation device and bubble generation method
WO2022239333A1 (en) * 2021-05-11 2022-11-17 住友電工ファインポリマー株式会社 Air-supply module

Similar Documents

Publication Publication Date Title
US6158721A (en) Apparatus and method for adding carbon dioxide gas to ultra pure water
CN108275764B (en) Bathing device capable of producing hydrogen-enriched ultrafine bubble water
US5254143A (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
JPH11179167A (en) Spiral type membrane module
JP2009285651A (en) Apparatus for manufacturing liquid containing gas dissolved therein for carbonate spring
JP5862043B2 (en) Gas-dissolved liquid manufacturing apparatus and gas-dissolved liquid manufacturing method
JP3951385B2 (en) Apparatus and method for adjusting dissolved gas concentration in liquid
US20020063345A1 (en) Apparatus and method for controlling resistivity of ultra pure water
JP2018206998A (en) Diluted chemical solution manufacturing apparatus
EP0470377A2 (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
JP3690569B2 (en) Ultrapure water specific resistance adjustment device and adjustment method
JP4843339B2 (en) Ozone water supply device
JP2003311140A (en) Apparatus for addition control of ultra small amount of liquid and gas-dissolved water production apparatus and gas-dissolved water production method using the same
CN110087761A (en) Resistivity value adjuster and resistivity value method of adjustment
JP2003010660A (en) Apparatus and method for controlling resistivity of ultra-pure water
TWI759381B (en) Diluted solution producing device and diluted solution producing method
JP6777534B2 (en) Diluting solution manufacturing equipment and diluent manufacturing method
JP2018103146A (en) Diluent liquid manufacturing apparatus and diluent liquid manufacturing method
JPH10309445A (en) Spiral type film module
JP5413726B2 (en) Gas-liquid mixing device
JP2018103148A (en) Diluent liquid manufacturing apparatus and diluent liquid manufacturing method
US8171956B2 (en) Liquid supply method and apparatus
CN112351839B (en) Gas-liquid mixing nozzle
JP4375766B2 (en) Deaeration device and deaeration method
JPH07303802A (en) Diaphragm deaeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

RD03 Notification of appointment of power of attorney

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106